xref: /openbmc/linux/block/bio.c (revision f79e4d5f)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 
32 #include <trace/events/block.h>
33 #include "blk.h"
34 
35 /*
36  * Test patch to inline a certain number of bi_io_vec's inside the bio
37  * itself, to shrink a bio data allocation from two mempool calls to one
38  */
39 #define BIO_INLINE_VECS		4
40 
41 /*
42  * if you change this list, also change bvec_alloc or things will
43  * break badly! cannot be bigger than what you can fit into an
44  * unsigned short
45  */
46 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
48 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
49 };
50 #undef BV
51 
52 /*
53  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54  * IO code that does not need private memory pools.
55  */
56 struct bio_set fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58 
59 /*
60  * Our slab pool management
61  */
62 struct bio_slab {
63 	struct kmem_cache *slab;
64 	unsigned int slab_ref;
65 	unsigned int slab_size;
66 	char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71 
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 	unsigned int sz = sizeof(struct bio) + extra_size;
75 	struct kmem_cache *slab = NULL;
76 	struct bio_slab *bslab, *new_bio_slabs;
77 	unsigned int new_bio_slab_max;
78 	unsigned int i, entry = -1;
79 
80 	mutex_lock(&bio_slab_lock);
81 
82 	i = 0;
83 	while (i < bio_slab_nr) {
84 		bslab = &bio_slabs[i];
85 
86 		if (!bslab->slab && entry == -1)
87 			entry = i;
88 		else if (bslab->slab_size == sz) {
89 			slab = bslab->slab;
90 			bslab->slab_ref++;
91 			break;
92 		}
93 		i++;
94 	}
95 
96 	if (slab)
97 		goto out_unlock;
98 
99 	if (bio_slab_nr == bio_slab_max && entry == -1) {
100 		new_bio_slab_max = bio_slab_max << 1;
101 		new_bio_slabs = krealloc(bio_slabs,
102 					 new_bio_slab_max * sizeof(struct bio_slab),
103 					 GFP_KERNEL);
104 		if (!new_bio_slabs)
105 			goto out_unlock;
106 		bio_slab_max = new_bio_slab_max;
107 		bio_slabs = new_bio_slabs;
108 	}
109 	if (entry == -1)
110 		entry = bio_slab_nr++;
111 
112 	bslab = &bio_slabs[entry];
113 
114 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 				 SLAB_HWCACHE_ALIGN, NULL);
117 	if (!slab)
118 		goto out_unlock;
119 
120 	bslab->slab = slab;
121 	bslab->slab_ref = 1;
122 	bslab->slab_size = sz;
123 out_unlock:
124 	mutex_unlock(&bio_slab_lock);
125 	return slab;
126 }
127 
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 	struct bio_slab *bslab = NULL;
131 	unsigned int i;
132 
133 	mutex_lock(&bio_slab_lock);
134 
135 	for (i = 0; i < bio_slab_nr; i++) {
136 		if (bs->bio_slab == bio_slabs[i].slab) {
137 			bslab = &bio_slabs[i];
138 			break;
139 		}
140 	}
141 
142 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 		goto out;
144 
145 	WARN_ON(!bslab->slab_ref);
146 
147 	if (--bslab->slab_ref)
148 		goto out;
149 
150 	kmem_cache_destroy(bslab->slab);
151 	bslab->slab = NULL;
152 
153 out:
154 	mutex_unlock(&bio_slab_lock);
155 }
156 
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 	return bvec_slabs[idx].nr_vecs;
160 }
161 
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 	if (!idx)
165 		return;
166 	idx--;
167 
168 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
169 
170 	if (idx == BVEC_POOL_MAX) {
171 		mempool_free(bv, pool);
172 	} else {
173 		struct biovec_slab *bvs = bvec_slabs + idx;
174 
175 		kmem_cache_free(bvs->slab, bv);
176 	}
177 }
178 
179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 			   mempool_t *pool)
181 {
182 	struct bio_vec *bvl;
183 
184 	/*
185 	 * see comment near bvec_array define!
186 	 */
187 	switch (nr) {
188 	case 1:
189 		*idx = 0;
190 		break;
191 	case 2 ... 4:
192 		*idx = 1;
193 		break;
194 	case 5 ... 16:
195 		*idx = 2;
196 		break;
197 	case 17 ... 64:
198 		*idx = 3;
199 		break;
200 	case 65 ... 128:
201 		*idx = 4;
202 		break;
203 	case 129 ... BIO_MAX_PAGES:
204 		*idx = 5;
205 		break;
206 	default:
207 		return NULL;
208 	}
209 
210 	/*
211 	 * idx now points to the pool we want to allocate from. only the
212 	 * 1-vec entry pool is mempool backed.
213 	 */
214 	if (*idx == BVEC_POOL_MAX) {
215 fallback:
216 		bvl = mempool_alloc(pool, gfp_mask);
217 	} else {
218 		struct biovec_slab *bvs = bvec_slabs + *idx;
219 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
220 
221 		/*
222 		 * Make this allocation restricted and don't dump info on
223 		 * allocation failures, since we'll fallback to the mempool
224 		 * in case of failure.
225 		 */
226 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
227 
228 		/*
229 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
230 		 * is set, retry with the 1-entry mempool
231 		 */
232 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
233 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
234 			*idx = BVEC_POOL_MAX;
235 			goto fallback;
236 		}
237 	}
238 
239 	(*idx)++;
240 	return bvl;
241 }
242 
243 void bio_uninit(struct bio *bio)
244 {
245 	bio_disassociate_task(bio);
246 }
247 EXPORT_SYMBOL(bio_uninit);
248 
249 static void bio_free(struct bio *bio)
250 {
251 	struct bio_set *bs = bio->bi_pool;
252 	void *p;
253 
254 	bio_uninit(bio);
255 
256 	if (bs) {
257 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
258 
259 		/*
260 		 * If we have front padding, adjust the bio pointer before freeing
261 		 */
262 		p = bio;
263 		p -= bs->front_pad;
264 
265 		mempool_free(p, &bs->bio_pool);
266 	} else {
267 		/* Bio was allocated by bio_kmalloc() */
268 		kfree(bio);
269 	}
270 }
271 
272 /*
273  * Users of this function have their own bio allocation. Subsequently,
274  * they must remember to pair any call to bio_init() with bio_uninit()
275  * when IO has completed, or when the bio is released.
276  */
277 void bio_init(struct bio *bio, struct bio_vec *table,
278 	      unsigned short max_vecs)
279 {
280 	memset(bio, 0, sizeof(*bio));
281 	atomic_set(&bio->__bi_remaining, 1);
282 	atomic_set(&bio->__bi_cnt, 1);
283 
284 	bio->bi_io_vec = table;
285 	bio->bi_max_vecs = max_vecs;
286 }
287 EXPORT_SYMBOL(bio_init);
288 
289 /**
290  * bio_reset - reinitialize a bio
291  * @bio:	bio to reset
292  *
293  * Description:
294  *   After calling bio_reset(), @bio will be in the same state as a freshly
295  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
296  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
297  *   comment in struct bio.
298  */
299 void bio_reset(struct bio *bio)
300 {
301 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
302 
303 	bio_uninit(bio);
304 
305 	memset(bio, 0, BIO_RESET_BYTES);
306 	bio->bi_flags = flags;
307 	atomic_set(&bio->__bi_remaining, 1);
308 }
309 EXPORT_SYMBOL(bio_reset);
310 
311 static struct bio *__bio_chain_endio(struct bio *bio)
312 {
313 	struct bio *parent = bio->bi_private;
314 
315 	if (!parent->bi_status)
316 		parent->bi_status = bio->bi_status;
317 	bio_put(bio);
318 	return parent;
319 }
320 
321 static void bio_chain_endio(struct bio *bio)
322 {
323 	bio_endio(__bio_chain_endio(bio));
324 }
325 
326 /**
327  * bio_chain - chain bio completions
328  * @bio: the target bio
329  * @parent: the @bio's parent bio
330  *
331  * The caller won't have a bi_end_io called when @bio completes - instead,
332  * @parent's bi_end_io won't be called until both @parent and @bio have
333  * completed; the chained bio will also be freed when it completes.
334  *
335  * The caller must not set bi_private or bi_end_io in @bio.
336  */
337 void bio_chain(struct bio *bio, struct bio *parent)
338 {
339 	BUG_ON(bio->bi_private || bio->bi_end_io);
340 
341 	bio->bi_private = parent;
342 	bio->bi_end_io	= bio_chain_endio;
343 	bio_inc_remaining(parent);
344 }
345 EXPORT_SYMBOL(bio_chain);
346 
347 static void bio_alloc_rescue(struct work_struct *work)
348 {
349 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
350 	struct bio *bio;
351 
352 	while (1) {
353 		spin_lock(&bs->rescue_lock);
354 		bio = bio_list_pop(&bs->rescue_list);
355 		spin_unlock(&bs->rescue_lock);
356 
357 		if (!bio)
358 			break;
359 
360 		generic_make_request(bio);
361 	}
362 }
363 
364 static void punt_bios_to_rescuer(struct bio_set *bs)
365 {
366 	struct bio_list punt, nopunt;
367 	struct bio *bio;
368 
369 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
370 		return;
371 	/*
372 	 * In order to guarantee forward progress we must punt only bios that
373 	 * were allocated from this bio_set; otherwise, if there was a bio on
374 	 * there for a stacking driver higher up in the stack, processing it
375 	 * could require allocating bios from this bio_set, and doing that from
376 	 * our own rescuer would be bad.
377 	 *
378 	 * Since bio lists are singly linked, pop them all instead of trying to
379 	 * remove from the middle of the list:
380 	 */
381 
382 	bio_list_init(&punt);
383 	bio_list_init(&nopunt);
384 
385 	while ((bio = bio_list_pop(&current->bio_list[0])))
386 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
387 	current->bio_list[0] = nopunt;
388 
389 	bio_list_init(&nopunt);
390 	while ((bio = bio_list_pop(&current->bio_list[1])))
391 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 	current->bio_list[1] = nopunt;
393 
394 	spin_lock(&bs->rescue_lock);
395 	bio_list_merge(&bs->rescue_list, &punt);
396 	spin_unlock(&bs->rescue_lock);
397 
398 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
399 }
400 
401 /**
402  * bio_alloc_bioset - allocate a bio for I/O
403  * @gfp_mask:   the GFP_* mask given to the slab allocator
404  * @nr_iovecs:	number of iovecs to pre-allocate
405  * @bs:		the bio_set to allocate from.
406  *
407  * Description:
408  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
409  *   backed by the @bs's mempool.
410  *
411  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
412  *   always be able to allocate a bio. This is due to the mempool guarantees.
413  *   To make this work, callers must never allocate more than 1 bio at a time
414  *   from this pool. Callers that need to allocate more than 1 bio must always
415  *   submit the previously allocated bio for IO before attempting to allocate
416  *   a new one. Failure to do so can cause deadlocks under memory pressure.
417  *
418  *   Note that when running under generic_make_request() (i.e. any block
419  *   driver), bios are not submitted until after you return - see the code in
420  *   generic_make_request() that converts recursion into iteration, to prevent
421  *   stack overflows.
422  *
423  *   This would normally mean allocating multiple bios under
424  *   generic_make_request() would be susceptible to deadlocks, but we have
425  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
426  *   thread.
427  *
428  *   However, we do not guarantee forward progress for allocations from other
429  *   mempools. Doing multiple allocations from the same mempool under
430  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
431  *   for per bio allocations.
432  *
433  *   RETURNS:
434  *   Pointer to new bio on success, NULL on failure.
435  */
436 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
437 			     struct bio_set *bs)
438 {
439 	gfp_t saved_gfp = gfp_mask;
440 	unsigned front_pad;
441 	unsigned inline_vecs;
442 	struct bio_vec *bvl = NULL;
443 	struct bio *bio;
444 	void *p;
445 
446 	if (!bs) {
447 		if (nr_iovecs > UIO_MAXIOV)
448 			return NULL;
449 
450 		p = kmalloc(sizeof(struct bio) +
451 			    nr_iovecs * sizeof(struct bio_vec),
452 			    gfp_mask);
453 		front_pad = 0;
454 		inline_vecs = nr_iovecs;
455 	} else {
456 		/* should not use nobvec bioset for nr_iovecs > 0 */
457 		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
458 				 nr_iovecs > 0))
459 			return NULL;
460 		/*
461 		 * generic_make_request() converts recursion to iteration; this
462 		 * means if we're running beneath it, any bios we allocate and
463 		 * submit will not be submitted (and thus freed) until after we
464 		 * return.
465 		 *
466 		 * This exposes us to a potential deadlock if we allocate
467 		 * multiple bios from the same bio_set() while running
468 		 * underneath generic_make_request(). If we were to allocate
469 		 * multiple bios (say a stacking block driver that was splitting
470 		 * bios), we would deadlock if we exhausted the mempool's
471 		 * reserve.
472 		 *
473 		 * We solve this, and guarantee forward progress, with a rescuer
474 		 * workqueue per bio_set. If we go to allocate and there are
475 		 * bios on current->bio_list, we first try the allocation
476 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
477 		 * bios we would be blocking to the rescuer workqueue before
478 		 * we retry with the original gfp_flags.
479 		 */
480 
481 		if (current->bio_list &&
482 		    (!bio_list_empty(&current->bio_list[0]) ||
483 		     !bio_list_empty(&current->bio_list[1])) &&
484 		    bs->rescue_workqueue)
485 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
486 
487 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
488 		if (!p && gfp_mask != saved_gfp) {
489 			punt_bios_to_rescuer(bs);
490 			gfp_mask = saved_gfp;
491 			p = mempool_alloc(&bs->bio_pool, gfp_mask);
492 		}
493 
494 		front_pad = bs->front_pad;
495 		inline_vecs = BIO_INLINE_VECS;
496 	}
497 
498 	if (unlikely(!p))
499 		return NULL;
500 
501 	bio = p + front_pad;
502 	bio_init(bio, NULL, 0);
503 
504 	if (nr_iovecs > inline_vecs) {
505 		unsigned long idx = 0;
506 
507 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
508 		if (!bvl && gfp_mask != saved_gfp) {
509 			punt_bios_to_rescuer(bs);
510 			gfp_mask = saved_gfp;
511 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
512 		}
513 
514 		if (unlikely(!bvl))
515 			goto err_free;
516 
517 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
518 	} else if (nr_iovecs) {
519 		bvl = bio->bi_inline_vecs;
520 	}
521 
522 	bio->bi_pool = bs;
523 	bio->bi_max_vecs = nr_iovecs;
524 	bio->bi_io_vec = bvl;
525 	return bio;
526 
527 err_free:
528 	mempool_free(p, &bs->bio_pool);
529 	return NULL;
530 }
531 EXPORT_SYMBOL(bio_alloc_bioset);
532 
533 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
534 {
535 	unsigned long flags;
536 	struct bio_vec bv;
537 	struct bvec_iter iter;
538 
539 	__bio_for_each_segment(bv, bio, iter, start) {
540 		char *data = bvec_kmap_irq(&bv, &flags);
541 		memset(data, 0, bv.bv_len);
542 		flush_dcache_page(bv.bv_page);
543 		bvec_kunmap_irq(data, &flags);
544 	}
545 }
546 EXPORT_SYMBOL(zero_fill_bio_iter);
547 
548 /**
549  * bio_put - release a reference to a bio
550  * @bio:   bio to release reference to
551  *
552  * Description:
553  *   Put a reference to a &struct bio, either one you have gotten with
554  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
555  **/
556 void bio_put(struct bio *bio)
557 {
558 	if (!bio_flagged(bio, BIO_REFFED))
559 		bio_free(bio);
560 	else {
561 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
562 
563 		/*
564 		 * last put frees it
565 		 */
566 		if (atomic_dec_and_test(&bio->__bi_cnt))
567 			bio_free(bio);
568 	}
569 }
570 EXPORT_SYMBOL(bio_put);
571 
572 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
573 {
574 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
575 		blk_recount_segments(q, bio);
576 
577 	return bio->bi_phys_segments;
578 }
579 EXPORT_SYMBOL(bio_phys_segments);
580 
581 /**
582  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
583  * 	@bio: destination bio
584  * 	@bio_src: bio to clone
585  *
586  *	Clone a &bio. Caller will own the returned bio, but not
587  *	the actual data it points to. Reference count of returned
588  * 	bio will be one.
589  *
590  * 	Caller must ensure that @bio_src is not freed before @bio.
591  */
592 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
593 {
594 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
595 
596 	/*
597 	 * most users will be overriding ->bi_disk with a new target,
598 	 * so we don't set nor calculate new physical/hw segment counts here
599 	 */
600 	bio->bi_disk = bio_src->bi_disk;
601 	bio->bi_partno = bio_src->bi_partno;
602 	bio_set_flag(bio, BIO_CLONED);
603 	if (bio_flagged(bio_src, BIO_THROTTLED))
604 		bio_set_flag(bio, BIO_THROTTLED);
605 	bio->bi_opf = bio_src->bi_opf;
606 	bio->bi_write_hint = bio_src->bi_write_hint;
607 	bio->bi_iter = bio_src->bi_iter;
608 	bio->bi_io_vec = bio_src->bi_io_vec;
609 
610 	bio_clone_blkcg_association(bio, bio_src);
611 }
612 EXPORT_SYMBOL(__bio_clone_fast);
613 
614 /**
615  *	bio_clone_fast - clone a bio that shares the original bio's biovec
616  *	@bio: bio to clone
617  *	@gfp_mask: allocation priority
618  *	@bs: bio_set to allocate from
619  *
620  * 	Like __bio_clone_fast, only also allocates the returned bio
621  */
622 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
623 {
624 	struct bio *b;
625 
626 	b = bio_alloc_bioset(gfp_mask, 0, bs);
627 	if (!b)
628 		return NULL;
629 
630 	__bio_clone_fast(b, bio);
631 
632 	if (bio_integrity(bio)) {
633 		int ret;
634 
635 		ret = bio_integrity_clone(b, bio, gfp_mask);
636 
637 		if (ret < 0) {
638 			bio_put(b);
639 			return NULL;
640 		}
641 	}
642 
643 	return b;
644 }
645 EXPORT_SYMBOL(bio_clone_fast);
646 
647 /**
648  * 	bio_clone_bioset - clone a bio
649  * 	@bio_src: bio to clone
650  *	@gfp_mask: allocation priority
651  *	@bs: bio_set to allocate from
652  *
653  *	Clone bio. Caller will own the returned bio, but not the actual data it
654  *	points to. Reference count of returned bio will be one.
655  */
656 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
657 			     struct bio_set *bs)
658 {
659 	struct bvec_iter iter;
660 	struct bio_vec bv;
661 	struct bio *bio;
662 
663 	/*
664 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
665 	 * bio_src->bi_io_vec to bio->bi_io_vec.
666 	 *
667 	 * We can't do that anymore, because:
668 	 *
669 	 *  - The point of cloning the biovec is to produce a bio with a biovec
670 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
671 	 *
672 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
673 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
674 	 *    But the clone should succeed as long as the number of biovecs we
675 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
676 	 *
677 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
678 	 *    that does not own the bio - reason being drivers don't use it for
679 	 *    iterating over the biovec anymore, so expecting it to be kept up
680 	 *    to date (i.e. for clones that share the parent biovec) is just
681 	 *    asking for trouble and would force extra work on
682 	 *    __bio_clone_fast() anyways.
683 	 */
684 
685 	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
686 	if (!bio)
687 		return NULL;
688 	bio->bi_disk		= bio_src->bi_disk;
689 	bio->bi_opf		= bio_src->bi_opf;
690 	bio->bi_write_hint	= bio_src->bi_write_hint;
691 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
692 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
693 
694 	switch (bio_op(bio)) {
695 	case REQ_OP_DISCARD:
696 	case REQ_OP_SECURE_ERASE:
697 	case REQ_OP_WRITE_ZEROES:
698 		break;
699 	case REQ_OP_WRITE_SAME:
700 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
701 		break;
702 	default:
703 		bio_for_each_segment(bv, bio_src, iter)
704 			bio->bi_io_vec[bio->bi_vcnt++] = bv;
705 		break;
706 	}
707 
708 	if (bio_integrity(bio_src)) {
709 		int ret;
710 
711 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
712 		if (ret < 0) {
713 			bio_put(bio);
714 			return NULL;
715 		}
716 	}
717 
718 	bio_clone_blkcg_association(bio, bio_src);
719 
720 	return bio;
721 }
722 EXPORT_SYMBOL(bio_clone_bioset);
723 
724 /**
725  *	bio_add_pc_page	-	attempt to add page to bio
726  *	@q: the target queue
727  *	@bio: destination bio
728  *	@page: page to add
729  *	@len: vec entry length
730  *	@offset: vec entry offset
731  *
732  *	Attempt to add a page to the bio_vec maplist. This can fail for a
733  *	number of reasons, such as the bio being full or target block device
734  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
735  *	so it is always possible to add a single page to an empty bio.
736  *
737  *	This should only be used by REQ_PC bios.
738  */
739 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
740 		    *page, unsigned int len, unsigned int offset)
741 {
742 	int retried_segments = 0;
743 	struct bio_vec *bvec;
744 
745 	/*
746 	 * cloned bio must not modify vec list
747 	 */
748 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
749 		return 0;
750 
751 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
752 		return 0;
753 
754 	/*
755 	 * For filesystems with a blocksize smaller than the pagesize
756 	 * we will often be called with the same page as last time and
757 	 * a consecutive offset.  Optimize this special case.
758 	 */
759 	if (bio->bi_vcnt > 0) {
760 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
761 
762 		if (page == prev->bv_page &&
763 		    offset == prev->bv_offset + prev->bv_len) {
764 			prev->bv_len += len;
765 			bio->bi_iter.bi_size += len;
766 			goto done;
767 		}
768 
769 		/*
770 		 * If the queue doesn't support SG gaps and adding this
771 		 * offset would create a gap, disallow it.
772 		 */
773 		if (bvec_gap_to_prev(q, prev, offset))
774 			return 0;
775 	}
776 
777 	if (bio_full(bio))
778 		return 0;
779 
780 	/*
781 	 * setup the new entry, we might clear it again later if we
782 	 * cannot add the page
783 	 */
784 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
785 	bvec->bv_page = page;
786 	bvec->bv_len = len;
787 	bvec->bv_offset = offset;
788 	bio->bi_vcnt++;
789 	bio->bi_phys_segments++;
790 	bio->bi_iter.bi_size += len;
791 
792 	/*
793 	 * Perform a recount if the number of segments is greater
794 	 * than queue_max_segments(q).
795 	 */
796 
797 	while (bio->bi_phys_segments > queue_max_segments(q)) {
798 
799 		if (retried_segments)
800 			goto failed;
801 
802 		retried_segments = 1;
803 		blk_recount_segments(q, bio);
804 	}
805 
806 	/* If we may be able to merge these biovecs, force a recount */
807 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
808 		bio_clear_flag(bio, BIO_SEG_VALID);
809 
810  done:
811 	return len;
812 
813  failed:
814 	bvec->bv_page = NULL;
815 	bvec->bv_len = 0;
816 	bvec->bv_offset = 0;
817 	bio->bi_vcnt--;
818 	bio->bi_iter.bi_size -= len;
819 	blk_recount_segments(q, bio);
820 	return 0;
821 }
822 EXPORT_SYMBOL(bio_add_pc_page);
823 
824 /**
825  * __bio_try_merge_page - try appending data to an existing bvec.
826  * @bio: destination bio
827  * @page: page to add
828  * @len: length of the data to add
829  * @off: offset of the data in @page
830  *
831  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
832  * a useful optimisation for file systems with a block size smaller than the
833  * page size.
834  *
835  * Return %true on success or %false on failure.
836  */
837 bool __bio_try_merge_page(struct bio *bio, struct page *page,
838 		unsigned int len, unsigned int off)
839 {
840 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
841 		return false;
842 
843 	if (bio->bi_vcnt > 0) {
844 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
845 
846 		if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) {
847 			bv->bv_len += len;
848 			bio->bi_iter.bi_size += len;
849 			return true;
850 		}
851 	}
852 	return false;
853 }
854 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
855 
856 /**
857  * __bio_add_page - add page to a bio in a new segment
858  * @bio: destination bio
859  * @page: page to add
860  * @len: length of the data to add
861  * @off: offset of the data in @page
862  *
863  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
864  * that @bio has space for another bvec.
865  */
866 void __bio_add_page(struct bio *bio, struct page *page,
867 		unsigned int len, unsigned int off)
868 {
869 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
870 
871 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
872 	WARN_ON_ONCE(bio_full(bio));
873 
874 	bv->bv_page = page;
875 	bv->bv_offset = off;
876 	bv->bv_len = len;
877 
878 	bio->bi_iter.bi_size += len;
879 	bio->bi_vcnt++;
880 }
881 EXPORT_SYMBOL_GPL(__bio_add_page);
882 
883 /**
884  *	bio_add_page	-	attempt to add page to bio
885  *	@bio: destination bio
886  *	@page: page to add
887  *	@len: vec entry length
888  *	@offset: vec entry offset
889  *
890  *	Attempt to add a page to the bio_vec maplist. This will only fail
891  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
892  */
893 int bio_add_page(struct bio *bio, struct page *page,
894 		 unsigned int len, unsigned int offset)
895 {
896 	if (!__bio_try_merge_page(bio, page, len, offset)) {
897 		if (bio_full(bio))
898 			return 0;
899 		__bio_add_page(bio, page, len, offset);
900 	}
901 	return len;
902 }
903 EXPORT_SYMBOL(bio_add_page);
904 
905 /**
906  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
907  * @bio: bio to add pages to
908  * @iter: iov iterator describing the region to be mapped
909  *
910  * Pins pages from *iter and appends them to @bio's bvec array. The
911  * pages will have to be released using put_page() when done.
912  * For multi-segment *iter, this function only adds pages from the
913  * the next non-empty segment of the iov iterator.
914  */
915 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
916 {
917 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt, idx;
918 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
919 	struct page **pages = (struct page **)bv;
920 	size_t offset;
921 	ssize_t size;
922 
923 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
924 	if (unlikely(size <= 0))
925 		return size ? size : -EFAULT;
926 	idx = nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
927 
928 	/*
929 	 * Deep magic below:  We need to walk the pinned pages backwards
930 	 * because we are abusing the space allocated for the bio_vecs
931 	 * for the page array.  Because the bio_vecs are larger than the
932 	 * page pointers by definition this will always work.  But it also
933 	 * means we can't use bio_add_page, so any changes to it's semantics
934 	 * need to be reflected here as well.
935 	 */
936 	bio->bi_iter.bi_size += size;
937 	bio->bi_vcnt += nr_pages;
938 
939 	while (idx--) {
940 		bv[idx].bv_page = pages[idx];
941 		bv[idx].bv_len = PAGE_SIZE;
942 		bv[idx].bv_offset = 0;
943 	}
944 
945 	bv[0].bv_offset += offset;
946 	bv[0].bv_len -= offset;
947 	bv[nr_pages - 1].bv_len -= nr_pages * PAGE_SIZE - offset - size;
948 
949 	iov_iter_advance(iter, size);
950 	return 0;
951 }
952 
953 /**
954  * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
955  * @bio: bio to add pages to
956  * @iter: iov iterator describing the region to be mapped
957  *
958  * Pins pages from *iter and appends them to @bio's bvec array. The
959  * pages will have to be released using put_page() when done.
960  * The function tries, but does not guarantee, to pin as many pages as
961  * fit into the bio, or are requested in *iter, whatever is smaller.
962  * If MM encounters an error pinning the requested pages, it stops.
963  * Error is returned only if 0 pages could be pinned.
964  */
965 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
966 {
967 	unsigned short orig_vcnt = bio->bi_vcnt;
968 
969 	do {
970 		int ret = __bio_iov_iter_get_pages(bio, iter);
971 
972 		if (unlikely(ret))
973 			return bio->bi_vcnt > orig_vcnt ? 0 : ret;
974 
975 	} while (iov_iter_count(iter) && !bio_full(bio));
976 
977 	return 0;
978 }
979 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
980 
981 static void submit_bio_wait_endio(struct bio *bio)
982 {
983 	complete(bio->bi_private);
984 }
985 
986 /**
987  * submit_bio_wait - submit a bio, and wait until it completes
988  * @bio: The &struct bio which describes the I/O
989  *
990  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
991  * bio_endio() on failure.
992  *
993  * WARNING: Unlike to how submit_bio() is usually used, this function does not
994  * result in bio reference to be consumed. The caller must drop the reference
995  * on his own.
996  */
997 int submit_bio_wait(struct bio *bio)
998 {
999 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
1000 
1001 	bio->bi_private = &done;
1002 	bio->bi_end_io = submit_bio_wait_endio;
1003 	bio->bi_opf |= REQ_SYNC;
1004 	submit_bio(bio);
1005 	wait_for_completion_io(&done);
1006 
1007 	return blk_status_to_errno(bio->bi_status);
1008 }
1009 EXPORT_SYMBOL(submit_bio_wait);
1010 
1011 /**
1012  * bio_advance - increment/complete a bio by some number of bytes
1013  * @bio:	bio to advance
1014  * @bytes:	number of bytes to complete
1015  *
1016  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1017  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1018  * be updated on the last bvec as well.
1019  *
1020  * @bio will then represent the remaining, uncompleted portion of the io.
1021  */
1022 void bio_advance(struct bio *bio, unsigned bytes)
1023 {
1024 	if (bio_integrity(bio))
1025 		bio_integrity_advance(bio, bytes);
1026 
1027 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1028 }
1029 EXPORT_SYMBOL(bio_advance);
1030 
1031 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1032 			struct bio *src, struct bvec_iter *src_iter)
1033 {
1034 	struct bio_vec src_bv, dst_bv;
1035 	void *src_p, *dst_p;
1036 	unsigned bytes;
1037 
1038 	while (src_iter->bi_size && dst_iter->bi_size) {
1039 		src_bv = bio_iter_iovec(src, *src_iter);
1040 		dst_bv = bio_iter_iovec(dst, *dst_iter);
1041 
1042 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1043 
1044 		src_p = kmap_atomic(src_bv.bv_page);
1045 		dst_p = kmap_atomic(dst_bv.bv_page);
1046 
1047 		memcpy(dst_p + dst_bv.bv_offset,
1048 		       src_p + src_bv.bv_offset,
1049 		       bytes);
1050 
1051 		kunmap_atomic(dst_p);
1052 		kunmap_atomic(src_p);
1053 
1054 		flush_dcache_page(dst_bv.bv_page);
1055 
1056 		bio_advance_iter(src, src_iter, bytes);
1057 		bio_advance_iter(dst, dst_iter, bytes);
1058 	}
1059 }
1060 EXPORT_SYMBOL(bio_copy_data_iter);
1061 
1062 /**
1063  * bio_copy_data - copy contents of data buffers from one bio to another
1064  * @src: source bio
1065  * @dst: destination bio
1066  *
1067  * Stops when it reaches the end of either @src or @dst - that is, copies
1068  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1069  */
1070 void bio_copy_data(struct bio *dst, struct bio *src)
1071 {
1072 	struct bvec_iter src_iter = src->bi_iter;
1073 	struct bvec_iter dst_iter = dst->bi_iter;
1074 
1075 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1076 }
1077 EXPORT_SYMBOL(bio_copy_data);
1078 
1079 /**
1080  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1081  * another
1082  * @src: source bio list
1083  * @dst: destination bio list
1084  *
1085  * Stops when it reaches the end of either the @src list or @dst list - that is,
1086  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1087  * bios).
1088  */
1089 void bio_list_copy_data(struct bio *dst, struct bio *src)
1090 {
1091 	struct bvec_iter src_iter = src->bi_iter;
1092 	struct bvec_iter dst_iter = dst->bi_iter;
1093 
1094 	while (1) {
1095 		if (!src_iter.bi_size) {
1096 			src = src->bi_next;
1097 			if (!src)
1098 				break;
1099 
1100 			src_iter = src->bi_iter;
1101 		}
1102 
1103 		if (!dst_iter.bi_size) {
1104 			dst = dst->bi_next;
1105 			if (!dst)
1106 				break;
1107 
1108 			dst_iter = dst->bi_iter;
1109 		}
1110 
1111 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1112 	}
1113 }
1114 EXPORT_SYMBOL(bio_list_copy_data);
1115 
1116 struct bio_map_data {
1117 	int is_our_pages;
1118 	struct iov_iter iter;
1119 	struct iovec iov[];
1120 };
1121 
1122 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1123 					       gfp_t gfp_mask)
1124 {
1125 	struct bio_map_data *bmd;
1126 	if (data->nr_segs > UIO_MAXIOV)
1127 		return NULL;
1128 
1129 	bmd = kmalloc(sizeof(struct bio_map_data) +
1130 		       sizeof(struct iovec) * data->nr_segs, gfp_mask);
1131 	if (!bmd)
1132 		return NULL;
1133 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1134 	bmd->iter = *data;
1135 	bmd->iter.iov = bmd->iov;
1136 	return bmd;
1137 }
1138 
1139 /**
1140  * bio_copy_from_iter - copy all pages from iov_iter to bio
1141  * @bio: The &struct bio which describes the I/O as destination
1142  * @iter: iov_iter as source
1143  *
1144  * Copy all pages from iov_iter to bio.
1145  * Returns 0 on success, or error on failure.
1146  */
1147 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1148 {
1149 	int i;
1150 	struct bio_vec *bvec;
1151 
1152 	bio_for_each_segment_all(bvec, bio, i) {
1153 		ssize_t ret;
1154 
1155 		ret = copy_page_from_iter(bvec->bv_page,
1156 					  bvec->bv_offset,
1157 					  bvec->bv_len,
1158 					  iter);
1159 
1160 		if (!iov_iter_count(iter))
1161 			break;
1162 
1163 		if (ret < bvec->bv_len)
1164 			return -EFAULT;
1165 	}
1166 
1167 	return 0;
1168 }
1169 
1170 /**
1171  * bio_copy_to_iter - copy all pages from bio to iov_iter
1172  * @bio: The &struct bio which describes the I/O as source
1173  * @iter: iov_iter as destination
1174  *
1175  * Copy all pages from bio to iov_iter.
1176  * Returns 0 on success, or error on failure.
1177  */
1178 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1179 {
1180 	int i;
1181 	struct bio_vec *bvec;
1182 
1183 	bio_for_each_segment_all(bvec, bio, i) {
1184 		ssize_t ret;
1185 
1186 		ret = copy_page_to_iter(bvec->bv_page,
1187 					bvec->bv_offset,
1188 					bvec->bv_len,
1189 					&iter);
1190 
1191 		if (!iov_iter_count(&iter))
1192 			break;
1193 
1194 		if (ret < bvec->bv_len)
1195 			return -EFAULT;
1196 	}
1197 
1198 	return 0;
1199 }
1200 
1201 void bio_free_pages(struct bio *bio)
1202 {
1203 	struct bio_vec *bvec;
1204 	int i;
1205 
1206 	bio_for_each_segment_all(bvec, bio, i)
1207 		__free_page(bvec->bv_page);
1208 }
1209 EXPORT_SYMBOL(bio_free_pages);
1210 
1211 /**
1212  *	bio_uncopy_user	-	finish previously mapped bio
1213  *	@bio: bio being terminated
1214  *
1215  *	Free pages allocated from bio_copy_user_iov() and write back data
1216  *	to user space in case of a read.
1217  */
1218 int bio_uncopy_user(struct bio *bio)
1219 {
1220 	struct bio_map_data *bmd = bio->bi_private;
1221 	int ret = 0;
1222 
1223 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1224 		/*
1225 		 * if we're in a workqueue, the request is orphaned, so
1226 		 * don't copy into a random user address space, just free
1227 		 * and return -EINTR so user space doesn't expect any data.
1228 		 */
1229 		if (!current->mm)
1230 			ret = -EINTR;
1231 		else if (bio_data_dir(bio) == READ)
1232 			ret = bio_copy_to_iter(bio, bmd->iter);
1233 		if (bmd->is_our_pages)
1234 			bio_free_pages(bio);
1235 	}
1236 	kfree(bmd);
1237 	bio_put(bio);
1238 	return ret;
1239 }
1240 
1241 /**
1242  *	bio_copy_user_iov	-	copy user data to bio
1243  *	@q:		destination block queue
1244  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1245  *	@iter:		iovec iterator
1246  *	@gfp_mask:	memory allocation flags
1247  *
1248  *	Prepares and returns a bio for indirect user io, bouncing data
1249  *	to/from kernel pages as necessary. Must be paired with
1250  *	call bio_uncopy_user() on io completion.
1251  */
1252 struct bio *bio_copy_user_iov(struct request_queue *q,
1253 			      struct rq_map_data *map_data,
1254 			      struct iov_iter *iter,
1255 			      gfp_t gfp_mask)
1256 {
1257 	struct bio_map_data *bmd;
1258 	struct page *page;
1259 	struct bio *bio;
1260 	int i = 0, ret;
1261 	int nr_pages;
1262 	unsigned int len = iter->count;
1263 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1264 
1265 	bmd = bio_alloc_map_data(iter, gfp_mask);
1266 	if (!bmd)
1267 		return ERR_PTR(-ENOMEM);
1268 
1269 	/*
1270 	 * We need to do a deep copy of the iov_iter including the iovecs.
1271 	 * The caller provided iov might point to an on-stack or otherwise
1272 	 * shortlived one.
1273 	 */
1274 	bmd->is_our_pages = map_data ? 0 : 1;
1275 
1276 	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1277 	if (nr_pages > BIO_MAX_PAGES)
1278 		nr_pages = BIO_MAX_PAGES;
1279 
1280 	ret = -ENOMEM;
1281 	bio = bio_kmalloc(gfp_mask, nr_pages);
1282 	if (!bio)
1283 		goto out_bmd;
1284 
1285 	ret = 0;
1286 
1287 	if (map_data) {
1288 		nr_pages = 1 << map_data->page_order;
1289 		i = map_data->offset / PAGE_SIZE;
1290 	}
1291 	while (len) {
1292 		unsigned int bytes = PAGE_SIZE;
1293 
1294 		bytes -= offset;
1295 
1296 		if (bytes > len)
1297 			bytes = len;
1298 
1299 		if (map_data) {
1300 			if (i == map_data->nr_entries * nr_pages) {
1301 				ret = -ENOMEM;
1302 				break;
1303 			}
1304 
1305 			page = map_data->pages[i / nr_pages];
1306 			page += (i % nr_pages);
1307 
1308 			i++;
1309 		} else {
1310 			page = alloc_page(q->bounce_gfp | gfp_mask);
1311 			if (!page) {
1312 				ret = -ENOMEM;
1313 				break;
1314 			}
1315 		}
1316 
1317 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1318 			break;
1319 
1320 		len -= bytes;
1321 		offset = 0;
1322 	}
1323 
1324 	if (ret)
1325 		goto cleanup;
1326 
1327 	if (map_data)
1328 		map_data->offset += bio->bi_iter.bi_size;
1329 
1330 	/*
1331 	 * success
1332 	 */
1333 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1334 	    (map_data && map_data->from_user)) {
1335 		ret = bio_copy_from_iter(bio, iter);
1336 		if (ret)
1337 			goto cleanup;
1338 	} else {
1339 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1340 	}
1341 
1342 	bio->bi_private = bmd;
1343 	if (map_data && map_data->null_mapped)
1344 		bio_set_flag(bio, BIO_NULL_MAPPED);
1345 	return bio;
1346 cleanup:
1347 	if (!map_data)
1348 		bio_free_pages(bio);
1349 	bio_put(bio);
1350 out_bmd:
1351 	kfree(bmd);
1352 	return ERR_PTR(ret);
1353 }
1354 
1355 /**
1356  *	bio_map_user_iov - map user iovec into bio
1357  *	@q:		the struct request_queue for the bio
1358  *	@iter:		iovec iterator
1359  *	@gfp_mask:	memory allocation flags
1360  *
1361  *	Map the user space address into a bio suitable for io to a block
1362  *	device. Returns an error pointer in case of error.
1363  */
1364 struct bio *bio_map_user_iov(struct request_queue *q,
1365 			     struct iov_iter *iter,
1366 			     gfp_t gfp_mask)
1367 {
1368 	int j;
1369 	struct bio *bio;
1370 	int ret;
1371 	struct bio_vec *bvec;
1372 
1373 	if (!iov_iter_count(iter))
1374 		return ERR_PTR(-EINVAL);
1375 
1376 	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1377 	if (!bio)
1378 		return ERR_PTR(-ENOMEM);
1379 
1380 	while (iov_iter_count(iter)) {
1381 		struct page **pages;
1382 		ssize_t bytes;
1383 		size_t offs, added = 0;
1384 		int npages;
1385 
1386 		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1387 		if (unlikely(bytes <= 0)) {
1388 			ret = bytes ? bytes : -EFAULT;
1389 			goto out_unmap;
1390 		}
1391 
1392 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1393 
1394 		if (unlikely(offs & queue_dma_alignment(q))) {
1395 			ret = -EINVAL;
1396 			j = 0;
1397 		} else {
1398 			for (j = 0; j < npages; j++) {
1399 				struct page *page = pages[j];
1400 				unsigned int n = PAGE_SIZE - offs;
1401 				unsigned short prev_bi_vcnt = bio->bi_vcnt;
1402 
1403 				if (n > bytes)
1404 					n = bytes;
1405 
1406 				if (!bio_add_pc_page(q, bio, page, n, offs))
1407 					break;
1408 
1409 				/*
1410 				 * check if vector was merged with previous
1411 				 * drop page reference if needed
1412 				 */
1413 				if (bio->bi_vcnt == prev_bi_vcnt)
1414 					put_page(page);
1415 
1416 				added += n;
1417 				bytes -= n;
1418 				offs = 0;
1419 			}
1420 			iov_iter_advance(iter, added);
1421 		}
1422 		/*
1423 		 * release the pages we didn't map into the bio, if any
1424 		 */
1425 		while (j < npages)
1426 			put_page(pages[j++]);
1427 		kvfree(pages);
1428 		/* couldn't stuff something into bio? */
1429 		if (bytes)
1430 			break;
1431 	}
1432 
1433 	bio_set_flag(bio, BIO_USER_MAPPED);
1434 
1435 	/*
1436 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1437 	 * it would normally disappear when its bi_end_io is run.
1438 	 * however, we need it for the unmap, so grab an extra
1439 	 * reference to it
1440 	 */
1441 	bio_get(bio);
1442 	return bio;
1443 
1444  out_unmap:
1445 	bio_for_each_segment_all(bvec, bio, j) {
1446 		put_page(bvec->bv_page);
1447 	}
1448 	bio_put(bio);
1449 	return ERR_PTR(ret);
1450 }
1451 
1452 static void __bio_unmap_user(struct bio *bio)
1453 {
1454 	struct bio_vec *bvec;
1455 	int i;
1456 
1457 	/*
1458 	 * make sure we dirty pages we wrote to
1459 	 */
1460 	bio_for_each_segment_all(bvec, bio, i) {
1461 		if (bio_data_dir(bio) == READ)
1462 			set_page_dirty_lock(bvec->bv_page);
1463 
1464 		put_page(bvec->bv_page);
1465 	}
1466 
1467 	bio_put(bio);
1468 }
1469 
1470 /**
1471  *	bio_unmap_user	-	unmap a bio
1472  *	@bio:		the bio being unmapped
1473  *
1474  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1475  *	process context.
1476  *
1477  *	bio_unmap_user() may sleep.
1478  */
1479 void bio_unmap_user(struct bio *bio)
1480 {
1481 	__bio_unmap_user(bio);
1482 	bio_put(bio);
1483 }
1484 
1485 static void bio_map_kern_endio(struct bio *bio)
1486 {
1487 	bio_put(bio);
1488 }
1489 
1490 /**
1491  *	bio_map_kern	-	map kernel address into bio
1492  *	@q: the struct request_queue for the bio
1493  *	@data: pointer to buffer to map
1494  *	@len: length in bytes
1495  *	@gfp_mask: allocation flags for bio allocation
1496  *
1497  *	Map the kernel address into a bio suitable for io to a block
1498  *	device. Returns an error pointer in case of error.
1499  */
1500 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1501 			 gfp_t gfp_mask)
1502 {
1503 	unsigned long kaddr = (unsigned long)data;
1504 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1505 	unsigned long start = kaddr >> PAGE_SHIFT;
1506 	const int nr_pages = end - start;
1507 	int offset, i;
1508 	struct bio *bio;
1509 
1510 	bio = bio_kmalloc(gfp_mask, nr_pages);
1511 	if (!bio)
1512 		return ERR_PTR(-ENOMEM);
1513 
1514 	offset = offset_in_page(kaddr);
1515 	for (i = 0; i < nr_pages; i++) {
1516 		unsigned int bytes = PAGE_SIZE - offset;
1517 
1518 		if (len <= 0)
1519 			break;
1520 
1521 		if (bytes > len)
1522 			bytes = len;
1523 
1524 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1525 				    offset) < bytes) {
1526 			/* we don't support partial mappings */
1527 			bio_put(bio);
1528 			return ERR_PTR(-EINVAL);
1529 		}
1530 
1531 		data += bytes;
1532 		len -= bytes;
1533 		offset = 0;
1534 	}
1535 
1536 	bio->bi_end_io = bio_map_kern_endio;
1537 	return bio;
1538 }
1539 EXPORT_SYMBOL(bio_map_kern);
1540 
1541 static void bio_copy_kern_endio(struct bio *bio)
1542 {
1543 	bio_free_pages(bio);
1544 	bio_put(bio);
1545 }
1546 
1547 static void bio_copy_kern_endio_read(struct bio *bio)
1548 {
1549 	char *p = bio->bi_private;
1550 	struct bio_vec *bvec;
1551 	int i;
1552 
1553 	bio_for_each_segment_all(bvec, bio, i) {
1554 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1555 		p += bvec->bv_len;
1556 	}
1557 
1558 	bio_copy_kern_endio(bio);
1559 }
1560 
1561 /**
1562  *	bio_copy_kern	-	copy kernel address into bio
1563  *	@q: the struct request_queue for the bio
1564  *	@data: pointer to buffer to copy
1565  *	@len: length in bytes
1566  *	@gfp_mask: allocation flags for bio and page allocation
1567  *	@reading: data direction is READ
1568  *
1569  *	copy the kernel address into a bio suitable for io to a block
1570  *	device. Returns an error pointer in case of error.
1571  */
1572 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1573 			  gfp_t gfp_mask, int reading)
1574 {
1575 	unsigned long kaddr = (unsigned long)data;
1576 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1577 	unsigned long start = kaddr >> PAGE_SHIFT;
1578 	struct bio *bio;
1579 	void *p = data;
1580 	int nr_pages = 0;
1581 
1582 	/*
1583 	 * Overflow, abort
1584 	 */
1585 	if (end < start)
1586 		return ERR_PTR(-EINVAL);
1587 
1588 	nr_pages = end - start;
1589 	bio = bio_kmalloc(gfp_mask, nr_pages);
1590 	if (!bio)
1591 		return ERR_PTR(-ENOMEM);
1592 
1593 	while (len) {
1594 		struct page *page;
1595 		unsigned int bytes = PAGE_SIZE;
1596 
1597 		if (bytes > len)
1598 			bytes = len;
1599 
1600 		page = alloc_page(q->bounce_gfp | gfp_mask);
1601 		if (!page)
1602 			goto cleanup;
1603 
1604 		if (!reading)
1605 			memcpy(page_address(page), p, bytes);
1606 
1607 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1608 			break;
1609 
1610 		len -= bytes;
1611 		p += bytes;
1612 	}
1613 
1614 	if (reading) {
1615 		bio->bi_end_io = bio_copy_kern_endio_read;
1616 		bio->bi_private = data;
1617 	} else {
1618 		bio->bi_end_io = bio_copy_kern_endio;
1619 	}
1620 
1621 	return bio;
1622 
1623 cleanup:
1624 	bio_free_pages(bio);
1625 	bio_put(bio);
1626 	return ERR_PTR(-ENOMEM);
1627 }
1628 
1629 /*
1630  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1631  * for performing direct-IO in BIOs.
1632  *
1633  * The problem is that we cannot run set_page_dirty() from interrupt context
1634  * because the required locks are not interrupt-safe.  So what we can do is to
1635  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1636  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1637  * in process context.
1638  *
1639  * We special-case compound pages here: normally this means reads into hugetlb
1640  * pages.  The logic in here doesn't really work right for compound pages
1641  * because the VM does not uniformly chase down the head page in all cases.
1642  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1643  * handle them at all.  So we skip compound pages here at an early stage.
1644  *
1645  * Note that this code is very hard to test under normal circumstances because
1646  * direct-io pins the pages with get_user_pages().  This makes
1647  * is_page_cache_freeable return false, and the VM will not clean the pages.
1648  * But other code (eg, flusher threads) could clean the pages if they are mapped
1649  * pagecache.
1650  *
1651  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1652  * deferred bio dirtying paths.
1653  */
1654 
1655 /*
1656  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1657  */
1658 void bio_set_pages_dirty(struct bio *bio)
1659 {
1660 	struct bio_vec *bvec;
1661 	int i;
1662 
1663 	bio_for_each_segment_all(bvec, bio, i) {
1664 		struct page *page = bvec->bv_page;
1665 
1666 		if (page && !PageCompound(page))
1667 			set_page_dirty_lock(page);
1668 	}
1669 }
1670 EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1671 
1672 static void bio_release_pages(struct bio *bio)
1673 {
1674 	struct bio_vec *bvec;
1675 	int i;
1676 
1677 	bio_for_each_segment_all(bvec, bio, i) {
1678 		struct page *page = bvec->bv_page;
1679 
1680 		if (page)
1681 			put_page(page);
1682 	}
1683 }
1684 
1685 /*
1686  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1687  * If they are, then fine.  If, however, some pages are clean then they must
1688  * have been written out during the direct-IO read.  So we take another ref on
1689  * the BIO and the offending pages and re-dirty the pages in process context.
1690  *
1691  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1692  * here on.  It will run one put_page() against each page and will run one
1693  * bio_put() against the BIO.
1694  */
1695 
1696 static void bio_dirty_fn(struct work_struct *work);
1697 
1698 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1699 static DEFINE_SPINLOCK(bio_dirty_lock);
1700 static struct bio *bio_dirty_list;
1701 
1702 /*
1703  * This runs in process context
1704  */
1705 static void bio_dirty_fn(struct work_struct *work)
1706 {
1707 	unsigned long flags;
1708 	struct bio *bio;
1709 
1710 	spin_lock_irqsave(&bio_dirty_lock, flags);
1711 	bio = bio_dirty_list;
1712 	bio_dirty_list = NULL;
1713 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1714 
1715 	while (bio) {
1716 		struct bio *next = bio->bi_private;
1717 
1718 		bio_set_pages_dirty(bio);
1719 		bio_release_pages(bio);
1720 		bio_put(bio);
1721 		bio = next;
1722 	}
1723 }
1724 
1725 void bio_check_pages_dirty(struct bio *bio)
1726 {
1727 	struct bio_vec *bvec;
1728 	int nr_clean_pages = 0;
1729 	int i;
1730 
1731 	bio_for_each_segment_all(bvec, bio, i) {
1732 		struct page *page = bvec->bv_page;
1733 
1734 		if (PageDirty(page) || PageCompound(page)) {
1735 			put_page(page);
1736 			bvec->bv_page = NULL;
1737 		} else {
1738 			nr_clean_pages++;
1739 		}
1740 	}
1741 
1742 	if (nr_clean_pages) {
1743 		unsigned long flags;
1744 
1745 		spin_lock_irqsave(&bio_dirty_lock, flags);
1746 		bio->bi_private = bio_dirty_list;
1747 		bio_dirty_list = bio;
1748 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1749 		schedule_work(&bio_dirty_work);
1750 	} else {
1751 		bio_put(bio);
1752 	}
1753 }
1754 EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1755 
1756 void generic_start_io_acct(struct request_queue *q, int rw,
1757 			   unsigned long sectors, struct hd_struct *part)
1758 {
1759 	int cpu = part_stat_lock();
1760 
1761 	part_round_stats(q, cpu, part);
1762 	part_stat_inc(cpu, part, ios[rw]);
1763 	part_stat_add(cpu, part, sectors[rw], sectors);
1764 	part_inc_in_flight(q, part, rw);
1765 
1766 	part_stat_unlock();
1767 }
1768 EXPORT_SYMBOL(generic_start_io_acct);
1769 
1770 void generic_end_io_acct(struct request_queue *q, int rw,
1771 			 struct hd_struct *part, unsigned long start_time)
1772 {
1773 	unsigned long duration = jiffies - start_time;
1774 	int cpu = part_stat_lock();
1775 
1776 	part_stat_add(cpu, part, ticks[rw], duration);
1777 	part_round_stats(q, cpu, part);
1778 	part_dec_in_flight(q, part, rw);
1779 
1780 	part_stat_unlock();
1781 }
1782 EXPORT_SYMBOL(generic_end_io_acct);
1783 
1784 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1785 void bio_flush_dcache_pages(struct bio *bi)
1786 {
1787 	struct bio_vec bvec;
1788 	struct bvec_iter iter;
1789 
1790 	bio_for_each_segment(bvec, bi, iter)
1791 		flush_dcache_page(bvec.bv_page);
1792 }
1793 EXPORT_SYMBOL(bio_flush_dcache_pages);
1794 #endif
1795 
1796 static inline bool bio_remaining_done(struct bio *bio)
1797 {
1798 	/*
1799 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1800 	 * we always end io on the first invocation.
1801 	 */
1802 	if (!bio_flagged(bio, BIO_CHAIN))
1803 		return true;
1804 
1805 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1806 
1807 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1808 		bio_clear_flag(bio, BIO_CHAIN);
1809 		return true;
1810 	}
1811 
1812 	return false;
1813 }
1814 
1815 /**
1816  * bio_endio - end I/O on a bio
1817  * @bio:	bio
1818  *
1819  * Description:
1820  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1821  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1822  *   bio unless they own it and thus know that it has an end_io function.
1823  *
1824  *   bio_endio() can be called several times on a bio that has been chained
1825  *   using bio_chain().  The ->bi_end_io() function will only be called the
1826  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1827  *   generated if BIO_TRACE_COMPLETION is set.
1828  **/
1829 void bio_endio(struct bio *bio)
1830 {
1831 again:
1832 	if (!bio_remaining_done(bio))
1833 		return;
1834 	if (!bio_integrity_endio(bio))
1835 		return;
1836 
1837 	/*
1838 	 * Need to have a real endio function for chained bios, otherwise
1839 	 * various corner cases will break (like stacking block devices that
1840 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1841 	 * recursion and blowing the stack. Tail call optimization would
1842 	 * handle this, but compiling with frame pointers also disables
1843 	 * gcc's sibling call optimization.
1844 	 */
1845 	if (bio->bi_end_io == bio_chain_endio) {
1846 		bio = __bio_chain_endio(bio);
1847 		goto again;
1848 	}
1849 
1850 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1851 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1852 					 blk_status_to_errno(bio->bi_status));
1853 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1854 	}
1855 
1856 	blk_throtl_bio_endio(bio);
1857 	/* release cgroup info */
1858 	bio_uninit(bio);
1859 	if (bio->bi_end_io)
1860 		bio->bi_end_io(bio);
1861 }
1862 EXPORT_SYMBOL(bio_endio);
1863 
1864 /**
1865  * bio_split - split a bio
1866  * @bio:	bio to split
1867  * @sectors:	number of sectors to split from the front of @bio
1868  * @gfp:	gfp mask
1869  * @bs:		bio set to allocate from
1870  *
1871  * Allocates and returns a new bio which represents @sectors from the start of
1872  * @bio, and updates @bio to represent the remaining sectors.
1873  *
1874  * Unless this is a discard request the newly allocated bio will point
1875  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1876  * @bio is not freed before the split.
1877  */
1878 struct bio *bio_split(struct bio *bio, int sectors,
1879 		      gfp_t gfp, struct bio_set *bs)
1880 {
1881 	struct bio *split;
1882 
1883 	BUG_ON(sectors <= 0);
1884 	BUG_ON(sectors >= bio_sectors(bio));
1885 
1886 	split = bio_clone_fast(bio, gfp, bs);
1887 	if (!split)
1888 		return NULL;
1889 
1890 	split->bi_iter.bi_size = sectors << 9;
1891 
1892 	if (bio_integrity(split))
1893 		bio_integrity_trim(split);
1894 
1895 	bio_advance(bio, split->bi_iter.bi_size);
1896 	bio->bi_iter.bi_done = 0;
1897 
1898 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1899 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1900 
1901 	return split;
1902 }
1903 EXPORT_SYMBOL(bio_split);
1904 
1905 /**
1906  * bio_trim - trim a bio
1907  * @bio:	bio to trim
1908  * @offset:	number of sectors to trim from the front of @bio
1909  * @size:	size we want to trim @bio to, in sectors
1910  */
1911 void bio_trim(struct bio *bio, int offset, int size)
1912 {
1913 	/* 'bio' is a cloned bio which we need to trim to match
1914 	 * the given offset and size.
1915 	 */
1916 
1917 	size <<= 9;
1918 	if (offset == 0 && size == bio->bi_iter.bi_size)
1919 		return;
1920 
1921 	bio_clear_flag(bio, BIO_SEG_VALID);
1922 
1923 	bio_advance(bio, offset << 9);
1924 
1925 	bio->bi_iter.bi_size = size;
1926 
1927 	if (bio_integrity(bio))
1928 		bio_integrity_trim(bio);
1929 
1930 }
1931 EXPORT_SYMBOL_GPL(bio_trim);
1932 
1933 /*
1934  * create memory pools for biovec's in a bio_set.
1935  * use the global biovec slabs created for general use.
1936  */
1937 int biovec_init_pool(mempool_t *pool, int pool_entries)
1938 {
1939 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1940 
1941 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1942 }
1943 
1944 /*
1945  * bioset_exit - exit a bioset initialized with bioset_init()
1946  *
1947  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1948  * kzalloc()).
1949  */
1950 void bioset_exit(struct bio_set *bs)
1951 {
1952 	if (bs->rescue_workqueue)
1953 		destroy_workqueue(bs->rescue_workqueue);
1954 	bs->rescue_workqueue = NULL;
1955 
1956 	mempool_exit(&bs->bio_pool);
1957 	mempool_exit(&bs->bvec_pool);
1958 
1959 	bioset_integrity_free(bs);
1960 	if (bs->bio_slab)
1961 		bio_put_slab(bs);
1962 	bs->bio_slab = NULL;
1963 }
1964 EXPORT_SYMBOL(bioset_exit);
1965 
1966 /**
1967  * bioset_init - Initialize a bio_set
1968  * @bs:		pool to initialize
1969  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1970  * @front_pad:	Number of bytes to allocate in front of the returned bio
1971  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1972  *              and %BIOSET_NEED_RESCUER
1973  *
1974  * Description:
1975  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1976  *    to ask for a number of bytes to be allocated in front of the bio.
1977  *    Front pad allocation is useful for embedding the bio inside
1978  *    another structure, to avoid allocating extra data to go with the bio.
1979  *    Note that the bio must be embedded at the END of that structure always,
1980  *    or things will break badly.
1981  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1982  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1983  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1984  *    dispatch queued requests when the mempool runs out of space.
1985  *
1986  */
1987 int bioset_init(struct bio_set *bs,
1988 		unsigned int pool_size,
1989 		unsigned int front_pad,
1990 		int flags)
1991 {
1992 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1993 
1994 	bs->front_pad = front_pad;
1995 
1996 	spin_lock_init(&bs->rescue_lock);
1997 	bio_list_init(&bs->rescue_list);
1998 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1999 
2000 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
2001 	if (!bs->bio_slab)
2002 		return -ENOMEM;
2003 
2004 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
2005 		goto bad;
2006 
2007 	if ((flags & BIOSET_NEED_BVECS) &&
2008 	    biovec_init_pool(&bs->bvec_pool, pool_size))
2009 		goto bad;
2010 
2011 	if (!(flags & BIOSET_NEED_RESCUER))
2012 		return 0;
2013 
2014 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2015 	if (!bs->rescue_workqueue)
2016 		goto bad;
2017 
2018 	return 0;
2019 bad:
2020 	bioset_exit(bs);
2021 	return -ENOMEM;
2022 }
2023 EXPORT_SYMBOL(bioset_init);
2024 
2025 /*
2026  * Initialize and setup a new bio_set, based on the settings from
2027  * another bio_set.
2028  */
2029 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2030 {
2031 	int flags;
2032 
2033 	flags = 0;
2034 	if (src->bvec_pool.min_nr)
2035 		flags |= BIOSET_NEED_BVECS;
2036 	if (src->rescue_workqueue)
2037 		flags |= BIOSET_NEED_RESCUER;
2038 
2039 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2040 }
2041 EXPORT_SYMBOL(bioset_init_from_src);
2042 
2043 #ifdef CONFIG_BLK_CGROUP
2044 
2045 /**
2046  * bio_associate_blkcg - associate a bio with the specified blkcg
2047  * @bio: target bio
2048  * @blkcg_css: css of the blkcg to associate
2049  *
2050  * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
2051  * treat @bio as if it were issued by a task which belongs to the blkcg.
2052  *
2053  * This function takes an extra reference of @blkcg_css which will be put
2054  * when @bio is released.  The caller must own @bio and is responsible for
2055  * synchronizing calls to this function.
2056  */
2057 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2058 {
2059 	if (unlikely(bio->bi_css))
2060 		return -EBUSY;
2061 	css_get(blkcg_css);
2062 	bio->bi_css = blkcg_css;
2063 	return 0;
2064 }
2065 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2066 
2067 /**
2068  * bio_disassociate_task - undo bio_associate_current()
2069  * @bio: target bio
2070  */
2071 void bio_disassociate_task(struct bio *bio)
2072 {
2073 	if (bio->bi_ioc) {
2074 		put_io_context(bio->bi_ioc);
2075 		bio->bi_ioc = NULL;
2076 	}
2077 	if (bio->bi_css) {
2078 		css_put(bio->bi_css);
2079 		bio->bi_css = NULL;
2080 	}
2081 }
2082 
2083 /**
2084  * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2085  * @dst: destination bio
2086  * @src: source bio
2087  */
2088 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2089 {
2090 	if (src->bi_css)
2091 		WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2092 }
2093 EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
2094 #endif /* CONFIG_BLK_CGROUP */
2095 
2096 static void __init biovec_init_slabs(void)
2097 {
2098 	int i;
2099 
2100 	for (i = 0; i < BVEC_POOL_NR; i++) {
2101 		int size;
2102 		struct biovec_slab *bvs = bvec_slabs + i;
2103 
2104 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2105 			bvs->slab = NULL;
2106 			continue;
2107 		}
2108 
2109 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2110 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2111                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2112 	}
2113 }
2114 
2115 static int __init init_bio(void)
2116 {
2117 	bio_slab_max = 2;
2118 	bio_slab_nr = 0;
2119 	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2120 			    GFP_KERNEL);
2121 	if (!bio_slabs)
2122 		panic("bio: can't allocate bios\n");
2123 
2124 	bio_integrity_init();
2125 	biovec_init_slabs();
2126 
2127 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2128 		panic("bio: can't allocate bios\n");
2129 
2130 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2131 		panic("bio: can't create integrity pool\n");
2132 
2133 	return 0;
2134 }
2135 subsys_initcall(init_bio);
2136