1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common Block IO controller cgroup interface 4 * 5 * Based on ideas and code from CFQ, CFS and BFQ: 6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 7 * 8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 9 * Paolo Valente <paolo.valente@unimore.it> 10 * 11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com> 12 * Nauman Rafique <nauman@google.com> 13 * 14 * For policy-specific per-blkcg data: 15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it> 16 * Arianna Avanzini <avanzini.arianna@gmail.com> 17 */ 18 #include <linux/ioprio.h> 19 #include <linux/kdev_t.h> 20 #include <linux/module.h> 21 #include <linux/sched/signal.h> 22 #include <linux/err.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/slab.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/ctype.h> 29 #include <linux/resume_user_mode.h> 30 #include <linux/psi.h> 31 #include <linux/part_stat.h> 32 #include "blk.h" 33 #include "blk-cgroup.h" 34 #include "blk-ioprio.h" 35 #include "blk-throttle.h" 36 #include "blk-rq-qos.h" 37 38 /* 39 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation. 40 * blkcg_pol_register_mutex nests outside of it and synchronizes entire 41 * policy [un]register operations including cgroup file additions / 42 * removals. Putting cgroup file registration outside blkcg_pol_mutex 43 * allows grabbing it from cgroup callbacks. 44 */ 45 static DEFINE_MUTEX(blkcg_pol_register_mutex); 46 static DEFINE_MUTEX(blkcg_pol_mutex); 47 48 struct blkcg blkcg_root; 49 EXPORT_SYMBOL_GPL(blkcg_root); 50 51 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css; 52 EXPORT_SYMBOL_GPL(blkcg_root_css); 53 54 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS]; 55 56 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */ 57 58 bool blkcg_debug_stats = false; 59 static struct workqueue_struct *blkcg_punt_bio_wq; 60 61 #define BLKG_DESTROY_BATCH_SIZE 64 62 63 /* 64 * Lockless lists for tracking IO stats update 65 * 66 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg). 67 * There are multiple blkg's (one for each block device) attached to each 68 * blkcg. The rstat code keeps track of which cpu has IO stats updated, 69 * but it doesn't know which blkg has the updated stats. If there are many 70 * block devices in a system, the cost of iterating all the blkg's to flush 71 * out the IO stats can be high. To reduce such overhead, a set of percpu 72 * lockless lists (lhead) per blkcg are used to track the set of recently 73 * updated iostat_cpu's since the last flush. An iostat_cpu will be put 74 * onto the lockless list on the update side [blk_cgroup_bio_start()] if 75 * not there yet and then removed when being flushed [blkcg_rstat_flush()]. 76 * References to blkg are gotten and then put back in the process to 77 * protect against blkg removal. 78 * 79 * Return: 0 if successful or -ENOMEM if allocation fails. 80 */ 81 static int init_blkcg_llists(struct blkcg *blkcg) 82 { 83 int cpu; 84 85 blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL); 86 if (!blkcg->lhead) 87 return -ENOMEM; 88 89 for_each_possible_cpu(cpu) 90 init_llist_head(per_cpu_ptr(blkcg->lhead, cpu)); 91 return 0; 92 } 93 94 /** 95 * blkcg_css - find the current css 96 * 97 * Find the css associated with either the kthread or the current task. 98 * This may return a dying css, so it is up to the caller to use tryget logic 99 * to confirm it is alive and well. 100 */ 101 static struct cgroup_subsys_state *blkcg_css(void) 102 { 103 struct cgroup_subsys_state *css; 104 105 css = kthread_blkcg(); 106 if (css) 107 return css; 108 return task_css(current, io_cgrp_id); 109 } 110 111 static bool blkcg_policy_enabled(struct request_queue *q, 112 const struct blkcg_policy *pol) 113 { 114 return pol && test_bit(pol->plid, q->blkcg_pols); 115 } 116 117 static void blkg_free_workfn(struct work_struct *work) 118 { 119 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 120 free_work); 121 struct request_queue *q = blkg->q; 122 int i; 123 124 /* 125 * pd_free_fn() can also be called from blkcg_deactivate_policy(), 126 * in order to make sure pd_free_fn() is called in order, the deletion 127 * of the list blkg->q_node is delayed to here from blkg_destroy(), and 128 * blkcg_mutex is used to synchronize blkg_free_workfn() and 129 * blkcg_deactivate_policy(). 130 */ 131 mutex_lock(&q->blkcg_mutex); 132 for (i = 0; i < BLKCG_MAX_POLS; i++) 133 if (blkg->pd[i]) 134 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 135 if (blkg->parent) 136 blkg_put(blkg->parent); 137 list_del_init(&blkg->q_node); 138 mutex_unlock(&q->blkcg_mutex); 139 140 blk_put_queue(q); 141 free_percpu(blkg->iostat_cpu); 142 percpu_ref_exit(&blkg->refcnt); 143 kfree(blkg); 144 } 145 146 /** 147 * blkg_free - free a blkg 148 * @blkg: blkg to free 149 * 150 * Free @blkg which may be partially allocated. 151 */ 152 static void blkg_free(struct blkcg_gq *blkg) 153 { 154 if (!blkg) 155 return; 156 157 /* 158 * Both ->pd_free_fn() and request queue's release handler may 159 * sleep, so free us by scheduling one work func 160 */ 161 INIT_WORK(&blkg->free_work, blkg_free_workfn); 162 schedule_work(&blkg->free_work); 163 } 164 165 static void __blkg_release(struct rcu_head *rcu) 166 { 167 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head); 168 169 WARN_ON(!bio_list_empty(&blkg->async_bios)); 170 171 /* release the blkcg and parent blkg refs this blkg has been holding */ 172 css_put(&blkg->blkcg->css); 173 blkg_free(blkg); 174 } 175 176 /* 177 * A group is RCU protected, but having an rcu lock does not mean that one 178 * can access all the fields of blkg and assume these are valid. For 179 * example, don't try to follow throtl_data and request queue links. 180 * 181 * Having a reference to blkg under an rcu allows accesses to only values 182 * local to groups like group stats and group rate limits. 183 */ 184 static void blkg_release(struct percpu_ref *ref) 185 { 186 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt); 187 188 call_rcu(&blkg->rcu_head, __blkg_release); 189 } 190 191 static void blkg_async_bio_workfn(struct work_struct *work) 192 { 193 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 194 async_bio_work); 195 struct bio_list bios = BIO_EMPTY_LIST; 196 struct bio *bio; 197 struct blk_plug plug; 198 bool need_plug = false; 199 200 /* as long as there are pending bios, @blkg can't go away */ 201 spin_lock_bh(&blkg->async_bio_lock); 202 bio_list_merge(&bios, &blkg->async_bios); 203 bio_list_init(&blkg->async_bios); 204 spin_unlock_bh(&blkg->async_bio_lock); 205 206 /* start plug only when bio_list contains at least 2 bios */ 207 if (bios.head && bios.head->bi_next) { 208 need_plug = true; 209 blk_start_plug(&plug); 210 } 211 while ((bio = bio_list_pop(&bios))) 212 submit_bio(bio); 213 if (need_plug) 214 blk_finish_plug(&plug); 215 } 216 217 /** 218 * bio_blkcg_css - return the blkcg CSS associated with a bio 219 * @bio: target bio 220 * 221 * This returns the CSS for the blkcg associated with a bio, or %NULL if not 222 * associated. Callers are expected to either handle %NULL or know association 223 * has been done prior to calling this. 224 */ 225 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio) 226 { 227 if (!bio || !bio->bi_blkg) 228 return NULL; 229 return &bio->bi_blkg->blkcg->css; 230 } 231 EXPORT_SYMBOL_GPL(bio_blkcg_css); 232 233 /** 234 * blkcg_parent - get the parent of a blkcg 235 * @blkcg: blkcg of interest 236 * 237 * Return the parent blkcg of @blkcg. Can be called anytime. 238 */ 239 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg) 240 { 241 return css_to_blkcg(blkcg->css.parent); 242 } 243 244 /** 245 * blkg_alloc - allocate a blkg 246 * @blkcg: block cgroup the new blkg is associated with 247 * @disk: gendisk the new blkg is associated with 248 * @gfp_mask: allocation mask to use 249 * 250 * Allocate a new blkg assocating @blkcg and @q. 251 */ 252 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk, 253 gfp_t gfp_mask) 254 { 255 struct blkcg_gq *blkg; 256 int i, cpu; 257 258 /* alloc and init base part */ 259 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node); 260 if (!blkg) 261 return NULL; 262 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask)) 263 goto out_free_blkg; 264 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask); 265 if (!blkg->iostat_cpu) 266 goto out_exit_refcnt; 267 if (!blk_get_queue(disk->queue)) 268 goto out_free_iostat; 269 270 blkg->q = disk->queue; 271 INIT_LIST_HEAD(&blkg->q_node); 272 spin_lock_init(&blkg->async_bio_lock); 273 bio_list_init(&blkg->async_bios); 274 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn); 275 blkg->blkcg = blkcg; 276 277 u64_stats_init(&blkg->iostat.sync); 278 for_each_possible_cpu(cpu) { 279 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync); 280 per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg; 281 } 282 283 for (i = 0; i < BLKCG_MAX_POLS; i++) { 284 struct blkcg_policy *pol = blkcg_policy[i]; 285 struct blkg_policy_data *pd; 286 287 if (!blkcg_policy_enabled(disk->queue, pol)) 288 continue; 289 290 /* alloc per-policy data and attach it to blkg */ 291 pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask); 292 if (!pd) 293 goto out_free_pds; 294 blkg->pd[i] = pd; 295 pd->blkg = blkg; 296 pd->plid = i; 297 pd->online = false; 298 } 299 300 return blkg; 301 302 out_free_pds: 303 while (--i >= 0) 304 if (blkg->pd[i]) 305 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 306 blk_put_queue(disk->queue); 307 out_free_iostat: 308 free_percpu(blkg->iostat_cpu); 309 out_exit_refcnt: 310 percpu_ref_exit(&blkg->refcnt); 311 out_free_blkg: 312 kfree(blkg); 313 return NULL; 314 } 315 316 /* 317 * If @new_blkg is %NULL, this function tries to allocate a new one as 318 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return. 319 */ 320 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk, 321 struct blkcg_gq *new_blkg) 322 { 323 struct blkcg_gq *blkg; 324 int i, ret; 325 326 lockdep_assert_held(&disk->queue->queue_lock); 327 328 /* request_queue is dying, do not create/recreate a blkg */ 329 if (blk_queue_dying(disk->queue)) { 330 ret = -ENODEV; 331 goto err_free_blkg; 332 } 333 334 /* blkg holds a reference to blkcg */ 335 if (!css_tryget_online(&blkcg->css)) { 336 ret = -ENODEV; 337 goto err_free_blkg; 338 } 339 340 /* allocate */ 341 if (!new_blkg) { 342 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN); 343 if (unlikely(!new_blkg)) { 344 ret = -ENOMEM; 345 goto err_put_css; 346 } 347 } 348 blkg = new_blkg; 349 350 /* link parent */ 351 if (blkcg_parent(blkcg)) { 352 blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue); 353 if (WARN_ON_ONCE(!blkg->parent)) { 354 ret = -ENODEV; 355 goto err_put_css; 356 } 357 blkg_get(blkg->parent); 358 } 359 360 /* invoke per-policy init */ 361 for (i = 0; i < BLKCG_MAX_POLS; i++) { 362 struct blkcg_policy *pol = blkcg_policy[i]; 363 364 if (blkg->pd[i] && pol->pd_init_fn) 365 pol->pd_init_fn(blkg->pd[i]); 366 } 367 368 /* insert */ 369 spin_lock(&blkcg->lock); 370 ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg); 371 if (likely(!ret)) { 372 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list); 373 list_add(&blkg->q_node, &disk->queue->blkg_list); 374 375 for (i = 0; i < BLKCG_MAX_POLS; i++) { 376 struct blkcg_policy *pol = blkcg_policy[i]; 377 378 if (blkg->pd[i]) { 379 if (pol->pd_online_fn) 380 pol->pd_online_fn(blkg->pd[i]); 381 blkg->pd[i]->online = true; 382 } 383 } 384 } 385 blkg->online = true; 386 spin_unlock(&blkcg->lock); 387 388 if (!ret) 389 return blkg; 390 391 /* @blkg failed fully initialized, use the usual release path */ 392 blkg_put(blkg); 393 return ERR_PTR(ret); 394 395 err_put_css: 396 css_put(&blkcg->css); 397 err_free_blkg: 398 if (new_blkg) 399 blkg_free(new_blkg); 400 return ERR_PTR(ret); 401 } 402 403 /** 404 * blkg_lookup_create - lookup blkg, try to create one if not there 405 * @blkcg: blkcg of interest 406 * @disk: gendisk of interest 407 * 408 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to 409 * create one. blkg creation is performed recursively from blkcg_root such 410 * that all non-root blkg's have access to the parent blkg. This function 411 * should be called under RCU read lock and takes @disk->queue->queue_lock. 412 * 413 * Returns the blkg or the closest blkg if blkg_create() fails as it walks 414 * down from root. 415 */ 416 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg, 417 struct gendisk *disk) 418 { 419 struct request_queue *q = disk->queue; 420 struct blkcg_gq *blkg; 421 unsigned long flags; 422 423 WARN_ON_ONCE(!rcu_read_lock_held()); 424 425 blkg = blkg_lookup(blkcg, q); 426 if (blkg) 427 return blkg; 428 429 spin_lock_irqsave(&q->queue_lock, flags); 430 blkg = blkg_lookup(blkcg, q); 431 if (blkg) { 432 if (blkcg != &blkcg_root && 433 blkg != rcu_dereference(blkcg->blkg_hint)) 434 rcu_assign_pointer(blkcg->blkg_hint, blkg); 435 goto found; 436 } 437 438 /* 439 * Create blkgs walking down from blkcg_root to @blkcg, so that all 440 * non-root blkgs have access to their parents. Returns the closest 441 * blkg to the intended blkg should blkg_create() fail. 442 */ 443 while (true) { 444 struct blkcg *pos = blkcg; 445 struct blkcg *parent = blkcg_parent(blkcg); 446 struct blkcg_gq *ret_blkg = q->root_blkg; 447 448 while (parent) { 449 blkg = blkg_lookup(parent, q); 450 if (blkg) { 451 /* remember closest blkg */ 452 ret_blkg = blkg; 453 break; 454 } 455 pos = parent; 456 parent = blkcg_parent(parent); 457 } 458 459 blkg = blkg_create(pos, disk, NULL); 460 if (IS_ERR(blkg)) { 461 blkg = ret_blkg; 462 break; 463 } 464 if (pos == blkcg) 465 break; 466 } 467 468 found: 469 spin_unlock_irqrestore(&q->queue_lock, flags); 470 return blkg; 471 } 472 473 static void blkg_destroy(struct blkcg_gq *blkg) 474 { 475 struct blkcg *blkcg = blkg->blkcg; 476 int i; 477 478 lockdep_assert_held(&blkg->q->queue_lock); 479 lockdep_assert_held(&blkcg->lock); 480 481 /* 482 * blkg stays on the queue list until blkg_free_workfn(), see details in 483 * blkg_free_workfn(), hence this function can be called from 484 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before 485 * blkg_free_workfn(). 486 */ 487 if (hlist_unhashed(&blkg->blkcg_node)) 488 return; 489 490 for (i = 0; i < BLKCG_MAX_POLS; i++) { 491 struct blkcg_policy *pol = blkcg_policy[i]; 492 493 if (blkg->pd[i] && blkg->pd[i]->online) { 494 blkg->pd[i]->online = false; 495 if (pol->pd_offline_fn) 496 pol->pd_offline_fn(blkg->pd[i]); 497 } 498 } 499 500 blkg->online = false; 501 502 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id); 503 hlist_del_init_rcu(&blkg->blkcg_node); 504 505 /* 506 * Both setting lookup hint to and clearing it from @blkg are done 507 * under queue_lock. If it's not pointing to @blkg now, it never 508 * will. Hint assignment itself can race safely. 509 */ 510 if (rcu_access_pointer(blkcg->blkg_hint) == blkg) 511 rcu_assign_pointer(blkcg->blkg_hint, NULL); 512 513 /* 514 * Put the reference taken at the time of creation so that when all 515 * queues are gone, group can be destroyed. 516 */ 517 percpu_ref_kill(&blkg->refcnt); 518 } 519 520 static void blkg_destroy_all(struct gendisk *disk) 521 { 522 struct request_queue *q = disk->queue; 523 struct blkcg_gq *blkg, *n; 524 int count = BLKG_DESTROY_BATCH_SIZE; 525 526 restart: 527 spin_lock_irq(&q->queue_lock); 528 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) { 529 struct blkcg *blkcg = blkg->blkcg; 530 531 spin_lock(&blkcg->lock); 532 blkg_destroy(blkg); 533 spin_unlock(&blkcg->lock); 534 535 /* 536 * in order to avoid holding the spin lock for too long, release 537 * it when a batch of blkgs are destroyed. 538 */ 539 if (!(--count)) { 540 count = BLKG_DESTROY_BATCH_SIZE; 541 spin_unlock_irq(&q->queue_lock); 542 cond_resched(); 543 goto restart; 544 } 545 } 546 547 q->root_blkg = NULL; 548 spin_unlock_irq(&q->queue_lock); 549 } 550 551 static int blkcg_reset_stats(struct cgroup_subsys_state *css, 552 struct cftype *cftype, u64 val) 553 { 554 struct blkcg *blkcg = css_to_blkcg(css); 555 struct blkcg_gq *blkg; 556 int i, cpu; 557 558 mutex_lock(&blkcg_pol_mutex); 559 spin_lock_irq(&blkcg->lock); 560 561 /* 562 * Note that stat reset is racy - it doesn't synchronize against 563 * stat updates. This is a debug feature which shouldn't exist 564 * anyway. If you get hit by a race, retry. 565 */ 566 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 567 for_each_possible_cpu(cpu) { 568 struct blkg_iostat_set *bis = 569 per_cpu_ptr(blkg->iostat_cpu, cpu); 570 memset(bis, 0, sizeof(*bis)); 571 } 572 memset(&blkg->iostat, 0, sizeof(blkg->iostat)); 573 574 for (i = 0; i < BLKCG_MAX_POLS; i++) { 575 struct blkcg_policy *pol = blkcg_policy[i]; 576 577 if (blkg->pd[i] && pol->pd_reset_stats_fn) 578 pol->pd_reset_stats_fn(blkg->pd[i]); 579 } 580 } 581 582 spin_unlock_irq(&blkcg->lock); 583 mutex_unlock(&blkcg_pol_mutex); 584 return 0; 585 } 586 587 const char *blkg_dev_name(struct blkcg_gq *blkg) 588 { 589 if (!blkg->q->disk) 590 return NULL; 591 return bdi_dev_name(blkg->q->disk->bdi); 592 } 593 594 /** 595 * blkcg_print_blkgs - helper for printing per-blkg data 596 * @sf: seq_file to print to 597 * @blkcg: blkcg of interest 598 * @prfill: fill function to print out a blkg 599 * @pol: policy in question 600 * @data: data to be passed to @prfill 601 * @show_total: to print out sum of prfill return values or not 602 * 603 * This function invokes @prfill on each blkg of @blkcg if pd for the 604 * policy specified by @pol exists. @prfill is invoked with @sf, the 605 * policy data and @data and the matching queue lock held. If @show_total 606 * is %true, the sum of the return values from @prfill is printed with 607 * "Total" label at the end. 608 * 609 * This is to be used to construct print functions for 610 * cftype->read_seq_string method. 611 */ 612 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg, 613 u64 (*prfill)(struct seq_file *, 614 struct blkg_policy_data *, int), 615 const struct blkcg_policy *pol, int data, 616 bool show_total) 617 { 618 struct blkcg_gq *blkg; 619 u64 total = 0; 620 621 rcu_read_lock(); 622 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 623 spin_lock_irq(&blkg->q->queue_lock); 624 if (blkcg_policy_enabled(blkg->q, pol)) 625 total += prfill(sf, blkg->pd[pol->plid], data); 626 spin_unlock_irq(&blkg->q->queue_lock); 627 } 628 rcu_read_unlock(); 629 630 if (show_total) 631 seq_printf(sf, "Total %llu\n", (unsigned long long)total); 632 } 633 EXPORT_SYMBOL_GPL(blkcg_print_blkgs); 634 635 /** 636 * __blkg_prfill_u64 - prfill helper for a single u64 value 637 * @sf: seq_file to print to 638 * @pd: policy private data of interest 639 * @v: value to print 640 * 641 * Print @v to @sf for the device associated with @pd. 642 */ 643 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v) 644 { 645 const char *dname = blkg_dev_name(pd->blkg); 646 647 if (!dname) 648 return 0; 649 650 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v); 651 return v; 652 } 653 EXPORT_SYMBOL_GPL(__blkg_prfill_u64); 654 655 /** 656 * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update 657 * @inputp: input string pointer 658 * 659 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update 660 * from @input and get and return the matching bdev. *@inputp is 661 * updated to point past the device node prefix. Returns an ERR_PTR() 662 * value on error. 663 * 664 * Use this function iff blkg_conf_prep() can't be used for some reason. 665 */ 666 struct block_device *blkcg_conf_open_bdev(char **inputp) 667 { 668 char *input = *inputp; 669 unsigned int major, minor; 670 struct block_device *bdev; 671 int key_len; 672 673 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2) 674 return ERR_PTR(-EINVAL); 675 676 input += key_len; 677 if (!isspace(*input)) 678 return ERR_PTR(-EINVAL); 679 input = skip_spaces(input); 680 681 bdev = blkdev_get_no_open(MKDEV(major, minor)); 682 if (!bdev) 683 return ERR_PTR(-ENODEV); 684 if (bdev_is_partition(bdev)) { 685 blkdev_put_no_open(bdev); 686 return ERR_PTR(-ENODEV); 687 } 688 689 *inputp = input; 690 return bdev; 691 } 692 693 /** 694 * blkg_conf_prep - parse and prepare for per-blkg config update 695 * @blkcg: target block cgroup 696 * @pol: target policy 697 * @input: input string 698 * @ctx: blkg_conf_ctx to be filled 699 * 700 * Parse per-blkg config update from @input and initialize @ctx with the 701 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the 702 * part of @input following MAJ:MIN. This function returns with RCU read 703 * lock and queue lock held and must be paired with blkg_conf_finish(). 704 */ 705 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol, 706 char *input, struct blkg_conf_ctx *ctx) 707 __acquires(rcu) __acquires(&bdev->bd_queue->queue_lock) 708 { 709 struct block_device *bdev; 710 struct gendisk *disk; 711 struct request_queue *q; 712 struct blkcg_gq *blkg; 713 int ret; 714 715 bdev = blkcg_conf_open_bdev(&input); 716 if (IS_ERR(bdev)) 717 return PTR_ERR(bdev); 718 disk = bdev->bd_disk; 719 q = disk->queue; 720 721 /* 722 * blkcg_deactivate_policy() requires queue to be frozen, we can grab 723 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy(). 724 */ 725 ret = blk_queue_enter(q, 0); 726 if (ret) 727 goto fail; 728 729 rcu_read_lock(); 730 spin_lock_irq(&q->queue_lock); 731 732 if (!blkcg_policy_enabled(q, pol)) { 733 ret = -EOPNOTSUPP; 734 goto fail_unlock; 735 } 736 737 blkg = blkg_lookup(blkcg, q); 738 if (blkg) 739 goto success; 740 741 /* 742 * Create blkgs walking down from blkcg_root to @blkcg, so that all 743 * non-root blkgs have access to their parents. 744 */ 745 while (true) { 746 struct blkcg *pos = blkcg; 747 struct blkcg *parent; 748 struct blkcg_gq *new_blkg; 749 750 parent = blkcg_parent(blkcg); 751 while (parent && !blkg_lookup(parent, q)) { 752 pos = parent; 753 parent = blkcg_parent(parent); 754 } 755 756 /* Drop locks to do new blkg allocation with GFP_KERNEL. */ 757 spin_unlock_irq(&q->queue_lock); 758 rcu_read_unlock(); 759 760 new_blkg = blkg_alloc(pos, disk, GFP_KERNEL); 761 if (unlikely(!new_blkg)) { 762 ret = -ENOMEM; 763 goto fail_exit_queue; 764 } 765 766 if (radix_tree_preload(GFP_KERNEL)) { 767 blkg_free(new_blkg); 768 ret = -ENOMEM; 769 goto fail_exit_queue; 770 } 771 772 rcu_read_lock(); 773 spin_lock_irq(&q->queue_lock); 774 775 if (!blkcg_policy_enabled(q, pol)) { 776 blkg_free(new_blkg); 777 ret = -EOPNOTSUPP; 778 goto fail_preloaded; 779 } 780 781 blkg = blkg_lookup(pos, q); 782 if (blkg) { 783 blkg_free(new_blkg); 784 } else { 785 blkg = blkg_create(pos, disk, new_blkg); 786 if (IS_ERR(blkg)) { 787 ret = PTR_ERR(blkg); 788 goto fail_preloaded; 789 } 790 } 791 792 radix_tree_preload_end(); 793 794 if (pos == blkcg) 795 goto success; 796 } 797 success: 798 blk_queue_exit(q); 799 ctx->bdev = bdev; 800 ctx->blkg = blkg; 801 ctx->body = input; 802 return 0; 803 804 fail_preloaded: 805 radix_tree_preload_end(); 806 fail_unlock: 807 spin_unlock_irq(&q->queue_lock); 808 rcu_read_unlock(); 809 fail_exit_queue: 810 blk_queue_exit(q); 811 fail: 812 blkdev_put_no_open(bdev); 813 /* 814 * If queue was bypassing, we should retry. Do so after a 815 * short msleep(). It isn't strictly necessary but queue 816 * can be bypassing for some time and it's always nice to 817 * avoid busy looping. 818 */ 819 if (ret == -EBUSY) { 820 msleep(10); 821 ret = restart_syscall(); 822 } 823 return ret; 824 } 825 EXPORT_SYMBOL_GPL(blkg_conf_prep); 826 827 /** 828 * blkg_conf_finish - finish up per-blkg config update 829 * @ctx: blkg_conf_ctx initialized by blkg_conf_prep() 830 * 831 * Finish up after per-blkg config update. This function must be paired 832 * with blkg_conf_prep(). 833 */ 834 void blkg_conf_finish(struct blkg_conf_ctx *ctx) 835 __releases(&ctx->bdev->bd_queue->queue_lock) __releases(rcu) 836 { 837 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock); 838 rcu_read_unlock(); 839 blkdev_put_no_open(ctx->bdev); 840 } 841 EXPORT_SYMBOL_GPL(blkg_conf_finish); 842 843 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src) 844 { 845 int i; 846 847 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 848 dst->bytes[i] = src->bytes[i]; 849 dst->ios[i] = src->ios[i]; 850 } 851 } 852 853 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src) 854 { 855 int i; 856 857 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 858 dst->bytes[i] += src->bytes[i]; 859 dst->ios[i] += src->ios[i]; 860 } 861 } 862 863 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src) 864 { 865 int i; 866 867 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 868 dst->bytes[i] -= src->bytes[i]; 869 dst->ios[i] -= src->ios[i]; 870 } 871 } 872 873 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur, 874 struct blkg_iostat *last) 875 { 876 struct blkg_iostat delta; 877 unsigned long flags; 878 879 /* propagate percpu delta to global */ 880 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync); 881 blkg_iostat_set(&delta, cur); 882 blkg_iostat_sub(&delta, last); 883 blkg_iostat_add(&blkg->iostat.cur, &delta); 884 blkg_iostat_add(last, &delta); 885 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags); 886 } 887 888 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu) 889 { 890 struct blkcg *blkcg = css_to_blkcg(css); 891 struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu); 892 struct llist_node *lnode; 893 struct blkg_iostat_set *bisc, *next_bisc; 894 895 /* Root-level stats are sourced from system-wide IO stats */ 896 if (!cgroup_parent(css->cgroup)) 897 return; 898 899 rcu_read_lock(); 900 901 lnode = llist_del_all(lhead); 902 if (!lnode) 903 goto out; 904 905 /* 906 * Iterate only the iostat_cpu's queued in the lockless list. 907 */ 908 llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) { 909 struct blkcg_gq *blkg = bisc->blkg; 910 struct blkcg_gq *parent = blkg->parent; 911 struct blkg_iostat cur; 912 unsigned int seq; 913 914 WRITE_ONCE(bisc->lqueued, false); 915 916 /* fetch the current per-cpu values */ 917 do { 918 seq = u64_stats_fetch_begin(&bisc->sync); 919 blkg_iostat_set(&cur, &bisc->cur); 920 } while (u64_stats_fetch_retry(&bisc->sync, seq)); 921 922 blkcg_iostat_update(blkg, &cur, &bisc->last); 923 924 /* propagate global delta to parent (unless that's root) */ 925 if (parent && parent->parent) 926 blkcg_iostat_update(parent, &blkg->iostat.cur, 927 &blkg->iostat.last); 928 percpu_ref_put(&blkg->refcnt); 929 } 930 931 out: 932 rcu_read_unlock(); 933 } 934 935 /* 936 * We source root cgroup stats from the system-wide stats to avoid 937 * tracking the same information twice and incurring overhead when no 938 * cgroups are defined. For that reason, cgroup_rstat_flush in 939 * blkcg_print_stat does not actually fill out the iostat in the root 940 * cgroup's blkcg_gq. 941 * 942 * However, we would like to re-use the printing code between the root and 943 * non-root cgroups to the extent possible. For that reason, we simulate 944 * flushing the root cgroup's stats by explicitly filling in the iostat 945 * with disk level statistics. 946 */ 947 static void blkcg_fill_root_iostats(void) 948 { 949 struct class_dev_iter iter; 950 struct device *dev; 951 952 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 953 while ((dev = class_dev_iter_next(&iter))) { 954 struct block_device *bdev = dev_to_bdev(dev); 955 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg; 956 struct blkg_iostat tmp; 957 int cpu; 958 unsigned long flags; 959 960 memset(&tmp, 0, sizeof(tmp)); 961 for_each_possible_cpu(cpu) { 962 struct disk_stats *cpu_dkstats; 963 964 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu); 965 tmp.ios[BLKG_IOSTAT_READ] += 966 cpu_dkstats->ios[STAT_READ]; 967 tmp.ios[BLKG_IOSTAT_WRITE] += 968 cpu_dkstats->ios[STAT_WRITE]; 969 tmp.ios[BLKG_IOSTAT_DISCARD] += 970 cpu_dkstats->ios[STAT_DISCARD]; 971 // convert sectors to bytes 972 tmp.bytes[BLKG_IOSTAT_READ] += 973 cpu_dkstats->sectors[STAT_READ] << 9; 974 tmp.bytes[BLKG_IOSTAT_WRITE] += 975 cpu_dkstats->sectors[STAT_WRITE] << 9; 976 tmp.bytes[BLKG_IOSTAT_DISCARD] += 977 cpu_dkstats->sectors[STAT_DISCARD] << 9; 978 } 979 980 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync); 981 blkg_iostat_set(&blkg->iostat.cur, &tmp); 982 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags); 983 } 984 } 985 986 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s) 987 { 988 struct blkg_iostat_set *bis = &blkg->iostat; 989 u64 rbytes, wbytes, rios, wios, dbytes, dios; 990 const char *dname; 991 unsigned seq; 992 int i; 993 994 if (!blkg->online) 995 return; 996 997 dname = blkg_dev_name(blkg); 998 if (!dname) 999 return; 1000 1001 seq_printf(s, "%s ", dname); 1002 1003 do { 1004 seq = u64_stats_fetch_begin(&bis->sync); 1005 1006 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ]; 1007 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE]; 1008 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD]; 1009 rios = bis->cur.ios[BLKG_IOSTAT_READ]; 1010 wios = bis->cur.ios[BLKG_IOSTAT_WRITE]; 1011 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD]; 1012 } while (u64_stats_fetch_retry(&bis->sync, seq)); 1013 1014 if (rbytes || wbytes || rios || wios) { 1015 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu", 1016 rbytes, wbytes, rios, wios, 1017 dbytes, dios); 1018 } 1019 1020 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) { 1021 seq_printf(s, " use_delay=%d delay_nsec=%llu", 1022 atomic_read(&blkg->use_delay), 1023 atomic64_read(&blkg->delay_nsec)); 1024 } 1025 1026 for (i = 0; i < BLKCG_MAX_POLS; i++) { 1027 struct blkcg_policy *pol = blkcg_policy[i]; 1028 1029 if (!blkg->pd[i] || !pol->pd_stat_fn) 1030 continue; 1031 1032 pol->pd_stat_fn(blkg->pd[i], s); 1033 } 1034 1035 seq_puts(s, "\n"); 1036 } 1037 1038 static int blkcg_print_stat(struct seq_file *sf, void *v) 1039 { 1040 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 1041 struct blkcg_gq *blkg; 1042 1043 if (!seq_css(sf)->parent) 1044 blkcg_fill_root_iostats(); 1045 else 1046 cgroup_rstat_flush(blkcg->css.cgroup); 1047 1048 rcu_read_lock(); 1049 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 1050 spin_lock_irq(&blkg->q->queue_lock); 1051 blkcg_print_one_stat(blkg, sf); 1052 spin_unlock_irq(&blkg->q->queue_lock); 1053 } 1054 rcu_read_unlock(); 1055 return 0; 1056 } 1057 1058 static struct cftype blkcg_files[] = { 1059 { 1060 .name = "stat", 1061 .seq_show = blkcg_print_stat, 1062 }, 1063 { } /* terminate */ 1064 }; 1065 1066 static struct cftype blkcg_legacy_files[] = { 1067 { 1068 .name = "reset_stats", 1069 .write_u64 = blkcg_reset_stats, 1070 }, 1071 { } /* terminate */ 1072 }; 1073 1074 #ifdef CONFIG_CGROUP_WRITEBACK 1075 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css) 1076 { 1077 return &css_to_blkcg(css)->cgwb_list; 1078 } 1079 #endif 1080 1081 /* 1082 * blkcg destruction is a three-stage process. 1083 * 1084 * 1. Destruction starts. The blkcg_css_offline() callback is invoked 1085 * which offlines writeback. Here we tie the next stage of blkg destruction 1086 * to the completion of writeback associated with the blkcg. This lets us 1087 * avoid punting potentially large amounts of outstanding writeback to root 1088 * while maintaining any ongoing policies. The next stage is triggered when 1089 * the nr_cgwbs count goes to zero. 1090 * 1091 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called 1092 * and handles the destruction of blkgs. Here the css reference held by 1093 * the blkg is put back eventually allowing blkcg_css_free() to be called. 1094 * This work may occur in cgwb_release_workfn() on the cgwb_release 1095 * workqueue. Any submitted ios that fail to get the blkg ref will be 1096 * punted to the root_blkg. 1097 * 1098 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called. 1099 * This finally frees the blkcg. 1100 */ 1101 1102 /** 1103 * blkcg_destroy_blkgs - responsible for shooting down blkgs 1104 * @blkcg: blkcg of interest 1105 * 1106 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock 1107 * is nested inside q lock, this function performs reverse double lock dancing. 1108 * Destroying the blkgs releases the reference held on the blkcg's css allowing 1109 * blkcg_css_free to eventually be called. 1110 * 1111 * This is the blkcg counterpart of ioc_release_fn(). 1112 */ 1113 static void blkcg_destroy_blkgs(struct blkcg *blkcg) 1114 { 1115 might_sleep(); 1116 1117 spin_lock_irq(&blkcg->lock); 1118 1119 while (!hlist_empty(&blkcg->blkg_list)) { 1120 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first, 1121 struct blkcg_gq, blkcg_node); 1122 struct request_queue *q = blkg->q; 1123 1124 if (need_resched() || !spin_trylock(&q->queue_lock)) { 1125 /* 1126 * Given that the system can accumulate a huge number 1127 * of blkgs in pathological cases, check to see if we 1128 * need to rescheduling to avoid softlockup. 1129 */ 1130 spin_unlock_irq(&blkcg->lock); 1131 cond_resched(); 1132 spin_lock_irq(&blkcg->lock); 1133 continue; 1134 } 1135 1136 blkg_destroy(blkg); 1137 spin_unlock(&q->queue_lock); 1138 } 1139 1140 spin_unlock_irq(&blkcg->lock); 1141 } 1142 1143 /** 1144 * blkcg_pin_online - pin online state 1145 * @blkcg_css: blkcg of interest 1146 * 1147 * While pinned, a blkcg is kept online. This is primarily used to 1148 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline 1149 * while an associated cgwb is still active. 1150 */ 1151 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css) 1152 { 1153 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin); 1154 } 1155 1156 /** 1157 * blkcg_unpin_online - unpin online state 1158 * @blkcg_css: blkcg of interest 1159 * 1160 * This is primarily used to impedance-match blkg and cgwb lifetimes so 1161 * that blkg doesn't go offline while an associated cgwb is still active. 1162 * When this count goes to zero, all active cgwbs have finished so the 1163 * blkcg can continue destruction by calling blkcg_destroy_blkgs(). 1164 */ 1165 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css) 1166 { 1167 struct blkcg *blkcg = css_to_blkcg(blkcg_css); 1168 1169 do { 1170 if (!refcount_dec_and_test(&blkcg->online_pin)) 1171 break; 1172 blkcg_destroy_blkgs(blkcg); 1173 blkcg = blkcg_parent(blkcg); 1174 } while (blkcg); 1175 } 1176 1177 /** 1178 * blkcg_css_offline - cgroup css_offline callback 1179 * @css: css of interest 1180 * 1181 * This function is called when @css is about to go away. Here the cgwbs are 1182 * offlined first and only once writeback associated with the blkcg has 1183 * finished do we start step 2 (see above). 1184 */ 1185 static void blkcg_css_offline(struct cgroup_subsys_state *css) 1186 { 1187 /* this prevents anyone from attaching or migrating to this blkcg */ 1188 wb_blkcg_offline(css); 1189 1190 /* put the base online pin allowing step 2 to be triggered */ 1191 blkcg_unpin_online(css); 1192 } 1193 1194 static void blkcg_css_free(struct cgroup_subsys_state *css) 1195 { 1196 struct blkcg *blkcg = css_to_blkcg(css); 1197 int i; 1198 1199 mutex_lock(&blkcg_pol_mutex); 1200 1201 list_del(&blkcg->all_blkcgs_node); 1202 1203 for (i = 0; i < BLKCG_MAX_POLS; i++) 1204 if (blkcg->cpd[i]) 1205 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1206 1207 mutex_unlock(&blkcg_pol_mutex); 1208 1209 free_percpu(blkcg->lhead); 1210 kfree(blkcg); 1211 } 1212 1213 static struct cgroup_subsys_state * 1214 blkcg_css_alloc(struct cgroup_subsys_state *parent_css) 1215 { 1216 struct blkcg *blkcg; 1217 int i; 1218 1219 mutex_lock(&blkcg_pol_mutex); 1220 1221 if (!parent_css) { 1222 blkcg = &blkcg_root; 1223 } else { 1224 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL); 1225 if (!blkcg) 1226 goto unlock; 1227 } 1228 1229 if (init_blkcg_llists(blkcg)) 1230 goto free_blkcg; 1231 1232 for (i = 0; i < BLKCG_MAX_POLS ; i++) { 1233 struct blkcg_policy *pol = blkcg_policy[i]; 1234 struct blkcg_policy_data *cpd; 1235 1236 /* 1237 * If the policy hasn't been attached yet, wait for it 1238 * to be attached before doing anything else. Otherwise, 1239 * check if the policy requires any specific per-cgroup 1240 * data: if it does, allocate and initialize it. 1241 */ 1242 if (!pol || !pol->cpd_alloc_fn) 1243 continue; 1244 1245 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1246 if (!cpd) 1247 goto free_pd_blkcg; 1248 1249 blkcg->cpd[i] = cpd; 1250 cpd->blkcg = blkcg; 1251 cpd->plid = i; 1252 if (pol->cpd_init_fn) 1253 pol->cpd_init_fn(cpd); 1254 } 1255 1256 spin_lock_init(&blkcg->lock); 1257 refcount_set(&blkcg->online_pin, 1); 1258 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN); 1259 INIT_HLIST_HEAD(&blkcg->blkg_list); 1260 #ifdef CONFIG_CGROUP_WRITEBACK 1261 INIT_LIST_HEAD(&blkcg->cgwb_list); 1262 #endif 1263 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs); 1264 1265 mutex_unlock(&blkcg_pol_mutex); 1266 return &blkcg->css; 1267 1268 free_pd_blkcg: 1269 for (i--; i >= 0; i--) 1270 if (blkcg->cpd[i]) 1271 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1272 free_percpu(blkcg->lhead); 1273 free_blkcg: 1274 if (blkcg != &blkcg_root) 1275 kfree(blkcg); 1276 unlock: 1277 mutex_unlock(&blkcg_pol_mutex); 1278 return ERR_PTR(-ENOMEM); 1279 } 1280 1281 static int blkcg_css_online(struct cgroup_subsys_state *css) 1282 { 1283 struct blkcg *parent = blkcg_parent(css_to_blkcg(css)); 1284 1285 /* 1286 * blkcg_pin_online() is used to delay blkcg offline so that blkgs 1287 * don't go offline while cgwbs are still active on them. Pin the 1288 * parent so that offline always happens towards the root. 1289 */ 1290 if (parent) 1291 blkcg_pin_online(&parent->css); 1292 return 0; 1293 } 1294 1295 int blkcg_init_disk(struct gendisk *disk) 1296 { 1297 struct request_queue *q = disk->queue; 1298 struct blkcg_gq *new_blkg, *blkg; 1299 bool preloaded; 1300 int ret; 1301 1302 INIT_LIST_HEAD(&q->blkg_list); 1303 mutex_init(&q->blkcg_mutex); 1304 1305 new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL); 1306 if (!new_blkg) 1307 return -ENOMEM; 1308 1309 preloaded = !radix_tree_preload(GFP_KERNEL); 1310 1311 /* Make sure the root blkg exists. */ 1312 /* spin_lock_irq can serve as RCU read-side critical section. */ 1313 spin_lock_irq(&q->queue_lock); 1314 blkg = blkg_create(&blkcg_root, disk, new_blkg); 1315 if (IS_ERR(blkg)) 1316 goto err_unlock; 1317 q->root_blkg = blkg; 1318 spin_unlock_irq(&q->queue_lock); 1319 1320 if (preloaded) 1321 radix_tree_preload_end(); 1322 1323 ret = blk_ioprio_init(disk); 1324 if (ret) 1325 goto err_destroy_all; 1326 1327 ret = blk_throtl_init(disk); 1328 if (ret) 1329 goto err_ioprio_exit; 1330 1331 ret = blk_iolatency_init(disk); 1332 if (ret) 1333 goto err_throtl_exit; 1334 1335 return 0; 1336 1337 err_throtl_exit: 1338 blk_throtl_exit(disk); 1339 err_ioprio_exit: 1340 blk_ioprio_exit(disk); 1341 err_destroy_all: 1342 blkg_destroy_all(disk); 1343 return ret; 1344 err_unlock: 1345 spin_unlock_irq(&q->queue_lock); 1346 if (preloaded) 1347 radix_tree_preload_end(); 1348 return PTR_ERR(blkg); 1349 } 1350 1351 void blkcg_exit_disk(struct gendisk *disk) 1352 { 1353 blkg_destroy_all(disk); 1354 rq_qos_exit(disk->queue); 1355 blk_throtl_exit(disk); 1356 } 1357 1358 static void blkcg_bind(struct cgroup_subsys_state *root_css) 1359 { 1360 int i; 1361 1362 mutex_lock(&blkcg_pol_mutex); 1363 1364 for (i = 0; i < BLKCG_MAX_POLS; i++) { 1365 struct blkcg_policy *pol = blkcg_policy[i]; 1366 struct blkcg *blkcg; 1367 1368 if (!pol || !pol->cpd_bind_fn) 1369 continue; 1370 1371 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) 1372 if (blkcg->cpd[pol->plid]) 1373 pol->cpd_bind_fn(blkcg->cpd[pol->plid]); 1374 } 1375 mutex_unlock(&blkcg_pol_mutex); 1376 } 1377 1378 static void blkcg_exit(struct task_struct *tsk) 1379 { 1380 if (tsk->throttle_disk) 1381 put_disk(tsk->throttle_disk); 1382 tsk->throttle_disk = NULL; 1383 } 1384 1385 struct cgroup_subsys io_cgrp_subsys = { 1386 .css_alloc = blkcg_css_alloc, 1387 .css_online = blkcg_css_online, 1388 .css_offline = blkcg_css_offline, 1389 .css_free = blkcg_css_free, 1390 .css_rstat_flush = blkcg_rstat_flush, 1391 .bind = blkcg_bind, 1392 .dfl_cftypes = blkcg_files, 1393 .legacy_cftypes = blkcg_legacy_files, 1394 .legacy_name = "blkio", 1395 .exit = blkcg_exit, 1396 #ifdef CONFIG_MEMCG 1397 /* 1398 * This ensures that, if available, memcg is automatically enabled 1399 * together on the default hierarchy so that the owner cgroup can 1400 * be retrieved from writeback pages. 1401 */ 1402 .depends_on = 1 << memory_cgrp_id, 1403 #endif 1404 }; 1405 EXPORT_SYMBOL_GPL(io_cgrp_subsys); 1406 1407 /** 1408 * blkcg_activate_policy - activate a blkcg policy on a gendisk 1409 * @disk: gendisk of interest 1410 * @pol: blkcg policy to activate 1411 * 1412 * Activate @pol on @disk. Requires %GFP_KERNEL context. @disk goes through 1413 * bypass mode to populate its blkgs with policy_data for @pol. 1414 * 1415 * Activation happens with @disk bypassed, so nobody would be accessing blkgs 1416 * from IO path. Update of each blkg is protected by both queue and blkcg 1417 * locks so that holding either lock and testing blkcg_policy_enabled() is 1418 * always enough for dereferencing policy data. 1419 * 1420 * The caller is responsible for synchronizing [de]activations and policy 1421 * [un]registerations. Returns 0 on success, -errno on failure. 1422 */ 1423 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol) 1424 { 1425 struct request_queue *q = disk->queue; 1426 struct blkg_policy_data *pd_prealloc = NULL; 1427 struct blkcg_gq *blkg, *pinned_blkg = NULL; 1428 int ret; 1429 1430 if (blkcg_policy_enabled(q, pol)) 1431 return 0; 1432 1433 if (queue_is_mq(q)) 1434 blk_mq_freeze_queue(q); 1435 retry: 1436 spin_lock_irq(&q->queue_lock); 1437 1438 /* blkg_list is pushed at the head, reverse walk to allocate parents first */ 1439 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { 1440 struct blkg_policy_data *pd; 1441 1442 if (blkg->pd[pol->plid]) 1443 continue; 1444 1445 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */ 1446 if (blkg == pinned_blkg) { 1447 pd = pd_prealloc; 1448 pd_prealloc = NULL; 1449 } else { 1450 pd = pol->pd_alloc_fn(disk, blkg->blkcg, 1451 GFP_NOWAIT | __GFP_NOWARN); 1452 } 1453 1454 if (!pd) { 1455 /* 1456 * GFP_NOWAIT failed. Free the existing one and 1457 * prealloc for @blkg w/ GFP_KERNEL. 1458 */ 1459 if (pinned_blkg) 1460 blkg_put(pinned_blkg); 1461 blkg_get(blkg); 1462 pinned_blkg = blkg; 1463 1464 spin_unlock_irq(&q->queue_lock); 1465 1466 if (pd_prealloc) 1467 pol->pd_free_fn(pd_prealloc); 1468 pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg, 1469 GFP_KERNEL); 1470 if (pd_prealloc) 1471 goto retry; 1472 else 1473 goto enomem; 1474 } 1475 1476 blkg->pd[pol->plid] = pd; 1477 pd->blkg = blkg; 1478 pd->plid = pol->plid; 1479 pd->online = false; 1480 } 1481 1482 /* all allocated, init in the same order */ 1483 if (pol->pd_init_fn) 1484 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) 1485 pol->pd_init_fn(blkg->pd[pol->plid]); 1486 1487 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { 1488 if (pol->pd_online_fn) 1489 pol->pd_online_fn(blkg->pd[pol->plid]); 1490 blkg->pd[pol->plid]->online = true; 1491 } 1492 1493 __set_bit(pol->plid, q->blkcg_pols); 1494 ret = 0; 1495 1496 spin_unlock_irq(&q->queue_lock); 1497 out: 1498 if (queue_is_mq(q)) 1499 blk_mq_unfreeze_queue(q); 1500 if (pinned_blkg) 1501 blkg_put(pinned_blkg); 1502 if (pd_prealloc) 1503 pol->pd_free_fn(pd_prealloc); 1504 return ret; 1505 1506 enomem: 1507 /* alloc failed, nothing's initialized yet, free everything */ 1508 spin_lock_irq(&q->queue_lock); 1509 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1510 struct blkcg *blkcg = blkg->blkcg; 1511 1512 spin_lock(&blkcg->lock); 1513 if (blkg->pd[pol->plid]) { 1514 pol->pd_free_fn(blkg->pd[pol->plid]); 1515 blkg->pd[pol->plid] = NULL; 1516 } 1517 spin_unlock(&blkcg->lock); 1518 } 1519 spin_unlock_irq(&q->queue_lock); 1520 ret = -ENOMEM; 1521 goto out; 1522 } 1523 EXPORT_SYMBOL_GPL(blkcg_activate_policy); 1524 1525 /** 1526 * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk 1527 * @disk: gendisk of interest 1528 * @pol: blkcg policy to deactivate 1529 * 1530 * Deactivate @pol on @disk. Follows the same synchronization rules as 1531 * blkcg_activate_policy(). 1532 */ 1533 void blkcg_deactivate_policy(struct gendisk *disk, 1534 const struct blkcg_policy *pol) 1535 { 1536 struct request_queue *q = disk->queue; 1537 struct blkcg_gq *blkg; 1538 1539 if (!blkcg_policy_enabled(q, pol)) 1540 return; 1541 1542 if (queue_is_mq(q)) 1543 blk_mq_freeze_queue(q); 1544 1545 mutex_lock(&q->blkcg_mutex); 1546 spin_lock_irq(&q->queue_lock); 1547 1548 __clear_bit(pol->plid, q->blkcg_pols); 1549 1550 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1551 struct blkcg *blkcg = blkg->blkcg; 1552 1553 spin_lock(&blkcg->lock); 1554 if (blkg->pd[pol->plid]) { 1555 if (blkg->pd[pol->plid]->online && pol->pd_offline_fn) 1556 pol->pd_offline_fn(blkg->pd[pol->plid]); 1557 pol->pd_free_fn(blkg->pd[pol->plid]); 1558 blkg->pd[pol->plid] = NULL; 1559 } 1560 spin_unlock(&blkcg->lock); 1561 } 1562 1563 spin_unlock_irq(&q->queue_lock); 1564 mutex_unlock(&q->blkcg_mutex); 1565 1566 if (queue_is_mq(q)) 1567 blk_mq_unfreeze_queue(q); 1568 } 1569 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy); 1570 1571 static void blkcg_free_all_cpd(struct blkcg_policy *pol) 1572 { 1573 struct blkcg *blkcg; 1574 1575 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1576 if (blkcg->cpd[pol->plid]) { 1577 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1578 blkcg->cpd[pol->plid] = NULL; 1579 } 1580 } 1581 } 1582 1583 /** 1584 * blkcg_policy_register - register a blkcg policy 1585 * @pol: blkcg policy to register 1586 * 1587 * Register @pol with blkcg core. Might sleep and @pol may be modified on 1588 * successful registration. Returns 0 on success and -errno on failure. 1589 */ 1590 int blkcg_policy_register(struct blkcg_policy *pol) 1591 { 1592 struct blkcg *blkcg; 1593 int i, ret; 1594 1595 mutex_lock(&blkcg_pol_register_mutex); 1596 mutex_lock(&blkcg_pol_mutex); 1597 1598 /* find an empty slot */ 1599 ret = -ENOSPC; 1600 for (i = 0; i < BLKCG_MAX_POLS; i++) 1601 if (!blkcg_policy[i]) 1602 break; 1603 if (i >= BLKCG_MAX_POLS) { 1604 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n"); 1605 goto err_unlock; 1606 } 1607 1608 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */ 1609 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) || 1610 (!pol->pd_alloc_fn ^ !pol->pd_free_fn)) 1611 goto err_unlock; 1612 1613 /* register @pol */ 1614 pol->plid = i; 1615 blkcg_policy[pol->plid] = pol; 1616 1617 /* allocate and install cpd's */ 1618 if (pol->cpd_alloc_fn) { 1619 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1620 struct blkcg_policy_data *cpd; 1621 1622 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1623 if (!cpd) 1624 goto err_free_cpds; 1625 1626 blkcg->cpd[pol->plid] = cpd; 1627 cpd->blkcg = blkcg; 1628 cpd->plid = pol->plid; 1629 if (pol->cpd_init_fn) 1630 pol->cpd_init_fn(cpd); 1631 } 1632 } 1633 1634 mutex_unlock(&blkcg_pol_mutex); 1635 1636 /* everything is in place, add intf files for the new policy */ 1637 if (pol->dfl_cftypes) 1638 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys, 1639 pol->dfl_cftypes)); 1640 if (pol->legacy_cftypes) 1641 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys, 1642 pol->legacy_cftypes)); 1643 mutex_unlock(&blkcg_pol_register_mutex); 1644 return 0; 1645 1646 err_free_cpds: 1647 if (pol->cpd_free_fn) 1648 blkcg_free_all_cpd(pol); 1649 1650 blkcg_policy[pol->plid] = NULL; 1651 err_unlock: 1652 mutex_unlock(&blkcg_pol_mutex); 1653 mutex_unlock(&blkcg_pol_register_mutex); 1654 return ret; 1655 } 1656 EXPORT_SYMBOL_GPL(blkcg_policy_register); 1657 1658 /** 1659 * blkcg_policy_unregister - unregister a blkcg policy 1660 * @pol: blkcg policy to unregister 1661 * 1662 * Undo blkcg_policy_register(@pol). Might sleep. 1663 */ 1664 void blkcg_policy_unregister(struct blkcg_policy *pol) 1665 { 1666 mutex_lock(&blkcg_pol_register_mutex); 1667 1668 if (WARN_ON(blkcg_policy[pol->plid] != pol)) 1669 goto out_unlock; 1670 1671 /* kill the intf files first */ 1672 if (pol->dfl_cftypes) 1673 cgroup_rm_cftypes(pol->dfl_cftypes); 1674 if (pol->legacy_cftypes) 1675 cgroup_rm_cftypes(pol->legacy_cftypes); 1676 1677 /* remove cpds and unregister */ 1678 mutex_lock(&blkcg_pol_mutex); 1679 1680 if (pol->cpd_free_fn) 1681 blkcg_free_all_cpd(pol); 1682 1683 blkcg_policy[pol->plid] = NULL; 1684 1685 mutex_unlock(&blkcg_pol_mutex); 1686 out_unlock: 1687 mutex_unlock(&blkcg_pol_register_mutex); 1688 } 1689 EXPORT_SYMBOL_GPL(blkcg_policy_unregister); 1690 1691 bool __blkcg_punt_bio_submit(struct bio *bio) 1692 { 1693 struct blkcg_gq *blkg = bio->bi_blkg; 1694 1695 /* consume the flag first */ 1696 bio->bi_opf &= ~REQ_CGROUP_PUNT; 1697 1698 /* never bounce for the root cgroup */ 1699 if (!blkg->parent) 1700 return false; 1701 1702 spin_lock_bh(&blkg->async_bio_lock); 1703 bio_list_add(&blkg->async_bios, bio); 1704 spin_unlock_bh(&blkg->async_bio_lock); 1705 1706 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work); 1707 return true; 1708 } 1709 1710 /* 1711 * Scale the accumulated delay based on how long it has been since we updated 1712 * the delay. We only call this when we are adding delay, in case it's been a 1713 * while since we added delay, and when we are checking to see if we need to 1714 * delay a task, to account for any delays that may have occurred. 1715 */ 1716 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now) 1717 { 1718 u64 old = atomic64_read(&blkg->delay_start); 1719 1720 /* negative use_delay means no scaling, see blkcg_set_delay() */ 1721 if (atomic_read(&blkg->use_delay) < 0) 1722 return; 1723 1724 /* 1725 * We only want to scale down every second. The idea here is that we 1726 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain 1727 * time window. We only want to throttle tasks for recent delay that 1728 * has occurred, in 1 second time windows since that's the maximum 1729 * things can be throttled. We save the current delay window in 1730 * blkg->last_delay so we know what amount is still left to be charged 1731 * to the blkg from this point onward. blkg->last_use keeps track of 1732 * the use_delay counter. The idea is if we're unthrottling the blkg we 1733 * are ok with whatever is happening now, and we can take away more of 1734 * the accumulated delay as we've already throttled enough that 1735 * everybody is happy with their IO latencies. 1736 */ 1737 if (time_before64(old + NSEC_PER_SEC, now) && 1738 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) { 1739 u64 cur = atomic64_read(&blkg->delay_nsec); 1740 u64 sub = min_t(u64, blkg->last_delay, now - old); 1741 int cur_use = atomic_read(&blkg->use_delay); 1742 1743 /* 1744 * We've been unthrottled, subtract a larger chunk of our 1745 * accumulated delay. 1746 */ 1747 if (cur_use < blkg->last_use) 1748 sub = max_t(u64, sub, blkg->last_delay >> 1); 1749 1750 /* 1751 * This shouldn't happen, but handle it anyway. Our delay_nsec 1752 * should only ever be growing except here where we subtract out 1753 * min(last_delay, 1 second), but lord knows bugs happen and I'd 1754 * rather not end up with negative numbers. 1755 */ 1756 if (unlikely(cur < sub)) { 1757 atomic64_set(&blkg->delay_nsec, 0); 1758 blkg->last_delay = 0; 1759 } else { 1760 atomic64_sub(sub, &blkg->delay_nsec); 1761 blkg->last_delay = cur - sub; 1762 } 1763 blkg->last_use = cur_use; 1764 } 1765 } 1766 1767 /* 1768 * This is called when we want to actually walk up the hierarchy and check to 1769 * see if we need to throttle, and then actually throttle if there is some 1770 * accumulated delay. This should only be called upon return to user space so 1771 * we're not holding some lock that would induce a priority inversion. 1772 */ 1773 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay) 1774 { 1775 unsigned long pflags; 1776 bool clamp; 1777 u64 now = ktime_to_ns(ktime_get()); 1778 u64 exp; 1779 u64 delay_nsec = 0; 1780 int tok; 1781 1782 while (blkg->parent) { 1783 int use_delay = atomic_read(&blkg->use_delay); 1784 1785 if (use_delay) { 1786 u64 this_delay; 1787 1788 blkcg_scale_delay(blkg, now); 1789 this_delay = atomic64_read(&blkg->delay_nsec); 1790 if (this_delay > delay_nsec) { 1791 delay_nsec = this_delay; 1792 clamp = use_delay > 0; 1793 } 1794 } 1795 blkg = blkg->parent; 1796 } 1797 1798 if (!delay_nsec) 1799 return; 1800 1801 /* 1802 * Let's not sleep for all eternity if we've amassed a huge delay. 1803 * Swapping or metadata IO can accumulate 10's of seconds worth of 1804 * delay, and we want userspace to be able to do _something_ so cap the 1805 * delays at 0.25s. If there's 10's of seconds worth of delay then the 1806 * tasks will be delayed for 0.25 second for every syscall. If 1807 * blkcg_set_delay() was used as indicated by negative use_delay, the 1808 * caller is responsible for regulating the range. 1809 */ 1810 if (clamp) 1811 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC); 1812 1813 if (use_memdelay) 1814 psi_memstall_enter(&pflags); 1815 1816 exp = ktime_add_ns(now, delay_nsec); 1817 tok = io_schedule_prepare(); 1818 do { 1819 __set_current_state(TASK_KILLABLE); 1820 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS)) 1821 break; 1822 } while (!fatal_signal_pending(current)); 1823 io_schedule_finish(tok); 1824 1825 if (use_memdelay) 1826 psi_memstall_leave(&pflags); 1827 } 1828 1829 /** 1830 * blkcg_maybe_throttle_current - throttle the current task if it has been marked 1831 * 1832 * This is only called if we've been marked with set_notify_resume(). Obviously 1833 * we can be set_notify_resume() for reasons other than blkcg throttling, so we 1834 * check to see if current->throttle_disk is set and if not this doesn't do 1835 * anything. This should only ever be called by the resume code, it's not meant 1836 * to be called by people willy-nilly as it will actually do the work to 1837 * throttle the task if it is setup for throttling. 1838 */ 1839 void blkcg_maybe_throttle_current(void) 1840 { 1841 struct gendisk *disk = current->throttle_disk; 1842 struct blkcg *blkcg; 1843 struct blkcg_gq *blkg; 1844 bool use_memdelay = current->use_memdelay; 1845 1846 if (!disk) 1847 return; 1848 1849 current->throttle_disk = NULL; 1850 current->use_memdelay = false; 1851 1852 rcu_read_lock(); 1853 blkcg = css_to_blkcg(blkcg_css()); 1854 if (!blkcg) 1855 goto out; 1856 blkg = blkg_lookup(blkcg, disk->queue); 1857 if (!blkg) 1858 goto out; 1859 if (!blkg_tryget(blkg)) 1860 goto out; 1861 rcu_read_unlock(); 1862 1863 blkcg_maybe_throttle_blkg(blkg, use_memdelay); 1864 blkg_put(blkg); 1865 put_disk(disk); 1866 return; 1867 out: 1868 rcu_read_unlock(); 1869 } 1870 1871 /** 1872 * blkcg_schedule_throttle - this task needs to check for throttling 1873 * @disk: disk to throttle 1874 * @use_memdelay: do we charge this to memory delay for PSI 1875 * 1876 * This is called by the IO controller when we know there's delay accumulated 1877 * for the blkg for this task. We do not pass the blkg because there are places 1878 * we call this that may not have that information, the swapping code for 1879 * instance will only have a block_device at that point. This set's the 1880 * notify_resume for the task to check and see if it requires throttling before 1881 * returning to user space. 1882 * 1883 * We will only schedule once per syscall. You can call this over and over 1884 * again and it will only do the check once upon return to user space, and only 1885 * throttle once. If the task needs to be throttled again it'll need to be 1886 * re-set at the next time we see the task. 1887 */ 1888 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay) 1889 { 1890 if (unlikely(current->flags & PF_KTHREAD)) 1891 return; 1892 1893 if (current->throttle_disk != disk) { 1894 if (test_bit(GD_DEAD, &disk->state)) 1895 return; 1896 get_device(disk_to_dev(disk)); 1897 1898 if (current->throttle_disk) 1899 put_disk(current->throttle_disk); 1900 current->throttle_disk = disk; 1901 } 1902 1903 if (use_memdelay) 1904 current->use_memdelay = use_memdelay; 1905 set_notify_resume(current); 1906 } 1907 1908 /** 1909 * blkcg_add_delay - add delay to this blkg 1910 * @blkg: blkg of interest 1911 * @now: the current time in nanoseconds 1912 * @delta: how many nanoseconds of delay to add 1913 * 1914 * Charge @delta to the blkg's current delay accumulation. This is used to 1915 * throttle tasks if an IO controller thinks we need more throttling. 1916 */ 1917 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta) 1918 { 1919 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0)) 1920 return; 1921 blkcg_scale_delay(blkg, now); 1922 atomic64_add(delta, &blkg->delay_nsec); 1923 } 1924 1925 /** 1926 * blkg_tryget_closest - try and get a blkg ref on the closet blkg 1927 * @bio: target bio 1928 * @css: target css 1929 * 1930 * As the failure mode here is to walk up the blkg tree, this ensure that the 1931 * blkg->parent pointers are always valid. This returns the blkg that it ended 1932 * up taking a reference on or %NULL if no reference was taken. 1933 */ 1934 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio, 1935 struct cgroup_subsys_state *css) 1936 { 1937 struct blkcg_gq *blkg, *ret_blkg = NULL; 1938 1939 rcu_read_lock(); 1940 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk); 1941 while (blkg) { 1942 if (blkg_tryget(blkg)) { 1943 ret_blkg = blkg; 1944 break; 1945 } 1946 blkg = blkg->parent; 1947 } 1948 rcu_read_unlock(); 1949 1950 return ret_blkg; 1951 } 1952 1953 /** 1954 * bio_associate_blkg_from_css - associate a bio with a specified css 1955 * @bio: target bio 1956 * @css: target css 1957 * 1958 * Associate @bio with the blkg found by combining the css's blkg and the 1959 * request_queue of the @bio. An association failure is handled by walking up 1960 * the blkg tree. Therefore, the blkg associated can be anything between @blkg 1961 * and q->root_blkg. This situation only happens when a cgroup is dying and 1962 * then the remaining bios will spill to the closest alive blkg. 1963 * 1964 * A reference will be taken on the blkg and will be released when @bio is 1965 * freed. 1966 */ 1967 void bio_associate_blkg_from_css(struct bio *bio, 1968 struct cgroup_subsys_state *css) 1969 { 1970 if (bio->bi_blkg) 1971 blkg_put(bio->bi_blkg); 1972 1973 if (css && css->parent) { 1974 bio->bi_blkg = blkg_tryget_closest(bio, css); 1975 } else { 1976 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg); 1977 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg; 1978 } 1979 } 1980 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 1981 1982 /** 1983 * bio_associate_blkg - associate a bio with a blkg 1984 * @bio: target bio 1985 * 1986 * Associate @bio with the blkg found from the bio's css and request_queue. 1987 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 1988 * already associated, the css is reused and association redone as the 1989 * request_queue may have changed. 1990 */ 1991 void bio_associate_blkg(struct bio *bio) 1992 { 1993 struct cgroup_subsys_state *css; 1994 1995 rcu_read_lock(); 1996 1997 if (bio->bi_blkg) 1998 css = bio_blkcg_css(bio); 1999 else 2000 css = blkcg_css(); 2001 2002 bio_associate_blkg_from_css(bio, css); 2003 2004 rcu_read_unlock(); 2005 } 2006 EXPORT_SYMBOL_GPL(bio_associate_blkg); 2007 2008 /** 2009 * bio_clone_blkg_association - clone blkg association from src to dst bio 2010 * @dst: destination bio 2011 * @src: source bio 2012 */ 2013 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 2014 { 2015 if (src->bi_blkg) 2016 bio_associate_blkg_from_css(dst, bio_blkcg_css(src)); 2017 } 2018 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 2019 2020 static int blk_cgroup_io_type(struct bio *bio) 2021 { 2022 if (op_is_discard(bio->bi_opf)) 2023 return BLKG_IOSTAT_DISCARD; 2024 if (op_is_write(bio->bi_opf)) 2025 return BLKG_IOSTAT_WRITE; 2026 return BLKG_IOSTAT_READ; 2027 } 2028 2029 void blk_cgroup_bio_start(struct bio *bio) 2030 { 2031 struct blkcg *blkcg = bio->bi_blkg->blkcg; 2032 int rwd = blk_cgroup_io_type(bio), cpu; 2033 struct blkg_iostat_set *bis; 2034 unsigned long flags; 2035 2036 /* Root-level stats are sourced from system-wide IO stats */ 2037 if (!cgroup_parent(blkcg->css.cgroup)) 2038 return; 2039 2040 cpu = get_cpu(); 2041 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu); 2042 flags = u64_stats_update_begin_irqsave(&bis->sync); 2043 2044 /* 2045 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split 2046 * bio and we would have already accounted for the size of the bio. 2047 */ 2048 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) { 2049 bio_set_flag(bio, BIO_CGROUP_ACCT); 2050 bis->cur.bytes[rwd] += bio->bi_iter.bi_size; 2051 } 2052 bis->cur.ios[rwd]++; 2053 2054 /* 2055 * If the iostat_cpu isn't in a lockless list, put it into the 2056 * list to indicate that a stat update is pending. 2057 */ 2058 if (!READ_ONCE(bis->lqueued)) { 2059 struct llist_head *lhead = this_cpu_ptr(blkcg->lhead); 2060 2061 llist_add(&bis->lnode, lhead); 2062 WRITE_ONCE(bis->lqueued, true); 2063 percpu_ref_get(&bis->blkg->refcnt); 2064 } 2065 2066 u64_stats_update_end_irqrestore(&bis->sync, flags); 2067 if (cgroup_subsys_on_dfl(io_cgrp_subsys)) 2068 cgroup_rstat_updated(blkcg->css.cgroup, cpu); 2069 put_cpu(); 2070 } 2071 2072 bool blk_cgroup_congested(void) 2073 { 2074 struct cgroup_subsys_state *css; 2075 bool ret = false; 2076 2077 rcu_read_lock(); 2078 for (css = blkcg_css(); css; css = css->parent) { 2079 if (atomic_read(&css->cgroup->congestion_count)) { 2080 ret = true; 2081 break; 2082 } 2083 } 2084 rcu_read_unlock(); 2085 return ret; 2086 } 2087 2088 static int __init blkcg_init(void) 2089 { 2090 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio", 2091 WQ_MEM_RECLAIM | WQ_FREEZABLE | 2092 WQ_UNBOUND | WQ_SYSFS, 0); 2093 if (!blkcg_punt_bio_wq) 2094 return -ENOMEM; 2095 return 0; 2096 } 2097 subsys_initcall(blkcg_init); 2098 2099 module_param(blkcg_debug_stats, bool, 0644); 2100 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not"); 2101