1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 4 */ 5 #include <linux/mm.h> 6 #include <linux/swap.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/uio.h> 10 #include <linux/iocontext.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/mempool.h> 16 #include <linux/workqueue.h> 17 #include <linux/cgroup.h> 18 #include <linux/blk-cgroup.h> 19 #include <linux/highmem.h> 20 #include <linux/sched/sysctl.h> 21 #include <linux/blk-crypto.h> 22 #include <linux/xarray.h> 23 24 #include <trace/events/block.h> 25 #include "blk.h" 26 #include "blk-rq-qos.h" 27 28 static struct biovec_slab { 29 int nr_vecs; 30 char *name; 31 struct kmem_cache *slab; 32 } bvec_slabs[] __read_mostly = { 33 { .nr_vecs = 16, .name = "biovec-16" }, 34 { .nr_vecs = 64, .name = "biovec-64" }, 35 { .nr_vecs = 128, .name = "biovec-128" }, 36 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" }, 37 }; 38 39 static struct biovec_slab *biovec_slab(unsigned short nr_vecs) 40 { 41 switch (nr_vecs) { 42 /* smaller bios use inline vecs */ 43 case 5 ... 16: 44 return &bvec_slabs[0]; 45 case 17 ... 64: 46 return &bvec_slabs[1]; 47 case 65 ... 128: 48 return &bvec_slabs[2]; 49 case 129 ... BIO_MAX_VECS: 50 return &bvec_slabs[3]; 51 default: 52 BUG(); 53 return NULL; 54 } 55 } 56 57 /* 58 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 59 * IO code that does not need private memory pools. 60 */ 61 struct bio_set fs_bio_set; 62 EXPORT_SYMBOL(fs_bio_set); 63 64 /* 65 * Our slab pool management 66 */ 67 struct bio_slab { 68 struct kmem_cache *slab; 69 unsigned int slab_ref; 70 unsigned int slab_size; 71 char name[8]; 72 }; 73 static DEFINE_MUTEX(bio_slab_lock); 74 static DEFINE_XARRAY(bio_slabs); 75 76 static struct bio_slab *create_bio_slab(unsigned int size) 77 { 78 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL); 79 80 if (!bslab) 81 return NULL; 82 83 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size); 84 bslab->slab = kmem_cache_create(bslab->name, size, 85 ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL); 86 if (!bslab->slab) 87 goto fail_alloc_slab; 88 89 bslab->slab_ref = 1; 90 bslab->slab_size = size; 91 92 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL))) 93 return bslab; 94 95 kmem_cache_destroy(bslab->slab); 96 97 fail_alloc_slab: 98 kfree(bslab); 99 return NULL; 100 } 101 102 static inline unsigned int bs_bio_slab_size(struct bio_set *bs) 103 { 104 return bs->front_pad + sizeof(struct bio) + bs->back_pad; 105 } 106 107 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs) 108 { 109 unsigned int size = bs_bio_slab_size(bs); 110 struct bio_slab *bslab; 111 112 mutex_lock(&bio_slab_lock); 113 bslab = xa_load(&bio_slabs, size); 114 if (bslab) 115 bslab->slab_ref++; 116 else 117 bslab = create_bio_slab(size); 118 mutex_unlock(&bio_slab_lock); 119 120 if (bslab) 121 return bslab->slab; 122 return NULL; 123 } 124 125 static void bio_put_slab(struct bio_set *bs) 126 { 127 struct bio_slab *bslab = NULL; 128 unsigned int slab_size = bs_bio_slab_size(bs); 129 130 mutex_lock(&bio_slab_lock); 131 132 bslab = xa_load(&bio_slabs, slab_size); 133 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 134 goto out; 135 136 WARN_ON_ONCE(bslab->slab != bs->bio_slab); 137 138 WARN_ON(!bslab->slab_ref); 139 140 if (--bslab->slab_ref) 141 goto out; 142 143 xa_erase(&bio_slabs, slab_size); 144 145 kmem_cache_destroy(bslab->slab); 146 kfree(bslab); 147 148 out: 149 mutex_unlock(&bio_slab_lock); 150 } 151 152 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs) 153 { 154 BIO_BUG_ON(nr_vecs > BIO_MAX_VECS); 155 156 if (nr_vecs == BIO_MAX_VECS) 157 mempool_free(bv, pool); 158 else if (nr_vecs > BIO_INLINE_VECS) 159 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv); 160 } 161 162 /* 163 * Make the first allocation restricted and don't dump info on allocation 164 * failures, since we'll fall back to the mempool in case of failure. 165 */ 166 static inline gfp_t bvec_alloc_gfp(gfp_t gfp) 167 { 168 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) | 169 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 170 } 171 172 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 173 gfp_t gfp_mask) 174 { 175 struct biovec_slab *bvs = biovec_slab(*nr_vecs); 176 177 if (WARN_ON_ONCE(!bvs)) 178 return NULL; 179 180 /* 181 * Upgrade the nr_vecs request to take full advantage of the allocation. 182 * We also rely on this in the bvec_free path. 183 */ 184 *nr_vecs = bvs->nr_vecs; 185 186 /* 187 * Try a slab allocation first for all smaller allocations. If that 188 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool. 189 * The mempool is sized to handle up to BIO_MAX_VECS entries. 190 */ 191 if (*nr_vecs < BIO_MAX_VECS) { 192 struct bio_vec *bvl; 193 194 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask)); 195 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 196 return bvl; 197 *nr_vecs = BIO_MAX_VECS; 198 } 199 200 return mempool_alloc(pool, gfp_mask); 201 } 202 203 void bio_uninit(struct bio *bio) 204 { 205 #ifdef CONFIG_BLK_CGROUP 206 if (bio->bi_blkg) { 207 blkg_put(bio->bi_blkg); 208 bio->bi_blkg = NULL; 209 } 210 #endif 211 if (bio_integrity(bio)) 212 bio_integrity_free(bio); 213 214 bio_crypt_free_ctx(bio); 215 } 216 EXPORT_SYMBOL(bio_uninit); 217 218 static void bio_free(struct bio *bio) 219 { 220 struct bio_set *bs = bio->bi_pool; 221 void *p; 222 223 bio_uninit(bio); 224 225 if (bs) { 226 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs); 227 228 /* 229 * If we have front padding, adjust the bio pointer before freeing 230 */ 231 p = bio; 232 p -= bs->front_pad; 233 234 mempool_free(p, &bs->bio_pool); 235 } else { 236 /* Bio was allocated by bio_kmalloc() */ 237 kfree(bio); 238 } 239 } 240 241 /* 242 * Users of this function have their own bio allocation. Subsequently, 243 * they must remember to pair any call to bio_init() with bio_uninit() 244 * when IO has completed, or when the bio is released. 245 */ 246 void bio_init(struct bio *bio, struct bio_vec *table, 247 unsigned short max_vecs) 248 { 249 memset(bio, 0, sizeof(*bio)); 250 atomic_set(&bio->__bi_remaining, 1); 251 atomic_set(&bio->__bi_cnt, 1); 252 253 bio->bi_io_vec = table; 254 bio->bi_max_vecs = max_vecs; 255 } 256 EXPORT_SYMBOL(bio_init); 257 258 /** 259 * bio_reset - reinitialize a bio 260 * @bio: bio to reset 261 * 262 * Description: 263 * After calling bio_reset(), @bio will be in the same state as a freshly 264 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 265 * preserved are the ones that are initialized by bio_alloc_bioset(). See 266 * comment in struct bio. 267 */ 268 void bio_reset(struct bio *bio) 269 { 270 bio_uninit(bio); 271 memset(bio, 0, BIO_RESET_BYTES); 272 atomic_set(&bio->__bi_remaining, 1); 273 } 274 EXPORT_SYMBOL(bio_reset); 275 276 static struct bio *__bio_chain_endio(struct bio *bio) 277 { 278 struct bio *parent = bio->bi_private; 279 280 if (bio->bi_status && !parent->bi_status) 281 parent->bi_status = bio->bi_status; 282 bio_put(bio); 283 return parent; 284 } 285 286 static void bio_chain_endio(struct bio *bio) 287 { 288 bio_endio(__bio_chain_endio(bio)); 289 } 290 291 /** 292 * bio_chain - chain bio completions 293 * @bio: the target bio 294 * @parent: the parent bio of @bio 295 * 296 * The caller won't have a bi_end_io called when @bio completes - instead, 297 * @parent's bi_end_io won't be called until both @parent and @bio have 298 * completed; the chained bio will also be freed when it completes. 299 * 300 * The caller must not set bi_private or bi_end_io in @bio. 301 */ 302 void bio_chain(struct bio *bio, struct bio *parent) 303 { 304 BUG_ON(bio->bi_private || bio->bi_end_io); 305 306 bio->bi_private = parent; 307 bio->bi_end_io = bio_chain_endio; 308 bio_inc_remaining(parent); 309 } 310 EXPORT_SYMBOL(bio_chain); 311 312 static void bio_alloc_rescue(struct work_struct *work) 313 { 314 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 315 struct bio *bio; 316 317 while (1) { 318 spin_lock(&bs->rescue_lock); 319 bio = bio_list_pop(&bs->rescue_list); 320 spin_unlock(&bs->rescue_lock); 321 322 if (!bio) 323 break; 324 325 submit_bio_noacct(bio); 326 } 327 } 328 329 static void punt_bios_to_rescuer(struct bio_set *bs) 330 { 331 struct bio_list punt, nopunt; 332 struct bio *bio; 333 334 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 335 return; 336 /* 337 * In order to guarantee forward progress we must punt only bios that 338 * were allocated from this bio_set; otherwise, if there was a bio on 339 * there for a stacking driver higher up in the stack, processing it 340 * could require allocating bios from this bio_set, and doing that from 341 * our own rescuer would be bad. 342 * 343 * Since bio lists are singly linked, pop them all instead of trying to 344 * remove from the middle of the list: 345 */ 346 347 bio_list_init(&punt); 348 bio_list_init(&nopunt); 349 350 while ((bio = bio_list_pop(¤t->bio_list[0]))) 351 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 352 current->bio_list[0] = nopunt; 353 354 bio_list_init(&nopunt); 355 while ((bio = bio_list_pop(¤t->bio_list[1]))) 356 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 357 current->bio_list[1] = nopunt; 358 359 spin_lock(&bs->rescue_lock); 360 bio_list_merge(&bs->rescue_list, &punt); 361 spin_unlock(&bs->rescue_lock); 362 363 queue_work(bs->rescue_workqueue, &bs->rescue_work); 364 } 365 366 /** 367 * bio_alloc_bioset - allocate a bio for I/O 368 * @gfp_mask: the GFP_* mask given to the slab allocator 369 * @nr_iovecs: number of iovecs to pre-allocate 370 * @bs: the bio_set to allocate from. 371 * 372 * Allocate a bio from the mempools in @bs. 373 * 374 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to 375 * allocate a bio. This is due to the mempool guarantees. To make this work, 376 * callers must never allocate more than 1 bio at a time from the general pool. 377 * Callers that need to allocate more than 1 bio must always submit the 378 * previously allocated bio for IO before attempting to allocate a new one. 379 * Failure to do so can cause deadlocks under memory pressure. 380 * 381 * Note that when running under submit_bio_noacct() (i.e. any block driver), 382 * bios are not submitted until after you return - see the code in 383 * submit_bio_noacct() that converts recursion into iteration, to prevent 384 * stack overflows. 385 * 386 * This would normally mean allocating multiple bios under submit_bio_noacct() 387 * would be susceptible to deadlocks, but we have 388 * deadlock avoidance code that resubmits any blocked bios from a rescuer 389 * thread. 390 * 391 * However, we do not guarantee forward progress for allocations from other 392 * mempools. Doing multiple allocations from the same mempool under 393 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad 394 * for per bio allocations. 395 * 396 * Returns: Pointer to new bio on success, NULL on failure. 397 */ 398 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs, 399 struct bio_set *bs) 400 { 401 gfp_t saved_gfp = gfp_mask; 402 struct bio *bio; 403 void *p; 404 405 /* should not use nobvec bioset for nr_iovecs > 0 */ 406 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0)) 407 return NULL; 408 409 /* 410 * submit_bio_noacct() converts recursion to iteration; this means if 411 * we're running beneath it, any bios we allocate and submit will not be 412 * submitted (and thus freed) until after we return. 413 * 414 * This exposes us to a potential deadlock if we allocate multiple bios 415 * from the same bio_set() while running underneath submit_bio_noacct(). 416 * If we were to allocate multiple bios (say a stacking block driver 417 * that was splitting bios), we would deadlock if we exhausted the 418 * mempool's reserve. 419 * 420 * We solve this, and guarantee forward progress, with a rescuer 421 * workqueue per bio_set. If we go to allocate and there are bios on 422 * current->bio_list, we first try the allocation without 423 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be 424 * blocking to the rescuer workqueue before we retry with the original 425 * gfp_flags. 426 */ 427 if (current->bio_list && 428 (!bio_list_empty(¤t->bio_list[0]) || 429 !bio_list_empty(¤t->bio_list[1])) && 430 bs->rescue_workqueue) 431 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 432 433 p = mempool_alloc(&bs->bio_pool, gfp_mask); 434 if (!p && gfp_mask != saved_gfp) { 435 punt_bios_to_rescuer(bs); 436 gfp_mask = saved_gfp; 437 p = mempool_alloc(&bs->bio_pool, gfp_mask); 438 } 439 if (unlikely(!p)) 440 return NULL; 441 442 bio = p + bs->front_pad; 443 if (nr_iovecs > BIO_INLINE_VECS) { 444 struct bio_vec *bvl = NULL; 445 446 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask); 447 if (!bvl && gfp_mask != saved_gfp) { 448 punt_bios_to_rescuer(bs); 449 gfp_mask = saved_gfp; 450 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask); 451 } 452 if (unlikely(!bvl)) 453 goto err_free; 454 455 bio_init(bio, bvl, nr_iovecs); 456 } else if (nr_iovecs) { 457 bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS); 458 } else { 459 bio_init(bio, NULL, 0); 460 } 461 462 bio->bi_pool = bs; 463 return bio; 464 465 err_free: 466 mempool_free(p, &bs->bio_pool); 467 return NULL; 468 } 469 EXPORT_SYMBOL(bio_alloc_bioset); 470 471 /** 472 * bio_kmalloc - kmalloc a bio for I/O 473 * @gfp_mask: the GFP_* mask given to the slab allocator 474 * @nr_iovecs: number of iovecs to pre-allocate 475 * 476 * Use kmalloc to allocate and initialize a bio. 477 * 478 * Returns: Pointer to new bio on success, NULL on failure. 479 */ 480 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs) 481 { 482 struct bio *bio; 483 484 if (nr_iovecs > UIO_MAXIOV) 485 return NULL; 486 487 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask); 488 if (unlikely(!bio)) 489 return NULL; 490 bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs); 491 bio->bi_pool = NULL; 492 return bio; 493 } 494 EXPORT_SYMBOL(bio_kmalloc); 495 496 void zero_fill_bio(struct bio *bio) 497 { 498 struct bio_vec bv; 499 struct bvec_iter iter; 500 501 bio_for_each_segment(bv, bio, iter) 502 memzero_bvec(&bv); 503 } 504 EXPORT_SYMBOL(zero_fill_bio); 505 506 /** 507 * bio_truncate - truncate the bio to small size of @new_size 508 * @bio: the bio to be truncated 509 * @new_size: new size for truncating the bio 510 * 511 * Description: 512 * Truncate the bio to new size of @new_size. If bio_op(bio) is 513 * REQ_OP_READ, zero the truncated part. This function should only 514 * be used for handling corner cases, such as bio eod. 515 */ 516 void bio_truncate(struct bio *bio, unsigned new_size) 517 { 518 struct bio_vec bv; 519 struct bvec_iter iter; 520 unsigned int done = 0; 521 bool truncated = false; 522 523 if (new_size >= bio->bi_iter.bi_size) 524 return; 525 526 if (bio_op(bio) != REQ_OP_READ) 527 goto exit; 528 529 bio_for_each_segment(bv, bio, iter) { 530 if (done + bv.bv_len > new_size) { 531 unsigned offset; 532 533 if (!truncated) 534 offset = new_size - done; 535 else 536 offset = 0; 537 zero_user(bv.bv_page, offset, bv.bv_len - offset); 538 truncated = true; 539 } 540 done += bv.bv_len; 541 } 542 543 exit: 544 /* 545 * Don't touch bvec table here and make it really immutable, since 546 * fs bio user has to retrieve all pages via bio_for_each_segment_all 547 * in its .end_bio() callback. 548 * 549 * It is enough to truncate bio by updating .bi_size since we can make 550 * correct bvec with the updated .bi_size for drivers. 551 */ 552 bio->bi_iter.bi_size = new_size; 553 } 554 555 /** 556 * guard_bio_eod - truncate a BIO to fit the block device 557 * @bio: bio to truncate 558 * 559 * This allows us to do IO even on the odd last sectors of a device, even if the 560 * block size is some multiple of the physical sector size. 561 * 562 * We'll just truncate the bio to the size of the device, and clear the end of 563 * the buffer head manually. Truly out-of-range accesses will turn into actual 564 * I/O errors, this only handles the "we need to be able to do I/O at the final 565 * sector" case. 566 */ 567 void guard_bio_eod(struct bio *bio) 568 { 569 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 570 571 if (!maxsector) 572 return; 573 574 /* 575 * If the *whole* IO is past the end of the device, 576 * let it through, and the IO layer will turn it into 577 * an EIO. 578 */ 579 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 580 return; 581 582 maxsector -= bio->bi_iter.bi_sector; 583 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 584 return; 585 586 bio_truncate(bio, maxsector << 9); 587 } 588 589 /** 590 * bio_put - release a reference to a bio 591 * @bio: bio to release reference to 592 * 593 * Description: 594 * Put a reference to a &struct bio, either one you have gotten with 595 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 596 **/ 597 void bio_put(struct bio *bio) 598 { 599 if (!bio_flagged(bio, BIO_REFFED)) 600 bio_free(bio); 601 else { 602 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 603 604 /* 605 * last put frees it 606 */ 607 if (atomic_dec_and_test(&bio->__bi_cnt)) 608 bio_free(bio); 609 } 610 } 611 EXPORT_SYMBOL(bio_put); 612 613 /** 614 * __bio_clone_fast - clone a bio that shares the original bio's biovec 615 * @bio: destination bio 616 * @bio_src: bio to clone 617 * 618 * Clone a &bio. Caller will own the returned bio, but not 619 * the actual data it points to. Reference count of returned 620 * bio will be one. 621 * 622 * Caller must ensure that @bio_src is not freed before @bio. 623 */ 624 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 625 { 626 WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs); 627 628 /* 629 * most users will be overriding ->bi_bdev with a new target, 630 * so we don't set nor calculate new physical/hw segment counts here 631 */ 632 bio->bi_bdev = bio_src->bi_bdev; 633 bio_set_flag(bio, BIO_CLONED); 634 if (bio_flagged(bio_src, BIO_THROTTLED)) 635 bio_set_flag(bio, BIO_THROTTLED); 636 if (bio_flagged(bio_src, BIO_REMAPPED)) 637 bio_set_flag(bio, BIO_REMAPPED); 638 bio->bi_opf = bio_src->bi_opf; 639 bio->bi_ioprio = bio_src->bi_ioprio; 640 bio->bi_write_hint = bio_src->bi_write_hint; 641 bio->bi_iter = bio_src->bi_iter; 642 bio->bi_io_vec = bio_src->bi_io_vec; 643 644 bio_clone_blkg_association(bio, bio_src); 645 blkcg_bio_issue_init(bio); 646 } 647 EXPORT_SYMBOL(__bio_clone_fast); 648 649 /** 650 * bio_clone_fast - clone a bio that shares the original bio's biovec 651 * @bio: bio to clone 652 * @gfp_mask: allocation priority 653 * @bs: bio_set to allocate from 654 * 655 * Like __bio_clone_fast, only also allocates the returned bio 656 */ 657 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 658 { 659 struct bio *b; 660 661 b = bio_alloc_bioset(gfp_mask, 0, bs); 662 if (!b) 663 return NULL; 664 665 __bio_clone_fast(b, bio); 666 667 if (bio_crypt_clone(b, bio, gfp_mask) < 0) 668 goto err_put; 669 670 if (bio_integrity(bio) && 671 bio_integrity_clone(b, bio, gfp_mask) < 0) 672 goto err_put; 673 674 return b; 675 676 err_put: 677 bio_put(b); 678 return NULL; 679 } 680 EXPORT_SYMBOL(bio_clone_fast); 681 682 const char *bio_devname(struct bio *bio, char *buf) 683 { 684 return bdevname(bio->bi_bdev, buf); 685 } 686 EXPORT_SYMBOL(bio_devname); 687 688 static inline bool page_is_mergeable(const struct bio_vec *bv, 689 struct page *page, unsigned int len, unsigned int off, 690 bool *same_page) 691 { 692 size_t bv_end = bv->bv_offset + bv->bv_len; 693 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1; 694 phys_addr_t page_addr = page_to_phys(page); 695 696 if (vec_end_addr + 1 != page_addr + off) 697 return false; 698 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 699 return false; 700 701 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); 702 if (*same_page) 703 return true; 704 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE); 705 } 706 707 /* 708 * Try to merge a page into a segment, while obeying the hardware segment 709 * size limit. This is not for normal read/write bios, but for passthrough 710 * or Zone Append operations that we can't split. 711 */ 712 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio, 713 struct page *page, unsigned len, 714 unsigned offset, bool *same_page) 715 { 716 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 717 unsigned long mask = queue_segment_boundary(q); 718 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; 719 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 720 721 if ((addr1 | mask) != (addr2 | mask)) 722 return false; 723 if (bv->bv_len + len > queue_max_segment_size(q)) 724 return false; 725 return __bio_try_merge_page(bio, page, len, offset, same_page); 726 } 727 728 /** 729 * bio_add_hw_page - attempt to add a page to a bio with hw constraints 730 * @q: the target queue 731 * @bio: destination bio 732 * @page: page to add 733 * @len: vec entry length 734 * @offset: vec entry offset 735 * @max_sectors: maximum number of sectors that can be added 736 * @same_page: return if the segment has been merged inside the same page 737 * 738 * Add a page to a bio while respecting the hardware max_sectors, max_segment 739 * and gap limitations. 740 */ 741 int bio_add_hw_page(struct request_queue *q, struct bio *bio, 742 struct page *page, unsigned int len, unsigned int offset, 743 unsigned int max_sectors, bool *same_page) 744 { 745 struct bio_vec *bvec; 746 747 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 748 return 0; 749 750 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors) 751 return 0; 752 753 if (bio->bi_vcnt > 0) { 754 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page)) 755 return len; 756 757 /* 758 * If the queue doesn't support SG gaps and adding this segment 759 * would create a gap, disallow it. 760 */ 761 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 762 if (bvec_gap_to_prev(q, bvec, offset)) 763 return 0; 764 } 765 766 if (bio_full(bio, len)) 767 return 0; 768 769 if (bio->bi_vcnt >= queue_max_segments(q)) 770 return 0; 771 772 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 773 bvec->bv_page = page; 774 bvec->bv_len = len; 775 bvec->bv_offset = offset; 776 bio->bi_vcnt++; 777 bio->bi_iter.bi_size += len; 778 return len; 779 } 780 781 /** 782 * bio_add_pc_page - attempt to add page to passthrough bio 783 * @q: the target queue 784 * @bio: destination bio 785 * @page: page to add 786 * @len: vec entry length 787 * @offset: vec entry offset 788 * 789 * Attempt to add a page to the bio_vec maplist. This can fail for a 790 * number of reasons, such as the bio being full or target block device 791 * limitations. The target block device must allow bio's up to PAGE_SIZE, 792 * so it is always possible to add a single page to an empty bio. 793 * 794 * This should only be used by passthrough bios. 795 */ 796 int bio_add_pc_page(struct request_queue *q, struct bio *bio, 797 struct page *page, unsigned int len, unsigned int offset) 798 { 799 bool same_page = false; 800 return bio_add_hw_page(q, bio, page, len, offset, 801 queue_max_hw_sectors(q), &same_page); 802 } 803 EXPORT_SYMBOL(bio_add_pc_page); 804 805 /** 806 * bio_add_zone_append_page - attempt to add page to zone-append bio 807 * @bio: destination bio 808 * @page: page to add 809 * @len: vec entry length 810 * @offset: vec entry offset 811 * 812 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted 813 * for a zone-append request. This can fail for a number of reasons, such as the 814 * bio being full or the target block device is not a zoned block device or 815 * other limitations of the target block device. The target block device must 816 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page 817 * to an empty bio. 818 * 819 * Returns: number of bytes added to the bio, or 0 in case of a failure. 820 */ 821 int bio_add_zone_append_page(struct bio *bio, struct page *page, 822 unsigned int len, unsigned int offset) 823 { 824 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 825 bool same_page = false; 826 827 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND)) 828 return 0; 829 830 if (WARN_ON_ONCE(!blk_queue_is_zoned(q))) 831 return 0; 832 833 return bio_add_hw_page(q, bio, page, len, offset, 834 queue_max_zone_append_sectors(q), &same_page); 835 } 836 EXPORT_SYMBOL_GPL(bio_add_zone_append_page); 837 838 /** 839 * __bio_try_merge_page - try appending data to an existing bvec. 840 * @bio: destination bio 841 * @page: start page to add 842 * @len: length of the data to add 843 * @off: offset of the data relative to @page 844 * @same_page: return if the segment has been merged inside the same page 845 * 846 * Try to add the data at @page + @off to the last bvec of @bio. This is a 847 * useful optimisation for file systems with a block size smaller than the 848 * page size. 849 * 850 * Warn if (@len, @off) crosses pages in case that @same_page is true. 851 * 852 * Return %true on success or %false on failure. 853 */ 854 bool __bio_try_merge_page(struct bio *bio, struct page *page, 855 unsigned int len, unsigned int off, bool *same_page) 856 { 857 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 858 return false; 859 860 if (bio->bi_vcnt > 0) { 861 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 862 863 if (page_is_mergeable(bv, page, len, off, same_page)) { 864 if (bio->bi_iter.bi_size > UINT_MAX - len) { 865 *same_page = false; 866 return false; 867 } 868 bv->bv_len += len; 869 bio->bi_iter.bi_size += len; 870 return true; 871 } 872 } 873 return false; 874 } 875 EXPORT_SYMBOL_GPL(__bio_try_merge_page); 876 877 /** 878 * __bio_add_page - add page(s) to a bio in a new segment 879 * @bio: destination bio 880 * @page: start page to add 881 * @len: length of the data to add, may cross pages 882 * @off: offset of the data relative to @page, may cross pages 883 * 884 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 885 * that @bio has space for another bvec. 886 */ 887 void __bio_add_page(struct bio *bio, struct page *page, 888 unsigned int len, unsigned int off) 889 { 890 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt]; 891 892 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 893 WARN_ON_ONCE(bio_full(bio, len)); 894 895 bv->bv_page = page; 896 bv->bv_offset = off; 897 bv->bv_len = len; 898 899 bio->bi_iter.bi_size += len; 900 bio->bi_vcnt++; 901 902 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page))) 903 bio_set_flag(bio, BIO_WORKINGSET); 904 } 905 EXPORT_SYMBOL_GPL(__bio_add_page); 906 907 /** 908 * bio_add_page - attempt to add page(s) to bio 909 * @bio: destination bio 910 * @page: start page to add 911 * @len: vec entry length, may cross pages 912 * @offset: vec entry offset relative to @page, may cross pages 913 * 914 * Attempt to add page(s) to the bio_vec maplist. This will only fail 915 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 916 */ 917 int bio_add_page(struct bio *bio, struct page *page, 918 unsigned int len, unsigned int offset) 919 { 920 bool same_page = false; 921 922 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { 923 if (bio_full(bio, len)) 924 return 0; 925 __bio_add_page(bio, page, len, offset); 926 } 927 return len; 928 } 929 EXPORT_SYMBOL(bio_add_page); 930 931 void bio_release_pages(struct bio *bio, bool mark_dirty) 932 { 933 struct bvec_iter_all iter_all; 934 struct bio_vec *bvec; 935 936 if (bio_flagged(bio, BIO_NO_PAGE_REF)) 937 return; 938 939 bio_for_each_segment_all(bvec, bio, iter_all) { 940 if (mark_dirty && !PageCompound(bvec->bv_page)) 941 set_page_dirty_lock(bvec->bv_page); 942 put_page(bvec->bv_page); 943 } 944 } 945 EXPORT_SYMBOL_GPL(bio_release_pages); 946 947 static void __bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter) 948 { 949 WARN_ON_ONCE(bio->bi_max_vecs); 950 951 bio->bi_vcnt = iter->nr_segs; 952 bio->bi_io_vec = (struct bio_vec *)iter->bvec; 953 bio->bi_iter.bi_bvec_done = iter->iov_offset; 954 bio->bi_iter.bi_size = iter->count; 955 bio_set_flag(bio, BIO_NO_PAGE_REF); 956 bio_set_flag(bio, BIO_CLONED); 957 } 958 959 static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter) 960 { 961 __bio_iov_bvec_set(bio, iter); 962 iov_iter_advance(iter, iter->count); 963 return 0; 964 } 965 966 static int bio_iov_bvec_set_append(struct bio *bio, struct iov_iter *iter) 967 { 968 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 969 struct iov_iter i = *iter; 970 971 iov_iter_truncate(&i, queue_max_zone_append_sectors(q) << 9); 972 __bio_iov_bvec_set(bio, &i); 973 iov_iter_advance(iter, i.count); 974 return 0; 975 } 976 977 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 978 979 /** 980 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 981 * @bio: bio to add pages to 982 * @iter: iov iterator describing the region to be mapped 983 * 984 * Pins pages from *iter and appends them to @bio's bvec array. The 985 * pages will have to be released using put_page() when done. 986 * For multi-segment *iter, this function only adds pages from the 987 * next non-empty segment of the iov iterator. 988 */ 989 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 990 { 991 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 992 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 993 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 994 struct page **pages = (struct page **)bv; 995 bool same_page = false; 996 ssize_t size, left; 997 unsigned len, i; 998 size_t offset; 999 1000 /* 1001 * Move page array up in the allocated memory for the bio vecs as far as 1002 * possible so that we can start filling biovecs from the beginning 1003 * without overwriting the temporary page array. 1004 */ 1005 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 1006 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 1007 1008 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 1009 if (unlikely(size <= 0)) 1010 return size ? size : -EFAULT; 1011 1012 for (left = size, i = 0; left > 0; left -= len, i++) { 1013 struct page *page = pages[i]; 1014 1015 len = min_t(size_t, PAGE_SIZE - offset, left); 1016 1017 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) { 1018 if (same_page) 1019 put_page(page); 1020 } else { 1021 if (WARN_ON_ONCE(bio_full(bio, len))) 1022 return -EINVAL; 1023 __bio_add_page(bio, page, len, offset); 1024 } 1025 offset = 0; 1026 } 1027 1028 iov_iter_advance(iter, size); 1029 return 0; 1030 } 1031 1032 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter) 1033 { 1034 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 1035 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 1036 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 1037 unsigned int max_append_sectors = queue_max_zone_append_sectors(q); 1038 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 1039 struct page **pages = (struct page **)bv; 1040 ssize_t size, left; 1041 unsigned len, i; 1042 size_t offset; 1043 int ret = 0; 1044 1045 if (WARN_ON_ONCE(!max_append_sectors)) 1046 return 0; 1047 1048 /* 1049 * Move page array up in the allocated memory for the bio vecs as far as 1050 * possible so that we can start filling biovecs from the beginning 1051 * without overwriting the temporary page array. 1052 */ 1053 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 1054 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 1055 1056 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 1057 if (unlikely(size <= 0)) 1058 return size ? size : -EFAULT; 1059 1060 for (left = size, i = 0; left > 0; left -= len, i++) { 1061 struct page *page = pages[i]; 1062 bool same_page = false; 1063 1064 len = min_t(size_t, PAGE_SIZE - offset, left); 1065 if (bio_add_hw_page(q, bio, page, len, offset, 1066 max_append_sectors, &same_page) != len) { 1067 ret = -EINVAL; 1068 break; 1069 } 1070 if (same_page) 1071 put_page(page); 1072 offset = 0; 1073 } 1074 1075 iov_iter_advance(iter, size - left); 1076 return ret; 1077 } 1078 1079 /** 1080 * bio_iov_iter_get_pages - add user or kernel pages to a bio 1081 * @bio: bio to add pages to 1082 * @iter: iov iterator describing the region to be added 1083 * 1084 * This takes either an iterator pointing to user memory, or one pointing to 1085 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 1086 * map them into the kernel. On IO completion, the caller should put those 1087 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided 1088 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs 1089 * to ensure the bvecs and pages stay referenced until the submitted I/O is 1090 * completed by a call to ->ki_complete() or returns with an error other than 1091 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF 1092 * on IO completion. If it isn't, then pages should be released. 1093 * 1094 * The function tries, but does not guarantee, to pin as many pages as 1095 * fit into the bio, or are requested in @iter, whatever is smaller. If 1096 * MM encounters an error pinning the requested pages, it stops. Error 1097 * is returned only if 0 pages could be pinned. 1098 * 1099 * It's intended for direct IO, so doesn't do PSI tracking, the caller is 1100 * responsible for setting BIO_WORKINGSET if necessary. 1101 */ 1102 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1103 { 1104 int ret = 0; 1105 1106 if (iov_iter_is_bvec(iter)) { 1107 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 1108 return bio_iov_bvec_set_append(bio, iter); 1109 return bio_iov_bvec_set(bio, iter); 1110 } 1111 1112 do { 1113 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 1114 ret = __bio_iov_append_get_pages(bio, iter); 1115 else 1116 ret = __bio_iov_iter_get_pages(bio, iter); 1117 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); 1118 1119 /* don't account direct I/O as memory stall */ 1120 bio_clear_flag(bio, BIO_WORKINGSET); 1121 return bio->bi_vcnt ? 0 : ret; 1122 } 1123 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 1124 1125 static void submit_bio_wait_endio(struct bio *bio) 1126 { 1127 complete(bio->bi_private); 1128 } 1129 1130 /** 1131 * submit_bio_wait - submit a bio, and wait until it completes 1132 * @bio: The &struct bio which describes the I/O 1133 * 1134 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 1135 * bio_endio() on failure. 1136 * 1137 * WARNING: Unlike to how submit_bio() is usually used, this function does not 1138 * result in bio reference to be consumed. The caller must drop the reference 1139 * on his own. 1140 */ 1141 int submit_bio_wait(struct bio *bio) 1142 { 1143 DECLARE_COMPLETION_ONSTACK_MAP(done, 1144 bio->bi_bdev->bd_disk->lockdep_map); 1145 unsigned long hang_check; 1146 1147 bio->bi_private = &done; 1148 bio->bi_end_io = submit_bio_wait_endio; 1149 bio->bi_opf |= REQ_SYNC; 1150 submit_bio(bio); 1151 1152 /* Prevent hang_check timer from firing at us during very long I/O */ 1153 hang_check = sysctl_hung_task_timeout_secs; 1154 if (hang_check) 1155 while (!wait_for_completion_io_timeout(&done, 1156 hang_check * (HZ/2))) 1157 ; 1158 else 1159 wait_for_completion_io(&done); 1160 1161 return blk_status_to_errno(bio->bi_status); 1162 } 1163 EXPORT_SYMBOL(submit_bio_wait); 1164 1165 /** 1166 * bio_advance - increment/complete a bio by some number of bytes 1167 * @bio: bio to advance 1168 * @bytes: number of bytes to complete 1169 * 1170 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 1171 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 1172 * be updated on the last bvec as well. 1173 * 1174 * @bio will then represent the remaining, uncompleted portion of the io. 1175 */ 1176 void bio_advance(struct bio *bio, unsigned bytes) 1177 { 1178 if (bio_integrity(bio)) 1179 bio_integrity_advance(bio, bytes); 1180 1181 bio_crypt_advance(bio, bytes); 1182 bio_advance_iter(bio, &bio->bi_iter, bytes); 1183 } 1184 EXPORT_SYMBOL(bio_advance); 1185 1186 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 1187 struct bio *src, struct bvec_iter *src_iter) 1188 { 1189 while (src_iter->bi_size && dst_iter->bi_size) { 1190 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter); 1191 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter); 1192 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len); 1193 void *src_buf; 1194 1195 src_buf = bvec_kmap_local(&src_bv); 1196 memcpy_to_bvec(&dst_bv, src_buf); 1197 kunmap_local(src_buf); 1198 1199 bio_advance_iter_single(src, src_iter, bytes); 1200 bio_advance_iter_single(dst, dst_iter, bytes); 1201 } 1202 } 1203 EXPORT_SYMBOL(bio_copy_data_iter); 1204 1205 /** 1206 * bio_copy_data - copy contents of data buffers from one bio to another 1207 * @src: source bio 1208 * @dst: destination bio 1209 * 1210 * Stops when it reaches the end of either @src or @dst - that is, copies 1211 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1212 */ 1213 void bio_copy_data(struct bio *dst, struct bio *src) 1214 { 1215 struct bvec_iter src_iter = src->bi_iter; 1216 struct bvec_iter dst_iter = dst->bi_iter; 1217 1218 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1219 } 1220 EXPORT_SYMBOL(bio_copy_data); 1221 1222 void bio_free_pages(struct bio *bio) 1223 { 1224 struct bio_vec *bvec; 1225 struct bvec_iter_all iter_all; 1226 1227 bio_for_each_segment_all(bvec, bio, iter_all) 1228 __free_page(bvec->bv_page); 1229 } 1230 EXPORT_SYMBOL(bio_free_pages); 1231 1232 /* 1233 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1234 * for performing direct-IO in BIOs. 1235 * 1236 * The problem is that we cannot run set_page_dirty() from interrupt context 1237 * because the required locks are not interrupt-safe. So what we can do is to 1238 * mark the pages dirty _before_ performing IO. And in interrupt context, 1239 * check that the pages are still dirty. If so, fine. If not, redirty them 1240 * in process context. 1241 * 1242 * We special-case compound pages here: normally this means reads into hugetlb 1243 * pages. The logic in here doesn't really work right for compound pages 1244 * because the VM does not uniformly chase down the head page in all cases. 1245 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1246 * handle them at all. So we skip compound pages here at an early stage. 1247 * 1248 * Note that this code is very hard to test under normal circumstances because 1249 * direct-io pins the pages with get_user_pages(). This makes 1250 * is_page_cache_freeable return false, and the VM will not clean the pages. 1251 * But other code (eg, flusher threads) could clean the pages if they are mapped 1252 * pagecache. 1253 * 1254 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1255 * deferred bio dirtying paths. 1256 */ 1257 1258 /* 1259 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1260 */ 1261 void bio_set_pages_dirty(struct bio *bio) 1262 { 1263 struct bio_vec *bvec; 1264 struct bvec_iter_all iter_all; 1265 1266 bio_for_each_segment_all(bvec, bio, iter_all) { 1267 if (!PageCompound(bvec->bv_page)) 1268 set_page_dirty_lock(bvec->bv_page); 1269 } 1270 } 1271 1272 /* 1273 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1274 * If they are, then fine. If, however, some pages are clean then they must 1275 * have been written out during the direct-IO read. So we take another ref on 1276 * the BIO and re-dirty the pages in process context. 1277 * 1278 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1279 * here on. It will run one put_page() against each page and will run one 1280 * bio_put() against the BIO. 1281 */ 1282 1283 static void bio_dirty_fn(struct work_struct *work); 1284 1285 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1286 static DEFINE_SPINLOCK(bio_dirty_lock); 1287 static struct bio *bio_dirty_list; 1288 1289 /* 1290 * This runs in process context 1291 */ 1292 static void bio_dirty_fn(struct work_struct *work) 1293 { 1294 struct bio *bio, *next; 1295 1296 spin_lock_irq(&bio_dirty_lock); 1297 next = bio_dirty_list; 1298 bio_dirty_list = NULL; 1299 spin_unlock_irq(&bio_dirty_lock); 1300 1301 while ((bio = next) != NULL) { 1302 next = bio->bi_private; 1303 1304 bio_release_pages(bio, true); 1305 bio_put(bio); 1306 } 1307 } 1308 1309 void bio_check_pages_dirty(struct bio *bio) 1310 { 1311 struct bio_vec *bvec; 1312 unsigned long flags; 1313 struct bvec_iter_all iter_all; 1314 1315 bio_for_each_segment_all(bvec, bio, iter_all) { 1316 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page)) 1317 goto defer; 1318 } 1319 1320 bio_release_pages(bio, false); 1321 bio_put(bio); 1322 return; 1323 defer: 1324 spin_lock_irqsave(&bio_dirty_lock, flags); 1325 bio->bi_private = bio_dirty_list; 1326 bio_dirty_list = bio; 1327 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1328 schedule_work(&bio_dirty_work); 1329 } 1330 1331 static inline bool bio_remaining_done(struct bio *bio) 1332 { 1333 /* 1334 * If we're not chaining, then ->__bi_remaining is always 1 and 1335 * we always end io on the first invocation. 1336 */ 1337 if (!bio_flagged(bio, BIO_CHAIN)) 1338 return true; 1339 1340 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1341 1342 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1343 bio_clear_flag(bio, BIO_CHAIN); 1344 return true; 1345 } 1346 1347 return false; 1348 } 1349 1350 /** 1351 * bio_endio - end I/O on a bio 1352 * @bio: bio 1353 * 1354 * Description: 1355 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1356 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1357 * bio unless they own it and thus know that it has an end_io function. 1358 * 1359 * bio_endio() can be called several times on a bio that has been chained 1360 * using bio_chain(). The ->bi_end_io() function will only be called the 1361 * last time. 1362 **/ 1363 void bio_endio(struct bio *bio) 1364 { 1365 again: 1366 if (!bio_remaining_done(bio)) 1367 return; 1368 if (!bio_integrity_endio(bio)) 1369 return; 1370 1371 if (bio->bi_bdev) 1372 rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio); 1373 1374 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1375 trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio); 1376 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1377 } 1378 1379 /* 1380 * Need to have a real endio function for chained bios, otherwise 1381 * various corner cases will break (like stacking block devices that 1382 * save/restore bi_end_io) - however, we want to avoid unbounded 1383 * recursion and blowing the stack. Tail call optimization would 1384 * handle this, but compiling with frame pointers also disables 1385 * gcc's sibling call optimization. 1386 */ 1387 if (bio->bi_end_io == bio_chain_endio) { 1388 bio = __bio_chain_endio(bio); 1389 goto again; 1390 } 1391 1392 blk_throtl_bio_endio(bio); 1393 /* release cgroup info */ 1394 bio_uninit(bio); 1395 if (bio->bi_end_io) 1396 bio->bi_end_io(bio); 1397 } 1398 EXPORT_SYMBOL(bio_endio); 1399 1400 /** 1401 * bio_split - split a bio 1402 * @bio: bio to split 1403 * @sectors: number of sectors to split from the front of @bio 1404 * @gfp: gfp mask 1405 * @bs: bio set to allocate from 1406 * 1407 * Allocates and returns a new bio which represents @sectors from the start of 1408 * @bio, and updates @bio to represent the remaining sectors. 1409 * 1410 * Unless this is a discard request the newly allocated bio will point 1411 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that 1412 * neither @bio nor @bs are freed before the split bio. 1413 */ 1414 struct bio *bio_split(struct bio *bio, int sectors, 1415 gfp_t gfp, struct bio_set *bs) 1416 { 1417 struct bio *split; 1418 1419 BUG_ON(sectors <= 0); 1420 BUG_ON(sectors >= bio_sectors(bio)); 1421 1422 /* Zone append commands cannot be split */ 1423 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND)) 1424 return NULL; 1425 1426 split = bio_clone_fast(bio, gfp, bs); 1427 if (!split) 1428 return NULL; 1429 1430 split->bi_iter.bi_size = sectors << 9; 1431 1432 if (bio_integrity(split)) 1433 bio_integrity_trim(split); 1434 1435 bio_advance(bio, split->bi_iter.bi_size); 1436 1437 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1438 bio_set_flag(split, BIO_TRACE_COMPLETION); 1439 1440 return split; 1441 } 1442 EXPORT_SYMBOL(bio_split); 1443 1444 /** 1445 * bio_trim - trim a bio 1446 * @bio: bio to trim 1447 * @offset: number of sectors to trim from the front of @bio 1448 * @size: size we want to trim @bio to, in sectors 1449 */ 1450 void bio_trim(struct bio *bio, int offset, int size) 1451 { 1452 /* 'bio' is a cloned bio which we need to trim to match 1453 * the given offset and size. 1454 */ 1455 1456 size <<= 9; 1457 if (offset == 0 && size == bio->bi_iter.bi_size) 1458 return; 1459 1460 bio_advance(bio, offset << 9); 1461 bio->bi_iter.bi_size = size; 1462 1463 if (bio_integrity(bio)) 1464 bio_integrity_trim(bio); 1465 1466 } 1467 EXPORT_SYMBOL_GPL(bio_trim); 1468 1469 /* 1470 * create memory pools for biovec's in a bio_set. 1471 * use the global biovec slabs created for general use. 1472 */ 1473 int biovec_init_pool(mempool_t *pool, int pool_entries) 1474 { 1475 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1; 1476 1477 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1478 } 1479 1480 /* 1481 * bioset_exit - exit a bioset initialized with bioset_init() 1482 * 1483 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1484 * kzalloc()). 1485 */ 1486 void bioset_exit(struct bio_set *bs) 1487 { 1488 if (bs->rescue_workqueue) 1489 destroy_workqueue(bs->rescue_workqueue); 1490 bs->rescue_workqueue = NULL; 1491 1492 mempool_exit(&bs->bio_pool); 1493 mempool_exit(&bs->bvec_pool); 1494 1495 bioset_integrity_free(bs); 1496 if (bs->bio_slab) 1497 bio_put_slab(bs); 1498 bs->bio_slab = NULL; 1499 } 1500 EXPORT_SYMBOL(bioset_exit); 1501 1502 /** 1503 * bioset_init - Initialize a bio_set 1504 * @bs: pool to initialize 1505 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1506 * @front_pad: Number of bytes to allocate in front of the returned bio 1507 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1508 * and %BIOSET_NEED_RESCUER 1509 * 1510 * Description: 1511 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1512 * to ask for a number of bytes to be allocated in front of the bio. 1513 * Front pad allocation is useful for embedding the bio inside 1514 * another structure, to avoid allocating extra data to go with the bio. 1515 * Note that the bio must be embedded at the END of that structure always, 1516 * or things will break badly. 1517 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1518 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast(). 1519 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to 1520 * dispatch queued requests when the mempool runs out of space. 1521 * 1522 */ 1523 int bioset_init(struct bio_set *bs, 1524 unsigned int pool_size, 1525 unsigned int front_pad, 1526 int flags) 1527 { 1528 bs->front_pad = front_pad; 1529 if (flags & BIOSET_NEED_BVECS) 1530 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1531 else 1532 bs->back_pad = 0; 1533 1534 spin_lock_init(&bs->rescue_lock); 1535 bio_list_init(&bs->rescue_list); 1536 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1537 1538 bs->bio_slab = bio_find_or_create_slab(bs); 1539 if (!bs->bio_slab) 1540 return -ENOMEM; 1541 1542 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 1543 goto bad; 1544 1545 if ((flags & BIOSET_NEED_BVECS) && 1546 biovec_init_pool(&bs->bvec_pool, pool_size)) 1547 goto bad; 1548 1549 if (!(flags & BIOSET_NEED_RESCUER)) 1550 return 0; 1551 1552 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1553 if (!bs->rescue_workqueue) 1554 goto bad; 1555 1556 return 0; 1557 bad: 1558 bioset_exit(bs); 1559 return -ENOMEM; 1560 } 1561 EXPORT_SYMBOL(bioset_init); 1562 1563 /* 1564 * Initialize and setup a new bio_set, based on the settings from 1565 * another bio_set. 1566 */ 1567 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src) 1568 { 1569 int flags; 1570 1571 flags = 0; 1572 if (src->bvec_pool.min_nr) 1573 flags |= BIOSET_NEED_BVECS; 1574 if (src->rescue_workqueue) 1575 flags |= BIOSET_NEED_RESCUER; 1576 1577 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags); 1578 } 1579 EXPORT_SYMBOL(bioset_init_from_src); 1580 1581 static int __init init_bio(void) 1582 { 1583 int i; 1584 1585 bio_integrity_init(); 1586 1587 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) { 1588 struct biovec_slab *bvs = bvec_slabs + i; 1589 1590 bvs->slab = kmem_cache_create(bvs->name, 1591 bvs->nr_vecs * sizeof(struct bio_vec), 0, 1592 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1593 } 1594 1595 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS)) 1596 panic("bio: can't allocate bios\n"); 1597 1598 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) 1599 panic("bio: can't create integrity pool\n"); 1600 1601 return 0; 1602 } 1603 subsys_initcall(init_bio); 1604