xref: /openbmc/linux/block/bio.c (revision ed1666f6)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <linux/blk-cgroup.h>
32 
33 #include <trace/events/block.h>
34 #include "blk.h"
35 #include "blk-rq-qos.h"
36 
37 /*
38  * Test patch to inline a certain number of bi_io_vec's inside the bio
39  * itself, to shrink a bio data allocation from two mempool calls to one
40  */
41 #define BIO_INLINE_VECS		4
42 
43 /*
44  * if you change this list, also change bvec_alloc or things will
45  * break badly! cannot be bigger than what you can fit into an
46  * unsigned short
47  */
48 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
49 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
50 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
51 };
52 #undef BV
53 
54 /*
55  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56  * IO code that does not need private memory pools.
57  */
58 struct bio_set fs_bio_set;
59 EXPORT_SYMBOL(fs_bio_set);
60 
61 /*
62  * Our slab pool management
63  */
64 struct bio_slab {
65 	struct kmem_cache *slab;
66 	unsigned int slab_ref;
67 	unsigned int slab_size;
68 	char name[8];
69 };
70 static DEFINE_MUTEX(bio_slab_lock);
71 static struct bio_slab *bio_slabs;
72 static unsigned int bio_slab_nr, bio_slab_max;
73 
74 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75 {
76 	unsigned int sz = sizeof(struct bio) + extra_size;
77 	struct kmem_cache *slab = NULL;
78 	struct bio_slab *bslab, *new_bio_slabs;
79 	unsigned int new_bio_slab_max;
80 	unsigned int i, entry = -1;
81 
82 	mutex_lock(&bio_slab_lock);
83 
84 	i = 0;
85 	while (i < bio_slab_nr) {
86 		bslab = &bio_slabs[i];
87 
88 		if (!bslab->slab && entry == -1)
89 			entry = i;
90 		else if (bslab->slab_size == sz) {
91 			slab = bslab->slab;
92 			bslab->slab_ref++;
93 			break;
94 		}
95 		i++;
96 	}
97 
98 	if (slab)
99 		goto out_unlock;
100 
101 	if (bio_slab_nr == bio_slab_max && entry == -1) {
102 		new_bio_slab_max = bio_slab_max << 1;
103 		new_bio_slabs = krealloc(bio_slabs,
104 					 new_bio_slab_max * sizeof(struct bio_slab),
105 					 GFP_KERNEL);
106 		if (!new_bio_slabs)
107 			goto out_unlock;
108 		bio_slab_max = new_bio_slab_max;
109 		bio_slabs = new_bio_slabs;
110 	}
111 	if (entry == -1)
112 		entry = bio_slab_nr++;
113 
114 	bslab = &bio_slabs[entry];
115 
116 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
117 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
118 				 SLAB_HWCACHE_ALIGN, NULL);
119 	if (!slab)
120 		goto out_unlock;
121 
122 	bslab->slab = slab;
123 	bslab->slab_ref = 1;
124 	bslab->slab_size = sz;
125 out_unlock:
126 	mutex_unlock(&bio_slab_lock);
127 	return slab;
128 }
129 
130 static void bio_put_slab(struct bio_set *bs)
131 {
132 	struct bio_slab *bslab = NULL;
133 	unsigned int i;
134 
135 	mutex_lock(&bio_slab_lock);
136 
137 	for (i = 0; i < bio_slab_nr; i++) {
138 		if (bs->bio_slab == bio_slabs[i].slab) {
139 			bslab = &bio_slabs[i];
140 			break;
141 		}
142 	}
143 
144 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 		goto out;
146 
147 	WARN_ON(!bslab->slab_ref);
148 
149 	if (--bslab->slab_ref)
150 		goto out;
151 
152 	kmem_cache_destroy(bslab->slab);
153 	bslab->slab = NULL;
154 
155 out:
156 	mutex_unlock(&bio_slab_lock);
157 }
158 
159 unsigned int bvec_nr_vecs(unsigned short idx)
160 {
161 	return bvec_slabs[--idx].nr_vecs;
162 }
163 
164 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
165 {
166 	if (!idx)
167 		return;
168 	idx--;
169 
170 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
171 
172 	if (idx == BVEC_POOL_MAX) {
173 		mempool_free(bv, pool);
174 	} else {
175 		struct biovec_slab *bvs = bvec_slabs + idx;
176 
177 		kmem_cache_free(bvs->slab, bv);
178 	}
179 }
180 
181 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
182 			   mempool_t *pool)
183 {
184 	struct bio_vec *bvl;
185 
186 	/*
187 	 * see comment near bvec_array define!
188 	 */
189 	switch (nr) {
190 	case 1:
191 		*idx = 0;
192 		break;
193 	case 2 ... 4:
194 		*idx = 1;
195 		break;
196 	case 5 ... 16:
197 		*idx = 2;
198 		break;
199 	case 17 ... 64:
200 		*idx = 3;
201 		break;
202 	case 65 ... 128:
203 		*idx = 4;
204 		break;
205 	case 129 ... BIO_MAX_PAGES:
206 		*idx = 5;
207 		break;
208 	default:
209 		return NULL;
210 	}
211 
212 	/*
213 	 * idx now points to the pool we want to allocate from. only the
214 	 * 1-vec entry pool is mempool backed.
215 	 */
216 	if (*idx == BVEC_POOL_MAX) {
217 fallback:
218 		bvl = mempool_alloc(pool, gfp_mask);
219 	} else {
220 		struct biovec_slab *bvs = bvec_slabs + *idx;
221 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
222 
223 		/*
224 		 * Make this allocation restricted and don't dump info on
225 		 * allocation failures, since we'll fallback to the mempool
226 		 * in case of failure.
227 		 */
228 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
229 
230 		/*
231 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
232 		 * is set, retry with the 1-entry mempool
233 		 */
234 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
235 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
236 			*idx = BVEC_POOL_MAX;
237 			goto fallback;
238 		}
239 	}
240 
241 	(*idx)++;
242 	return bvl;
243 }
244 
245 void bio_uninit(struct bio *bio)
246 {
247 	bio_disassociate_blkg(bio);
248 }
249 EXPORT_SYMBOL(bio_uninit);
250 
251 static void bio_free(struct bio *bio)
252 {
253 	struct bio_set *bs = bio->bi_pool;
254 	void *p;
255 
256 	bio_uninit(bio);
257 
258 	if (bs) {
259 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
260 
261 		/*
262 		 * If we have front padding, adjust the bio pointer before freeing
263 		 */
264 		p = bio;
265 		p -= bs->front_pad;
266 
267 		mempool_free(p, &bs->bio_pool);
268 	} else {
269 		/* Bio was allocated by bio_kmalloc() */
270 		kfree(bio);
271 	}
272 }
273 
274 /*
275  * Users of this function have their own bio allocation. Subsequently,
276  * they must remember to pair any call to bio_init() with bio_uninit()
277  * when IO has completed, or when the bio is released.
278  */
279 void bio_init(struct bio *bio, struct bio_vec *table,
280 	      unsigned short max_vecs)
281 {
282 	memset(bio, 0, sizeof(*bio));
283 	atomic_set(&bio->__bi_remaining, 1);
284 	atomic_set(&bio->__bi_cnt, 1);
285 
286 	bio->bi_io_vec = table;
287 	bio->bi_max_vecs = max_vecs;
288 }
289 EXPORT_SYMBOL(bio_init);
290 
291 /**
292  * bio_reset - reinitialize a bio
293  * @bio:	bio to reset
294  *
295  * Description:
296  *   After calling bio_reset(), @bio will be in the same state as a freshly
297  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
298  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
299  *   comment in struct bio.
300  */
301 void bio_reset(struct bio *bio)
302 {
303 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
304 
305 	bio_uninit(bio);
306 
307 	memset(bio, 0, BIO_RESET_BYTES);
308 	bio->bi_flags = flags;
309 	atomic_set(&bio->__bi_remaining, 1);
310 }
311 EXPORT_SYMBOL(bio_reset);
312 
313 static struct bio *__bio_chain_endio(struct bio *bio)
314 {
315 	struct bio *parent = bio->bi_private;
316 
317 	if (!parent->bi_status)
318 		parent->bi_status = bio->bi_status;
319 	bio_put(bio);
320 	return parent;
321 }
322 
323 static void bio_chain_endio(struct bio *bio)
324 {
325 	bio_endio(__bio_chain_endio(bio));
326 }
327 
328 /**
329  * bio_chain - chain bio completions
330  * @bio: the target bio
331  * @parent: the @bio's parent bio
332  *
333  * The caller won't have a bi_end_io called when @bio completes - instead,
334  * @parent's bi_end_io won't be called until both @parent and @bio have
335  * completed; the chained bio will also be freed when it completes.
336  *
337  * The caller must not set bi_private or bi_end_io in @bio.
338  */
339 void bio_chain(struct bio *bio, struct bio *parent)
340 {
341 	BUG_ON(bio->bi_private || bio->bi_end_io);
342 
343 	bio->bi_private = parent;
344 	bio->bi_end_io	= bio_chain_endio;
345 	bio_inc_remaining(parent);
346 }
347 EXPORT_SYMBOL(bio_chain);
348 
349 static void bio_alloc_rescue(struct work_struct *work)
350 {
351 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
352 	struct bio *bio;
353 
354 	while (1) {
355 		spin_lock(&bs->rescue_lock);
356 		bio = bio_list_pop(&bs->rescue_list);
357 		spin_unlock(&bs->rescue_lock);
358 
359 		if (!bio)
360 			break;
361 
362 		generic_make_request(bio);
363 	}
364 }
365 
366 static void punt_bios_to_rescuer(struct bio_set *bs)
367 {
368 	struct bio_list punt, nopunt;
369 	struct bio *bio;
370 
371 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
372 		return;
373 	/*
374 	 * In order to guarantee forward progress we must punt only bios that
375 	 * were allocated from this bio_set; otherwise, if there was a bio on
376 	 * there for a stacking driver higher up in the stack, processing it
377 	 * could require allocating bios from this bio_set, and doing that from
378 	 * our own rescuer would be bad.
379 	 *
380 	 * Since bio lists are singly linked, pop them all instead of trying to
381 	 * remove from the middle of the list:
382 	 */
383 
384 	bio_list_init(&punt);
385 	bio_list_init(&nopunt);
386 
387 	while ((bio = bio_list_pop(&current->bio_list[0])))
388 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
389 	current->bio_list[0] = nopunt;
390 
391 	bio_list_init(&nopunt);
392 	while ((bio = bio_list_pop(&current->bio_list[1])))
393 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
394 	current->bio_list[1] = nopunt;
395 
396 	spin_lock(&bs->rescue_lock);
397 	bio_list_merge(&bs->rescue_list, &punt);
398 	spin_unlock(&bs->rescue_lock);
399 
400 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
401 }
402 
403 /**
404  * bio_alloc_bioset - allocate a bio for I/O
405  * @gfp_mask:   the GFP_* mask given to the slab allocator
406  * @nr_iovecs:	number of iovecs to pre-allocate
407  * @bs:		the bio_set to allocate from.
408  *
409  * Description:
410  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
411  *   backed by the @bs's mempool.
412  *
413  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
414  *   always be able to allocate a bio. This is due to the mempool guarantees.
415  *   To make this work, callers must never allocate more than 1 bio at a time
416  *   from this pool. Callers that need to allocate more than 1 bio must always
417  *   submit the previously allocated bio for IO before attempting to allocate
418  *   a new one. Failure to do so can cause deadlocks under memory pressure.
419  *
420  *   Note that when running under generic_make_request() (i.e. any block
421  *   driver), bios are not submitted until after you return - see the code in
422  *   generic_make_request() that converts recursion into iteration, to prevent
423  *   stack overflows.
424  *
425  *   This would normally mean allocating multiple bios under
426  *   generic_make_request() would be susceptible to deadlocks, but we have
427  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
428  *   thread.
429  *
430  *   However, we do not guarantee forward progress for allocations from other
431  *   mempools. Doing multiple allocations from the same mempool under
432  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
433  *   for per bio allocations.
434  *
435  *   RETURNS:
436  *   Pointer to new bio on success, NULL on failure.
437  */
438 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
439 			     struct bio_set *bs)
440 {
441 	gfp_t saved_gfp = gfp_mask;
442 	unsigned front_pad;
443 	unsigned inline_vecs;
444 	struct bio_vec *bvl = NULL;
445 	struct bio *bio;
446 	void *p;
447 
448 	if (!bs) {
449 		if (nr_iovecs > UIO_MAXIOV)
450 			return NULL;
451 
452 		p = kmalloc(sizeof(struct bio) +
453 			    nr_iovecs * sizeof(struct bio_vec),
454 			    gfp_mask);
455 		front_pad = 0;
456 		inline_vecs = nr_iovecs;
457 	} else {
458 		/* should not use nobvec bioset for nr_iovecs > 0 */
459 		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
460 				 nr_iovecs > 0))
461 			return NULL;
462 		/*
463 		 * generic_make_request() converts recursion to iteration; this
464 		 * means if we're running beneath it, any bios we allocate and
465 		 * submit will not be submitted (and thus freed) until after we
466 		 * return.
467 		 *
468 		 * This exposes us to a potential deadlock if we allocate
469 		 * multiple bios from the same bio_set() while running
470 		 * underneath generic_make_request(). If we were to allocate
471 		 * multiple bios (say a stacking block driver that was splitting
472 		 * bios), we would deadlock if we exhausted the mempool's
473 		 * reserve.
474 		 *
475 		 * We solve this, and guarantee forward progress, with a rescuer
476 		 * workqueue per bio_set. If we go to allocate and there are
477 		 * bios on current->bio_list, we first try the allocation
478 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
479 		 * bios we would be blocking to the rescuer workqueue before
480 		 * we retry with the original gfp_flags.
481 		 */
482 
483 		if (current->bio_list &&
484 		    (!bio_list_empty(&current->bio_list[0]) ||
485 		     !bio_list_empty(&current->bio_list[1])) &&
486 		    bs->rescue_workqueue)
487 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
488 
489 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
490 		if (!p && gfp_mask != saved_gfp) {
491 			punt_bios_to_rescuer(bs);
492 			gfp_mask = saved_gfp;
493 			p = mempool_alloc(&bs->bio_pool, gfp_mask);
494 		}
495 
496 		front_pad = bs->front_pad;
497 		inline_vecs = BIO_INLINE_VECS;
498 	}
499 
500 	if (unlikely(!p))
501 		return NULL;
502 
503 	bio = p + front_pad;
504 	bio_init(bio, NULL, 0);
505 
506 	if (nr_iovecs > inline_vecs) {
507 		unsigned long idx = 0;
508 
509 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
510 		if (!bvl && gfp_mask != saved_gfp) {
511 			punt_bios_to_rescuer(bs);
512 			gfp_mask = saved_gfp;
513 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
514 		}
515 
516 		if (unlikely(!bvl))
517 			goto err_free;
518 
519 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
520 	} else if (nr_iovecs) {
521 		bvl = bio->bi_inline_vecs;
522 	}
523 
524 	bio->bi_pool = bs;
525 	bio->bi_max_vecs = nr_iovecs;
526 	bio->bi_io_vec = bvl;
527 	return bio;
528 
529 err_free:
530 	mempool_free(p, &bs->bio_pool);
531 	return NULL;
532 }
533 EXPORT_SYMBOL(bio_alloc_bioset);
534 
535 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
536 {
537 	unsigned long flags;
538 	struct bio_vec bv;
539 	struct bvec_iter iter;
540 
541 	__bio_for_each_segment(bv, bio, iter, start) {
542 		char *data = bvec_kmap_irq(&bv, &flags);
543 		memset(data, 0, bv.bv_len);
544 		flush_dcache_page(bv.bv_page);
545 		bvec_kunmap_irq(data, &flags);
546 	}
547 }
548 EXPORT_SYMBOL(zero_fill_bio_iter);
549 
550 /**
551  * bio_put - release a reference to a bio
552  * @bio:   bio to release reference to
553  *
554  * Description:
555  *   Put a reference to a &struct bio, either one you have gotten with
556  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
557  **/
558 void bio_put(struct bio *bio)
559 {
560 	if (!bio_flagged(bio, BIO_REFFED))
561 		bio_free(bio);
562 	else {
563 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
564 
565 		/*
566 		 * last put frees it
567 		 */
568 		if (atomic_dec_and_test(&bio->__bi_cnt))
569 			bio_free(bio);
570 	}
571 }
572 EXPORT_SYMBOL(bio_put);
573 
574 int bio_phys_segments(struct request_queue *q, struct bio *bio)
575 {
576 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
577 		blk_recount_segments(q, bio);
578 
579 	return bio->bi_phys_segments;
580 }
581 
582 /**
583  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
584  * 	@bio: destination bio
585  * 	@bio_src: bio to clone
586  *
587  *	Clone a &bio. Caller will own the returned bio, but not
588  *	the actual data it points to. Reference count of returned
589  * 	bio will be one.
590  *
591  * 	Caller must ensure that @bio_src is not freed before @bio.
592  */
593 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
594 {
595 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
596 
597 	/*
598 	 * most users will be overriding ->bi_disk with a new target,
599 	 * so we don't set nor calculate new physical/hw segment counts here
600 	 */
601 	bio->bi_disk = bio_src->bi_disk;
602 	bio->bi_partno = bio_src->bi_partno;
603 	bio_set_flag(bio, BIO_CLONED);
604 	if (bio_flagged(bio_src, BIO_THROTTLED))
605 		bio_set_flag(bio, BIO_THROTTLED);
606 	bio->bi_opf = bio_src->bi_opf;
607 	bio->bi_ioprio = bio_src->bi_ioprio;
608 	bio->bi_write_hint = bio_src->bi_write_hint;
609 	bio->bi_iter = bio_src->bi_iter;
610 	bio->bi_io_vec = bio_src->bi_io_vec;
611 
612 	bio_clone_blkg_association(bio, bio_src);
613 	blkcg_bio_issue_init(bio);
614 }
615 EXPORT_SYMBOL(__bio_clone_fast);
616 
617 /**
618  *	bio_clone_fast - clone a bio that shares the original bio's biovec
619  *	@bio: bio to clone
620  *	@gfp_mask: allocation priority
621  *	@bs: bio_set to allocate from
622  *
623  * 	Like __bio_clone_fast, only also allocates the returned bio
624  */
625 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
626 {
627 	struct bio *b;
628 
629 	b = bio_alloc_bioset(gfp_mask, 0, bs);
630 	if (!b)
631 		return NULL;
632 
633 	__bio_clone_fast(b, bio);
634 
635 	if (bio_integrity(bio)) {
636 		int ret;
637 
638 		ret = bio_integrity_clone(b, bio, gfp_mask);
639 
640 		if (ret < 0) {
641 			bio_put(b);
642 			return NULL;
643 		}
644 	}
645 
646 	return b;
647 }
648 EXPORT_SYMBOL(bio_clone_fast);
649 
650 /**
651  *	bio_add_pc_page	-	attempt to add page to bio
652  *	@q: the target queue
653  *	@bio: destination bio
654  *	@page: page to add
655  *	@len: vec entry length
656  *	@offset: vec entry offset
657  *
658  *	Attempt to add a page to the bio_vec maplist. This can fail for a
659  *	number of reasons, such as the bio being full or target block device
660  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
661  *	so it is always possible to add a single page to an empty bio.
662  *
663  *	This should only be used by REQ_PC bios.
664  */
665 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
666 		    *page, unsigned int len, unsigned int offset)
667 {
668 	int retried_segments = 0;
669 	struct bio_vec *bvec;
670 
671 	/*
672 	 * cloned bio must not modify vec list
673 	 */
674 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
675 		return 0;
676 
677 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
678 		return 0;
679 
680 	/*
681 	 * For filesystems with a blocksize smaller than the pagesize
682 	 * we will often be called with the same page as last time and
683 	 * a consecutive offset.  Optimize this special case.
684 	 */
685 	if (bio->bi_vcnt > 0) {
686 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
687 
688 		if (page == prev->bv_page &&
689 		    offset == prev->bv_offset + prev->bv_len) {
690 			prev->bv_len += len;
691 			bio->bi_iter.bi_size += len;
692 			goto done;
693 		}
694 
695 		/*
696 		 * If the queue doesn't support SG gaps and adding this
697 		 * offset would create a gap, disallow it.
698 		 */
699 		if (bvec_gap_to_prev(q, prev, offset))
700 			return 0;
701 	}
702 
703 	if (bio_full(bio))
704 		return 0;
705 
706 	/*
707 	 * setup the new entry, we might clear it again later if we
708 	 * cannot add the page
709 	 */
710 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
711 	bvec->bv_page = page;
712 	bvec->bv_len = len;
713 	bvec->bv_offset = offset;
714 	bio->bi_vcnt++;
715 	bio->bi_phys_segments++;
716 	bio->bi_iter.bi_size += len;
717 
718 	/*
719 	 * Perform a recount if the number of segments is greater
720 	 * than queue_max_segments(q).
721 	 */
722 
723 	while (bio->bi_phys_segments > queue_max_segments(q)) {
724 
725 		if (retried_segments)
726 			goto failed;
727 
728 		retried_segments = 1;
729 		blk_recount_segments(q, bio);
730 	}
731 
732 	/* If we may be able to merge these biovecs, force a recount */
733 	if (bio->bi_vcnt > 1 && biovec_phys_mergeable(q, bvec - 1, bvec))
734 		bio_clear_flag(bio, BIO_SEG_VALID);
735 
736  done:
737 	return len;
738 
739  failed:
740 	bvec->bv_page = NULL;
741 	bvec->bv_len = 0;
742 	bvec->bv_offset = 0;
743 	bio->bi_vcnt--;
744 	bio->bi_iter.bi_size -= len;
745 	blk_recount_segments(q, bio);
746 	return 0;
747 }
748 EXPORT_SYMBOL(bio_add_pc_page);
749 
750 /**
751  * __bio_try_merge_page - try appending data to an existing bvec.
752  * @bio: destination bio
753  * @page: page to add
754  * @len: length of the data to add
755  * @off: offset of the data in @page
756  * @same_page: if %true only merge if the new data is in the same physical
757  *		page as the last segment of the bio.
758  *
759  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
760  * a useful optimisation for file systems with a block size smaller than the
761  * page size.
762  *
763  * Return %true on success or %false on failure.
764  */
765 bool __bio_try_merge_page(struct bio *bio, struct page *page,
766 		unsigned int len, unsigned int off, bool same_page)
767 {
768 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
769 		return false;
770 
771 	if (bio->bi_vcnt > 0) {
772 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
773 		phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
774 			bv->bv_offset + bv->bv_len - 1;
775 		phys_addr_t page_addr = page_to_phys(page);
776 
777 		if (vec_end_addr + 1 != page_addr + off)
778 			return false;
779 		if (same_page && (vec_end_addr & PAGE_MASK) != page_addr)
780 			return false;
781 
782 		bv->bv_len += len;
783 		bio->bi_iter.bi_size += len;
784 		return true;
785 	}
786 	return false;
787 }
788 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
789 
790 /**
791  * __bio_add_page - add page to a bio in a new segment
792  * @bio: destination bio
793  * @page: page to add
794  * @len: length of the data to add
795  * @off: offset of the data in @page
796  *
797  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
798  * that @bio has space for another bvec.
799  */
800 void __bio_add_page(struct bio *bio, struct page *page,
801 		unsigned int len, unsigned int off)
802 {
803 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
804 
805 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
806 	WARN_ON_ONCE(bio_full(bio));
807 
808 	bv->bv_page = page;
809 	bv->bv_offset = off;
810 	bv->bv_len = len;
811 
812 	bio->bi_iter.bi_size += len;
813 	bio->bi_vcnt++;
814 }
815 EXPORT_SYMBOL_GPL(__bio_add_page);
816 
817 /**
818  *	bio_add_page	-	attempt to add page to bio
819  *	@bio: destination bio
820  *	@page: page to add
821  *	@len: vec entry length
822  *	@offset: vec entry offset
823  *
824  *	Attempt to add a page to the bio_vec maplist. This will only fail
825  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
826  */
827 int bio_add_page(struct bio *bio, struct page *page,
828 		 unsigned int len, unsigned int offset)
829 {
830 	if (!__bio_try_merge_page(bio, page, len, offset, false)) {
831 		if (bio_full(bio))
832 			return 0;
833 		__bio_add_page(bio, page, len, offset);
834 	}
835 	return len;
836 }
837 EXPORT_SYMBOL(bio_add_page);
838 
839 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
840 {
841 	const struct bio_vec *bv = iter->bvec;
842 	unsigned int len;
843 	size_t size;
844 
845 	if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
846 		return -EINVAL;
847 
848 	len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
849 	size = bio_add_page(bio, bv->bv_page, len,
850 				bv->bv_offset + iter->iov_offset);
851 	if (size == len) {
852 		struct page *page;
853 		int i;
854 
855 		/*
856 		 * For the normal O_DIRECT case, we could skip grabbing this
857 		 * reference and then not have to put them again when IO
858 		 * completes. But this breaks some in-kernel users, like
859 		 * splicing to/from a loop device, where we release the pipe
860 		 * pages unconditionally. If we can fix that case, we can
861 		 * get rid of the get here and the need to call
862 		 * bio_release_pages() at IO completion time.
863 		 */
864 		mp_bvec_for_each_page(page, bv, i)
865 			get_page(page);
866 		iov_iter_advance(iter, size);
867 		return 0;
868 	}
869 
870 	return -EINVAL;
871 }
872 
873 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
874 
875 /**
876  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
877  * @bio: bio to add pages to
878  * @iter: iov iterator describing the region to be mapped
879  *
880  * Pins pages from *iter and appends them to @bio's bvec array. The
881  * pages will have to be released using put_page() when done.
882  * For multi-segment *iter, this function only adds pages from the
883  * the next non-empty segment of the iov iterator.
884  */
885 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
886 {
887 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
888 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
889 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
890 	struct page **pages = (struct page **)bv;
891 	ssize_t size, left;
892 	unsigned len, i;
893 	size_t offset;
894 
895 	/*
896 	 * Move page array up in the allocated memory for the bio vecs as far as
897 	 * possible so that we can start filling biovecs from the beginning
898 	 * without overwriting the temporary page array.
899 	*/
900 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
901 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
902 
903 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
904 	if (unlikely(size <= 0))
905 		return size ? size : -EFAULT;
906 
907 	for (left = size, i = 0; left > 0; left -= len, i++) {
908 		struct page *page = pages[i];
909 
910 		len = min_t(size_t, PAGE_SIZE - offset, left);
911 		if (WARN_ON_ONCE(bio_add_page(bio, page, len, offset) != len))
912 			return -EINVAL;
913 		offset = 0;
914 	}
915 
916 	iov_iter_advance(iter, size);
917 	return 0;
918 }
919 
920 /**
921  * bio_iov_iter_get_pages - add user or kernel pages to a bio
922  * @bio: bio to add pages to
923  * @iter: iov iterator describing the region to be added
924  *
925  * This takes either an iterator pointing to user memory, or one pointing to
926  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
927  * map them into the kernel. On IO completion, the caller should put those
928  * pages. For now, when adding kernel pages, we still grab a reference to the
929  * page. This isn't strictly needed for the common case, but some call paths
930  * end up releasing pages from eg a pipe and we can't easily control these.
931  * See comment in __bio_iov_bvec_add_pages().
932  *
933  * The function tries, but does not guarantee, to pin as many pages as
934  * fit into the bio, or are requested in *iter, whatever is smaller. If
935  * MM encounters an error pinning the requested pages, it stops. Error
936  * is returned only if 0 pages could be pinned.
937  */
938 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
939 {
940 	const bool is_bvec = iov_iter_is_bvec(iter);
941 	unsigned short orig_vcnt = bio->bi_vcnt;
942 
943 	do {
944 		int ret;
945 
946 		if (is_bvec)
947 			ret = __bio_iov_bvec_add_pages(bio, iter);
948 		else
949 			ret = __bio_iov_iter_get_pages(bio, iter);
950 
951 		if (unlikely(ret))
952 			return bio->bi_vcnt > orig_vcnt ? 0 : ret;
953 
954 	} while (iov_iter_count(iter) && !bio_full(bio));
955 
956 	return 0;
957 }
958 
959 static void submit_bio_wait_endio(struct bio *bio)
960 {
961 	complete(bio->bi_private);
962 }
963 
964 /**
965  * submit_bio_wait - submit a bio, and wait until it completes
966  * @bio: The &struct bio which describes the I/O
967  *
968  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
969  * bio_endio() on failure.
970  *
971  * WARNING: Unlike to how submit_bio() is usually used, this function does not
972  * result in bio reference to be consumed. The caller must drop the reference
973  * on his own.
974  */
975 int submit_bio_wait(struct bio *bio)
976 {
977 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
978 
979 	bio->bi_private = &done;
980 	bio->bi_end_io = submit_bio_wait_endio;
981 	bio->bi_opf |= REQ_SYNC;
982 	submit_bio(bio);
983 	wait_for_completion_io(&done);
984 
985 	return blk_status_to_errno(bio->bi_status);
986 }
987 EXPORT_SYMBOL(submit_bio_wait);
988 
989 /**
990  * bio_advance - increment/complete a bio by some number of bytes
991  * @bio:	bio to advance
992  * @bytes:	number of bytes to complete
993  *
994  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
995  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
996  * be updated on the last bvec as well.
997  *
998  * @bio will then represent the remaining, uncompleted portion of the io.
999  */
1000 void bio_advance(struct bio *bio, unsigned bytes)
1001 {
1002 	if (bio_integrity(bio))
1003 		bio_integrity_advance(bio, bytes);
1004 
1005 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1006 }
1007 EXPORT_SYMBOL(bio_advance);
1008 
1009 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1010 			struct bio *src, struct bvec_iter *src_iter)
1011 {
1012 	struct bio_vec src_bv, dst_bv;
1013 	void *src_p, *dst_p;
1014 	unsigned bytes;
1015 
1016 	while (src_iter->bi_size && dst_iter->bi_size) {
1017 		src_bv = bio_iter_iovec(src, *src_iter);
1018 		dst_bv = bio_iter_iovec(dst, *dst_iter);
1019 
1020 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1021 
1022 		src_p = kmap_atomic(src_bv.bv_page);
1023 		dst_p = kmap_atomic(dst_bv.bv_page);
1024 
1025 		memcpy(dst_p + dst_bv.bv_offset,
1026 		       src_p + src_bv.bv_offset,
1027 		       bytes);
1028 
1029 		kunmap_atomic(dst_p);
1030 		kunmap_atomic(src_p);
1031 
1032 		flush_dcache_page(dst_bv.bv_page);
1033 
1034 		bio_advance_iter(src, src_iter, bytes);
1035 		bio_advance_iter(dst, dst_iter, bytes);
1036 	}
1037 }
1038 EXPORT_SYMBOL(bio_copy_data_iter);
1039 
1040 /**
1041  * bio_copy_data - copy contents of data buffers from one bio to another
1042  * @src: source bio
1043  * @dst: destination bio
1044  *
1045  * Stops when it reaches the end of either @src or @dst - that is, copies
1046  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1047  */
1048 void bio_copy_data(struct bio *dst, struct bio *src)
1049 {
1050 	struct bvec_iter src_iter = src->bi_iter;
1051 	struct bvec_iter dst_iter = dst->bi_iter;
1052 
1053 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1054 }
1055 EXPORT_SYMBOL(bio_copy_data);
1056 
1057 /**
1058  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1059  * another
1060  * @src: source bio list
1061  * @dst: destination bio list
1062  *
1063  * Stops when it reaches the end of either the @src list or @dst list - that is,
1064  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1065  * bios).
1066  */
1067 void bio_list_copy_data(struct bio *dst, struct bio *src)
1068 {
1069 	struct bvec_iter src_iter = src->bi_iter;
1070 	struct bvec_iter dst_iter = dst->bi_iter;
1071 
1072 	while (1) {
1073 		if (!src_iter.bi_size) {
1074 			src = src->bi_next;
1075 			if (!src)
1076 				break;
1077 
1078 			src_iter = src->bi_iter;
1079 		}
1080 
1081 		if (!dst_iter.bi_size) {
1082 			dst = dst->bi_next;
1083 			if (!dst)
1084 				break;
1085 
1086 			dst_iter = dst->bi_iter;
1087 		}
1088 
1089 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1090 	}
1091 }
1092 EXPORT_SYMBOL(bio_list_copy_data);
1093 
1094 struct bio_map_data {
1095 	int is_our_pages;
1096 	struct iov_iter iter;
1097 	struct iovec iov[];
1098 };
1099 
1100 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1101 					       gfp_t gfp_mask)
1102 {
1103 	struct bio_map_data *bmd;
1104 	if (data->nr_segs > UIO_MAXIOV)
1105 		return NULL;
1106 
1107 	bmd = kmalloc(sizeof(struct bio_map_data) +
1108 		       sizeof(struct iovec) * data->nr_segs, gfp_mask);
1109 	if (!bmd)
1110 		return NULL;
1111 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1112 	bmd->iter = *data;
1113 	bmd->iter.iov = bmd->iov;
1114 	return bmd;
1115 }
1116 
1117 /**
1118  * bio_copy_from_iter - copy all pages from iov_iter to bio
1119  * @bio: The &struct bio which describes the I/O as destination
1120  * @iter: iov_iter as source
1121  *
1122  * Copy all pages from iov_iter to bio.
1123  * Returns 0 on success, or error on failure.
1124  */
1125 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1126 {
1127 	int i;
1128 	struct bio_vec *bvec;
1129 	struct bvec_iter_all iter_all;
1130 
1131 	bio_for_each_segment_all(bvec, bio, i, iter_all) {
1132 		ssize_t ret;
1133 
1134 		ret = copy_page_from_iter(bvec->bv_page,
1135 					  bvec->bv_offset,
1136 					  bvec->bv_len,
1137 					  iter);
1138 
1139 		if (!iov_iter_count(iter))
1140 			break;
1141 
1142 		if (ret < bvec->bv_len)
1143 			return -EFAULT;
1144 	}
1145 
1146 	return 0;
1147 }
1148 
1149 /**
1150  * bio_copy_to_iter - copy all pages from bio to iov_iter
1151  * @bio: The &struct bio which describes the I/O as source
1152  * @iter: iov_iter as destination
1153  *
1154  * Copy all pages from bio to iov_iter.
1155  * Returns 0 on success, or error on failure.
1156  */
1157 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1158 {
1159 	int i;
1160 	struct bio_vec *bvec;
1161 	struct bvec_iter_all iter_all;
1162 
1163 	bio_for_each_segment_all(bvec, bio, i, iter_all) {
1164 		ssize_t ret;
1165 
1166 		ret = copy_page_to_iter(bvec->bv_page,
1167 					bvec->bv_offset,
1168 					bvec->bv_len,
1169 					&iter);
1170 
1171 		if (!iov_iter_count(&iter))
1172 			break;
1173 
1174 		if (ret < bvec->bv_len)
1175 			return -EFAULT;
1176 	}
1177 
1178 	return 0;
1179 }
1180 
1181 void bio_free_pages(struct bio *bio)
1182 {
1183 	struct bio_vec *bvec;
1184 	int i;
1185 	struct bvec_iter_all iter_all;
1186 
1187 	bio_for_each_segment_all(bvec, bio, i, iter_all)
1188 		__free_page(bvec->bv_page);
1189 }
1190 EXPORT_SYMBOL(bio_free_pages);
1191 
1192 /**
1193  *	bio_uncopy_user	-	finish previously mapped bio
1194  *	@bio: bio being terminated
1195  *
1196  *	Free pages allocated from bio_copy_user_iov() and write back data
1197  *	to user space in case of a read.
1198  */
1199 int bio_uncopy_user(struct bio *bio)
1200 {
1201 	struct bio_map_data *bmd = bio->bi_private;
1202 	int ret = 0;
1203 
1204 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1205 		/*
1206 		 * if we're in a workqueue, the request is orphaned, so
1207 		 * don't copy into a random user address space, just free
1208 		 * and return -EINTR so user space doesn't expect any data.
1209 		 */
1210 		if (!current->mm)
1211 			ret = -EINTR;
1212 		else if (bio_data_dir(bio) == READ)
1213 			ret = bio_copy_to_iter(bio, bmd->iter);
1214 		if (bmd->is_our_pages)
1215 			bio_free_pages(bio);
1216 	}
1217 	kfree(bmd);
1218 	bio_put(bio);
1219 	return ret;
1220 }
1221 
1222 /**
1223  *	bio_copy_user_iov	-	copy user data to bio
1224  *	@q:		destination block queue
1225  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1226  *	@iter:		iovec iterator
1227  *	@gfp_mask:	memory allocation flags
1228  *
1229  *	Prepares and returns a bio for indirect user io, bouncing data
1230  *	to/from kernel pages as necessary. Must be paired with
1231  *	call bio_uncopy_user() on io completion.
1232  */
1233 struct bio *bio_copy_user_iov(struct request_queue *q,
1234 			      struct rq_map_data *map_data,
1235 			      struct iov_iter *iter,
1236 			      gfp_t gfp_mask)
1237 {
1238 	struct bio_map_data *bmd;
1239 	struct page *page;
1240 	struct bio *bio;
1241 	int i = 0, ret;
1242 	int nr_pages;
1243 	unsigned int len = iter->count;
1244 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1245 
1246 	bmd = bio_alloc_map_data(iter, gfp_mask);
1247 	if (!bmd)
1248 		return ERR_PTR(-ENOMEM);
1249 
1250 	/*
1251 	 * We need to do a deep copy of the iov_iter including the iovecs.
1252 	 * The caller provided iov might point to an on-stack or otherwise
1253 	 * shortlived one.
1254 	 */
1255 	bmd->is_our_pages = map_data ? 0 : 1;
1256 
1257 	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1258 	if (nr_pages > BIO_MAX_PAGES)
1259 		nr_pages = BIO_MAX_PAGES;
1260 
1261 	ret = -ENOMEM;
1262 	bio = bio_kmalloc(gfp_mask, nr_pages);
1263 	if (!bio)
1264 		goto out_bmd;
1265 
1266 	ret = 0;
1267 
1268 	if (map_data) {
1269 		nr_pages = 1 << map_data->page_order;
1270 		i = map_data->offset / PAGE_SIZE;
1271 	}
1272 	while (len) {
1273 		unsigned int bytes = PAGE_SIZE;
1274 
1275 		bytes -= offset;
1276 
1277 		if (bytes > len)
1278 			bytes = len;
1279 
1280 		if (map_data) {
1281 			if (i == map_data->nr_entries * nr_pages) {
1282 				ret = -ENOMEM;
1283 				break;
1284 			}
1285 
1286 			page = map_data->pages[i / nr_pages];
1287 			page += (i % nr_pages);
1288 
1289 			i++;
1290 		} else {
1291 			page = alloc_page(q->bounce_gfp | gfp_mask);
1292 			if (!page) {
1293 				ret = -ENOMEM;
1294 				break;
1295 			}
1296 		}
1297 
1298 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1299 			break;
1300 
1301 		len -= bytes;
1302 		offset = 0;
1303 	}
1304 
1305 	if (ret)
1306 		goto cleanup;
1307 
1308 	if (map_data)
1309 		map_data->offset += bio->bi_iter.bi_size;
1310 
1311 	/*
1312 	 * success
1313 	 */
1314 	if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1315 	    (map_data && map_data->from_user)) {
1316 		ret = bio_copy_from_iter(bio, iter);
1317 		if (ret)
1318 			goto cleanup;
1319 	} else {
1320 		if (bmd->is_our_pages)
1321 			zero_fill_bio(bio);
1322 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1323 	}
1324 
1325 	bio->bi_private = bmd;
1326 	if (map_data && map_data->null_mapped)
1327 		bio_set_flag(bio, BIO_NULL_MAPPED);
1328 	return bio;
1329 cleanup:
1330 	if (!map_data)
1331 		bio_free_pages(bio);
1332 	bio_put(bio);
1333 out_bmd:
1334 	kfree(bmd);
1335 	return ERR_PTR(ret);
1336 }
1337 
1338 /**
1339  *	bio_map_user_iov - map user iovec into bio
1340  *	@q:		the struct request_queue for the bio
1341  *	@iter:		iovec iterator
1342  *	@gfp_mask:	memory allocation flags
1343  *
1344  *	Map the user space address into a bio suitable for io to a block
1345  *	device. Returns an error pointer in case of error.
1346  */
1347 struct bio *bio_map_user_iov(struct request_queue *q,
1348 			     struct iov_iter *iter,
1349 			     gfp_t gfp_mask)
1350 {
1351 	int j;
1352 	struct bio *bio;
1353 	int ret;
1354 	struct bio_vec *bvec;
1355 	struct bvec_iter_all iter_all;
1356 
1357 	if (!iov_iter_count(iter))
1358 		return ERR_PTR(-EINVAL);
1359 
1360 	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1361 	if (!bio)
1362 		return ERR_PTR(-ENOMEM);
1363 
1364 	while (iov_iter_count(iter)) {
1365 		struct page **pages;
1366 		ssize_t bytes;
1367 		size_t offs, added = 0;
1368 		int npages;
1369 
1370 		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1371 		if (unlikely(bytes <= 0)) {
1372 			ret = bytes ? bytes : -EFAULT;
1373 			goto out_unmap;
1374 		}
1375 
1376 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1377 
1378 		if (unlikely(offs & queue_dma_alignment(q))) {
1379 			ret = -EINVAL;
1380 			j = 0;
1381 		} else {
1382 			for (j = 0; j < npages; j++) {
1383 				struct page *page = pages[j];
1384 				unsigned int n = PAGE_SIZE - offs;
1385 				unsigned short prev_bi_vcnt = bio->bi_vcnt;
1386 
1387 				if (n > bytes)
1388 					n = bytes;
1389 
1390 				if (!bio_add_pc_page(q, bio, page, n, offs))
1391 					break;
1392 
1393 				/*
1394 				 * check if vector was merged with previous
1395 				 * drop page reference if needed
1396 				 */
1397 				if (bio->bi_vcnt == prev_bi_vcnt)
1398 					put_page(page);
1399 
1400 				added += n;
1401 				bytes -= n;
1402 				offs = 0;
1403 			}
1404 			iov_iter_advance(iter, added);
1405 		}
1406 		/*
1407 		 * release the pages we didn't map into the bio, if any
1408 		 */
1409 		while (j < npages)
1410 			put_page(pages[j++]);
1411 		kvfree(pages);
1412 		/* couldn't stuff something into bio? */
1413 		if (bytes)
1414 			break;
1415 	}
1416 
1417 	bio_set_flag(bio, BIO_USER_MAPPED);
1418 
1419 	/*
1420 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1421 	 * it would normally disappear when its bi_end_io is run.
1422 	 * however, we need it for the unmap, so grab an extra
1423 	 * reference to it
1424 	 */
1425 	bio_get(bio);
1426 	return bio;
1427 
1428  out_unmap:
1429 	bio_for_each_segment_all(bvec, bio, j, iter_all) {
1430 		put_page(bvec->bv_page);
1431 	}
1432 	bio_put(bio);
1433 	return ERR_PTR(ret);
1434 }
1435 
1436 static void __bio_unmap_user(struct bio *bio)
1437 {
1438 	struct bio_vec *bvec;
1439 	int i;
1440 	struct bvec_iter_all iter_all;
1441 
1442 	/*
1443 	 * make sure we dirty pages we wrote to
1444 	 */
1445 	bio_for_each_segment_all(bvec, bio, i, iter_all) {
1446 		if (bio_data_dir(bio) == READ)
1447 			set_page_dirty_lock(bvec->bv_page);
1448 
1449 		put_page(bvec->bv_page);
1450 	}
1451 
1452 	bio_put(bio);
1453 }
1454 
1455 /**
1456  *	bio_unmap_user	-	unmap a bio
1457  *	@bio:		the bio being unmapped
1458  *
1459  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1460  *	process context.
1461  *
1462  *	bio_unmap_user() may sleep.
1463  */
1464 void bio_unmap_user(struct bio *bio)
1465 {
1466 	__bio_unmap_user(bio);
1467 	bio_put(bio);
1468 }
1469 
1470 static void bio_map_kern_endio(struct bio *bio)
1471 {
1472 	bio_put(bio);
1473 }
1474 
1475 /**
1476  *	bio_map_kern	-	map kernel address into bio
1477  *	@q: the struct request_queue for the bio
1478  *	@data: pointer to buffer to map
1479  *	@len: length in bytes
1480  *	@gfp_mask: allocation flags for bio allocation
1481  *
1482  *	Map the kernel address into a bio suitable for io to a block
1483  *	device. Returns an error pointer in case of error.
1484  */
1485 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1486 			 gfp_t gfp_mask)
1487 {
1488 	unsigned long kaddr = (unsigned long)data;
1489 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1490 	unsigned long start = kaddr >> PAGE_SHIFT;
1491 	const int nr_pages = end - start;
1492 	int offset, i;
1493 	struct bio *bio;
1494 
1495 	bio = bio_kmalloc(gfp_mask, nr_pages);
1496 	if (!bio)
1497 		return ERR_PTR(-ENOMEM);
1498 
1499 	offset = offset_in_page(kaddr);
1500 	for (i = 0; i < nr_pages; i++) {
1501 		unsigned int bytes = PAGE_SIZE - offset;
1502 
1503 		if (len <= 0)
1504 			break;
1505 
1506 		if (bytes > len)
1507 			bytes = len;
1508 
1509 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1510 				    offset) < bytes) {
1511 			/* we don't support partial mappings */
1512 			bio_put(bio);
1513 			return ERR_PTR(-EINVAL);
1514 		}
1515 
1516 		data += bytes;
1517 		len -= bytes;
1518 		offset = 0;
1519 	}
1520 
1521 	bio->bi_end_io = bio_map_kern_endio;
1522 	return bio;
1523 }
1524 EXPORT_SYMBOL(bio_map_kern);
1525 
1526 static void bio_copy_kern_endio(struct bio *bio)
1527 {
1528 	bio_free_pages(bio);
1529 	bio_put(bio);
1530 }
1531 
1532 static void bio_copy_kern_endio_read(struct bio *bio)
1533 {
1534 	char *p = bio->bi_private;
1535 	struct bio_vec *bvec;
1536 	int i;
1537 	struct bvec_iter_all iter_all;
1538 
1539 	bio_for_each_segment_all(bvec, bio, i, iter_all) {
1540 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1541 		p += bvec->bv_len;
1542 	}
1543 
1544 	bio_copy_kern_endio(bio);
1545 }
1546 
1547 /**
1548  *	bio_copy_kern	-	copy kernel address into bio
1549  *	@q: the struct request_queue for the bio
1550  *	@data: pointer to buffer to copy
1551  *	@len: length in bytes
1552  *	@gfp_mask: allocation flags for bio and page allocation
1553  *	@reading: data direction is READ
1554  *
1555  *	copy the kernel address into a bio suitable for io to a block
1556  *	device. Returns an error pointer in case of error.
1557  */
1558 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1559 			  gfp_t gfp_mask, int reading)
1560 {
1561 	unsigned long kaddr = (unsigned long)data;
1562 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1563 	unsigned long start = kaddr >> PAGE_SHIFT;
1564 	struct bio *bio;
1565 	void *p = data;
1566 	int nr_pages = 0;
1567 
1568 	/*
1569 	 * Overflow, abort
1570 	 */
1571 	if (end < start)
1572 		return ERR_PTR(-EINVAL);
1573 
1574 	nr_pages = end - start;
1575 	bio = bio_kmalloc(gfp_mask, nr_pages);
1576 	if (!bio)
1577 		return ERR_PTR(-ENOMEM);
1578 
1579 	while (len) {
1580 		struct page *page;
1581 		unsigned int bytes = PAGE_SIZE;
1582 
1583 		if (bytes > len)
1584 			bytes = len;
1585 
1586 		page = alloc_page(q->bounce_gfp | gfp_mask);
1587 		if (!page)
1588 			goto cleanup;
1589 
1590 		if (!reading)
1591 			memcpy(page_address(page), p, bytes);
1592 
1593 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1594 			break;
1595 
1596 		len -= bytes;
1597 		p += bytes;
1598 	}
1599 
1600 	if (reading) {
1601 		bio->bi_end_io = bio_copy_kern_endio_read;
1602 		bio->bi_private = data;
1603 	} else {
1604 		bio->bi_end_io = bio_copy_kern_endio;
1605 	}
1606 
1607 	return bio;
1608 
1609 cleanup:
1610 	bio_free_pages(bio);
1611 	bio_put(bio);
1612 	return ERR_PTR(-ENOMEM);
1613 }
1614 
1615 /*
1616  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1617  * for performing direct-IO in BIOs.
1618  *
1619  * The problem is that we cannot run set_page_dirty() from interrupt context
1620  * because the required locks are not interrupt-safe.  So what we can do is to
1621  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1622  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1623  * in process context.
1624  *
1625  * We special-case compound pages here: normally this means reads into hugetlb
1626  * pages.  The logic in here doesn't really work right for compound pages
1627  * because the VM does not uniformly chase down the head page in all cases.
1628  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1629  * handle them at all.  So we skip compound pages here at an early stage.
1630  *
1631  * Note that this code is very hard to test under normal circumstances because
1632  * direct-io pins the pages with get_user_pages().  This makes
1633  * is_page_cache_freeable return false, and the VM will not clean the pages.
1634  * But other code (eg, flusher threads) could clean the pages if they are mapped
1635  * pagecache.
1636  *
1637  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1638  * deferred bio dirtying paths.
1639  */
1640 
1641 /*
1642  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1643  */
1644 void bio_set_pages_dirty(struct bio *bio)
1645 {
1646 	struct bio_vec *bvec;
1647 	int i;
1648 	struct bvec_iter_all iter_all;
1649 
1650 	bio_for_each_segment_all(bvec, bio, i, iter_all) {
1651 		if (!PageCompound(bvec->bv_page))
1652 			set_page_dirty_lock(bvec->bv_page);
1653 	}
1654 }
1655 
1656 static void bio_release_pages(struct bio *bio)
1657 {
1658 	struct bio_vec *bvec;
1659 	int i;
1660 	struct bvec_iter_all iter_all;
1661 
1662 	bio_for_each_segment_all(bvec, bio, i, iter_all)
1663 		put_page(bvec->bv_page);
1664 }
1665 
1666 /*
1667  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1668  * If they are, then fine.  If, however, some pages are clean then they must
1669  * have been written out during the direct-IO read.  So we take another ref on
1670  * the BIO and re-dirty the pages in process context.
1671  *
1672  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1673  * here on.  It will run one put_page() against each page and will run one
1674  * bio_put() against the BIO.
1675  */
1676 
1677 static void bio_dirty_fn(struct work_struct *work);
1678 
1679 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1680 static DEFINE_SPINLOCK(bio_dirty_lock);
1681 static struct bio *bio_dirty_list;
1682 
1683 /*
1684  * This runs in process context
1685  */
1686 static void bio_dirty_fn(struct work_struct *work)
1687 {
1688 	struct bio *bio, *next;
1689 
1690 	spin_lock_irq(&bio_dirty_lock);
1691 	next = bio_dirty_list;
1692 	bio_dirty_list = NULL;
1693 	spin_unlock_irq(&bio_dirty_lock);
1694 
1695 	while ((bio = next) != NULL) {
1696 		next = bio->bi_private;
1697 
1698 		bio_set_pages_dirty(bio);
1699 		bio_release_pages(bio);
1700 		bio_put(bio);
1701 	}
1702 }
1703 
1704 void bio_check_pages_dirty(struct bio *bio)
1705 {
1706 	struct bio_vec *bvec;
1707 	unsigned long flags;
1708 	int i;
1709 	struct bvec_iter_all iter_all;
1710 
1711 	bio_for_each_segment_all(bvec, bio, i, iter_all) {
1712 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1713 			goto defer;
1714 	}
1715 
1716 	bio_release_pages(bio);
1717 	bio_put(bio);
1718 	return;
1719 defer:
1720 	spin_lock_irqsave(&bio_dirty_lock, flags);
1721 	bio->bi_private = bio_dirty_list;
1722 	bio_dirty_list = bio;
1723 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1724 	schedule_work(&bio_dirty_work);
1725 }
1726 
1727 void update_io_ticks(struct hd_struct *part, unsigned long now)
1728 {
1729 	unsigned long stamp;
1730 again:
1731 	stamp = READ_ONCE(part->stamp);
1732 	if (unlikely(stamp != now)) {
1733 		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1734 			__part_stat_add(part, io_ticks, 1);
1735 		}
1736 	}
1737 	if (part->partno) {
1738 		part = &part_to_disk(part)->part0;
1739 		goto again;
1740 	}
1741 }
1742 
1743 void generic_start_io_acct(struct request_queue *q, int op,
1744 			   unsigned long sectors, struct hd_struct *part)
1745 {
1746 	const int sgrp = op_stat_group(op);
1747 
1748 	part_stat_lock();
1749 
1750 	update_io_ticks(part, jiffies);
1751 	part_stat_inc(part, ios[sgrp]);
1752 	part_stat_add(part, sectors[sgrp], sectors);
1753 	part_inc_in_flight(q, part, op_is_write(op));
1754 
1755 	part_stat_unlock();
1756 }
1757 EXPORT_SYMBOL(generic_start_io_acct);
1758 
1759 void generic_end_io_acct(struct request_queue *q, int req_op,
1760 			 struct hd_struct *part, unsigned long start_time)
1761 {
1762 	unsigned long now = jiffies;
1763 	unsigned long duration = now - start_time;
1764 	const int sgrp = op_stat_group(req_op);
1765 
1766 	part_stat_lock();
1767 
1768 	update_io_ticks(part, now);
1769 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1770 	part_stat_add(part, time_in_queue, duration);
1771 	part_dec_in_flight(q, part, op_is_write(req_op));
1772 
1773 	part_stat_unlock();
1774 }
1775 EXPORT_SYMBOL(generic_end_io_acct);
1776 
1777 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1778 void bio_flush_dcache_pages(struct bio *bi)
1779 {
1780 	struct bio_vec bvec;
1781 	struct bvec_iter iter;
1782 
1783 	bio_for_each_segment(bvec, bi, iter)
1784 		flush_dcache_page(bvec.bv_page);
1785 }
1786 EXPORT_SYMBOL(bio_flush_dcache_pages);
1787 #endif
1788 
1789 static inline bool bio_remaining_done(struct bio *bio)
1790 {
1791 	/*
1792 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1793 	 * we always end io on the first invocation.
1794 	 */
1795 	if (!bio_flagged(bio, BIO_CHAIN))
1796 		return true;
1797 
1798 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1799 
1800 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1801 		bio_clear_flag(bio, BIO_CHAIN);
1802 		return true;
1803 	}
1804 
1805 	return false;
1806 }
1807 
1808 /**
1809  * bio_endio - end I/O on a bio
1810  * @bio:	bio
1811  *
1812  * Description:
1813  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1814  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1815  *   bio unless they own it and thus know that it has an end_io function.
1816  *
1817  *   bio_endio() can be called several times on a bio that has been chained
1818  *   using bio_chain().  The ->bi_end_io() function will only be called the
1819  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1820  *   generated if BIO_TRACE_COMPLETION is set.
1821  **/
1822 void bio_endio(struct bio *bio)
1823 {
1824 again:
1825 	if (!bio_remaining_done(bio))
1826 		return;
1827 	if (!bio_integrity_endio(bio))
1828 		return;
1829 
1830 	if (bio->bi_disk)
1831 		rq_qos_done_bio(bio->bi_disk->queue, bio);
1832 
1833 	/*
1834 	 * Need to have a real endio function for chained bios, otherwise
1835 	 * various corner cases will break (like stacking block devices that
1836 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1837 	 * recursion and blowing the stack. Tail call optimization would
1838 	 * handle this, but compiling with frame pointers also disables
1839 	 * gcc's sibling call optimization.
1840 	 */
1841 	if (bio->bi_end_io == bio_chain_endio) {
1842 		bio = __bio_chain_endio(bio);
1843 		goto again;
1844 	}
1845 
1846 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1847 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1848 					 blk_status_to_errno(bio->bi_status));
1849 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1850 	}
1851 
1852 	blk_throtl_bio_endio(bio);
1853 	/* release cgroup info */
1854 	bio_uninit(bio);
1855 	if (bio->bi_end_io)
1856 		bio->bi_end_io(bio);
1857 }
1858 EXPORT_SYMBOL(bio_endio);
1859 
1860 /**
1861  * bio_split - split a bio
1862  * @bio:	bio to split
1863  * @sectors:	number of sectors to split from the front of @bio
1864  * @gfp:	gfp mask
1865  * @bs:		bio set to allocate from
1866  *
1867  * Allocates and returns a new bio which represents @sectors from the start of
1868  * @bio, and updates @bio to represent the remaining sectors.
1869  *
1870  * Unless this is a discard request the newly allocated bio will point
1871  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1872  * @bio is not freed before the split.
1873  */
1874 struct bio *bio_split(struct bio *bio, int sectors,
1875 		      gfp_t gfp, struct bio_set *bs)
1876 {
1877 	struct bio *split;
1878 
1879 	BUG_ON(sectors <= 0);
1880 	BUG_ON(sectors >= bio_sectors(bio));
1881 
1882 	split = bio_clone_fast(bio, gfp, bs);
1883 	if (!split)
1884 		return NULL;
1885 
1886 	split->bi_iter.bi_size = sectors << 9;
1887 
1888 	if (bio_integrity(split))
1889 		bio_integrity_trim(split);
1890 
1891 	bio_advance(bio, split->bi_iter.bi_size);
1892 
1893 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1894 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1895 
1896 	return split;
1897 }
1898 EXPORT_SYMBOL(bio_split);
1899 
1900 /**
1901  * bio_trim - trim a bio
1902  * @bio:	bio to trim
1903  * @offset:	number of sectors to trim from the front of @bio
1904  * @size:	size we want to trim @bio to, in sectors
1905  */
1906 void bio_trim(struct bio *bio, int offset, int size)
1907 {
1908 	/* 'bio' is a cloned bio which we need to trim to match
1909 	 * the given offset and size.
1910 	 */
1911 
1912 	size <<= 9;
1913 	if (offset == 0 && size == bio->bi_iter.bi_size)
1914 		return;
1915 
1916 	bio_clear_flag(bio, BIO_SEG_VALID);
1917 
1918 	bio_advance(bio, offset << 9);
1919 
1920 	bio->bi_iter.bi_size = size;
1921 
1922 	if (bio_integrity(bio))
1923 		bio_integrity_trim(bio);
1924 
1925 }
1926 EXPORT_SYMBOL_GPL(bio_trim);
1927 
1928 /*
1929  * create memory pools for biovec's in a bio_set.
1930  * use the global biovec slabs created for general use.
1931  */
1932 int biovec_init_pool(mempool_t *pool, int pool_entries)
1933 {
1934 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1935 
1936 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1937 }
1938 
1939 /*
1940  * bioset_exit - exit a bioset initialized with bioset_init()
1941  *
1942  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1943  * kzalloc()).
1944  */
1945 void bioset_exit(struct bio_set *bs)
1946 {
1947 	if (bs->rescue_workqueue)
1948 		destroy_workqueue(bs->rescue_workqueue);
1949 	bs->rescue_workqueue = NULL;
1950 
1951 	mempool_exit(&bs->bio_pool);
1952 	mempool_exit(&bs->bvec_pool);
1953 
1954 	bioset_integrity_free(bs);
1955 	if (bs->bio_slab)
1956 		bio_put_slab(bs);
1957 	bs->bio_slab = NULL;
1958 }
1959 EXPORT_SYMBOL(bioset_exit);
1960 
1961 /**
1962  * bioset_init - Initialize a bio_set
1963  * @bs:		pool to initialize
1964  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1965  * @front_pad:	Number of bytes to allocate in front of the returned bio
1966  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1967  *              and %BIOSET_NEED_RESCUER
1968  *
1969  * Description:
1970  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1971  *    to ask for a number of bytes to be allocated in front of the bio.
1972  *    Front pad allocation is useful for embedding the bio inside
1973  *    another structure, to avoid allocating extra data to go with the bio.
1974  *    Note that the bio must be embedded at the END of that structure always,
1975  *    or things will break badly.
1976  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1977  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1978  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1979  *    dispatch queued requests when the mempool runs out of space.
1980  *
1981  */
1982 int bioset_init(struct bio_set *bs,
1983 		unsigned int pool_size,
1984 		unsigned int front_pad,
1985 		int flags)
1986 {
1987 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1988 
1989 	bs->front_pad = front_pad;
1990 
1991 	spin_lock_init(&bs->rescue_lock);
1992 	bio_list_init(&bs->rescue_list);
1993 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1994 
1995 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1996 	if (!bs->bio_slab)
1997 		return -ENOMEM;
1998 
1999 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
2000 		goto bad;
2001 
2002 	if ((flags & BIOSET_NEED_BVECS) &&
2003 	    biovec_init_pool(&bs->bvec_pool, pool_size))
2004 		goto bad;
2005 
2006 	if (!(flags & BIOSET_NEED_RESCUER))
2007 		return 0;
2008 
2009 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2010 	if (!bs->rescue_workqueue)
2011 		goto bad;
2012 
2013 	return 0;
2014 bad:
2015 	bioset_exit(bs);
2016 	return -ENOMEM;
2017 }
2018 EXPORT_SYMBOL(bioset_init);
2019 
2020 /*
2021  * Initialize and setup a new bio_set, based on the settings from
2022  * another bio_set.
2023  */
2024 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2025 {
2026 	int flags;
2027 
2028 	flags = 0;
2029 	if (src->bvec_pool.min_nr)
2030 		flags |= BIOSET_NEED_BVECS;
2031 	if (src->rescue_workqueue)
2032 		flags |= BIOSET_NEED_RESCUER;
2033 
2034 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2035 }
2036 EXPORT_SYMBOL(bioset_init_from_src);
2037 
2038 #ifdef CONFIG_BLK_CGROUP
2039 
2040 /**
2041  * bio_disassociate_blkg - puts back the blkg reference if associated
2042  * @bio: target bio
2043  *
2044  * Helper to disassociate the blkg from @bio if a blkg is associated.
2045  */
2046 void bio_disassociate_blkg(struct bio *bio)
2047 {
2048 	if (bio->bi_blkg) {
2049 		blkg_put(bio->bi_blkg);
2050 		bio->bi_blkg = NULL;
2051 	}
2052 }
2053 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2054 
2055 /**
2056  * __bio_associate_blkg - associate a bio with the a blkg
2057  * @bio: target bio
2058  * @blkg: the blkg to associate
2059  *
2060  * This tries to associate @bio with the specified @blkg.  Association failure
2061  * is handled by walking up the blkg tree.  Therefore, the blkg associated can
2062  * be anything between @blkg and the root_blkg.  This situation only happens
2063  * when a cgroup is dying and then the remaining bios will spill to the closest
2064  * alive blkg.
2065  *
2066  * A reference will be taken on the @blkg and will be released when @bio is
2067  * freed.
2068  */
2069 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2070 {
2071 	bio_disassociate_blkg(bio);
2072 
2073 	bio->bi_blkg = blkg_tryget_closest(blkg);
2074 }
2075 
2076 /**
2077  * bio_associate_blkg_from_css - associate a bio with a specified css
2078  * @bio: target bio
2079  * @css: target css
2080  *
2081  * Associate @bio with the blkg found by combining the css's blkg and the
2082  * request_queue of the @bio.  This falls back to the queue's root_blkg if
2083  * the association fails with the css.
2084  */
2085 void bio_associate_blkg_from_css(struct bio *bio,
2086 				 struct cgroup_subsys_state *css)
2087 {
2088 	struct request_queue *q = bio->bi_disk->queue;
2089 	struct blkcg_gq *blkg;
2090 
2091 	rcu_read_lock();
2092 
2093 	if (!css || !css->parent)
2094 		blkg = q->root_blkg;
2095 	else
2096 		blkg = blkg_lookup_create(css_to_blkcg(css), q);
2097 
2098 	__bio_associate_blkg(bio, blkg);
2099 
2100 	rcu_read_unlock();
2101 }
2102 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2103 
2104 #ifdef CONFIG_MEMCG
2105 /**
2106  * bio_associate_blkg_from_page - associate a bio with the page's blkg
2107  * @bio: target bio
2108  * @page: the page to lookup the blkcg from
2109  *
2110  * Associate @bio with the blkg from @page's owning memcg and the respective
2111  * request_queue.  If cgroup_e_css returns %NULL, fall back to the queue's
2112  * root_blkg.
2113  */
2114 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2115 {
2116 	struct cgroup_subsys_state *css;
2117 
2118 	if (!page->mem_cgroup)
2119 		return;
2120 
2121 	rcu_read_lock();
2122 
2123 	css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2124 	bio_associate_blkg_from_css(bio, css);
2125 
2126 	rcu_read_unlock();
2127 }
2128 #endif /* CONFIG_MEMCG */
2129 
2130 /**
2131  * bio_associate_blkg - associate a bio with a blkg
2132  * @bio: target bio
2133  *
2134  * Associate @bio with the blkg found from the bio's css and request_queue.
2135  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2136  * already associated, the css is reused and association redone as the
2137  * request_queue may have changed.
2138  */
2139 void bio_associate_blkg(struct bio *bio)
2140 {
2141 	struct cgroup_subsys_state *css;
2142 
2143 	rcu_read_lock();
2144 
2145 	if (bio->bi_blkg)
2146 		css = &bio_blkcg(bio)->css;
2147 	else
2148 		css = blkcg_css();
2149 
2150 	bio_associate_blkg_from_css(bio, css);
2151 
2152 	rcu_read_unlock();
2153 }
2154 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2155 
2156 /**
2157  * bio_clone_blkg_association - clone blkg association from src to dst bio
2158  * @dst: destination bio
2159  * @src: source bio
2160  */
2161 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2162 {
2163 	rcu_read_lock();
2164 
2165 	if (src->bi_blkg)
2166 		__bio_associate_blkg(dst, src->bi_blkg);
2167 
2168 	rcu_read_unlock();
2169 }
2170 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2171 #endif /* CONFIG_BLK_CGROUP */
2172 
2173 static void __init biovec_init_slabs(void)
2174 {
2175 	int i;
2176 
2177 	for (i = 0; i < BVEC_POOL_NR; i++) {
2178 		int size;
2179 		struct biovec_slab *bvs = bvec_slabs + i;
2180 
2181 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2182 			bvs->slab = NULL;
2183 			continue;
2184 		}
2185 
2186 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2187 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2188                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2189 	}
2190 }
2191 
2192 static int __init init_bio(void)
2193 {
2194 	bio_slab_max = 2;
2195 	bio_slab_nr = 0;
2196 	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2197 			    GFP_KERNEL);
2198 	if (!bio_slabs)
2199 		panic("bio: can't allocate bios\n");
2200 
2201 	bio_integrity_init();
2202 	biovec_init_slabs();
2203 
2204 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2205 		panic("bio: can't allocate bios\n");
2206 
2207 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2208 		panic("bio: can't create integrity pool\n");
2209 
2210 	return 0;
2211 }
2212 subsys_initcall(init_bio);
2213