1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common Block IO controller cgroup interface 4 * 5 * Based on ideas and code from CFQ, CFS and BFQ: 6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 7 * 8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 9 * Paolo Valente <paolo.valente@unimore.it> 10 * 11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com> 12 * Nauman Rafique <nauman@google.com> 13 * 14 * For policy-specific per-blkcg data: 15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it> 16 * Arianna Avanzini <avanzini.arianna@gmail.com> 17 */ 18 #include <linux/ioprio.h> 19 #include <linux/kdev_t.h> 20 #include <linux/module.h> 21 #include <linux/sched/signal.h> 22 #include <linux/err.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/slab.h> 26 #include <linux/genhd.h> 27 #include <linux/delay.h> 28 #include <linux/atomic.h> 29 #include <linux/ctype.h> 30 #include <linux/blk-cgroup.h> 31 #include <linux/tracehook.h> 32 #include <linux/psi.h> 33 #include "blk.h" 34 #include "blk-ioprio.h" 35 36 /* 37 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation. 38 * blkcg_pol_register_mutex nests outside of it and synchronizes entire 39 * policy [un]register operations including cgroup file additions / 40 * removals. Putting cgroup file registration outside blkcg_pol_mutex 41 * allows grabbing it from cgroup callbacks. 42 */ 43 static DEFINE_MUTEX(blkcg_pol_register_mutex); 44 static DEFINE_MUTEX(blkcg_pol_mutex); 45 46 struct blkcg blkcg_root; 47 EXPORT_SYMBOL_GPL(blkcg_root); 48 49 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css; 50 EXPORT_SYMBOL_GPL(blkcg_root_css); 51 52 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS]; 53 54 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */ 55 56 bool blkcg_debug_stats = false; 57 static struct workqueue_struct *blkcg_punt_bio_wq; 58 59 static bool blkcg_policy_enabled(struct request_queue *q, 60 const struct blkcg_policy *pol) 61 { 62 return pol && test_bit(pol->plid, q->blkcg_pols); 63 } 64 65 /** 66 * blkg_free - free a blkg 67 * @blkg: blkg to free 68 * 69 * Free @blkg which may be partially allocated. 70 */ 71 static void blkg_free(struct blkcg_gq *blkg) 72 { 73 int i; 74 75 if (!blkg) 76 return; 77 78 for (i = 0; i < BLKCG_MAX_POLS; i++) 79 if (blkg->pd[i]) 80 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 81 82 free_percpu(blkg->iostat_cpu); 83 percpu_ref_exit(&blkg->refcnt); 84 kfree(blkg); 85 } 86 87 static void __blkg_release(struct rcu_head *rcu) 88 { 89 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head); 90 91 WARN_ON(!bio_list_empty(&blkg->async_bios)); 92 93 /* release the blkcg and parent blkg refs this blkg has been holding */ 94 css_put(&blkg->blkcg->css); 95 if (blkg->parent) 96 blkg_put(blkg->parent); 97 blkg_free(blkg); 98 } 99 100 /* 101 * A group is RCU protected, but having an rcu lock does not mean that one 102 * can access all the fields of blkg and assume these are valid. For 103 * example, don't try to follow throtl_data and request queue links. 104 * 105 * Having a reference to blkg under an rcu allows accesses to only values 106 * local to groups like group stats and group rate limits. 107 */ 108 static void blkg_release(struct percpu_ref *ref) 109 { 110 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt); 111 112 call_rcu(&blkg->rcu_head, __blkg_release); 113 } 114 115 static void blkg_async_bio_workfn(struct work_struct *work) 116 { 117 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 118 async_bio_work); 119 struct bio_list bios = BIO_EMPTY_LIST; 120 struct bio *bio; 121 struct blk_plug plug; 122 bool need_plug = false; 123 124 /* as long as there are pending bios, @blkg can't go away */ 125 spin_lock_bh(&blkg->async_bio_lock); 126 bio_list_merge(&bios, &blkg->async_bios); 127 bio_list_init(&blkg->async_bios); 128 spin_unlock_bh(&blkg->async_bio_lock); 129 130 /* start plug only when bio_list contains at least 2 bios */ 131 if (bios.head && bios.head->bi_next) { 132 need_plug = true; 133 blk_start_plug(&plug); 134 } 135 while ((bio = bio_list_pop(&bios))) 136 submit_bio(bio); 137 if (need_plug) 138 blk_finish_plug(&plug); 139 } 140 141 /** 142 * blkg_alloc - allocate a blkg 143 * @blkcg: block cgroup the new blkg is associated with 144 * @q: request_queue the new blkg is associated with 145 * @gfp_mask: allocation mask to use 146 * 147 * Allocate a new blkg assocating @blkcg and @q. 148 */ 149 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q, 150 gfp_t gfp_mask) 151 { 152 struct blkcg_gq *blkg; 153 int i, cpu; 154 155 /* alloc and init base part */ 156 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node); 157 if (!blkg) 158 return NULL; 159 160 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask)) 161 goto err_free; 162 163 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask); 164 if (!blkg->iostat_cpu) 165 goto err_free; 166 167 blkg->q = q; 168 INIT_LIST_HEAD(&blkg->q_node); 169 spin_lock_init(&blkg->async_bio_lock); 170 bio_list_init(&blkg->async_bios); 171 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn); 172 blkg->blkcg = blkcg; 173 174 u64_stats_init(&blkg->iostat.sync); 175 for_each_possible_cpu(cpu) 176 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync); 177 178 for (i = 0; i < BLKCG_MAX_POLS; i++) { 179 struct blkcg_policy *pol = blkcg_policy[i]; 180 struct blkg_policy_data *pd; 181 182 if (!blkcg_policy_enabled(q, pol)) 183 continue; 184 185 /* alloc per-policy data and attach it to blkg */ 186 pd = pol->pd_alloc_fn(gfp_mask, q, blkcg); 187 if (!pd) 188 goto err_free; 189 190 blkg->pd[i] = pd; 191 pd->blkg = blkg; 192 pd->plid = i; 193 } 194 195 return blkg; 196 197 err_free: 198 blkg_free(blkg); 199 return NULL; 200 } 201 202 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg, 203 struct request_queue *q, bool update_hint) 204 { 205 struct blkcg_gq *blkg; 206 207 /* 208 * Hint didn't match. Look up from the radix tree. Note that the 209 * hint can only be updated under queue_lock as otherwise @blkg 210 * could have already been removed from blkg_tree. The caller is 211 * responsible for grabbing queue_lock if @update_hint. 212 */ 213 blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id); 214 if (blkg && blkg->q == q) { 215 if (update_hint) { 216 lockdep_assert_held(&q->queue_lock); 217 rcu_assign_pointer(blkcg->blkg_hint, blkg); 218 } 219 return blkg; 220 } 221 222 return NULL; 223 } 224 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath); 225 226 /* 227 * If @new_blkg is %NULL, this function tries to allocate a new one as 228 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return. 229 */ 230 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, 231 struct request_queue *q, 232 struct blkcg_gq *new_blkg) 233 { 234 struct blkcg_gq *blkg; 235 int i, ret; 236 237 WARN_ON_ONCE(!rcu_read_lock_held()); 238 lockdep_assert_held(&q->queue_lock); 239 240 /* request_queue is dying, do not create/recreate a blkg */ 241 if (blk_queue_dying(q)) { 242 ret = -ENODEV; 243 goto err_free_blkg; 244 } 245 246 /* blkg holds a reference to blkcg */ 247 if (!css_tryget_online(&blkcg->css)) { 248 ret = -ENODEV; 249 goto err_free_blkg; 250 } 251 252 /* allocate */ 253 if (!new_blkg) { 254 new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN); 255 if (unlikely(!new_blkg)) { 256 ret = -ENOMEM; 257 goto err_put_css; 258 } 259 } 260 blkg = new_blkg; 261 262 /* link parent */ 263 if (blkcg_parent(blkcg)) { 264 blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false); 265 if (WARN_ON_ONCE(!blkg->parent)) { 266 ret = -ENODEV; 267 goto err_put_css; 268 } 269 blkg_get(blkg->parent); 270 } 271 272 /* invoke per-policy init */ 273 for (i = 0; i < BLKCG_MAX_POLS; i++) { 274 struct blkcg_policy *pol = blkcg_policy[i]; 275 276 if (blkg->pd[i] && pol->pd_init_fn) 277 pol->pd_init_fn(blkg->pd[i]); 278 } 279 280 /* insert */ 281 spin_lock(&blkcg->lock); 282 ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg); 283 if (likely(!ret)) { 284 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list); 285 list_add(&blkg->q_node, &q->blkg_list); 286 287 for (i = 0; i < BLKCG_MAX_POLS; i++) { 288 struct blkcg_policy *pol = blkcg_policy[i]; 289 290 if (blkg->pd[i] && pol->pd_online_fn) 291 pol->pd_online_fn(blkg->pd[i]); 292 } 293 } 294 blkg->online = true; 295 spin_unlock(&blkcg->lock); 296 297 if (!ret) 298 return blkg; 299 300 /* @blkg failed fully initialized, use the usual release path */ 301 blkg_put(blkg); 302 return ERR_PTR(ret); 303 304 err_put_css: 305 css_put(&blkcg->css); 306 err_free_blkg: 307 blkg_free(new_blkg); 308 return ERR_PTR(ret); 309 } 310 311 /** 312 * blkg_lookup_create - lookup blkg, try to create one if not there 313 * @blkcg: blkcg of interest 314 * @q: request_queue of interest 315 * 316 * Lookup blkg for the @blkcg - @q pair. If it doesn't exist, try to 317 * create one. blkg creation is performed recursively from blkcg_root such 318 * that all non-root blkg's have access to the parent blkg. This function 319 * should be called under RCU read lock and takes @q->queue_lock. 320 * 321 * Returns the blkg or the closest blkg if blkg_create() fails as it walks 322 * down from root. 323 */ 324 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg, 325 struct request_queue *q) 326 { 327 struct blkcg_gq *blkg; 328 unsigned long flags; 329 330 WARN_ON_ONCE(!rcu_read_lock_held()); 331 332 blkg = blkg_lookup(blkcg, q); 333 if (blkg) 334 return blkg; 335 336 spin_lock_irqsave(&q->queue_lock, flags); 337 blkg = __blkg_lookup(blkcg, q, true); 338 if (blkg) 339 goto found; 340 341 /* 342 * Create blkgs walking down from blkcg_root to @blkcg, so that all 343 * non-root blkgs have access to their parents. Returns the closest 344 * blkg to the intended blkg should blkg_create() fail. 345 */ 346 while (true) { 347 struct blkcg *pos = blkcg; 348 struct blkcg *parent = blkcg_parent(blkcg); 349 struct blkcg_gq *ret_blkg = q->root_blkg; 350 351 while (parent) { 352 blkg = __blkg_lookup(parent, q, false); 353 if (blkg) { 354 /* remember closest blkg */ 355 ret_blkg = blkg; 356 break; 357 } 358 pos = parent; 359 parent = blkcg_parent(parent); 360 } 361 362 blkg = blkg_create(pos, q, NULL); 363 if (IS_ERR(blkg)) { 364 blkg = ret_blkg; 365 break; 366 } 367 if (pos == blkcg) 368 break; 369 } 370 371 found: 372 spin_unlock_irqrestore(&q->queue_lock, flags); 373 return blkg; 374 } 375 376 static void blkg_destroy(struct blkcg_gq *blkg) 377 { 378 struct blkcg *blkcg = blkg->blkcg; 379 int i; 380 381 lockdep_assert_held(&blkg->q->queue_lock); 382 lockdep_assert_held(&blkcg->lock); 383 384 /* Something wrong if we are trying to remove same group twice */ 385 WARN_ON_ONCE(list_empty(&blkg->q_node)); 386 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node)); 387 388 for (i = 0; i < BLKCG_MAX_POLS; i++) { 389 struct blkcg_policy *pol = blkcg_policy[i]; 390 391 if (blkg->pd[i] && pol->pd_offline_fn) 392 pol->pd_offline_fn(blkg->pd[i]); 393 } 394 395 blkg->online = false; 396 397 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id); 398 list_del_init(&blkg->q_node); 399 hlist_del_init_rcu(&blkg->blkcg_node); 400 401 /* 402 * Both setting lookup hint to and clearing it from @blkg are done 403 * under queue_lock. If it's not pointing to @blkg now, it never 404 * will. Hint assignment itself can race safely. 405 */ 406 if (rcu_access_pointer(blkcg->blkg_hint) == blkg) 407 rcu_assign_pointer(blkcg->blkg_hint, NULL); 408 409 /* 410 * Put the reference taken at the time of creation so that when all 411 * queues are gone, group can be destroyed. 412 */ 413 percpu_ref_kill(&blkg->refcnt); 414 } 415 416 /** 417 * blkg_destroy_all - destroy all blkgs associated with a request_queue 418 * @q: request_queue of interest 419 * 420 * Destroy all blkgs associated with @q. 421 */ 422 static void blkg_destroy_all(struct request_queue *q) 423 { 424 struct blkcg_gq *blkg, *n; 425 426 spin_lock_irq(&q->queue_lock); 427 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) { 428 struct blkcg *blkcg = blkg->blkcg; 429 430 spin_lock(&blkcg->lock); 431 blkg_destroy(blkg); 432 spin_unlock(&blkcg->lock); 433 } 434 435 q->root_blkg = NULL; 436 spin_unlock_irq(&q->queue_lock); 437 } 438 439 static int blkcg_reset_stats(struct cgroup_subsys_state *css, 440 struct cftype *cftype, u64 val) 441 { 442 struct blkcg *blkcg = css_to_blkcg(css); 443 struct blkcg_gq *blkg; 444 int i, cpu; 445 446 mutex_lock(&blkcg_pol_mutex); 447 spin_lock_irq(&blkcg->lock); 448 449 /* 450 * Note that stat reset is racy - it doesn't synchronize against 451 * stat updates. This is a debug feature which shouldn't exist 452 * anyway. If you get hit by a race, retry. 453 */ 454 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 455 for_each_possible_cpu(cpu) { 456 struct blkg_iostat_set *bis = 457 per_cpu_ptr(blkg->iostat_cpu, cpu); 458 memset(bis, 0, sizeof(*bis)); 459 } 460 memset(&blkg->iostat, 0, sizeof(blkg->iostat)); 461 462 for (i = 0; i < BLKCG_MAX_POLS; i++) { 463 struct blkcg_policy *pol = blkcg_policy[i]; 464 465 if (blkg->pd[i] && pol->pd_reset_stats_fn) 466 pol->pd_reset_stats_fn(blkg->pd[i]); 467 } 468 } 469 470 spin_unlock_irq(&blkcg->lock); 471 mutex_unlock(&blkcg_pol_mutex); 472 return 0; 473 } 474 475 const char *blkg_dev_name(struct blkcg_gq *blkg) 476 { 477 /* some drivers (floppy) instantiate a queue w/o disk registered */ 478 if (blkg->q->backing_dev_info->dev) 479 return bdi_dev_name(blkg->q->backing_dev_info); 480 return NULL; 481 } 482 483 /** 484 * blkcg_print_blkgs - helper for printing per-blkg data 485 * @sf: seq_file to print to 486 * @blkcg: blkcg of interest 487 * @prfill: fill function to print out a blkg 488 * @pol: policy in question 489 * @data: data to be passed to @prfill 490 * @show_total: to print out sum of prfill return values or not 491 * 492 * This function invokes @prfill on each blkg of @blkcg if pd for the 493 * policy specified by @pol exists. @prfill is invoked with @sf, the 494 * policy data and @data and the matching queue lock held. If @show_total 495 * is %true, the sum of the return values from @prfill is printed with 496 * "Total" label at the end. 497 * 498 * This is to be used to construct print functions for 499 * cftype->read_seq_string method. 500 */ 501 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg, 502 u64 (*prfill)(struct seq_file *, 503 struct blkg_policy_data *, int), 504 const struct blkcg_policy *pol, int data, 505 bool show_total) 506 { 507 struct blkcg_gq *blkg; 508 u64 total = 0; 509 510 rcu_read_lock(); 511 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 512 spin_lock_irq(&blkg->q->queue_lock); 513 if (blkcg_policy_enabled(blkg->q, pol)) 514 total += prfill(sf, blkg->pd[pol->plid], data); 515 spin_unlock_irq(&blkg->q->queue_lock); 516 } 517 rcu_read_unlock(); 518 519 if (show_total) 520 seq_printf(sf, "Total %llu\n", (unsigned long long)total); 521 } 522 EXPORT_SYMBOL_GPL(blkcg_print_blkgs); 523 524 /** 525 * __blkg_prfill_u64 - prfill helper for a single u64 value 526 * @sf: seq_file to print to 527 * @pd: policy private data of interest 528 * @v: value to print 529 * 530 * Print @v to @sf for the device assocaited with @pd. 531 */ 532 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v) 533 { 534 const char *dname = blkg_dev_name(pd->blkg); 535 536 if (!dname) 537 return 0; 538 539 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v); 540 return v; 541 } 542 EXPORT_SYMBOL_GPL(__blkg_prfill_u64); 543 544 /* Performs queue bypass and policy enabled checks then looks up blkg. */ 545 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg, 546 const struct blkcg_policy *pol, 547 struct request_queue *q) 548 { 549 WARN_ON_ONCE(!rcu_read_lock_held()); 550 lockdep_assert_held(&q->queue_lock); 551 552 if (!blkcg_policy_enabled(q, pol)) 553 return ERR_PTR(-EOPNOTSUPP); 554 return __blkg_lookup(blkcg, q, true /* update_hint */); 555 } 556 557 /** 558 * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update 559 * @inputp: input string pointer 560 * 561 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update 562 * from @input and get and return the matching bdev. *@inputp is 563 * updated to point past the device node prefix. Returns an ERR_PTR() 564 * value on error. 565 * 566 * Use this function iff blkg_conf_prep() can't be used for some reason. 567 */ 568 struct block_device *blkcg_conf_open_bdev(char **inputp) 569 { 570 char *input = *inputp; 571 unsigned int major, minor; 572 struct block_device *bdev; 573 int key_len; 574 575 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2) 576 return ERR_PTR(-EINVAL); 577 578 input += key_len; 579 if (!isspace(*input)) 580 return ERR_PTR(-EINVAL); 581 input = skip_spaces(input); 582 583 bdev = blkdev_get_no_open(MKDEV(major, minor)); 584 if (!bdev) 585 return ERR_PTR(-ENODEV); 586 if (bdev_is_partition(bdev)) { 587 blkdev_put_no_open(bdev); 588 return ERR_PTR(-ENODEV); 589 } 590 591 *inputp = input; 592 return bdev; 593 } 594 595 /** 596 * blkg_conf_prep - parse and prepare for per-blkg config update 597 * @blkcg: target block cgroup 598 * @pol: target policy 599 * @input: input string 600 * @ctx: blkg_conf_ctx to be filled 601 * 602 * Parse per-blkg config update from @input and initialize @ctx with the 603 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the 604 * part of @input following MAJ:MIN. This function returns with RCU read 605 * lock and queue lock held and must be paired with blkg_conf_finish(). 606 */ 607 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol, 608 char *input, struct blkg_conf_ctx *ctx) 609 __acquires(rcu) __acquires(&bdev->bd_disk->queue->queue_lock) 610 { 611 struct block_device *bdev; 612 struct request_queue *q; 613 struct blkcg_gq *blkg; 614 int ret; 615 616 bdev = blkcg_conf_open_bdev(&input); 617 if (IS_ERR(bdev)) 618 return PTR_ERR(bdev); 619 620 q = bdev->bd_disk->queue; 621 622 rcu_read_lock(); 623 spin_lock_irq(&q->queue_lock); 624 625 blkg = blkg_lookup_check(blkcg, pol, q); 626 if (IS_ERR(blkg)) { 627 ret = PTR_ERR(blkg); 628 goto fail_unlock; 629 } 630 631 if (blkg) 632 goto success; 633 634 /* 635 * Create blkgs walking down from blkcg_root to @blkcg, so that all 636 * non-root blkgs have access to their parents. 637 */ 638 while (true) { 639 struct blkcg *pos = blkcg; 640 struct blkcg *parent; 641 struct blkcg_gq *new_blkg; 642 643 parent = blkcg_parent(blkcg); 644 while (parent && !__blkg_lookup(parent, q, false)) { 645 pos = parent; 646 parent = blkcg_parent(parent); 647 } 648 649 /* Drop locks to do new blkg allocation with GFP_KERNEL. */ 650 spin_unlock_irq(&q->queue_lock); 651 rcu_read_unlock(); 652 653 new_blkg = blkg_alloc(pos, q, GFP_KERNEL); 654 if (unlikely(!new_blkg)) { 655 ret = -ENOMEM; 656 goto fail; 657 } 658 659 if (radix_tree_preload(GFP_KERNEL)) { 660 blkg_free(new_blkg); 661 ret = -ENOMEM; 662 goto fail; 663 } 664 665 rcu_read_lock(); 666 spin_lock_irq(&q->queue_lock); 667 668 blkg = blkg_lookup_check(pos, pol, q); 669 if (IS_ERR(blkg)) { 670 ret = PTR_ERR(blkg); 671 blkg_free(new_blkg); 672 goto fail_preloaded; 673 } 674 675 if (blkg) { 676 blkg_free(new_blkg); 677 } else { 678 blkg = blkg_create(pos, q, new_blkg); 679 if (IS_ERR(blkg)) { 680 ret = PTR_ERR(blkg); 681 goto fail_preloaded; 682 } 683 } 684 685 radix_tree_preload_end(); 686 687 if (pos == blkcg) 688 goto success; 689 } 690 success: 691 ctx->bdev = bdev; 692 ctx->blkg = blkg; 693 ctx->body = input; 694 return 0; 695 696 fail_preloaded: 697 radix_tree_preload_end(); 698 fail_unlock: 699 spin_unlock_irq(&q->queue_lock); 700 rcu_read_unlock(); 701 fail: 702 blkdev_put_no_open(bdev); 703 /* 704 * If queue was bypassing, we should retry. Do so after a 705 * short msleep(). It isn't strictly necessary but queue 706 * can be bypassing for some time and it's always nice to 707 * avoid busy looping. 708 */ 709 if (ret == -EBUSY) { 710 msleep(10); 711 ret = restart_syscall(); 712 } 713 return ret; 714 } 715 EXPORT_SYMBOL_GPL(blkg_conf_prep); 716 717 /** 718 * blkg_conf_finish - finish up per-blkg config update 719 * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep() 720 * 721 * Finish up after per-blkg config update. This function must be paired 722 * with blkg_conf_prep(). 723 */ 724 void blkg_conf_finish(struct blkg_conf_ctx *ctx) 725 __releases(&ctx->bdev->bd_disk->queue->queue_lock) __releases(rcu) 726 { 727 spin_unlock_irq(&ctx->bdev->bd_disk->queue->queue_lock); 728 rcu_read_unlock(); 729 blkdev_put_no_open(ctx->bdev); 730 } 731 EXPORT_SYMBOL_GPL(blkg_conf_finish); 732 733 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src) 734 { 735 int i; 736 737 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 738 dst->bytes[i] = src->bytes[i]; 739 dst->ios[i] = src->ios[i]; 740 } 741 } 742 743 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src) 744 { 745 int i; 746 747 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 748 dst->bytes[i] += src->bytes[i]; 749 dst->ios[i] += src->ios[i]; 750 } 751 } 752 753 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src) 754 { 755 int i; 756 757 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 758 dst->bytes[i] -= src->bytes[i]; 759 dst->ios[i] -= src->ios[i]; 760 } 761 } 762 763 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu) 764 { 765 struct blkcg *blkcg = css_to_blkcg(css); 766 struct blkcg_gq *blkg; 767 768 /* Root-level stats are sourced from system-wide IO stats */ 769 if (!cgroup_parent(css->cgroup)) 770 return; 771 772 rcu_read_lock(); 773 774 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 775 struct blkcg_gq *parent = blkg->parent; 776 struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu); 777 struct blkg_iostat cur, delta; 778 unsigned int seq; 779 780 /* fetch the current per-cpu values */ 781 do { 782 seq = u64_stats_fetch_begin(&bisc->sync); 783 blkg_iostat_set(&cur, &bisc->cur); 784 } while (u64_stats_fetch_retry(&bisc->sync, seq)); 785 786 /* propagate percpu delta to global */ 787 u64_stats_update_begin(&blkg->iostat.sync); 788 blkg_iostat_set(&delta, &cur); 789 blkg_iostat_sub(&delta, &bisc->last); 790 blkg_iostat_add(&blkg->iostat.cur, &delta); 791 blkg_iostat_add(&bisc->last, &delta); 792 u64_stats_update_end(&blkg->iostat.sync); 793 794 /* propagate global delta to parent (unless that's root) */ 795 if (parent && parent->parent) { 796 u64_stats_update_begin(&parent->iostat.sync); 797 blkg_iostat_set(&delta, &blkg->iostat.cur); 798 blkg_iostat_sub(&delta, &blkg->iostat.last); 799 blkg_iostat_add(&parent->iostat.cur, &delta); 800 blkg_iostat_add(&blkg->iostat.last, &delta); 801 u64_stats_update_end(&parent->iostat.sync); 802 } 803 } 804 805 rcu_read_unlock(); 806 } 807 808 /* 809 * We source root cgroup stats from the system-wide stats to avoid 810 * tracking the same information twice and incurring overhead when no 811 * cgroups are defined. For that reason, cgroup_rstat_flush in 812 * blkcg_print_stat does not actually fill out the iostat in the root 813 * cgroup's blkcg_gq. 814 * 815 * However, we would like to re-use the printing code between the root and 816 * non-root cgroups to the extent possible. For that reason, we simulate 817 * flushing the root cgroup's stats by explicitly filling in the iostat 818 * with disk level statistics. 819 */ 820 static void blkcg_fill_root_iostats(void) 821 { 822 struct class_dev_iter iter; 823 struct device *dev; 824 825 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 826 while ((dev = class_dev_iter_next(&iter))) { 827 struct block_device *bdev = dev_to_bdev(dev); 828 struct blkcg_gq *blkg = 829 blk_queue_root_blkg(bdev->bd_disk->queue); 830 struct blkg_iostat tmp; 831 int cpu; 832 833 memset(&tmp, 0, sizeof(tmp)); 834 for_each_possible_cpu(cpu) { 835 struct disk_stats *cpu_dkstats; 836 837 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu); 838 tmp.ios[BLKG_IOSTAT_READ] += 839 cpu_dkstats->ios[STAT_READ]; 840 tmp.ios[BLKG_IOSTAT_WRITE] += 841 cpu_dkstats->ios[STAT_WRITE]; 842 tmp.ios[BLKG_IOSTAT_DISCARD] += 843 cpu_dkstats->ios[STAT_DISCARD]; 844 // convert sectors to bytes 845 tmp.bytes[BLKG_IOSTAT_READ] += 846 cpu_dkstats->sectors[STAT_READ] << 9; 847 tmp.bytes[BLKG_IOSTAT_WRITE] += 848 cpu_dkstats->sectors[STAT_WRITE] << 9; 849 tmp.bytes[BLKG_IOSTAT_DISCARD] += 850 cpu_dkstats->sectors[STAT_DISCARD] << 9; 851 852 u64_stats_update_begin(&blkg->iostat.sync); 853 blkg_iostat_set(&blkg->iostat.cur, &tmp); 854 u64_stats_update_end(&blkg->iostat.sync); 855 } 856 } 857 } 858 859 static int blkcg_print_stat(struct seq_file *sf, void *v) 860 { 861 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 862 struct blkcg_gq *blkg; 863 864 if (!seq_css(sf)->parent) 865 blkcg_fill_root_iostats(); 866 else 867 cgroup_rstat_flush(blkcg->css.cgroup); 868 869 rcu_read_lock(); 870 871 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 872 struct blkg_iostat_set *bis = &blkg->iostat; 873 const char *dname; 874 char *buf; 875 u64 rbytes, wbytes, rios, wios, dbytes, dios; 876 size_t size = seq_get_buf(sf, &buf), off = 0; 877 int i; 878 bool has_stats = false; 879 unsigned seq; 880 881 spin_lock_irq(&blkg->q->queue_lock); 882 883 if (!blkg->online) 884 goto skip; 885 886 dname = blkg_dev_name(blkg); 887 if (!dname) 888 goto skip; 889 890 /* 891 * Hooray string manipulation, count is the size written NOT 892 * INCLUDING THE \0, so size is now count+1 less than what we 893 * had before, but we want to start writing the next bit from 894 * the \0 so we only add count to buf. 895 */ 896 off += scnprintf(buf+off, size-off, "%s ", dname); 897 898 do { 899 seq = u64_stats_fetch_begin(&bis->sync); 900 901 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ]; 902 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE]; 903 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD]; 904 rios = bis->cur.ios[BLKG_IOSTAT_READ]; 905 wios = bis->cur.ios[BLKG_IOSTAT_WRITE]; 906 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD]; 907 } while (u64_stats_fetch_retry(&bis->sync, seq)); 908 909 if (rbytes || wbytes || rios || wios) { 910 has_stats = true; 911 off += scnprintf(buf+off, size-off, 912 "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu", 913 rbytes, wbytes, rios, wios, 914 dbytes, dios); 915 } 916 917 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) { 918 has_stats = true; 919 off += scnprintf(buf+off, size-off, 920 " use_delay=%d delay_nsec=%llu", 921 atomic_read(&blkg->use_delay), 922 (unsigned long long)atomic64_read(&blkg->delay_nsec)); 923 } 924 925 for (i = 0; i < BLKCG_MAX_POLS; i++) { 926 struct blkcg_policy *pol = blkcg_policy[i]; 927 size_t written; 928 929 if (!blkg->pd[i] || !pol->pd_stat_fn) 930 continue; 931 932 written = pol->pd_stat_fn(blkg->pd[i], buf+off, size-off); 933 if (written) 934 has_stats = true; 935 off += written; 936 } 937 938 if (has_stats) { 939 if (off < size - 1) { 940 off += scnprintf(buf+off, size-off, "\n"); 941 seq_commit(sf, off); 942 } else { 943 seq_commit(sf, -1); 944 } 945 } 946 skip: 947 spin_unlock_irq(&blkg->q->queue_lock); 948 } 949 950 rcu_read_unlock(); 951 return 0; 952 } 953 954 static struct cftype blkcg_files[] = { 955 { 956 .name = "stat", 957 .seq_show = blkcg_print_stat, 958 }, 959 { } /* terminate */ 960 }; 961 962 static struct cftype blkcg_legacy_files[] = { 963 { 964 .name = "reset_stats", 965 .write_u64 = blkcg_reset_stats, 966 }, 967 { } /* terminate */ 968 }; 969 970 /* 971 * blkcg destruction is a three-stage process. 972 * 973 * 1. Destruction starts. The blkcg_css_offline() callback is invoked 974 * which offlines writeback. Here we tie the next stage of blkg destruction 975 * to the completion of writeback associated with the blkcg. This lets us 976 * avoid punting potentially large amounts of outstanding writeback to root 977 * while maintaining any ongoing policies. The next stage is triggered when 978 * the nr_cgwbs count goes to zero. 979 * 980 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called 981 * and handles the destruction of blkgs. Here the css reference held by 982 * the blkg is put back eventually allowing blkcg_css_free() to be called. 983 * This work may occur in cgwb_release_workfn() on the cgwb_release 984 * workqueue. Any submitted ios that fail to get the blkg ref will be 985 * punted to the root_blkg. 986 * 987 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called. 988 * This finally frees the blkcg. 989 */ 990 991 /** 992 * blkcg_css_offline - cgroup css_offline callback 993 * @css: css of interest 994 * 995 * This function is called when @css is about to go away. Here the cgwbs are 996 * offlined first and only once writeback associated with the blkcg has 997 * finished do we start step 2 (see above). 998 */ 999 static void blkcg_css_offline(struct cgroup_subsys_state *css) 1000 { 1001 struct blkcg *blkcg = css_to_blkcg(css); 1002 1003 /* this prevents anyone from attaching or migrating to this blkcg */ 1004 wb_blkcg_offline(blkcg); 1005 1006 /* put the base online pin allowing step 2 to be triggered */ 1007 blkcg_unpin_online(blkcg); 1008 } 1009 1010 /** 1011 * blkcg_destroy_blkgs - responsible for shooting down blkgs 1012 * @blkcg: blkcg of interest 1013 * 1014 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock 1015 * is nested inside q lock, this function performs reverse double lock dancing. 1016 * Destroying the blkgs releases the reference held on the blkcg's css allowing 1017 * blkcg_css_free to eventually be called. 1018 * 1019 * This is the blkcg counterpart of ioc_release_fn(). 1020 */ 1021 void blkcg_destroy_blkgs(struct blkcg *blkcg) 1022 { 1023 might_sleep(); 1024 1025 spin_lock_irq(&blkcg->lock); 1026 1027 while (!hlist_empty(&blkcg->blkg_list)) { 1028 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first, 1029 struct blkcg_gq, blkcg_node); 1030 struct request_queue *q = blkg->q; 1031 1032 if (need_resched() || !spin_trylock(&q->queue_lock)) { 1033 /* 1034 * Given that the system can accumulate a huge number 1035 * of blkgs in pathological cases, check to see if we 1036 * need to rescheduling to avoid softlockup. 1037 */ 1038 spin_unlock_irq(&blkcg->lock); 1039 cond_resched(); 1040 spin_lock_irq(&blkcg->lock); 1041 continue; 1042 } 1043 1044 blkg_destroy(blkg); 1045 spin_unlock(&q->queue_lock); 1046 } 1047 1048 spin_unlock_irq(&blkcg->lock); 1049 } 1050 1051 static void blkcg_css_free(struct cgroup_subsys_state *css) 1052 { 1053 struct blkcg *blkcg = css_to_blkcg(css); 1054 int i; 1055 1056 mutex_lock(&blkcg_pol_mutex); 1057 1058 list_del(&blkcg->all_blkcgs_node); 1059 1060 for (i = 0; i < BLKCG_MAX_POLS; i++) 1061 if (blkcg->cpd[i]) 1062 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1063 1064 mutex_unlock(&blkcg_pol_mutex); 1065 1066 kfree(blkcg); 1067 } 1068 1069 static struct cgroup_subsys_state * 1070 blkcg_css_alloc(struct cgroup_subsys_state *parent_css) 1071 { 1072 struct blkcg *blkcg; 1073 struct cgroup_subsys_state *ret; 1074 int i; 1075 1076 mutex_lock(&blkcg_pol_mutex); 1077 1078 if (!parent_css) { 1079 blkcg = &blkcg_root; 1080 } else { 1081 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL); 1082 if (!blkcg) { 1083 ret = ERR_PTR(-ENOMEM); 1084 goto unlock; 1085 } 1086 } 1087 1088 for (i = 0; i < BLKCG_MAX_POLS ; i++) { 1089 struct blkcg_policy *pol = blkcg_policy[i]; 1090 struct blkcg_policy_data *cpd; 1091 1092 /* 1093 * If the policy hasn't been attached yet, wait for it 1094 * to be attached before doing anything else. Otherwise, 1095 * check if the policy requires any specific per-cgroup 1096 * data: if it does, allocate and initialize it. 1097 */ 1098 if (!pol || !pol->cpd_alloc_fn) 1099 continue; 1100 1101 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1102 if (!cpd) { 1103 ret = ERR_PTR(-ENOMEM); 1104 goto free_pd_blkcg; 1105 } 1106 blkcg->cpd[i] = cpd; 1107 cpd->blkcg = blkcg; 1108 cpd->plid = i; 1109 if (pol->cpd_init_fn) 1110 pol->cpd_init_fn(cpd); 1111 } 1112 1113 spin_lock_init(&blkcg->lock); 1114 refcount_set(&blkcg->online_pin, 1); 1115 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN); 1116 INIT_HLIST_HEAD(&blkcg->blkg_list); 1117 #ifdef CONFIG_CGROUP_WRITEBACK 1118 INIT_LIST_HEAD(&blkcg->cgwb_list); 1119 #endif 1120 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs); 1121 1122 mutex_unlock(&blkcg_pol_mutex); 1123 return &blkcg->css; 1124 1125 free_pd_blkcg: 1126 for (i--; i >= 0; i--) 1127 if (blkcg->cpd[i]) 1128 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1129 1130 if (blkcg != &blkcg_root) 1131 kfree(blkcg); 1132 unlock: 1133 mutex_unlock(&blkcg_pol_mutex); 1134 return ret; 1135 } 1136 1137 static int blkcg_css_online(struct cgroup_subsys_state *css) 1138 { 1139 struct blkcg *blkcg = css_to_blkcg(css); 1140 struct blkcg *parent = blkcg_parent(blkcg); 1141 1142 /* 1143 * blkcg_pin_online() is used to delay blkcg offline so that blkgs 1144 * don't go offline while cgwbs are still active on them. Pin the 1145 * parent so that offline always happens towards the root. 1146 */ 1147 if (parent) 1148 blkcg_pin_online(parent); 1149 return 0; 1150 } 1151 1152 /** 1153 * blkcg_init_queue - initialize blkcg part of request queue 1154 * @q: request_queue to initialize 1155 * 1156 * Called from blk_alloc_queue(). Responsible for initializing blkcg 1157 * part of new request_queue @q. 1158 * 1159 * RETURNS: 1160 * 0 on success, -errno on failure. 1161 */ 1162 int blkcg_init_queue(struct request_queue *q) 1163 { 1164 struct blkcg_gq *new_blkg, *blkg; 1165 bool preloaded; 1166 int ret; 1167 1168 new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL); 1169 if (!new_blkg) 1170 return -ENOMEM; 1171 1172 preloaded = !radix_tree_preload(GFP_KERNEL); 1173 1174 /* Make sure the root blkg exists. */ 1175 rcu_read_lock(); 1176 spin_lock_irq(&q->queue_lock); 1177 blkg = blkg_create(&blkcg_root, q, new_blkg); 1178 if (IS_ERR(blkg)) 1179 goto err_unlock; 1180 q->root_blkg = blkg; 1181 spin_unlock_irq(&q->queue_lock); 1182 rcu_read_unlock(); 1183 1184 if (preloaded) 1185 radix_tree_preload_end(); 1186 1187 ret = blk_iolatency_init(q); 1188 if (ret) 1189 goto err_destroy_all; 1190 1191 ret = blk_ioprio_init(q); 1192 if (ret) 1193 goto err_destroy_all; 1194 1195 ret = blk_throtl_init(q); 1196 if (ret) 1197 goto err_destroy_all; 1198 1199 return 0; 1200 1201 err_destroy_all: 1202 blkg_destroy_all(q); 1203 return ret; 1204 err_unlock: 1205 spin_unlock_irq(&q->queue_lock); 1206 rcu_read_unlock(); 1207 if (preloaded) 1208 radix_tree_preload_end(); 1209 return PTR_ERR(blkg); 1210 } 1211 1212 /** 1213 * blkcg_exit_queue - exit and release blkcg part of request_queue 1214 * @q: request_queue being released 1215 * 1216 * Called from blk_exit_queue(). Responsible for exiting blkcg part. 1217 */ 1218 void blkcg_exit_queue(struct request_queue *q) 1219 { 1220 blkg_destroy_all(q); 1221 blk_throtl_exit(q); 1222 } 1223 1224 static void blkcg_bind(struct cgroup_subsys_state *root_css) 1225 { 1226 int i; 1227 1228 mutex_lock(&blkcg_pol_mutex); 1229 1230 for (i = 0; i < BLKCG_MAX_POLS; i++) { 1231 struct blkcg_policy *pol = blkcg_policy[i]; 1232 struct blkcg *blkcg; 1233 1234 if (!pol || !pol->cpd_bind_fn) 1235 continue; 1236 1237 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) 1238 if (blkcg->cpd[pol->plid]) 1239 pol->cpd_bind_fn(blkcg->cpd[pol->plid]); 1240 } 1241 mutex_unlock(&blkcg_pol_mutex); 1242 } 1243 1244 static void blkcg_exit(struct task_struct *tsk) 1245 { 1246 if (tsk->throttle_queue) 1247 blk_put_queue(tsk->throttle_queue); 1248 tsk->throttle_queue = NULL; 1249 } 1250 1251 struct cgroup_subsys io_cgrp_subsys = { 1252 .css_alloc = blkcg_css_alloc, 1253 .css_online = blkcg_css_online, 1254 .css_offline = blkcg_css_offline, 1255 .css_free = blkcg_css_free, 1256 .css_rstat_flush = blkcg_rstat_flush, 1257 .bind = blkcg_bind, 1258 .dfl_cftypes = blkcg_files, 1259 .legacy_cftypes = blkcg_legacy_files, 1260 .legacy_name = "blkio", 1261 .exit = blkcg_exit, 1262 #ifdef CONFIG_MEMCG 1263 /* 1264 * This ensures that, if available, memcg is automatically enabled 1265 * together on the default hierarchy so that the owner cgroup can 1266 * be retrieved from writeback pages. 1267 */ 1268 .depends_on = 1 << memory_cgrp_id, 1269 #endif 1270 }; 1271 EXPORT_SYMBOL_GPL(io_cgrp_subsys); 1272 1273 /** 1274 * blkcg_activate_policy - activate a blkcg policy on a request_queue 1275 * @q: request_queue of interest 1276 * @pol: blkcg policy to activate 1277 * 1278 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through 1279 * bypass mode to populate its blkgs with policy_data for @pol. 1280 * 1281 * Activation happens with @q bypassed, so nobody would be accessing blkgs 1282 * from IO path. Update of each blkg is protected by both queue and blkcg 1283 * locks so that holding either lock and testing blkcg_policy_enabled() is 1284 * always enough for dereferencing policy data. 1285 * 1286 * The caller is responsible for synchronizing [de]activations and policy 1287 * [un]registerations. Returns 0 on success, -errno on failure. 1288 */ 1289 int blkcg_activate_policy(struct request_queue *q, 1290 const struct blkcg_policy *pol) 1291 { 1292 struct blkg_policy_data *pd_prealloc = NULL; 1293 struct blkcg_gq *blkg, *pinned_blkg = NULL; 1294 int ret; 1295 1296 if (blkcg_policy_enabled(q, pol)) 1297 return 0; 1298 1299 if (queue_is_mq(q)) 1300 blk_mq_freeze_queue(q); 1301 retry: 1302 spin_lock_irq(&q->queue_lock); 1303 1304 /* blkg_list is pushed at the head, reverse walk to allocate parents first */ 1305 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { 1306 struct blkg_policy_data *pd; 1307 1308 if (blkg->pd[pol->plid]) 1309 continue; 1310 1311 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */ 1312 if (blkg == pinned_blkg) { 1313 pd = pd_prealloc; 1314 pd_prealloc = NULL; 1315 } else { 1316 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q, 1317 blkg->blkcg); 1318 } 1319 1320 if (!pd) { 1321 /* 1322 * GFP_NOWAIT failed. Free the existing one and 1323 * prealloc for @blkg w/ GFP_KERNEL. 1324 */ 1325 if (pinned_blkg) 1326 blkg_put(pinned_blkg); 1327 blkg_get(blkg); 1328 pinned_blkg = blkg; 1329 1330 spin_unlock_irq(&q->queue_lock); 1331 1332 if (pd_prealloc) 1333 pol->pd_free_fn(pd_prealloc); 1334 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q, 1335 blkg->blkcg); 1336 if (pd_prealloc) 1337 goto retry; 1338 else 1339 goto enomem; 1340 } 1341 1342 blkg->pd[pol->plid] = pd; 1343 pd->blkg = blkg; 1344 pd->plid = pol->plid; 1345 } 1346 1347 /* all allocated, init in the same order */ 1348 if (pol->pd_init_fn) 1349 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) 1350 pol->pd_init_fn(blkg->pd[pol->plid]); 1351 1352 __set_bit(pol->plid, q->blkcg_pols); 1353 ret = 0; 1354 1355 spin_unlock_irq(&q->queue_lock); 1356 out: 1357 if (queue_is_mq(q)) 1358 blk_mq_unfreeze_queue(q); 1359 if (pinned_blkg) 1360 blkg_put(pinned_blkg); 1361 if (pd_prealloc) 1362 pol->pd_free_fn(pd_prealloc); 1363 return ret; 1364 1365 enomem: 1366 /* alloc failed, nothing's initialized yet, free everything */ 1367 spin_lock_irq(&q->queue_lock); 1368 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1369 if (blkg->pd[pol->plid]) { 1370 pol->pd_free_fn(blkg->pd[pol->plid]); 1371 blkg->pd[pol->plid] = NULL; 1372 } 1373 } 1374 spin_unlock_irq(&q->queue_lock); 1375 ret = -ENOMEM; 1376 goto out; 1377 } 1378 EXPORT_SYMBOL_GPL(blkcg_activate_policy); 1379 1380 /** 1381 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue 1382 * @q: request_queue of interest 1383 * @pol: blkcg policy to deactivate 1384 * 1385 * Deactivate @pol on @q. Follows the same synchronization rules as 1386 * blkcg_activate_policy(). 1387 */ 1388 void blkcg_deactivate_policy(struct request_queue *q, 1389 const struct blkcg_policy *pol) 1390 { 1391 struct blkcg_gq *blkg; 1392 1393 if (!blkcg_policy_enabled(q, pol)) 1394 return; 1395 1396 if (queue_is_mq(q)) 1397 blk_mq_freeze_queue(q); 1398 1399 spin_lock_irq(&q->queue_lock); 1400 1401 __clear_bit(pol->plid, q->blkcg_pols); 1402 1403 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1404 if (blkg->pd[pol->plid]) { 1405 if (pol->pd_offline_fn) 1406 pol->pd_offline_fn(blkg->pd[pol->plid]); 1407 pol->pd_free_fn(blkg->pd[pol->plid]); 1408 blkg->pd[pol->plid] = NULL; 1409 } 1410 } 1411 1412 spin_unlock_irq(&q->queue_lock); 1413 1414 if (queue_is_mq(q)) 1415 blk_mq_unfreeze_queue(q); 1416 } 1417 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy); 1418 1419 /** 1420 * blkcg_policy_register - register a blkcg policy 1421 * @pol: blkcg policy to register 1422 * 1423 * Register @pol with blkcg core. Might sleep and @pol may be modified on 1424 * successful registration. Returns 0 on success and -errno on failure. 1425 */ 1426 int blkcg_policy_register(struct blkcg_policy *pol) 1427 { 1428 struct blkcg *blkcg; 1429 int i, ret; 1430 1431 mutex_lock(&blkcg_pol_register_mutex); 1432 mutex_lock(&blkcg_pol_mutex); 1433 1434 /* find an empty slot */ 1435 ret = -ENOSPC; 1436 for (i = 0; i < BLKCG_MAX_POLS; i++) 1437 if (!blkcg_policy[i]) 1438 break; 1439 if (i >= BLKCG_MAX_POLS) { 1440 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n"); 1441 goto err_unlock; 1442 } 1443 1444 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */ 1445 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) || 1446 (!pol->pd_alloc_fn ^ !pol->pd_free_fn)) 1447 goto err_unlock; 1448 1449 /* register @pol */ 1450 pol->plid = i; 1451 blkcg_policy[pol->plid] = pol; 1452 1453 /* allocate and install cpd's */ 1454 if (pol->cpd_alloc_fn) { 1455 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1456 struct blkcg_policy_data *cpd; 1457 1458 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1459 if (!cpd) 1460 goto err_free_cpds; 1461 1462 blkcg->cpd[pol->plid] = cpd; 1463 cpd->blkcg = blkcg; 1464 cpd->plid = pol->plid; 1465 if (pol->cpd_init_fn) 1466 pol->cpd_init_fn(cpd); 1467 } 1468 } 1469 1470 mutex_unlock(&blkcg_pol_mutex); 1471 1472 /* everything is in place, add intf files for the new policy */ 1473 if (pol->dfl_cftypes) 1474 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys, 1475 pol->dfl_cftypes)); 1476 if (pol->legacy_cftypes) 1477 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys, 1478 pol->legacy_cftypes)); 1479 mutex_unlock(&blkcg_pol_register_mutex); 1480 return 0; 1481 1482 err_free_cpds: 1483 if (pol->cpd_free_fn) { 1484 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1485 if (blkcg->cpd[pol->plid]) { 1486 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1487 blkcg->cpd[pol->plid] = NULL; 1488 } 1489 } 1490 } 1491 blkcg_policy[pol->plid] = NULL; 1492 err_unlock: 1493 mutex_unlock(&blkcg_pol_mutex); 1494 mutex_unlock(&blkcg_pol_register_mutex); 1495 return ret; 1496 } 1497 EXPORT_SYMBOL_GPL(blkcg_policy_register); 1498 1499 /** 1500 * blkcg_policy_unregister - unregister a blkcg policy 1501 * @pol: blkcg policy to unregister 1502 * 1503 * Undo blkcg_policy_register(@pol). Might sleep. 1504 */ 1505 void blkcg_policy_unregister(struct blkcg_policy *pol) 1506 { 1507 struct blkcg *blkcg; 1508 1509 mutex_lock(&blkcg_pol_register_mutex); 1510 1511 if (WARN_ON(blkcg_policy[pol->plid] != pol)) 1512 goto out_unlock; 1513 1514 /* kill the intf files first */ 1515 if (pol->dfl_cftypes) 1516 cgroup_rm_cftypes(pol->dfl_cftypes); 1517 if (pol->legacy_cftypes) 1518 cgroup_rm_cftypes(pol->legacy_cftypes); 1519 1520 /* remove cpds and unregister */ 1521 mutex_lock(&blkcg_pol_mutex); 1522 1523 if (pol->cpd_free_fn) { 1524 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1525 if (blkcg->cpd[pol->plid]) { 1526 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1527 blkcg->cpd[pol->plid] = NULL; 1528 } 1529 } 1530 } 1531 blkcg_policy[pol->plid] = NULL; 1532 1533 mutex_unlock(&blkcg_pol_mutex); 1534 out_unlock: 1535 mutex_unlock(&blkcg_pol_register_mutex); 1536 } 1537 EXPORT_SYMBOL_GPL(blkcg_policy_unregister); 1538 1539 bool __blkcg_punt_bio_submit(struct bio *bio) 1540 { 1541 struct blkcg_gq *blkg = bio->bi_blkg; 1542 1543 /* consume the flag first */ 1544 bio->bi_opf &= ~REQ_CGROUP_PUNT; 1545 1546 /* never bounce for the root cgroup */ 1547 if (!blkg->parent) 1548 return false; 1549 1550 spin_lock_bh(&blkg->async_bio_lock); 1551 bio_list_add(&blkg->async_bios, bio); 1552 spin_unlock_bh(&blkg->async_bio_lock); 1553 1554 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work); 1555 return true; 1556 } 1557 1558 /* 1559 * Scale the accumulated delay based on how long it has been since we updated 1560 * the delay. We only call this when we are adding delay, in case it's been a 1561 * while since we added delay, and when we are checking to see if we need to 1562 * delay a task, to account for any delays that may have occurred. 1563 */ 1564 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now) 1565 { 1566 u64 old = atomic64_read(&blkg->delay_start); 1567 1568 /* negative use_delay means no scaling, see blkcg_set_delay() */ 1569 if (atomic_read(&blkg->use_delay) < 0) 1570 return; 1571 1572 /* 1573 * We only want to scale down every second. The idea here is that we 1574 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain 1575 * time window. We only want to throttle tasks for recent delay that 1576 * has occurred, in 1 second time windows since that's the maximum 1577 * things can be throttled. We save the current delay window in 1578 * blkg->last_delay so we know what amount is still left to be charged 1579 * to the blkg from this point onward. blkg->last_use keeps track of 1580 * the use_delay counter. The idea is if we're unthrottling the blkg we 1581 * are ok with whatever is happening now, and we can take away more of 1582 * the accumulated delay as we've already throttled enough that 1583 * everybody is happy with their IO latencies. 1584 */ 1585 if (time_before64(old + NSEC_PER_SEC, now) && 1586 atomic64_cmpxchg(&blkg->delay_start, old, now) == old) { 1587 u64 cur = atomic64_read(&blkg->delay_nsec); 1588 u64 sub = min_t(u64, blkg->last_delay, now - old); 1589 int cur_use = atomic_read(&blkg->use_delay); 1590 1591 /* 1592 * We've been unthrottled, subtract a larger chunk of our 1593 * accumulated delay. 1594 */ 1595 if (cur_use < blkg->last_use) 1596 sub = max_t(u64, sub, blkg->last_delay >> 1); 1597 1598 /* 1599 * This shouldn't happen, but handle it anyway. Our delay_nsec 1600 * should only ever be growing except here where we subtract out 1601 * min(last_delay, 1 second), but lord knows bugs happen and I'd 1602 * rather not end up with negative numbers. 1603 */ 1604 if (unlikely(cur < sub)) { 1605 atomic64_set(&blkg->delay_nsec, 0); 1606 blkg->last_delay = 0; 1607 } else { 1608 atomic64_sub(sub, &blkg->delay_nsec); 1609 blkg->last_delay = cur - sub; 1610 } 1611 blkg->last_use = cur_use; 1612 } 1613 } 1614 1615 /* 1616 * This is called when we want to actually walk up the hierarchy and check to 1617 * see if we need to throttle, and then actually throttle if there is some 1618 * accumulated delay. This should only be called upon return to user space so 1619 * we're not holding some lock that would induce a priority inversion. 1620 */ 1621 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay) 1622 { 1623 unsigned long pflags; 1624 bool clamp; 1625 u64 now = ktime_to_ns(ktime_get()); 1626 u64 exp; 1627 u64 delay_nsec = 0; 1628 int tok; 1629 1630 while (blkg->parent) { 1631 int use_delay = atomic_read(&blkg->use_delay); 1632 1633 if (use_delay) { 1634 u64 this_delay; 1635 1636 blkcg_scale_delay(blkg, now); 1637 this_delay = atomic64_read(&blkg->delay_nsec); 1638 if (this_delay > delay_nsec) { 1639 delay_nsec = this_delay; 1640 clamp = use_delay > 0; 1641 } 1642 } 1643 blkg = blkg->parent; 1644 } 1645 1646 if (!delay_nsec) 1647 return; 1648 1649 /* 1650 * Let's not sleep for all eternity if we've amassed a huge delay. 1651 * Swapping or metadata IO can accumulate 10's of seconds worth of 1652 * delay, and we want userspace to be able to do _something_ so cap the 1653 * delays at 0.25s. If there's 10's of seconds worth of delay then the 1654 * tasks will be delayed for 0.25 second for every syscall. If 1655 * blkcg_set_delay() was used as indicated by negative use_delay, the 1656 * caller is responsible for regulating the range. 1657 */ 1658 if (clamp) 1659 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC); 1660 1661 if (use_memdelay) 1662 psi_memstall_enter(&pflags); 1663 1664 exp = ktime_add_ns(now, delay_nsec); 1665 tok = io_schedule_prepare(); 1666 do { 1667 __set_current_state(TASK_KILLABLE); 1668 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS)) 1669 break; 1670 } while (!fatal_signal_pending(current)); 1671 io_schedule_finish(tok); 1672 1673 if (use_memdelay) 1674 psi_memstall_leave(&pflags); 1675 } 1676 1677 /** 1678 * blkcg_maybe_throttle_current - throttle the current task if it has been marked 1679 * 1680 * This is only called if we've been marked with set_notify_resume(). Obviously 1681 * we can be set_notify_resume() for reasons other than blkcg throttling, so we 1682 * check to see if current->throttle_queue is set and if not this doesn't do 1683 * anything. This should only ever be called by the resume code, it's not meant 1684 * to be called by people willy-nilly as it will actually do the work to 1685 * throttle the task if it is setup for throttling. 1686 */ 1687 void blkcg_maybe_throttle_current(void) 1688 { 1689 struct request_queue *q = current->throttle_queue; 1690 struct cgroup_subsys_state *css; 1691 struct blkcg *blkcg; 1692 struct blkcg_gq *blkg; 1693 bool use_memdelay = current->use_memdelay; 1694 1695 if (!q) 1696 return; 1697 1698 current->throttle_queue = NULL; 1699 current->use_memdelay = false; 1700 1701 rcu_read_lock(); 1702 css = kthread_blkcg(); 1703 if (css) 1704 blkcg = css_to_blkcg(css); 1705 else 1706 blkcg = css_to_blkcg(task_css(current, io_cgrp_id)); 1707 1708 if (!blkcg) 1709 goto out; 1710 blkg = blkg_lookup(blkcg, q); 1711 if (!blkg) 1712 goto out; 1713 if (!blkg_tryget(blkg)) 1714 goto out; 1715 rcu_read_unlock(); 1716 1717 blkcg_maybe_throttle_blkg(blkg, use_memdelay); 1718 blkg_put(blkg); 1719 blk_put_queue(q); 1720 return; 1721 out: 1722 rcu_read_unlock(); 1723 blk_put_queue(q); 1724 } 1725 1726 /** 1727 * blkcg_schedule_throttle - this task needs to check for throttling 1728 * @q: the request queue IO was submitted on 1729 * @use_memdelay: do we charge this to memory delay for PSI 1730 * 1731 * This is called by the IO controller when we know there's delay accumulated 1732 * for the blkg for this task. We do not pass the blkg because there are places 1733 * we call this that may not have that information, the swapping code for 1734 * instance will only have a request_queue at that point. This set's the 1735 * notify_resume for the task to check and see if it requires throttling before 1736 * returning to user space. 1737 * 1738 * We will only schedule once per syscall. You can call this over and over 1739 * again and it will only do the check once upon return to user space, and only 1740 * throttle once. If the task needs to be throttled again it'll need to be 1741 * re-set at the next time we see the task. 1742 */ 1743 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay) 1744 { 1745 if (unlikely(current->flags & PF_KTHREAD)) 1746 return; 1747 1748 if (current->throttle_queue != q) { 1749 if (!blk_get_queue(q)) 1750 return; 1751 1752 if (current->throttle_queue) 1753 blk_put_queue(current->throttle_queue); 1754 current->throttle_queue = q; 1755 } 1756 1757 if (use_memdelay) 1758 current->use_memdelay = use_memdelay; 1759 set_notify_resume(current); 1760 } 1761 1762 /** 1763 * blkcg_add_delay - add delay to this blkg 1764 * @blkg: blkg of interest 1765 * @now: the current time in nanoseconds 1766 * @delta: how many nanoseconds of delay to add 1767 * 1768 * Charge @delta to the blkg's current delay accumulation. This is used to 1769 * throttle tasks if an IO controller thinks we need more throttling. 1770 */ 1771 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta) 1772 { 1773 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0)) 1774 return; 1775 blkcg_scale_delay(blkg, now); 1776 atomic64_add(delta, &blkg->delay_nsec); 1777 } 1778 1779 /** 1780 * blkg_tryget_closest - try and get a blkg ref on the closet blkg 1781 * @bio: target bio 1782 * @css: target css 1783 * 1784 * As the failure mode here is to walk up the blkg tree, this ensure that the 1785 * blkg->parent pointers are always valid. This returns the blkg that it ended 1786 * up taking a reference on or %NULL if no reference was taken. 1787 */ 1788 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio, 1789 struct cgroup_subsys_state *css) 1790 { 1791 struct blkcg_gq *blkg, *ret_blkg = NULL; 1792 1793 rcu_read_lock(); 1794 blkg = blkg_lookup_create(css_to_blkcg(css), 1795 bio->bi_bdev->bd_disk->queue); 1796 while (blkg) { 1797 if (blkg_tryget(blkg)) { 1798 ret_blkg = blkg; 1799 break; 1800 } 1801 blkg = blkg->parent; 1802 } 1803 rcu_read_unlock(); 1804 1805 return ret_blkg; 1806 } 1807 1808 /** 1809 * bio_associate_blkg_from_css - associate a bio with a specified css 1810 * @bio: target bio 1811 * @css: target css 1812 * 1813 * Associate @bio with the blkg found by combining the css's blkg and the 1814 * request_queue of the @bio. An association failure is handled by walking up 1815 * the blkg tree. Therefore, the blkg associated can be anything between @blkg 1816 * and q->root_blkg. This situation only happens when a cgroup is dying and 1817 * then the remaining bios will spill to the closest alive blkg. 1818 * 1819 * A reference will be taken on the blkg and will be released when @bio is 1820 * freed. 1821 */ 1822 void bio_associate_blkg_from_css(struct bio *bio, 1823 struct cgroup_subsys_state *css) 1824 { 1825 if (bio->bi_blkg) 1826 blkg_put(bio->bi_blkg); 1827 1828 if (css && css->parent) { 1829 bio->bi_blkg = blkg_tryget_closest(bio, css); 1830 } else { 1831 blkg_get(bio->bi_bdev->bd_disk->queue->root_blkg); 1832 bio->bi_blkg = bio->bi_bdev->bd_disk->queue->root_blkg; 1833 } 1834 } 1835 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 1836 1837 /** 1838 * bio_associate_blkg - associate a bio with a blkg 1839 * @bio: target bio 1840 * 1841 * Associate @bio with the blkg found from the bio's css and request_queue. 1842 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 1843 * already associated, the css is reused and association redone as the 1844 * request_queue may have changed. 1845 */ 1846 void bio_associate_blkg(struct bio *bio) 1847 { 1848 struct cgroup_subsys_state *css; 1849 1850 rcu_read_lock(); 1851 1852 if (bio->bi_blkg) 1853 css = &bio_blkcg(bio)->css; 1854 else 1855 css = blkcg_css(); 1856 1857 bio_associate_blkg_from_css(bio, css); 1858 1859 rcu_read_unlock(); 1860 } 1861 EXPORT_SYMBOL_GPL(bio_associate_blkg); 1862 1863 /** 1864 * bio_clone_blkg_association - clone blkg association from src to dst bio 1865 * @dst: destination bio 1866 * @src: source bio 1867 */ 1868 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 1869 { 1870 if (src->bi_blkg) { 1871 if (dst->bi_blkg) 1872 blkg_put(dst->bi_blkg); 1873 blkg_get(src->bi_blkg); 1874 dst->bi_blkg = src->bi_blkg; 1875 } 1876 } 1877 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 1878 1879 static int blk_cgroup_io_type(struct bio *bio) 1880 { 1881 if (op_is_discard(bio->bi_opf)) 1882 return BLKG_IOSTAT_DISCARD; 1883 if (op_is_write(bio->bi_opf)) 1884 return BLKG_IOSTAT_WRITE; 1885 return BLKG_IOSTAT_READ; 1886 } 1887 1888 void blk_cgroup_bio_start(struct bio *bio) 1889 { 1890 int rwd = blk_cgroup_io_type(bio), cpu; 1891 struct blkg_iostat_set *bis; 1892 1893 cpu = get_cpu(); 1894 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu); 1895 u64_stats_update_begin(&bis->sync); 1896 1897 /* 1898 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split 1899 * bio and we would have already accounted for the size of the bio. 1900 */ 1901 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) { 1902 bio_set_flag(bio, BIO_CGROUP_ACCT); 1903 bis->cur.bytes[rwd] += bio->bi_iter.bi_size; 1904 } 1905 bis->cur.ios[rwd]++; 1906 1907 u64_stats_update_end(&bis->sync); 1908 if (cgroup_subsys_on_dfl(io_cgrp_subsys)) 1909 cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu); 1910 put_cpu(); 1911 } 1912 1913 static int __init blkcg_init(void) 1914 { 1915 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio", 1916 WQ_MEM_RECLAIM | WQ_FREEZABLE | 1917 WQ_UNBOUND | WQ_SYSFS, 0); 1918 if (!blkcg_punt_bio_wq) 1919 return -ENOMEM; 1920 return 0; 1921 } 1922 subsys_initcall(blkcg_init); 1923 1924 module_param(blkcg_debug_stats, bool, 0644); 1925 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not"); 1926