xref: /openbmc/linux/block/blk-cgroup.c (revision 060f03e9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Block IO controller cgroup interface
4  *
5  * Based on ideas and code from CFQ, CFS and BFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12  * 	              Nauman Rafique <nauman@google.com>
13  *
14  * For policy-specific per-blkcg data:
15  * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16  *                    Arianna Avanzini <avanzini.arianna@gmail.com>
17  */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
32 #include "blk.h"
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
36 
37 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu);
38 
39 /*
40  * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
41  * blkcg_pol_register_mutex nests outside of it and synchronizes entire
42  * policy [un]register operations including cgroup file additions /
43  * removals.  Putting cgroup file registration outside blkcg_pol_mutex
44  * allows grabbing it from cgroup callbacks.
45  */
46 static DEFINE_MUTEX(blkcg_pol_register_mutex);
47 static DEFINE_MUTEX(blkcg_pol_mutex);
48 
49 struct blkcg blkcg_root;
50 EXPORT_SYMBOL_GPL(blkcg_root);
51 
52 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
53 EXPORT_SYMBOL_GPL(blkcg_root_css);
54 
55 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
56 
57 static LIST_HEAD(all_blkcgs);		/* protected by blkcg_pol_mutex */
58 
59 bool blkcg_debug_stats = false;
60 
61 static DEFINE_RAW_SPINLOCK(blkg_stat_lock);
62 
63 #define BLKG_DESTROY_BATCH_SIZE  64
64 
65 /*
66  * Lockless lists for tracking IO stats update
67  *
68  * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
69  * There are multiple blkg's (one for each block device) attached to each
70  * blkcg. The rstat code keeps track of which cpu has IO stats updated,
71  * but it doesn't know which blkg has the updated stats. If there are many
72  * block devices in a system, the cost of iterating all the blkg's to flush
73  * out the IO stats can be high. To reduce such overhead, a set of percpu
74  * lockless lists (lhead) per blkcg are used to track the set of recently
75  * updated iostat_cpu's since the last flush. An iostat_cpu will be put
76  * onto the lockless list on the update side [blk_cgroup_bio_start()] if
77  * not there yet and then removed when being flushed [blkcg_rstat_flush()].
78  * References to blkg are gotten and then put back in the process to
79  * protect against blkg removal.
80  *
81  * Return: 0 if successful or -ENOMEM if allocation fails.
82  */
83 static int init_blkcg_llists(struct blkcg *blkcg)
84 {
85 	int cpu;
86 
87 	blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
88 	if (!blkcg->lhead)
89 		return -ENOMEM;
90 
91 	for_each_possible_cpu(cpu)
92 		init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
93 	return 0;
94 }
95 
96 /**
97  * blkcg_css - find the current css
98  *
99  * Find the css associated with either the kthread or the current task.
100  * This may return a dying css, so it is up to the caller to use tryget logic
101  * to confirm it is alive and well.
102  */
103 static struct cgroup_subsys_state *blkcg_css(void)
104 {
105 	struct cgroup_subsys_state *css;
106 
107 	css = kthread_blkcg();
108 	if (css)
109 		return css;
110 	return task_css(current, io_cgrp_id);
111 }
112 
113 static bool blkcg_policy_enabled(struct request_queue *q,
114 				 const struct blkcg_policy *pol)
115 {
116 	return pol && test_bit(pol->plid, q->blkcg_pols);
117 }
118 
119 static void blkg_free_workfn(struct work_struct *work)
120 {
121 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
122 					     free_work);
123 	struct request_queue *q = blkg->q;
124 	int i;
125 
126 	/*
127 	 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
128 	 * in order to make sure pd_free_fn() is called in order, the deletion
129 	 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
130 	 * blkcg_mutex is used to synchronize blkg_free_workfn() and
131 	 * blkcg_deactivate_policy().
132 	 */
133 	mutex_lock(&q->blkcg_mutex);
134 	for (i = 0; i < BLKCG_MAX_POLS; i++)
135 		if (blkg->pd[i])
136 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
137 	if (blkg->parent)
138 		blkg_put(blkg->parent);
139 	list_del_init(&blkg->q_node);
140 	mutex_unlock(&q->blkcg_mutex);
141 
142 	blk_put_queue(q);
143 	free_percpu(blkg->iostat_cpu);
144 	percpu_ref_exit(&blkg->refcnt);
145 	kfree(blkg);
146 }
147 
148 /**
149  * blkg_free - free a blkg
150  * @blkg: blkg to free
151  *
152  * Free @blkg which may be partially allocated.
153  */
154 static void blkg_free(struct blkcg_gq *blkg)
155 {
156 	if (!blkg)
157 		return;
158 
159 	/*
160 	 * Both ->pd_free_fn() and request queue's release handler may
161 	 * sleep, so free us by scheduling one work func
162 	 */
163 	INIT_WORK(&blkg->free_work, blkg_free_workfn);
164 	schedule_work(&blkg->free_work);
165 }
166 
167 static void __blkg_release(struct rcu_head *rcu)
168 {
169 	struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
170 	struct blkcg *blkcg = blkg->blkcg;
171 	int cpu;
172 
173 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
174 	WARN_ON(!bio_list_empty(&blkg->async_bios));
175 #endif
176 	/*
177 	 * Flush all the non-empty percpu lockless lists before releasing
178 	 * us, given these stat belongs to us.
179 	 *
180 	 * blkg_stat_lock is for serializing blkg stat update
181 	 */
182 	for_each_possible_cpu(cpu)
183 		__blkcg_rstat_flush(blkcg, cpu);
184 
185 	/* release the blkcg and parent blkg refs this blkg has been holding */
186 	css_put(&blkg->blkcg->css);
187 	blkg_free(blkg);
188 }
189 
190 /*
191  * A group is RCU protected, but having an rcu lock does not mean that one
192  * can access all the fields of blkg and assume these are valid.  For
193  * example, don't try to follow throtl_data and request queue links.
194  *
195  * Having a reference to blkg under an rcu allows accesses to only values
196  * local to groups like group stats and group rate limits.
197  */
198 static void blkg_release(struct percpu_ref *ref)
199 {
200 	struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
201 
202 	call_rcu(&blkg->rcu_head, __blkg_release);
203 }
204 
205 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
206 static struct workqueue_struct *blkcg_punt_bio_wq;
207 
208 static void blkg_async_bio_workfn(struct work_struct *work)
209 {
210 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
211 					     async_bio_work);
212 	struct bio_list bios = BIO_EMPTY_LIST;
213 	struct bio *bio;
214 	struct blk_plug plug;
215 	bool need_plug = false;
216 
217 	/* as long as there are pending bios, @blkg can't go away */
218 	spin_lock(&blkg->async_bio_lock);
219 	bio_list_merge(&bios, &blkg->async_bios);
220 	bio_list_init(&blkg->async_bios);
221 	spin_unlock(&blkg->async_bio_lock);
222 
223 	/* start plug only when bio_list contains at least 2 bios */
224 	if (bios.head && bios.head->bi_next) {
225 		need_plug = true;
226 		blk_start_plug(&plug);
227 	}
228 	while ((bio = bio_list_pop(&bios)))
229 		submit_bio(bio);
230 	if (need_plug)
231 		blk_finish_plug(&plug);
232 }
233 
234 /*
235  * When a shared kthread issues a bio for a cgroup, doing so synchronously can
236  * lead to priority inversions as the kthread can be trapped waiting for that
237  * cgroup.  Use this helper instead of submit_bio to punt the actual issuing to
238  * a dedicated per-blkcg work item to avoid such priority inversions.
239  */
240 void blkcg_punt_bio_submit(struct bio *bio)
241 {
242 	struct blkcg_gq *blkg = bio->bi_blkg;
243 
244 	if (blkg->parent) {
245 		spin_lock(&blkg->async_bio_lock);
246 		bio_list_add(&blkg->async_bios, bio);
247 		spin_unlock(&blkg->async_bio_lock);
248 		queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
249 	} else {
250 		/* never bounce for the root cgroup */
251 		submit_bio(bio);
252 	}
253 }
254 EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit);
255 
256 static int __init blkcg_punt_bio_init(void)
257 {
258 	blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
259 					    WQ_MEM_RECLAIM | WQ_FREEZABLE |
260 					    WQ_UNBOUND | WQ_SYSFS, 0);
261 	if (!blkcg_punt_bio_wq)
262 		return -ENOMEM;
263 	return 0;
264 }
265 subsys_initcall(blkcg_punt_bio_init);
266 #endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
267 
268 /**
269  * bio_blkcg_css - return the blkcg CSS associated with a bio
270  * @bio: target bio
271  *
272  * This returns the CSS for the blkcg associated with a bio, or %NULL if not
273  * associated. Callers are expected to either handle %NULL or know association
274  * has been done prior to calling this.
275  */
276 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
277 {
278 	if (!bio || !bio->bi_blkg)
279 		return NULL;
280 	return &bio->bi_blkg->blkcg->css;
281 }
282 EXPORT_SYMBOL_GPL(bio_blkcg_css);
283 
284 /**
285  * blkcg_parent - get the parent of a blkcg
286  * @blkcg: blkcg of interest
287  *
288  * Return the parent blkcg of @blkcg.  Can be called anytime.
289  */
290 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
291 {
292 	return css_to_blkcg(blkcg->css.parent);
293 }
294 
295 /**
296  * blkg_alloc - allocate a blkg
297  * @blkcg: block cgroup the new blkg is associated with
298  * @disk: gendisk the new blkg is associated with
299  * @gfp_mask: allocation mask to use
300  *
301  * Allocate a new blkg assocating @blkcg and @q.
302  */
303 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
304 				   gfp_t gfp_mask)
305 {
306 	struct blkcg_gq *blkg;
307 	int i, cpu;
308 
309 	/* alloc and init base part */
310 	blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
311 	if (!blkg)
312 		return NULL;
313 	if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
314 		goto out_free_blkg;
315 	blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
316 	if (!blkg->iostat_cpu)
317 		goto out_exit_refcnt;
318 	if (!blk_get_queue(disk->queue))
319 		goto out_free_iostat;
320 
321 	blkg->q = disk->queue;
322 	INIT_LIST_HEAD(&blkg->q_node);
323 	blkg->blkcg = blkcg;
324 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
325 	spin_lock_init(&blkg->async_bio_lock);
326 	bio_list_init(&blkg->async_bios);
327 	INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
328 #endif
329 
330 	u64_stats_init(&blkg->iostat.sync);
331 	for_each_possible_cpu(cpu) {
332 		u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
333 		per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
334 	}
335 
336 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
337 		struct blkcg_policy *pol = blkcg_policy[i];
338 		struct blkg_policy_data *pd;
339 
340 		if (!blkcg_policy_enabled(disk->queue, pol))
341 			continue;
342 
343 		/* alloc per-policy data and attach it to blkg */
344 		pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
345 		if (!pd)
346 			goto out_free_pds;
347 		blkg->pd[i] = pd;
348 		pd->blkg = blkg;
349 		pd->plid = i;
350 		pd->online = false;
351 	}
352 
353 	return blkg;
354 
355 out_free_pds:
356 	while (--i >= 0)
357 		if (blkg->pd[i])
358 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
359 	blk_put_queue(disk->queue);
360 out_free_iostat:
361 	free_percpu(blkg->iostat_cpu);
362 out_exit_refcnt:
363 	percpu_ref_exit(&blkg->refcnt);
364 out_free_blkg:
365 	kfree(blkg);
366 	return NULL;
367 }
368 
369 /*
370  * If @new_blkg is %NULL, this function tries to allocate a new one as
371  * necessary using %GFP_NOWAIT.  @new_blkg is always consumed on return.
372  */
373 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
374 				    struct blkcg_gq *new_blkg)
375 {
376 	struct blkcg_gq *blkg;
377 	int i, ret;
378 
379 	lockdep_assert_held(&disk->queue->queue_lock);
380 
381 	/* request_queue is dying, do not create/recreate a blkg */
382 	if (blk_queue_dying(disk->queue)) {
383 		ret = -ENODEV;
384 		goto err_free_blkg;
385 	}
386 
387 	/* blkg holds a reference to blkcg */
388 	if (!css_tryget_online(&blkcg->css)) {
389 		ret = -ENODEV;
390 		goto err_free_blkg;
391 	}
392 
393 	/* allocate */
394 	if (!new_blkg) {
395 		new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
396 		if (unlikely(!new_blkg)) {
397 			ret = -ENOMEM;
398 			goto err_put_css;
399 		}
400 	}
401 	blkg = new_blkg;
402 
403 	/* link parent */
404 	if (blkcg_parent(blkcg)) {
405 		blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
406 		if (WARN_ON_ONCE(!blkg->parent)) {
407 			ret = -ENODEV;
408 			goto err_put_css;
409 		}
410 		blkg_get(blkg->parent);
411 	}
412 
413 	/* invoke per-policy init */
414 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
415 		struct blkcg_policy *pol = blkcg_policy[i];
416 
417 		if (blkg->pd[i] && pol->pd_init_fn)
418 			pol->pd_init_fn(blkg->pd[i]);
419 	}
420 
421 	/* insert */
422 	spin_lock(&blkcg->lock);
423 	ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
424 	if (likely(!ret)) {
425 		hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
426 		list_add(&blkg->q_node, &disk->queue->blkg_list);
427 
428 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
429 			struct blkcg_policy *pol = blkcg_policy[i];
430 
431 			if (blkg->pd[i]) {
432 				if (pol->pd_online_fn)
433 					pol->pd_online_fn(blkg->pd[i]);
434 				blkg->pd[i]->online = true;
435 			}
436 		}
437 	}
438 	blkg->online = true;
439 	spin_unlock(&blkcg->lock);
440 
441 	if (!ret)
442 		return blkg;
443 
444 	/* @blkg failed fully initialized, use the usual release path */
445 	blkg_put(blkg);
446 	return ERR_PTR(ret);
447 
448 err_put_css:
449 	css_put(&blkcg->css);
450 err_free_blkg:
451 	if (new_blkg)
452 		blkg_free(new_blkg);
453 	return ERR_PTR(ret);
454 }
455 
456 /**
457  * blkg_lookup_create - lookup blkg, try to create one if not there
458  * @blkcg: blkcg of interest
459  * @disk: gendisk of interest
460  *
461  * Lookup blkg for the @blkcg - @disk pair.  If it doesn't exist, try to
462  * create one.  blkg creation is performed recursively from blkcg_root such
463  * that all non-root blkg's have access to the parent blkg.  This function
464  * should be called under RCU read lock and takes @disk->queue->queue_lock.
465  *
466  * Returns the blkg or the closest blkg if blkg_create() fails as it walks
467  * down from root.
468  */
469 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
470 		struct gendisk *disk)
471 {
472 	struct request_queue *q = disk->queue;
473 	struct blkcg_gq *blkg;
474 	unsigned long flags;
475 
476 	WARN_ON_ONCE(!rcu_read_lock_held());
477 
478 	blkg = blkg_lookup(blkcg, q);
479 	if (blkg)
480 		return blkg;
481 
482 	spin_lock_irqsave(&q->queue_lock, flags);
483 	blkg = blkg_lookup(blkcg, q);
484 	if (blkg) {
485 		if (blkcg != &blkcg_root &&
486 		    blkg != rcu_dereference(blkcg->blkg_hint))
487 			rcu_assign_pointer(blkcg->blkg_hint, blkg);
488 		goto found;
489 	}
490 
491 	/*
492 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
493 	 * non-root blkgs have access to their parents.  Returns the closest
494 	 * blkg to the intended blkg should blkg_create() fail.
495 	 */
496 	while (true) {
497 		struct blkcg *pos = blkcg;
498 		struct blkcg *parent = blkcg_parent(blkcg);
499 		struct blkcg_gq *ret_blkg = q->root_blkg;
500 
501 		while (parent) {
502 			blkg = blkg_lookup(parent, q);
503 			if (blkg) {
504 				/* remember closest blkg */
505 				ret_blkg = blkg;
506 				break;
507 			}
508 			pos = parent;
509 			parent = blkcg_parent(parent);
510 		}
511 
512 		blkg = blkg_create(pos, disk, NULL);
513 		if (IS_ERR(blkg)) {
514 			blkg = ret_blkg;
515 			break;
516 		}
517 		if (pos == blkcg)
518 			break;
519 	}
520 
521 found:
522 	spin_unlock_irqrestore(&q->queue_lock, flags);
523 	return blkg;
524 }
525 
526 static void blkg_destroy(struct blkcg_gq *blkg)
527 {
528 	struct blkcg *blkcg = blkg->blkcg;
529 	int i;
530 
531 	lockdep_assert_held(&blkg->q->queue_lock);
532 	lockdep_assert_held(&blkcg->lock);
533 
534 	/*
535 	 * blkg stays on the queue list until blkg_free_workfn(), see details in
536 	 * blkg_free_workfn(), hence this function can be called from
537 	 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
538 	 * blkg_free_workfn().
539 	 */
540 	if (hlist_unhashed(&blkg->blkcg_node))
541 		return;
542 
543 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
544 		struct blkcg_policy *pol = blkcg_policy[i];
545 
546 		if (blkg->pd[i] && blkg->pd[i]->online) {
547 			blkg->pd[i]->online = false;
548 			if (pol->pd_offline_fn)
549 				pol->pd_offline_fn(blkg->pd[i]);
550 		}
551 	}
552 
553 	blkg->online = false;
554 
555 	radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
556 	hlist_del_init_rcu(&blkg->blkcg_node);
557 
558 	/*
559 	 * Both setting lookup hint to and clearing it from @blkg are done
560 	 * under queue_lock.  If it's not pointing to @blkg now, it never
561 	 * will.  Hint assignment itself can race safely.
562 	 */
563 	if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
564 		rcu_assign_pointer(blkcg->blkg_hint, NULL);
565 
566 	/*
567 	 * Put the reference taken at the time of creation so that when all
568 	 * queues are gone, group can be destroyed.
569 	 */
570 	percpu_ref_kill(&blkg->refcnt);
571 }
572 
573 static void blkg_destroy_all(struct gendisk *disk)
574 {
575 	struct request_queue *q = disk->queue;
576 	struct blkcg_gq *blkg, *n;
577 	int count = BLKG_DESTROY_BATCH_SIZE;
578 
579 restart:
580 	spin_lock_irq(&q->queue_lock);
581 	list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
582 		struct blkcg *blkcg = blkg->blkcg;
583 
584 		if (hlist_unhashed(&blkg->blkcg_node))
585 			continue;
586 
587 		spin_lock(&blkcg->lock);
588 		blkg_destroy(blkg);
589 		spin_unlock(&blkcg->lock);
590 
591 		/*
592 		 * in order to avoid holding the spin lock for too long, release
593 		 * it when a batch of blkgs are destroyed.
594 		 */
595 		if (!(--count)) {
596 			count = BLKG_DESTROY_BATCH_SIZE;
597 			spin_unlock_irq(&q->queue_lock);
598 			cond_resched();
599 			goto restart;
600 		}
601 	}
602 
603 	q->root_blkg = NULL;
604 	spin_unlock_irq(&q->queue_lock);
605 }
606 
607 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
608 			     struct cftype *cftype, u64 val)
609 {
610 	struct blkcg *blkcg = css_to_blkcg(css);
611 	struct blkcg_gq *blkg;
612 	int i, cpu;
613 
614 	mutex_lock(&blkcg_pol_mutex);
615 	spin_lock_irq(&blkcg->lock);
616 
617 	/*
618 	 * Note that stat reset is racy - it doesn't synchronize against
619 	 * stat updates.  This is a debug feature which shouldn't exist
620 	 * anyway.  If you get hit by a race, retry.
621 	 */
622 	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
623 		for_each_possible_cpu(cpu) {
624 			struct blkg_iostat_set *bis =
625 				per_cpu_ptr(blkg->iostat_cpu, cpu);
626 			memset(bis, 0, sizeof(*bis));
627 
628 			/* Re-initialize the cleared blkg_iostat_set */
629 			u64_stats_init(&bis->sync);
630 			bis->blkg = blkg;
631 		}
632 		memset(&blkg->iostat, 0, sizeof(blkg->iostat));
633 		u64_stats_init(&blkg->iostat.sync);
634 
635 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
636 			struct blkcg_policy *pol = blkcg_policy[i];
637 
638 			if (blkg->pd[i] && pol->pd_reset_stats_fn)
639 				pol->pd_reset_stats_fn(blkg->pd[i]);
640 		}
641 	}
642 
643 	spin_unlock_irq(&blkcg->lock);
644 	mutex_unlock(&blkcg_pol_mutex);
645 	return 0;
646 }
647 
648 const char *blkg_dev_name(struct blkcg_gq *blkg)
649 {
650 	if (!blkg->q->disk)
651 		return NULL;
652 	return bdi_dev_name(blkg->q->disk->bdi);
653 }
654 
655 /**
656  * blkcg_print_blkgs - helper for printing per-blkg data
657  * @sf: seq_file to print to
658  * @blkcg: blkcg of interest
659  * @prfill: fill function to print out a blkg
660  * @pol: policy in question
661  * @data: data to be passed to @prfill
662  * @show_total: to print out sum of prfill return values or not
663  *
664  * This function invokes @prfill on each blkg of @blkcg if pd for the
665  * policy specified by @pol exists.  @prfill is invoked with @sf, the
666  * policy data and @data and the matching queue lock held.  If @show_total
667  * is %true, the sum of the return values from @prfill is printed with
668  * "Total" label at the end.
669  *
670  * This is to be used to construct print functions for
671  * cftype->read_seq_string method.
672  */
673 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
674 		       u64 (*prfill)(struct seq_file *,
675 				     struct blkg_policy_data *, int),
676 		       const struct blkcg_policy *pol, int data,
677 		       bool show_total)
678 {
679 	struct blkcg_gq *blkg;
680 	u64 total = 0;
681 
682 	rcu_read_lock();
683 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
684 		spin_lock_irq(&blkg->q->queue_lock);
685 		if (blkcg_policy_enabled(blkg->q, pol))
686 			total += prfill(sf, blkg->pd[pol->plid], data);
687 		spin_unlock_irq(&blkg->q->queue_lock);
688 	}
689 	rcu_read_unlock();
690 
691 	if (show_total)
692 		seq_printf(sf, "Total %llu\n", (unsigned long long)total);
693 }
694 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
695 
696 /**
697  * __blkg_prfill_u64 - prfill helper for a single u64 value
698  * @sf: seq_file to print to
699  * @pd: policy private data of interest
700  * @v: value to print
701  *
702  * Print @v to @sf for the device associated with @pd.
703  */
704 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
705 {
706 	const char *dname = blkg_dev_name(pd->blkg);
707 
708 	if (!dname)
709 		return 0;
710 
711 	seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
712 	return v;
713 }
714 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
715 
716 /**
717  * blkg_conf_init - initialize a blkg_conf_ctx
718  * @ctx: blkg_conf_ctx to initialize
719  * @input: input string
720  *
721  * Initialize @ctx which can be used to parse blkg config input string @input.
722  * Once initialized, @ctx can be used with blkg_conf_open_bdev() and
723  * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
724  */
725 void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
726 {
727 	*ctx = (struct blkg_conf_ctx){ .input = input };
728 }
729 EXPORT_SYMBOL_GPL(blkg_conf_init);
730 
731 /**
732  * blkg_conf_open_bdev - parse and open bdev for per-blkg config update
733  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
734  *
735  * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
736  * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
737  * set to point past the device node prefix.
738  *
739  * This function may be called multiple times on @ctx and the extra calls become
740  * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
741  * explicitly if bdev access is needed without resolving the blkcg / policy part
742  * of @ctx->input. Returns -errno on error.
743  */
744 int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
745 {
746 	char *input = ctx->input;
747 	unsigned int major, minor;
748 	struct block_device *bdev;
749 	int key_len;
750 
751 	if (ctx->bdev)
752 		return 0;
753 
754 	if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
755 		return -EINVAL;
756 
757 	input += key_len;
758 	if (!isspace(*input))
759 		return -EINVAL;
760 	input = skip_spaces(input);
761 
762 	bdev = blkdev_get_no_open(MKDEV(major, minor));
763 	if (!bdev)
764 		return -ENODEV;
765 	if (bdev_is_partition(bdev)) {
766 		blkdev_put_no_open(bdev);
767 		return -ENODEV;
768 	}
769 
770 	mutex_lock(&bdev->bd_queue->rq_qos_mutex);
771 	if (!disk_live(bdev->bd_disk)) {
772 		blkdev_put_no_open(bdev);
773 		mutex_unlock(&bdev->bd_queue->rq_qos_mutex);
774 		return -ENODEV;
775 	}
776 
777 	ctx->body = input;
778 	ctx->bdev = bdev;
779 	return 0;
780 }
781 
782 /**
783  * blkg_conf_prep - parse and prepare for per-blkg config update
784  * @blkcg: target block cgroup
785  * @pol: target policy
786  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
787  *
788  * Parse per-blkg config update from @ctx->input and initialize @ctx
789  * accordingly. On success, @ctx->body points to the part of @ctx->input
790  * following MAJ:MIN, @ctx->bdev points to the target block device and
791  * @ctx->blkg to the blkg being configured.
792  *
793  * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
794  * function returns with queue lock held and must be followed by
795  * blkg_conf_exit().
796  */
797 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
798 		   struct blkg_conf_ctx *ctx)
799 	__acquires(&bdev->bd_queue->queue_lock)
800 {
801 	struct gendisk *disk;
802 	struct request_queue *q;
803 	struct blkcg_gq *blkg;
804 	int ret;
805 
806 	ret = blkg_conf_open_bdev(ctx);
807 	if (ret)
808 		return ret;
809 
810 	disk = ctx->bdev->bd_disk;
811 	q = disk->queue;
812 
813 	/*
814 	 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
815 	 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
816 	 */
817 	ret = blk_queue_enter(q, 0);
818 	if (ret)
819 		goto fail;
820 
821 	spin_lock_irq(&q->queue_lock);
822 
823 	if (!blkcg_policy_enabled(q, pol)) {
824 		ret = -EOPNOTSUPP;
825 		goto fail_unlock;
826 	}
827 
828 	blkg = blkg_lookup(blkcg, q);
829 	if (blkg)
830 		goto success;
831 
832 	/*
833 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
834 	 * non-root blkgs have access to their parents.
835 	 */
836 	while (true) {
837 		struct blkcg *pos = blkcg;
838 		struct blkcg *parent;
839 		struct blkcg_gq *new_blkg;
840 
841 		parent = blkcg_parent(blkcg);
842 		while (parent && !blkg_lookup(parent, q)) {
843 			pos = parent;
844 			parent = blkcg_parent(parent);
845 		}
846 
847 		/* Drop locks to do new blkg allocation with GFP_KERNEL. */
848 		spin_unlock_irq(&q->queue_lock);
849 
850 		new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
851 		if (unlikely(!new_blkg)) {
852 			ret = -ENOMEM;
853 			goto fail_exit_queue;
854 		}
855 
856 		if (radix_tree_preload(GFP_KERNEL)) {
857 			blkg_free(new_blkg);
858 			ret = -ENOMEM;
859 			goto fail_exit_queue;
860 		}
861 
862 		spin_lock_irq(&q->queue_lock);
863 
864 		if (!blkcg_policy_enabled(q, pol)) {
865 			blkg_free(new_blkg);
866 			ret = -EOPNOTSUPP;
867 			goto fail_preloaded;
868 		}
869 
870 		blkg = blkg_lookup(pos, q);
871 		if (blkg) {
872 			blkg_free(new_blkg);
873 		} else {
874 			blkg = blkg_create(pos, disk, new_blkg);
875 			if (IS_ERR(blkg)) {
876 				ret = PTR_ERR(blkg);
877 				goto fail_preloaded;
878 			}
879 		}
880 
881 		radix_tree_preload_end();
882 
883 		if (pos == blkcg)
884 			goto success;
885 	}
886 success:
887 	blk_queue_exit(q);
888 	ctx->blkg = blkg;
889 	return 0;
890 
891 fail_preloaded:
892 	radix_tree_preload_end();
893 fail_unlock:
894 	spin_unlock_irq(&q->queue_lock);
895 fail_exit_queue:
896 	blk_queue_exit(q);
897 fail:
898 	/*
899 	 * If queue was bypassing, we should retry.  Do so after a
900 	 * short msleep().  It isn't strictly necessary but queue
901 	 * can be bypassing for some time and it's always nice to
902 	 * avoid busy looping.
903 	 */
904 	if (ret == -EBUSY) {
905 		msleep(10);
906 		ret = restart_syscall();
907 	}
908 	return ret;
909 }
910 EXPORT_SYMBOL_GPL(blkg_conf_prep);
911 
912 /**
913  * blkg_conf_exit - clean up per-blkg config update
914  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
915  *
916  * Clean up after per-blkg config update. This function must be called on all
917  * blkg_conf_ctx's initialized with blkg_conf_init().
918  */
919 void blkg_conf_exit(struct blkg_conf_ctx *ctx)
920 	__releases(&ctx->bdev->bd_queue->queue_lock)
921 	__releases(&ctx->bdev->bd_queue->rq_qos_mutex)
922 {
923 	if (ctx->blkg) {
924 		spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
925 		ctx->blkg = NULL;
926 	}
927 
928 	if (ctx->bdev) {
929 		mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex);
930 		blkdev_put_no_open(ctx->bdev);
931 		ctx->body = NULL;
932 		ctx->bdev = NULL;
933 	}
934 }
935 EXPORT_SYMBOL_GPL(blkg_conf_exit);
936 
937 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
938 {
939 	int i;
940 
941 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
942 		dst->bytes[i] = src->bytes[i];
943 		dst->ios[i] = src->ios[i];
944 	}
945 }
946 
947 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
948 {
949 	int i;
950 
951 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
952 		dst->bytes[i] += src->bytes[i];
953 		dst->ios[i] += src->ios[i];
954 	}
955 }
956 
957 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
958 {
959 	int i;
960 
961 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
962 		dst->bytes[i] -= src->bytes[i];
963 		dst->ios[i] -= src->ios[i];
964 	}
965 }
966 
967 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
968 				struct blkg_iostat *last)
969 {
970 	struct blkg_iostat delta;
971 	unsigned long flags;
972 
973 	/* propagate percpu delta to global */
974 	flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
975 	blkg_iostat_set(&delta, cur);
976 	blkg_iostat_sub(&delta, last);
977 	blkg_iostat_add(&blkg->iostat.cur, &delta);
978 	blkg_iostat_add(last, &delta);
979 	u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
980 }
981 
982 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu)
983 {
984 	struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
985 	struct llist_node *lnode;
986 	struct blkg_iostat_set *bisc, *next_bisc;
987 	unsigned long flags;
988 
989 	rcu_read_lock();
990 
991 	lnode = llist_del_all(lhead);
992 	if (!lnode)
993 		goto out;
994 
995 	/*
996 	 * For covering concurrent parent blkg update from blkg_release().
997 	 *
998 	 * When flushing from cgroup, cgroup_rstat_lock is always held, so
999 	 * this lock won't cause contention most of time.
1000 	 */
1001 	raw_spin_lock_irqsave(&blkg_stat_lock, flags);
1002 
1003 	/*
1004 	 * Iterate only the iostat_cpu's queued in the lockless list.
1005 	 */
1006 	llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
1007 		struct blkcg_gq *blkg = bisc->blkg;
1008 		struct blkcg_gq *parent = blkg->parent;
1009 		struct blkg_iostat cur;
1010 		unsigned int seq;
1011 
1012 		WRITE_ONCE(bisc->lqueued, false);
1013 
1014 		/* fetch the current per-cpu values */
1015 		do {
1016 			seq = u64_stats_fetch_begin(&bisc->sync);
1017 			blkg_iostat_set(&cur, &bisc->cur);
1018 		} while (u64_stats_fetch_retry(&bisc->sync, seq));
1019 
1020 		blkcg_iostat_update(blkg, &cur, &bisc->last);
1021 
1022 		/* propagate global delta to parent (unless that's root) */
1023 		if (parent && parent->parent)
1024 			blkcg_iostat_update(parent, &blkg->iostat.cur,
1025 					    &blkg->iostat.last);
1026 	}
1027 	raw_spin_unlock_irqrestore(&blkg_stat_lock, flags);
1028 out:
1029 	rcu_read_unlock();
1030 }
1031 
1032 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
1033 {
1034 	/* Root-level stats are sourced from system-wide IO stats */
1035 	if (cgroup_parent(css->cgroup))
1036 		__blkcg_rstat_flush(css_to_blkcg(css), cpu);
1037 }
1038 
1039 /*
1040  * We source root cgroup stats from the system-wide stats to avoid
1041  * tracking the same information twice and incurring overhead when no
1042  * cgroups are defined. For that reason, cgroup_rstat_flush in
1043  * blkcg_print_stat does not actually fill out the iostat in the root
1044  * cgroup's blkcg_gq.
1045  *
1046  * However, we would like to re-use the printing code between the root and
1047  * non-root cgroups to the extent possible. For that reason, we simulate
1048  * flushing the root cgroup's stats by explicitly filling in the iostat
1049  * with disk level statistics.
1050  */
1051 static void blkcg_fill_root_iostats(void)
1052 {
1053 	struct class_dev_iter iter;
1054 	struct device *dev;
1055 
1056 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1057 	while ((dev = class_dev_iter_next(&iter))) {
1058 		struct block_device *bdev = dev_to_bdev(dev);
1059 		struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
1060 		struct blkg_iostat tmp;
1061 		int cpu;
1062 		unsigned long flags;
1063 
1064 		memset(&tmp, 0, sizeof(tmp));
1065 		for_each_possible_cpu(cpu) {
1066 			struct disk_stats *cpu_dkstats;
1067 
1068 			cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
1069 			tmp.ios[BLKG_IOSTAT_READ] +=
1070 				cpu_dkstats->ios[STAT_READ];
1071 			tmp.ios[BLKG_IOSTAT_WRITE] +=
1072 				cpu_dkstats->ios[STAT_WRITE];
1073 			tmp.ios[BLKG_IOSTAT_DISCARD] +=
1074 				cpu_dkstats->ios[STAT_DISCARD];
1075 			// convert sectors to bytes
1076 			tmp.bytes[BLKG_IOSTAT_READ] +=
1077 				cpu_dkstats->sectors[STAT_READ] << 9;
1078 			tmp.bytes[BLKG_IOSTAT_WRITE] +=
1079 				cpu_dkstats->sectors[STAT_WRITE] << 9;
1080 			tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1081 				cpu_dkstats->sectors[STAT_DISCARD] << 9;
1082 		}
1083 
1084 		flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1085 		blkg_iostat_set(&blkg->iostat.cur, &tmp);
1086 		u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1087 	}
1088 }
1089 
1090 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1091 {
1092 	struct blkg_iostat_set *bis = &blkg->iostat;
1093 	u64 rbytes, wbytes, rios, wios, dbytes, dios;
1094 	const char *dname;
1095 	unsigned seq;
1096 	int i;
1097 
1098 	if (!blkg->online)
1099 		return;
1100 
1101 	dname = blkg_dev_name(blkg);
1102 	if (!dname)
1103 		return;
1104 
1105 	seq_printf(s, "%s ", dname);
1106 
1107 	do {
1108 		seq = u64_stats_fetch_begin(&bis->sync);
1109 
1110 		rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1111 		wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1112 		dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1113 		rios = bis->cur.ios[BLKG_IOSTAT_READ];
1114 		wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1115 		dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1116 	} while (u64_stats_fetch_retry(&bis->sync, seq));
1117 
1118 	if (rbytes || wbytes || rios || wios) {
1119 		seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1120 			rbytes, wbytes, rios, wios,
1121 			dbytes, dios);
1122 	}
1123 
1124 	if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1125 		seq_printf(s, " use_delay=%d delay_nsec=%llu",
1126 			atomic_read(&blkg->use_delay),
1127 			atomic64_read(&blkg->delay_nsec));
1128 	}
1129 
1130 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
1131 		struct blkcg_policy *pol = blkcg_policy[i];
1132 
1133 		if (!blkg->pd[i] || !pol->pd_stat_fn)
1134 			continue;
1135 
1136 		pol->pd_stat_fn(blkg->pd[i], s);
1137 	}
1138 
1139 	seq_puts(s, "\n");
1140 }
1141 
1142 static int blkcg_print_stat(struct seq_file *sf, void *v)
1143 {
1144 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1145 	struct blkcg_gq *blkg;
1146 
1147 	if (!seq_css(sf)->parent)
1148 		blkcg_fill_root_iostats();
1149 	else
1150 		cgroup_rstat_flush(blkcg->css.cgroup);
1151 
1152 	rcu_read_lock();
1153 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1154 		spin_lock_irq(&blkg->q->queue_lock);
1155 		blkcg_print_one_stat(blkg, sf);
1156 		spin_unlock_irq(&blkg->q->queue_lock);
1157 	}
1158 	rcu_read_unlock();
1159 	return 0;
1160 }
1161 
1162 static struct cftype blkcg_files[] = {
1163 	{
1164 		.name = "stat",
1165 		.seq_show = blkcg_print_stat,
1166 	},
1167 	{ }	/* terminate */
1168 };
1169 
1170 static struct cftype blkcg_legacy_files[] = {
1171 	{
1172 		.name = "reset_stats",
1173 		.write_u64 = blkcg_reset_stats,
1174 	},
1175 	{ }	/* terminate */
1176 };
1177 
1178 #ifdef CONFIG_CGROUP_WRITEBACK
1179 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1180 {
1181 	return &css_to_blkcg(css)->cgwb_list;
1182 }
1183 #endif
1184 
1185 /*
1186  * blkcg destruction is a three-stage process.
1187  *
1188  * 1. Destruction starts.  The blkcg_css_offline() callback is invoked
1189  *    which offlines writeback.  Here we tie the next stage of blkg destruction
1190  *    to the completion of writeback associated with the blkcg.  This lets us
1191  *    avoid punting potentially large amounts of outstanding writeback to root
1192  *    while maintaining any ongoing policies.  The next stage is triggered when
1193  *    the nr_cgwbs count goes to zero.
1194  *
1195  * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1196  *    and handles the destruction of blkgs.  Here the css reference held by
1197  *    the blkg is put back eventually allowing blkcg_css_free() to be called.
1198  *    This work may occur in cgwb_release_workfn() on the cgwb_release
1199  *    workqueue.  Any submitted ios that fail to get the blkg ref will be
1200  *    punted to the root_blkg.
1201  *
1202  * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1203  *    This finally frees the blkcg.
1204  */
1205 
1206 /**
1207  * blkcg_destroy_blkgs - responsible for shooting down blkgs
1208  * @blkcg: blkcg of interest
1209  *
1210  * blkgs should be removed while holding both q and blkcg locks.  As blkcg lock
1211  * is nested inside q lock, this function performs reverse double lock dancing.
1212  * Destroying the blkgs releases the reference held on the blkcg's css allowing
1213  * blkcg_css_free to eventually be called.
1214  *
1215  * This is the blkcg counterpart of ioc_release_fn().
1216  */
1217 static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1218 {
1219 	might_sleep();
1220 
1221 	spin_lock_irq(&blkcg->lock);
1222 
1223 	while (!hlist_empty(&blkcg->blkg_list)) {
1224 		struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1225 						struct blkcg_gq, blkcg_node);
1226 		struct request_queue *q = blkg->q;
1227 
1228 		if (need_resched() || !spin_trylock(&q->queue_lock)) {
1229 			/*
1230 			 * Given that the system can accumulate a huge number
1231 			 * of blkgs in pathological cases, check to see if we
1232 			 * need to rescheduling to avoid softlockup.
1233 			 */
1234 			spin_unlock_irq(&blkcg->lock);
1235 			cond_resched();
1236 			spin_lock_irq(&blkcg->lock);
1237 			continue;
1238 		}
1239 
1240 		blkg_destroy(blkg);
1241 		spin_unlock(&q->queue_lock);
1242 	}
1243 
1244 	spin_unlock_irq(&blkcg->lock);
1245 }
1246 
1247 /**
1248  * blkcg_pin_online - pin online state
1249  * @blkcg_css: blkcg of interest
1250  *
1251  * While pinned, a blkcg is kept online.  This is primarily used to
1252  * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1253  * while an associated cgwb is still active.
1254  */
1255 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1256 {
1257 	refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1258 }
1259 
1260 /**
1261  * blkcg_unpin_online - unpin online state
1262  * @blkcg_css: blkcg of interest
1263  *
1264  * This is primarily used to impedance-match blkg and cgwb lifetimes so
1265  * that blkg doesn't go offline while an associated cgwb is still active.
1266  * When this count goes to zero, all active cgwbs have finished so the
1267  * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1268  */
1269 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1270 {
1271 	struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1272 
1273 	do {
1274 		if (!refcount_dec_and_test(&blkcg->online_pin))
1275 			break;
1276 		blkcg_destroy_blkgs(blkcg);
1277 		blkcg = blkcg_parent(blkcg);
1278 	} while (blkcg);
1279 }
1280 
1281 /**
1282  * blkcg_css_offline - cgroup css_offline callback
1283  * @css: css of interest
1284  *
1285  * This function is called when @css is about to go away.  Here the cgwbs are
1286  * offlined first and only once writeback associated with the blkcg has
1287  * finished do we start step 2 (see above).
1288  */
1289 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1290 {
1291 	/* this prevents anyone from attaching or migrating to this blkcg */
1292 	wb_blkcg_offline(css);
1293 
1294 	/* put the base online pin allowing step 2 to be triggered */
1295 	blkcg_unpin_online(css);
1296 }
1297 
1298 static void blkcg_css_free(struct cgroup_subsys_state *css)
1299 {
1300 	struct blkcg *blkcg = css_to_blkcg(css);
1301 	int i;
1302 
1303 	mutex_lock(&blkcg_pol_mutex);
1304 
1305 	list_del(&blkcg->all_blkcgs_node);
1306 
1307 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1308 		if (blkcg->cpd[i])
1309 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1310 
1311 	mutex_unlock(&blkcg_pol_mutex);
1312 
1313 	free_percpu(blkcg->lhead);
1314 	kfree(blkcg);
1315 }
1316 
1317 static struct cgroup_subsys_state *
1318 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1319 {
1320 	struct blkcg *blkcg;
1321 	int i;
1322 
1323 	mutex_lock(&blkcg_pol_mutex);
1324 
1325 	if (!parent_css) {
1326 		blkcg = &blkcg_root;
1327 	} else {
1328 		blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1329 		if (!blkcg)
1330 			goto unlock;
1331 	}
1332 
1333 	if (init_blkcg_llists(blkcg))
1334 		goto free_blkcg;
1335 
1336 	for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1337 		struct blkcg_policy *pol = blkcg_policy[i];
1338 		struct blkcg_policy_data *cpd;
1339 
1340 		/*
1341 		 * If the policy hasn't been attached yet, wait for it
1342 		 * to be attached before doing anything else. Otherwise,
1343 		 * check if the policy requires any specific per-cgroup
1344 		 * data: if it does, allocate and initialize it.
1345 		 */
1346 		if (!pol || !pol->cpd_alloc_fn)
1347 			continue;
1348 
1349 		cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1350 		if (!cpd)
1351 			goto free_pd_blkcg;
1352 
1353 		blkcg->cpd[i] = cpd;
1354 		cpd->blkcg = blkcg;
1355 		cpd->plid = i;
1356 	}
1357 
1358 	spin_lock_init(&blkcg->lock);
1359 	refcount_set(&blkcg->online_pin, 1);
1360 	INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1361 	INIT_HLIST_HEAD(&blkcg->blkg_list);
1362 #ifdef CONFIG_CGROUP_WRITEBACK
1363 	INIT_LIST_HEAD(&blkcg->cgwb_list);
1364 #endif
1365 	list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1366 
1367 	mutex_unlock(&blkcg_pol_mutex);
1368 	return &blkcg->css;
1369 
1370 free_pd_blkcg:
1371 	for (i--; i >= 0; i--)
1372 		if (blkcg->cpd[i])
1373 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1374 	free_percpu(blkcg->lhead);
1375 free_blkcg:
1376 	if (blkcg != &blkcg_root)
1377 		kfree(blkcg);
1378 unlock:
1379 	mutex_unlock(&blkcg_pol_mutex);
1380 	return ERR_PTR(-ENOMEM);
1381 }
1382 
1383 static int blkcg_css_online(struct cgroup_subsys_state *css)
1384 {
1385 	struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1386 
1387 	/*
1388 	 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1389 	 * don't go offline while cgwbs are still active on them.  Pin the
1390 	 * parent so that offline always happens towards the root.
1391 	 */
1392 	if (parent)
1393 		blkcg_pin_online(&parent->css);
1394 	return 0;
1395 }
1396 
1397 int blkcg_init_disk(struct gendisk *disk)
1398 {
1399 	struct request_queue *q = disk->queue;
1400 	struct blkcg_gq *new_blkg, *blkg;
1401 	bool preloaded;
1402 	int ret;
1403 
1404 	INIT_LIST_HEAD(&q->blkg_list);
1405 	mutex_init(&q->blkcg_mutex);
1406 
1407 	new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1408 	if (!new_blkg)
1409 		return -ENOMEM;
1410 
1411 	preloaded = !radix_tree_preload(GFP_KERNEL);
1412 
1413 	/* Make sure the root blkg exists. */
1414 	/* spin_lock_irq can serve as RCU read-side critical section. */
1415 	spin_lock_irq(&q->queue_lock);
1416 	blkg = blkg_create(&blkcg_root, disk, new_blkg);
1417 	if (IS_ERR(blkg))
1418 		goto err_unlock;
1419 	q->root_blkg = blkg;
1420 	spin_unlock_irq(&q->queue_lock);
1421 
1422 	if (preloaded)
1423 		radix_tree_preload_end();
1424 
1425 	ret = blk_ioprio_init(disk);
1426 	if (ret)
1427 		goto err_destroy_all;
1428 
1429 	ret = blk_throtl_init(disk);
1430 	if (ret)
1431 		goto err_ioprio_exit;
1432 
1433 	return 0;
1434 
1435 err_ioprio_exit:
1436 	blk_ioprio_exit(disk);
1437 err_destroy_all:
1438 	blkg_destroy_all(disk);
1439 	return ret;
1440 err_unlock:
1441 	spin_unlock_irq(&q->queue_lock);
1442 	if (preloaded)
1443 		radix_tree_preload_end();
1444 	return PTR_ERR(blkg);
1445 }
1446 
1447 void blkcg_exit_disk(struct gendisk *disk)
1448 {
1449 	blkg_destroy_all(disk);
1450 	blk_throtl_exit(disk);
1451 }
1452 
1453 static void blkcg_exit(struct task_struct *tsk)
1454 {
1455 	if (tsk->throttle_disk)
1456 		put_disk(tsk->throttle_disk);
1457 	tsk->throttle_disk = NULL;
1458 }
1459 
1460 struct cgroup_subsys io_cgrp_subsys = {
1461 	.css_alloc = blkcg_css_alloc,
1462 	.css_online = blkcg_css_online,
1463 	.css_offline = blkcg_css_offline,
1464 	.css_free = blkcg_css_free,
1465 	.css_rstat_flush = blkcg_rstat_flush,
1466 	.dfl_cftypes = blkcg_files,
1467 	.legacy_cftypes = blkcg_legacy_files,
1468 	.legacy_name = "blkio",
1469 	.exit = blkcg_exit,
1470 #ifdef CONFIG_MEMCG
1471 	/*
1472 	 * This ensures that, if available, memcg is automatically enabled
1473 	 * together on the default hierarchy so that the owner cgroup can
1474 	 * be retrieved from writeback pages.
1475 	 */
1476 	.depends_on = 1 << memory_cgrp_id,
1477 #endif
1478 };
1479 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1480 
1481 /**
1482  * blkcg_activate_policy - activate a blkcg policy on a gendisk
1483  * @disk: gendisk of interest
1484  * @pol: blkcg policy to activate
1485  *
1486  * Activate @pol on @disk.  Requires %GFP_KERNEL context.  @disk goes through
1487  * bypass mode to populate its blkgs with policy_data for @pol.
1488  *
1489  * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1490  * from IO path.  Update of each blkg is protected by both queue and blkcg
1491  * locks so that holding either lock and testing blkcg_policy_enabled() is
1492  * always enough for dereferencing policy data.
1493  *
1494  * The caller is responsible for synchronizing [de]activations and policy
1495  * [un]registerations.  Returns 0 on success, -errno on failure.
1496  */
1497 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1498 {
1499 	struct request_queue *q = disk->queue;
1500 	struct blkg_policy_data *pd_prealloc = NULL;
1501 	struct blkcg_gq *blkg, *pinned_blkg = NULL;
1502 	int ret;
1503 
1504 	if (blkcg_policy_enabled(q, pol))
1505 		return 0;
1506 
1507 	if (queue_is_mq(q))
1508 		blk_mq_freeze_queue(q);
1509 retry:
1510 	spin_lock_irq(&q->queue_lock);
1511 
1512 	/* blkg_list is pushed at the head, reverse walk to allocate parents first */
1513 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1514 		struct blkg_policy_data *pd;
1515 
1516 		if (blkg->pd[pol->plid])
1517 			continue;
1518 
1519 		/* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1520 		if (blkg == pinned_blkg) {
1521 			pd = pd_prealloc;
1522 			pd_prealloc = NULL;
1523 		} else {
1524 			pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1525 					      GFP_NOWAIT | __GFP_NOWARN);
1526 		}
1527 
1528 		if (!pd) {
1529 			/*
1530 			 * GFP_NOWAIT failed.  Free the existing one and
1531 			 * prealloc for @blkg w/ GFP_KERNEL.
1532 			 */
1533 			if (pinned_blkg)
1534 				blkg_put(pinned_blkg);
1535 			blkg_get(blkg);
1536 			pinned_blkg = blkg;
1537 
1538 			spin_unlock_irq(&q->queue_lock);
1539 
1540 			if (pd_prealloc)
1541 				pol->pd_free_fn(pd_prealloc);
1542 			pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1543 						       GFP_KERNEL);
1544 			if (pd_prealloc)
1545 				goto retry;
1546 			else
1547 				goto enomem;
1548 		}
1549 
1550 		blkg->pd[pol->plid] = pd;
1551 		pd->blkg = blkg;
1552 		pd->plid = pol->plid;
1553 		pd->online = false;
1554 	}
1555 
1556 	/* all allocated, init in the same order */
1557 	if (pol->pd_init_fn)
1558 		list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1559 			pol->pd_init_fn(blkg->pd[pol->plid]);
1560 
1561 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1562 		if (pol->pd_online_fn)
1563 			pol->pd_online_fn(blkg->pd[pol->plid]);
1564 		blkg->pd[pol->plid]->online = true;
1565 	}
1566 
1567 	__set_bit(pol->plid, q->blkcg_pols);
1568 	ret = 0;
1569 
1570 	spin_unlock_irq(&q->queue_lock);
1571 out:
1572 	if (queue_is_mq(q))
1573 		blk_mq_unfreeze_queue(q);
1574 	if (pinned_blkg)
1575 		blkg_put(pinned_blkg);
1576 	if (pd_prealloc)
1577 		pol->pd_free_fn(pd_prealloc);
1578 	return ret;
1579 
1580 enomem:
1581 	/* alloc failed, nothing's initialized yet, free everything */
1582 	spin_lock_irq(&q->queue_lock);
1583 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1584 		struct blkcg *blkcg = blkg->blkcg;
1585 
1586 		spin_lock(&blkcg->lock);
1587 		if (blkg->pd[pol->plid]) {
1588 			pol->pd_free_fn(blkg->pd[pol->plid]);
1589 			blkg->pd[pol->plid] = NULL;
1590 		}
1591 		spin_unlock(&blkcg->lock);
1592 	}
1593 	spin_unlock_irq(&q->queue_lock);
1594 	ret = -ENOMEM;
1595 	goto out;
1596 }
1597 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1598 
1599 /**
1600  * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1601  * @disk: gendisk of interest
1602  * @pol: blkcg policy to deactivate
1603  *
1604  * Deactivate @pol on @disk.  Follows the same synchronization rules as
1605  * blkcg_activate_policy().
1606  */
1607 void blkcg_deactivate_policy(struct gendisk *disk,
1608 			     const struct blkcg_policy *pol)
1609 {
1610 	struct request_queue *q = disk->queue;
1611 	struct blkcg_gq *blkg;
1612 
1613 	if (!blkcg_policy_enabled(q, pol))
1614 		return;
1615 
1616 	if (queue_is_mq(q))
1617 		blk_mq_freeze_queue(q);
1618 
1619 	mutex_lock(&q->blkcg_mutex);
1620 	spin_lock_irq(&q->queue_lock);
1621 
1622 	__clear_bit(pol->plid, q->blkcg_pols);
1623 
1624 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1625 		struct blkcg *blkcg = blkg->blkcg;
1626 
1627 		spin_lock(&blkcg->lock);
1628 		if (blkg->pd[pol->plid]) {
1629 			if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1630 				pol->pd_offline_fn(blkg->pd[pol->plid]);
1631 			pol->pd_free_fn(blkg->pd[pol->plid]);
1632 			blkg->pd[pol->plid] = NULL;
1633 		}
1634 		spin_unlock(&blkcg->lock);
1635 	}
1636 
1637 	spin_unlock_irq(&q->queue_lock);
1638 	mutex_unlock(&q->blkcg_mutex);
1639 
1640 	if (queue_is_mq(q))
1641 		blk_mq_unfreeze_queue(q);
1642 }
1643 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1644 
1645 static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1646 {
1647 	struct blkcg *blkcg;
1648 
1649 	list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1650 		if (blkcg->cpd[pol->plid]) {
1651 			pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1652 			blkcg->cpd[pol->plid] = NULL;
1653 		}
1654 	}
1655 }
1656 
1657 /**
1658  * blkcg_policy_register - register a blkcg policy
1659  * @pol: blkcg policy to register
1660  *
1661  * Register @pol with blkcg core.  Might sleep and @pol may be modified on
1662  * successful registration.  Returns 0 on success and -errno on failure.
1663  */
1664 int blkcg_policy_register(struct blkcg_policy *pol)
1665 {
1666 	struct blkcg *blkcg;
1667 	int i, ret;
1668 
1669 	mutex_lock(&blkcg_pol_register_mutex);
1670 	mutex_lock(&blkcg_pol_mutex);
1671 
1672 	/* find an empty slot */
1673 	ret = -ENOSPC;
1674 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1675 		if (!blkcg_policy[i])
1676 			break;
1677 	if (i >= BLKCG_MAX_POLS) {
1678 		pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1679 		goto err_unlock;
1680 	}
1681 
1682 	/* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1683 	if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1684 		(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1685 		goto err_unlock;
1686 
1687 	/* register @pol */
1688 	pol->plid = i;
1689 	blkcg_policy[pol->plid] = pol;
1690 
1691 	/* allocate and install cpd's */
1692 	if (pol->cpd_alloc_fn) {
1693 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1694 			struct blkcg_policy_data *cpd;
1695 
1696 			cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1697 			if (!cpd)
1698 				goto err_free_cpds;
1699 
1700 			blkcg->cpd[pol->plid] = cpd;
1701 			cpd->blkcg = blkcg;
1702 			cpd->plid = pol->plid;
1703 		}
1704 	}
1705 
1706 	mutex_unlock(&blkcg_pol_mutex);
1707 
1708 	/* everything is in place, add intf files for the new policy */
1709 	if (pol->dfl_cftypes)
1710 		WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1711 					       pol->dfl_cftypes));
1712 	if (pol->legacy_cftypes)
1713 		WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1714 						  pol->legacy_cftypes));
1715 	mutex_unlock(&blkcg_pol_register_mutex);
1716 	return 0;
1717 
1718 err_free_cpds:
1719 	if (pol->cpd_free_fn)
1720 		blkcg_free_all_cpd(pol);
1721 
1722 	blkcg_policy[pol->plid] = NULL;
1723 err_unlock:
1724 	mutex_unlock(&blkcg_pol_mutex);
1725 	mutex_unlock(&blkcg_pol_register_mutex);
1726 	return ret;
1727 }
1728 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1729 
1730 /**
1731  * blkcg_policy_unregister - unregister a blkcg policy
1732  * @pol: blkcg policy to unregister
1733  *
1734  * Undo blkcg_policy_register(@pol).  Might sleep.
1735  */
1736 void blkcg_policy_unregister(struct blkcg_policy *pol)
1737 {
1738 	mutex_lock(&blkcg_pol_register_mutex);
1739 
1740 	if (WARN_ON(blkcg_policy[pol->plid] != pol))
1741 		goto out_unlock;
1742 
1743 	/* kill the intf files first */
1744 	if (pol->dfl_cftypes)
1745 		cgroup_rm_cftypes(pol->dfl_cftypes);
1746 	if (pol->legacy_cftypes)
1747 		cgroup_rm_cftypes(pol->legacy_cftypes);
1748 
1749 	/* remove cpds and unregister */
1750 	mutex_lock(&blkcg_pol_mutex);
1751 
1752 	if (pol->cpd_free_fn)
1753 		blkcg_free_all_cpd(pol);
1754 
1755 	blkcg_policy[pol->plid] = NULL;
1756 
1757 	mutex_unlock(&blkcg_pol_mutex);
1758 out_unlock:
1759 	mutex_unlock(&blkcg_pol_register_mutex);
1760 }
1761 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1762 
1763 /*
1764  * Scale the accumulated delay based on how long it has been since we updated
1765  * the delay.  We only call this when we are adding delay, in case it's been a
1766  * while since we added delay, and when we are checking to see if we need to
1767  * delay a task, to account for any delays that may have occurred.
1768  */
1769 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1770 {
1771 	u64 old = atomic64_read(&blkg->delay_start);
1772 
1773 	/* negative use_delay means no scaling, see blkcg_set_delay() */
1774 	if (atomic_read(&blkg->use_delay) < 0)
1775 		return;
1776 
1777 	/*
1778 	 * We only want to scale down every second.  The idea here is that we
1779 	 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1780 	 * time window.  We only want to throttle tasks for recent delay that
1781 	 * has occurred, in 1 second time windows since that's the maximum
1782 	 * things can be throttled.  We save the current delay window in
1783 	 * blkg->last_delay so we know what amount is still left to be charged
1784 	 * to the blkg from this point onward.  blkg->last_use keeps track of
1785 	 * the use_delay counter.  The idea is if we're unthrottling the blkg we
1786 	 * are ok with whatever is happening now, and we can take away more of
1787 	 * the accumulated delay as we've already throttled enough that
1788 	 * everybody is happy with their IO latencies.
1789 	 */
1790 	if (time_before64(old + NSEC_PER_SEC, now) &&
1791 	    atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1792 		u64 cur = atomic64_read(&blkg->delay_nsec);
1793 		u64 sub = min_t(u64, blkg->last_delay, now - old);
1794 		int cur_use = atomic_read(&blkg->use_delay);
1795 
1796 		/*
1797 		 * We've been unthrottled, subtract a larger chunk of our
1798 		 * accumulated delay.
1799 		 */
1800 		if (cur_use < blkg->last_use)
1801 			sub = max_t(u64, sub, blkg->last_delay >> 1);
1802 
1803 		/*
1804 		 * This shouldn't happen, but handle it anyway.  Our delay_nsec
1805 		 * should only ever be growing except here where we subtract out
1806 		 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1807 		 * rather not end up with negative numbers.
1808 		 */
1809 		if (unlikely(cur < sub)) {
1810 			atomic64_set(&blkg->delay_nsec, 0);
1811 			blkg->last_delay = 0;
1812 		} else {
1813 			atomic64_sub(sub, &blkg->delay_nsec);
1814 			blkg->last_delay = cur - sub;
1815 		}
1816 		blkg->last_use = cur_use;
1817 	}
1818 }
1819 
1820 /*
1821  * This is called when we want to actually walk up the hierarchy and check to
1822  * see if we need to throttle, and then actually throttle if there is some
1823  * accumulated delay.  This should only be called upon return to user space so
1824  * we're not holding some lock that would induce a priority inversion.
1825  */
1826 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1827 {
1828 	unsigned long pflags;
1829 	bool clamp;
1830 	u64 now = ktime_to_ns(ktime_get());
1831 	u64 exp;
1832 	u64 delay_nsec = 0;
1833 	int tok;
1834 
1835 	while (blkg->parent) {
1836 		int use_delay = atomic_read(&blkg->use_delay);
1837 
1838 		if (use_delay) {
1839 			u64 this_delay;
1840 
1841 			blkcg_scale_delay(blkg, now);
1842 			this_delay = atomic64_read(&blkg->delay_nsec);
1843 			if (this_delay > delay_nsec) {
1844 				delay_nsec = this_delay;
1845 				clamp = use_delay > 0;
1846 			}
1847 		}
1848 		blkg = blkg->parent;
1849 	}
1850 
1851 	if (!delay_nsec)
1852 		return;
1853 
1854 	/*
1855 	 * Let's not sleep for all eternity if we've amassed a huge delay.
1856 	 * Swapping or metadata IO can accumulate 10's of seconds worth of
1857 	 * delay, and we want userspace to be able to do _something_ so cap the
1858 	 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1859 	 * tasks will be delayed for 0.25 second for every syscall. If
1860 	 * blkcg_set_delay() was used as indicated by negative use_delay, the
1861 	 * caller is responsible for regulating the range.
1862 	 */
1863 	if (clamp)
1864 		delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1865 
1866 	if (use_memdelay)
1867 		psi_memstall_enter(&pflags);
1868 
1869 	exp = ktime_add_ns(now, delay_nsec);
1870 	tok = io_schedule_prepare();
1871 	do {
1872 		__set_current_state(TASK_KILLABLE);
1873 		if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1874 			break;
1875 	} while (!fatal_signal_pending(current));
1876 	io_schedule_finish(tok);
1877 
1878 	if (use_memdelay)
1879 		psi_memstall_leave(&pflags);
1880 }
1881 
1882 /**
1883  * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1884  *
1885  * This is only called if we've been marked with set_notify_resume().  Obviously
1886  * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1887  * check to see if current->throttle_disk is set and if not this doesn't do
1888  * anything.  This should only ever be called by the resume code, it's not meant
1889  * to be called by people willy-nilly as it will actually do the work to
1890  * throttle the task if it is setup for throttling.
1891  */
1892 void blkcg_maybe_throttle_current(void)
1893 {
1894 	struct gendisk *disk = current->throttle_disk;
1895 	struct blkcg *blkcg;
1896 	struct blkcg_gq *blkg;
1897 	bool use_memdelay = current->use_memdelay;
1898 
1899 	if (!disk)
1900 		return;
1901 
1902 	current->throttle_disk = NULL;
1903 	current->use_memdelay = false;
1904 
1905 	rcu_read_lock();
1906 	blkcg = css_to_blkcg(blkcg_css());
1907 	if (!blkcg)
1908 		goto out;
1909 	blkg = blkg_lookup(blkcg, disk->queue);
1910 	if (!blkg)
1911 		goto out;
1912 	if (!blkg_tryget(blkg))
1913 		goto out;
1914 	rcu_read_unlock();
1915 
1916 	blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1917 	blkg_put(blkg);
1918 	put_disk(disk);
1919 	return;
1920 out:
1921 	rcu_read_unlock();
1922 }
1923 
1924 /**
1925  * blkcg_schedule_throttle - this task needs to check for throttling
1926  * @disk: disk to throttle
1927  * @use_memdelay: do we charge this to memory delay for PSI
1928  *
1929  * This is called by the IO controller when we know there's delay accumulated
1930  * for the blkg for this task.  We do not pass the blkg because there are places
1931  * we call this that may not have that information, the swapping code for
1932  * instance will only have a block_device at that point.  This set's the
1933  * notify_resume for the task to check and see if it requires throttling before
1934  * returning to user space.
1935  *
1936  * We will only schedule once per syscall.  You can call this over and over
1937  * again and it will only do the check once upon return to user space, and only
1938  * throttle once.  If the task needs to be throttled again it'll need to be
1939  * re-set at the next time we see the task.
1940  */
1941 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
1942 {
1943 	if (unlikely(current->flags & PF_KTHREAD))
1944 		return;
1945 
1946 	if (current->throttle_disk != disk) {
1947 		if (test_bit(GD_DEAD, &disk->state))
1948 			return;
1949 		get_device(disk_to_dev(disk));
1950 
1951 		if (current->throttle_disk)
1952 			put_disk(current->throttle_disk);
1953 		current->throttle_disk = disk;
1954 	}
1955 
1956 	if (use_memdelay)
1957 		current->use_memdelay = use_memdelay;
1958 	set_notify_resume(current);
1959 }
1960 
1961 /**
1962  * blkcg_add_delay - add delay to this blkg
1963  * @blkg: blkg of interest
1964  * @now: the current time in nanoseconds
1965  * @delta: how many nanoseconds of delay to add
1966  *
1967  * Charge @delta to the blkg's current delay accumulation.  This is used to
1968  * throttle tasks if an IO controller thinks we need more throttling.
1969  */
1970 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1971 {
1972 	if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1973 		return;
1974 	blkcg_scale_delay(blkg, now);
1975 	atomic64_add(delta, &blkg->delay_nsec);
1976 }
1977 
1978 /**
1979  * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1980  * @bio: target bio
1981  * @css: target css
1982  *
1983  * As the failure mode here is to walk up the blkg tree, this ensure that the
1984  * blkg->parent pointers are always valid.  This returns the blkg that it ended
1985  * up taking a reference on or %NULL if no reference was taken.
1986  */
1987 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1988 		struct cgroup_subsys_state *css)
1989 {
1990 	struct blkcg_gq *blkg, *ret_blkg = NULL;
1991 
1992 	rcu_read_lock();
1993 	blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
1994 	while (blkg) {
1995 		if (blkg_tryget(blkg)) {
1996 			ret_blkg = blkg;
1997 			break;
1998 		}
1999 		blkg = blkg->parent;
2000 	}
2001 	rcu_read_unlock();
2002 
2003 	return ret_blkg;
2004 }
2005 
2006 /**
2007  * bio_associate_blkg_from_css - associate a bio with a specified css
2008  * @bio: target bio
2009  * @css: target css
2010  *
2011  * Associate @bio with the blkg found by combining the css's blkg and the
2012  * request_queue of the @bio.  An association failure is handled by walking up
2013  * the blkg tree.  Therefore, the blkg associated can be anything between @blkg
2014  * and q->root_blkg.  This situation only happens when a cgroup is dying and
2015  * then the remaining bios will spill to the closest alive blkg.
2016  *
2017  * A reference will be taken on the blkg and will be released when @bio is
2018  * freed.
2019  */
2020 void bio_associate_blkg_from_css(struct bio *bio,
2021 				 struct cgroup_subsys_state *css)
2022 {
2023 	if (bio->bi_blkg)
2024 		blkg_put(bio->bi_blkg);
2025 
2026 	if (css && css->parent) {
2027 		bio->bi_blkg = blkg_tryget_closest(bio, css);
2028 	} else {
2029 		blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
2030 		bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
2031 	}
2032 }
2033 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2034 
2035 /**
2036  * bio_associate_blkg - associate a bio with a blkg
2037  * @bio: target bio
2038  *
2039  * Associate @bio with the blkg found from the bio's css and request_queue.
2040  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2041  * already associated, the css is reused and association redone as the
2042  * request_queue may have changed.
2043  */
2044 void bio_associate_blkg(struct bio *bio)
2045 {
2046 	struct cgroup_subsys_state *css;
2047 
2048 	rcu_read_lock();
2049 
2050 	if (bio->bi_blkg)
2051 		css = bio_blkcg_css(bio);
2052 	else
2053 		css = blkcg_css();
2054 
2055 	bio_associate_blkg_from_css(bio, css);
2056 
2057 	rcu_read_unlock();
2058 }
2059 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2060 
2061 /**
2062  * bio_clone_blkg_association - clone blkg association from src to dst bio
2063  * @dst: destination bio
2064  * @src: source bio
2065  */
2066 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2067 {
2068 	if (src->bi_blkg)
2069 		bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2070 }
2071 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2072 
2073 static int blk_cgroup_io_type(struct bio *bio)
2074 {
2075 	if (op_is_discard(bio->bi_opf))
2076 		return BLKG_IOSTAT_DISCARD;
2077 	if (op_is_write(bio->bi_opf))
2078 		return BLKG_IOSTAT_WRITE;
2079 	return BLKG_IOSTAT_READ;
2080 }
2081 
2082 void blk_cgroup_bio_start(struct bio *bio)
2083 {
2084 	struct blkcg *blkcg = bio->bi_blkg->blkcg;
2085 	int rwd = blk_cgroup_io_type(bio), cpu;
2086 	struct blkg_iostat_set *bis;
2087 	unsigned long flags;
2088 
2089 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys))
2090 		return;
2091 
2092 	/* Root-level stats are sourced from system-wide IO stats */
2093 	if (!cgroup_parent(blkcg->css.cgroup))
2094 		return;
2095 
2096 	cpu = get_cpu();
2097 	bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2098 	flags = u64_stats_update_begin_irqsave(&bis->sync);
2099 
2100 	/*
2101 	 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2102 	 * bio and we would have already accounted for the size of the bio.
2103 	 */
2104 	if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2105 		bio_set_flag(bio, BIO_CGROUP_ACCT);
2106 		bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2107 	}
2108 	bis->cur.ios[rwd]++;
2109 
2110 	/*
2111 	 * If the iostat_cpu isn't in a lockless list, put it into the
2112 	 * list to indicate that a stat update is pending.
2113 	 */
2114 	if (!READ_ONCE(bis->lqueued)) {
2115 		struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2116 
2117 		llist_add(&bis->lnode, lhead);
2118 		WRITE_ONCE(bis->lqueued, true);
2119 	}
2120 
2121 	u64_stats_update_end_irqrestore(&bis->sync, flags);
2122 	cgroup_rstat_updated(blkcg->css.cgroup, cpu);
2123 	put_cpu();
2124 }
2125 
2126 bool blk_cgroup_congested(void)
2127 {
2128 	struct cgroup_subsys_state *css;
2129 	bool ret = false;
2130 
2131 	rcu_read_lock();
2132 	for (css = blkcg_css(); css; css = css->parent) {
2133 		if (atomic_read(&css->cgroup->congestion_count)) {
2134 			ret = true;
2135 			break;
2136 		}
2137 	}
2138 	rcu_read_unlock();
2139 	return ret;
2140 }
2141 
2142 module_param(blkcg_debug_stats, bool, 0644);
2143 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
2144