xref: /openbmc/linux/block/bio.c (revision eb79d135)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
22 #include <linux/xarray.h>
23 
24 #include <trace/events/block.h>
25 #include "blk.h"
26 #include "blk-rq-qos.h"
27 
28 struct bio_alloc_cache {
29 	struct bio_list		free_list;
30 	unsigned int		nr;
31 };
32 
33 static struct biovec_slab {
34 	int nr_vecs;
35 	char *name;
36 	struct kmem_cache *slab;
37 } bvec_slabs[] __read_mostly = {
38 	{ .nr_vecs = 16, .name = "biovec-16" },
39 	{ .nr_vecs = 64, .name = "biovec-64" },
40 	{ .nr_vecs = 128, .name = "biovec-128" },
41 	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
42 };
43 
44 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45 {
46 	switch (nr_vecs) {
47 	/* smaller bios use inline vecs */
48 	case 5 ... 16:
49 		return &bvec_slabs[0];
50 	case 17 ... 64:
51 		return &bvec_slabs[1];
52 	case 65 ... 128:
53 		return &bvec_slabs[2];
54 	case 129 ... BIO_MAX_VECS:
55 		return &bvec_slabs[3];
56 	default:
57 		BUG();
58 		return NULL;
59 	}
60 }
61 
62 /*
63  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64  * IO code that does not need private memory pools.
65  */
66 struct bio_set fs_bio_set;
67 EXPORT_SYMBOL(fs_bio_set);
68 
69 /*
70  * Our slab pool management
71  */
72 struct bio_slab {
73 	struct kmem_cache *slab;
74 	unsigned int slab_ref;
75 	unsigned int slab_size;
76 	char name[8];
77 };
78 static DEFINE_MUTEX(bio_slab_lock);
79 static DEFINE_XARRAY(bio_slabs);
80 
81 static struct bio_slab *create_bio_slab(unsigned int size)
82 {
83 	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
84 
85 	if (!bslab)
86 		return NULL;
87 
88 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 	bslab->slab = kmem_cache_create(bslab->name, size,
90 			ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
91 	if (!bslab->slab)
92 		goto fail_alloc_slab;
93 
94 	bslab->slab_ref = 1;
95 	bslab->slab_size = size;
96 
97 	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
98 		return bslab;
99 
100 	kmem_cache_destroy(bslab->slab);
101 
102 fail_alloc_slab:
103 	kfree(bslab);
104 	return NULL;
105 }
106 
107 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
108 {
109 	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
110 }
111 
112 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
113 {
114 	unsigned int size = bs_bio_slab_size(bs);
115 	struct bio_slab *bslab;
116 
117 	mutex_lock(&bio_slab_lock);
118 	bslab = xa_load(&bio_slabs, size);
119 	if (bslab)
120 		bslab->slab_ref++;
121 	else
122 		bslab = create_bio_slab(size);
123 	mutex_unlock(&bio_slab_lock);
124 
125 	if (bslab)
126 		return bslab->slab;
127 	return NULL;
128 }
129 
130 static void bio_put_slab(struct bio_set *bs)
131 {
132 	struct bio_slab *bslab = NULL;
133 	unsigned int slab_size = bs_bio_slab_size(bs);
134 
135 	mutex_lock(&bio_slab_lock);
136 
137 	bslab = xa_load(&bio_slabs, slab_size);
138 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
139 		goto out;
140 
141 	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
142 
143 	WARN_ON(!bslab->slab_ref);
144 
145 	if (--bslab->slab_ref)
146 		goto out;
147 
148 	xa_erase(&bio_slabs, slab_size);
149 
150 	kmem_cache_destroy(bslab->slab);
151 	kfree(bslab);
152 
153 out:
154 	mutex_unlock(&bio_slab_lock);
155 }
156 
157 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
158 {
159 	BIO_BUG_ON(nr_vecs > BIO_MAX_VECS);
160 
161 	if (nr_vecs == BIO_MAX_VECS)
162 		mempool_free(bv, pool);
163 	else if (nr_vecs > BIO_INLINE_VECS)
164 		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
165 }
166 
167 /*
168  * Make the first allocation restricted and don't dump info on allocation
169  * failures, since we'll fall back to the mempool in case of failure.
170  */
171 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
172 {
173 	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
174 		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
175 }
176 
177 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
178 		gfp_t gfp_mask)
179 {
180 	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
181 
182 	if (WARN_ON_ONCE(!bvs))
183 		return NULL;
184 
185 	/*
186 	 * Upgrade the nr_vecs request to take full advantage of the allocation.
187 	 * We also rely on this in the bvec_free path.
188 	 */
189 	*nr_vecs = bvs->nr_vecs;
190 
191 	/*
192 	 * Try a slab allocation first for all smaller allocations.  If that
193 	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
194 	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
195 	 */
196 	if (*nr_vecs < BIO_MAX_VECS) {
197 		struct bio_vec *bvl;
198 
199 		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
200 		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
201 			return bvl;
202 		*nr_vecs = BIO_MAX_VECS;
203 	}
204 
205 	return mempool_alloc(pool, gfp_mask);
206 }
207 
208 void bio_uninit(struct bio *bio)
209 {
210 #ifdef CONFIG_BLK_CGROUP
211 	if (bio->bi_blkg) {
212 		blkg_put(bio->bi_blkg);
213 		bio->bi_blkg = NULL;
214 	}
215 #endif
216 	if (bio_integrity(bio))
217 		bio_integrity_free(bio);
218 
219 	bio_crypt_free_ctx(bio);
220 }
221 EXPORT_SYMBOL(bio_uninit);
222 
223 static void bio_free(struct bio *bio)
224 {
225 	struct bio_set *bs = bio->bi_pool;
226 	void *p;
227 
228 	bio_uninit(bio);
229 
230 	if (bs) {
231 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
232 
233 		/*
234 		 * If we have front padding, adjust the bio pointer before freeing
235 		 */
236 		p = bio;
237 		p -= bs->front_pad;
238 
239 		mempool_free(p, &bs->bio_pool);
240 	} else {
241 		/* Bio was allocated by bio_kmalloc() */
242 		kfree(bio);
243 	}
244 }
245 
246 /*
247  * Users of this function have their own bio allocation. Subsequently,
248  * they must remember to pair any call to bio_init() with bio_uninit()
249  * when IO has completed, or when the bio is released.
250  */
251 void bio_init(struct bio *bio, struct bio_vec *table,
252 	      unsigned short max_vecs)
253 {
254 	bio->bi_next = NULL;
255 	bio->bi_bdev = NULL;
256 	bio->bi_opf = 0;
257 	bio->bi_flags = 0;
258 	bio->bi_ioprio = 0;
259 	bio->bi_write_hint = 0;
260 	bio->bi_status = 0;
261 	bio->bi_iter.bi_sector = 0;
262 	bio->bi_iter.bi_size = 0;
263 	bio->bi_iter.bi_idx = 0;
264 	bio->bi_iter.bi_bvec_done = 0;
265 	bio->bi_end_io = NULL;
266 	bio->bi_private = NULL;
267 #ifdef CONFIG_BLK_CGROUP
268 	bio->bi_blkg = NULL;
269 	bio->bi_issue.value = 0;
270 #ifdef CONFIG_BLK_CGROUP_IOCOST
271 	bio->bi_iocost_cost = 0;
272 #endif
273 #endif
274 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
275 	bio->bi_crypt_context = NULL;
276 #endif
277 #ifdef CONFIG_BLK_DEV_INTEGRITY
278 	bio->bi_integrity = NULL;
279 #endif
280 	bio->bi_vcnt = 0;
281 
282 	atomic_set(&bio->__bi_remaining, 1);
283 	atomic_set(&bio->__bi_cnt, 1);
284 
285 	bio->bi_max_vecs = max_vecs;
286 	bio->bi_io_vec = table;
287 	bio->bi_pool = NULL;
288 }
289 EXPORT_SYMBOL(bio_init);
290 
291 /**
292  * bio_reset - reinitialize a bio
293  * @bio:	bio to reset
294  *
295  * Description:
296  *   After calling bio_reset(), @bio will be in the same state as a freshly
297  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
298  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
299  *   comment in struct bio.
300  */
301 void bio_reset(struct bio *bio)
302 {
303 	bio_uninit(bio);
304 	memset(bio, 0, BIO_RESET_BYTES);
305 	atomic_set(&bio->__bi_remaining, 1);
306 }
307 EXPORT_SYMBOL(bio_reset);
308 
309 static struct bio *__bio_chain_endio(struct bio *bio)
310 {
311 	struct bio *parent = bio->bi_private;
312 
313 	if (bio->bi_status && !parent->bi_status)
314 		parent->bi_status = bio->bi_status;
315 	bio_put(bio);
316 	return parent;
317 }
318 
319 static void bio_chain_endio(struct bio *bio)
320 {
321 	bio_endio(__bio_chain_endio(bio));
322 }
323 
324 /**
325  * bio_chain - chain bio completions
326  * @bio: the target bio
327  * @parent: the parent bio of @bio
328  *
329  * The caller won't have a bi_end_io called when @bio completes - instead,
330  * @parent's bi_end_io won't be called until both @parent and @bio have
331  * completed; the chained bio will also be freed when it completes.
332  *
333  * The caller must not set bi_private or bi_end_io in @bio.
334  */
335 void bio_chain(struct bio *bio, struct bio *parent)
336 {
337 	BUG_ON(bio->bi_private || bio->bi_end_io);
338 
339 	bio->bi_private = parent;
340 	bio->bi_end_io	= bio_chain_endio;
341 	bio_inc_remaining(parent);
342 }
343 EXPORT_SYMBOL(bio_chain);
344 
345 static void bio_alloc_rescue(struct work_struct *work)
346 {
347 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
348 	struct bio *bio;
349 
350 	while (1) {
351 		spin_lock(&bs->rescue_lock);
352 		bio = bio_list_pop(&bs->rescue_list);
353 		spin_unlock(&bs->rescue_lock);
354 
355 		if (!bio)
356 			break;
357 
358 		submit_bio_noacct(bio);
359 	}
360 }
361 
362 static void punt_bios_to_rescuer(struct bio_set *bs)
363 {
364 	struct bio_list punt, nopunt;
365 	struct bio *bio;
366 
367 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
368 		return;
369 	/*
370 	 * In order to guarantee forward progress we must punt only bios that
371 	 * were allocated from this bio_set; otherwise, if there was a bio on
372 	 * there for a stacking driver higher up in the stack, processing it
373 	 * could require allocating bios from this bio_set, and doing that from
374 	 * our own rescuer would be bad.
375 	 *
376 	 * Since bio lists are singly linked, pop them all instead of trying to
377 	 * remove from the middle of the list:
378 	 */
379 
380 	bio_list_init(&punt);
381 	bio_list_init(&nopunt);
382 
383 	while ((bio = bio_list_pop(&current->bio_list[0])))
384 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
385 	current->bio_list[0] = nopunt;
386 
387 	bio_list_init(&nopunt);
388 	while ((bio = bio_list_pop(&current->bio_list[1])))
389 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
390 	current->bio_list[1] = nopunt;
391 
392 	spin_lock(&bs->rescue_lock);
393 	bio_list_merge(&bs->rescue_list, &punt);
394 	spin_unlock(&bs->rescue_lock);
395 
396 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
397 }
398 
399 /**
400  * bio_alloc_bioset - allocate a bio for I/O
401  * @gfp_mask:   the GFP_* mask given to the slab allocator
402  * @nr_iovecs:	number of iovecs to pre-allocate
403  * @bs:		the bio_set to allocate from.
404  *
405  * Allocate a bio from the mempools in @bs.
406  *
407  * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
408  * allocate a bio.  This is due to the mempool guarantees.  To make this work,
409  * callers must never allocate more than 1 bio at a time from the general pool.
410  * Callers that need to allocate more than 1 bio must always submit the
411  * previously allocated bio for IO before attempting to allocate a new one.
412  * Failure to do so can cause deadlocks under memory pressure.
413  *
414  * Note that when running under submit_bio_noacct() (i.e. any block driver),
415  * bios are not submitted until after you return - see the code in
416  * submit_bio_noacct() that converts recursion into iteration, to prevent
417  * stack overflows.
418  *
419  * This would normally mean allocating multiple bios under submit_bio_noacct()
420  * would be susceptible to deadlocks, but we have
421  * deadlock avoidance code that resubmits any blocked bios from a rescuer
422  * thread.
423  *
424  * However, we do not guarantee forward progress for allocations from other
425  * mempools. Doing multiple allocations from the same mempool under
426  * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
427  * for per bio allocations.
428  *
429  * Returns: Pointer to new bio on success, NULL on failure.
430  */
431 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
432 			     struct bio_set *bs)
433 {
434 	gfp_t saved_gfp = gfp_mask;
435 	struct bio *bio;
436 	void *p;
437 
438 	/* should not use nobvec bioset for nr_iovecs > 0 */
439 	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
440 		return NULL;
441 
442 	/*
443 	 * submit_bio_noacct() converts recursion to iteration; this means if
444 	 * we're running beneath it, any bios we allocate and submit will not be
445 	 * submitted (and thus freed) until after we return.
446 	 *
447 	 * This exposes us to a potential deadlock if we allocate multiple bios
448 	 * from the same bio_set() while running underneath submit_bio_noacct().
449 	 * If we were to allocate multiple bios (say a stacking block driver
450 	 * that was splitting bios), we would deadlock if we exhausted the
451 	 * mempool's reserve.
452 	 *
453 	 * We solve this, and guarantee forward progress, with a rescuer
454 	 * workqueue per bio_set. If we go to allocate and there are bios on
455 	 * current->bio_list, we first try the allocation without
456 	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
457 	 * blocking to the rescuer workqueue before we retry with the original
458 	 * gfp_flags.
459 	 */
460 	if (current->bio_list &&
461 	    (!bio_list_empty(&current->bio_list[0]) ||
462 	     !bio_list_empty(&current->bio_list[1])) &&
463 	    bs->rescue_workqueue)
464 		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
465 
466 	p = mempool_alloc(&bs->bio_pool, gfp_mask);
467 	if (!p && gfp_mask != saved_gfp) {
468 		punt_bios_to_rescuer(bs);
469 		gfp_mask = saved_gfp;
470 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
471 	}
472 	if (unlikely(!p))
473 		return NULL;
474 
475 	bio = p + bs->front_pad;
476 	if (nr_iovecs > BIO_INLINE_VECS) {
477 		struct bio_vec *bvl = NULL;
478 
479 		bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
480 		if (!bvl && gfp_mask != saved_gfp) {
481 			punt_bios_to_rescuer(bs);
482 			gfp_mask = saved_gfp;
483 			bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
484 		}
485 		if (unlikely(!bvl))
486 			goto err_free;
487 
488 		bio_init(bio, bvl, nr_iovecs);
489 	} else if (nr_iovecs) {
490 		bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
491 	} else {
492 		bio_init(bio, NULL, 0);
493 	}
494 
495 	bio->bi_pool = bs;
496 	return bio;
497 
498 err_free:
499 	mempool_free(p, &bs->bio_pool);
500 	return NULL;
501 }
502 EXPORT_SYMBOL(bio_alloc_bioset);
503 
504 /**
505  * bio_kmalloc - kmalloc a bio for I/O
506  * @gfp_mask:   the GFP_* mask given to the slab allocator
507  * @nr_iovecs:	number of iovecs to pre-allocate
508  *
509  * Use kmalloc to allocate and initialize a bio.
510  *
511  * Returns: Pointer to new bio on success, NULL on failure.
512  */
513 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
514 {
515 	struct bio *bio;
516 
517 	if (nr_iovecs > UIO_MAXIOV)
518 		return NULL;
519 
520 	bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
521 	if (unlikely(!bio))
522 		return NULL;
523 	bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
524 	bio->bi_pool = NULL;
525 	return bio;
526 }
527 EXPORT_SYMBOL(bio_kmalloc);
528 
529 void zero_fill_bio(struct bio *bio)
530 {
531 	struct bio_vec bv;
532 	struct bvec_iter iter;
533 
534 	bio_for_each_segment(bv, bio, iter)
535 		memzero_bvec(&bv);
536 }
537 EXPORT_SYMBOL(zero_fill_bio);
538 
539 /**
540  * bio_truncate - truncate the bio to small size of @new_size
541  * @bio:	the bio to be truncated
542  * @new_size:	new size for truncating the bio
543  *
544  * Description:
545  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
546  *   REQ_OP_READ, zero the truncated part. This function should only
547  *   be used for handling corner cases, such as bio eod.
548  */
549 void bio_truncate(struct bio *bio, unsigned new_size)
550 {
551 	struct bio_vec bv;
552 	struct bvec_iter iter;
553 	unsigned int done = 0;
554 	bool truncated = false;
555 
556 	if (new_size >= bio->bi_iter.bi_size)
557 		return;
558 
559 	if (bio_op(bio) != REQ_OP_READ)
560 		goto exit;
561 
562 	bio_for_each_segment(bv, bio, iter) {
563 		if (done + bv.bv_len > new_size) {
564 			unsigned offset;
565 
566 			if (!truncated)
567 				offset = new_size - done;
568 			else
569 				offset = 0;
570 			zero_user(bv.bv_page, bv.bv_offset + offset,
571 				  bv.bv_len - offset);
572 			truncated = true;
573 		}
574 		done += bv.bv_len;
575 	}
576 
577  exit:
578 	/*
579 	 * Don't touch bvec table here and make it really immutable, since
580 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
581 	 * in its .end_bio() callback.
582 	 *
583 	 * It is enough to truncate bio by updating .bi_size since we can make
584 	 * correct bvec with the updated .bi_size for drivers.
585 	 */
586 	bio->bi_iter.bi_size = new_size;
587 }
588 
589 /**
590  * guard_bio_eod - truncate a BIO to fit the block device
591  * @bio:	bio to truncate
592  *
593  * This allows us to do IO even on the odd last sectors of a device, even if the
594  * block size is some multiple of the physical sector size.
595  *
596  * We'll just truncate the bio to the size of the device, and clear the end of
597  * the buffer head manually.  Truly out-of-range accesses will turn into actual
598  * I/O errors, this only handles the "we need to be able to do I/O at the final
599  * sector" case.
600  */
601 void guard_bio_eod(struct bio *bio)
602 {
603 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
604 
605 	if (!maxsector)
606 		return;
607 
608 	/*
609 	 * If the *whole* IO is past the end of the device,
610 	 * let it through, and the IO layer will turn it into
611 	 * an EIO.
612 	 */
613 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
614 		return;
615 
616 	maxsector -= bio->bi_iter.bi_sector;
617 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
618 		return;
619 
620 	bio_truncate(bio, maxsector << 9);
621 }
622 
623 #define ALLOC_CACHE_MAX		512
624 #define ALLOC_CACHE_SLACK	 64
625 
626 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
627 				  unsigned int nr)
628 {
629 	unsigned int i = 0;
630 	struct bio *bio;
631 
632 	while ((bio = bio_list_pop(&cache->free_list)) != NULL) {
633 		cache->nr--;
634 		bio_free(bio);
635 		if (++i == nr)
636 			break;
637 	}
638 }
639 
640 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
641 {
642 	struct bio_set *bs;
643 
644 	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
645 	if (bs->cache) {
646 		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
647 
648 		bio_alloc_cache_prune(cache, -1U);
649 	}
650 	return 0;
651 }
652 
653 static void bio_alloc_cache_destroy(struct bio_set *bs)
654 {
655 	int cpu;
656 
657 	if (!bs->cache)
658 		return;
659 
660 	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
661 	for_each_possible_cpu(cpu) {
662 		struct bio_alloc_cache *cache;
663 
664 		cache = per_cpu_ptr(bs->cache, cpu);
665 		bio_alloc_cache_prune(cache, -1U);
666 	}
667 	free_percpu(bs->cache);
668 	bs->cache = NULL;
669 }
670 
671 /**
672  * bio_put - release a reference to a bio
673  * @bio:   bio to release reference to
674  *
675  * Description:
676  *   Put a reference to a &struct bio, either one you have gotten with
677  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
678  **/
679 void bio_put(struct bio *bio)
680 {
681 	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
682 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
683 		if (!atomic_dec_and_test(&bio->__bi_cnt))
684 			return;
685 	}
686 
687 	if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
688 		struct bio_alloc_cache *cache;
689 
690 		bio_uninit(bio);
691 		cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
692 		bio_list_add_head(&cache->free_list, bio);
693 		if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
694 			bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
695 		put_cpu();
696 	} else {
697 		bio_free(bio);
698 	}
699 }
700 EXPORT_SYMBOL(bio_put);
701 
702 /**
703  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
704  * 	@bio: destination bio
705  * 	@bio_src: bio to clone
706  *
707  *	Clone a &bio. Caller will own the returned bio, but not
708  *	the actual data it points to. Reference count of returned
709  * 	bio will be one.
710  *
711  * 	Caller must ensure that @bio_src is not freed before @bio.
712  */
713 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
714 {
715 	WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
716 
717 	/*
718 	 * most users will be overriding ->bi_bdev with a new target,
719 	 * so we don't set nor calculate new physical/hw segment counts here
720 	 */
721 	bio->bi_bdev = bio_src->bi_bdev;
722 	bio_set_flag(bio, BIO_CLONED);
723 	if (bio_flagged(bio_src, BIO_THROTTLED))
724 		bio_set_flag(bio, BIO_THROTTLED);
725 	if (bio_flagged(bio_src, BIO_REMAPPED))
726 		bio_set_flag(bio, BIO_REMAPPED);
727 	bio->bi_opf = bio_src->bi_opf;
728 	bio->bi_ioprio = bio_src->bi_ioprio;
729 	bio->bi_write_hint = bio_src->bi_write_hint;
730 	bio->bi_iter = bio_src->bi_iter;
731 	bio->bi_io_vec = bio_src->bi_io_vec;
732 
733 	bio_clone_blkg_association(bio, bio_src);
734 	blkcg_bio_issue_init(bio);
735 }
736 EXPORT_SYMBOL(__bio_clone_fast);
737 
738 /**
739  *	bio_clone_fast - clone a bio that shares the original bio's biovec
740  *	@bio: bio to clone
741  *	@gfp_mask: allocation priority
742  *	@bs: bio_set to allocate from
743  *
744  * 	Like __bio_clone_fast, only also allocates the returned bio
745  */
746 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
747 {
748 	struct bio *b;
749 
750 	b = bio_alloc_bioset(gfp_mask, 0, bs);
751 	if (!b)
752 		return NULL;
753 
754 	__bio_clone_fast(b, bio);
755 
756 	if (bio_crypt_clone(b, bio, gfp_mask) < 0)
757 		goto err_put;
758 
759 	if (bio_integrity(bio) &&
760 	    bio_integrity_clone(b, bio, gfp_mask) < 0)
761 		goto err_put;
762 
763 	return b;
764 
765 err_put:
766 	bio_put(b);
767 	return NULL;
768 }
769 EXPORT_SYMBOL(bio_clone_fast);
770 
771 const char *bio_devname(struct bio *bio, char *buf)
772 {
773 	return bdevname(bio->bi_bdev, buf);
774 }
775 EXPORT_SYMBOL(bio_devname);
776 
777 static inline bool page_is_mergeable(const struct bio_vec *bv,
778 		struct page *page, unsigned int len, unsigned int off,
779 		bool *same_page)
780 {
781 	size_t bv_end = bv->bv_offset + bv->bv_len;
782 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
783 	phys_addr_t page_addr = page_to_phys(page);
784 
785 	if (vec_end_addr + 1 != page_addr + off)
786 		return false;
787 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
788 		return false;
789 
790 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
791 	if (*same_page)
792 		return true;
793 	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
794 }
795 
796 /*
797  * Try to merge a page into a segment, while obeying the hardware segment
798  * size limit.  This is not for normal read/write bios, but for passthrough
799  * or Zone Append operations that we can't split.
800  */
801 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
802 				 struct page *page, unsigned len,
803 				 unsigned offset, bool *same_page)
804 {
805 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
806 	unsigned long mask = queue_segment_boundary(q);
807 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
808 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
809 
810 	if ((addr1 | mask) != (addr2 | mask))
811 		return false;
812 	if (bv->bv_len + len > queue_max_segment_size(q))
813 		return false;
814 	return __bio_try_merge_page(bio, page, len, offset, same_page);
815 }
816 
817 /**
818  * bio_add_hw_page - attempt to add a page to a bio with hw constraints
819  * @q: the target queue
820  * @bio: destination bio
821  * @page: page to add
822  * @len: vec entry length
823  * @offset: vec entry offset
824  * @max_sectors: maximum number of sectors that can be added
825  * @same_page: return if the segment has been merged inside the same page
826  *
827  * Add a page to a bio while respecting the hardware max_sectors, max_segment
828  * and gap limitations.
829  */
830 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
831 		struct page *page, unsigned int len, unsigned int offset,
832 		unsigned int max_sectors, bool *same_page)
833 {
834 	struct bio_vec *bvec;
835 
836 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
837 		return 0;
838 
839 	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
840 		return 0;
841 
842 	if (bio->bi_vcnt > 0) {
843 		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
844 			return len;
845 
846 		/*
847 		 * If the queue doesn't support SG gaps and adding this segment
848 		 * would create a gap, disallow it.
849 		 */
850 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
851 		if (bvec_gap_to_prev(q, bvec, offset))
852 			return 0;
853 	}
854 
855 	if (bio_full(bio, len))
856 		return 0;
857 
858 	if (bio->bi_vcnt >= queue_max_segments(q))
859 		return 0;
860 
861 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
862 	bvec->bv_page = page;
863 	bvec->bv_len = len;
864 	bvec->bv_offset = offset;
865 	bio->bi_vcnt++;
866 	bio->bi_iter.bi_size += len;
867 	return len;
868 }
869 
870 /**
871  * bio_add_pc_page	- attempt to add page to passthrough bio
872  * @q: the target queue
873  * @bio: destination bio
874  * @page: page to add
875  * @len: vec entry length
876  * @offset: vec entry offset
877  *
878  * Attempt to add a page to the bio_vec maplist. This can fail for a
879  * number of reasons, such as the bio being full or target block device
880  * limitations. The target block device must allow bio's up to PAGE_SIZE,
881  * so it is always possible to add a single page to an empty bio.
882  *
883  * This should only be used by passthrough bios.
884  */
885 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
886 		struct page *page, unsigned int len, unsigned int offset)
887 {
888 	bool same_page = false;
889 	return bio_add_hw_page(q, bio, page, len, offset,
890 			queue_max_hw_sectors(q), &same_page);
891 }
892 EXPORT_SYMBOL(bio_add_pc_page);
893 
894 /**
895  * bio_add_zone_append_page - attempt to add page to zone-append bio
896  * @bio: destination bio
897  * @page: page to add
898  * @len: vec entry length
899  * @offset: vec entry offset
900  *
901  * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
902  * for a zone-append request. This can fail for a number of reasons, such as the
903  * bio being full or the target block device is not a zoned block device or
904  * other limitations of the target block device. The target block device must
905  * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
906  * to an empty bio.
907  *
908  * Returns: number of bytes added to the bio, or 0 in case of a failure.
909  */
910 int bio_add_zone_append_page(struct bio *bio, struct page *page,
911 			     unsigned int len, unsigned int offset)
912 {
913 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
914 	bool same_page = false;
915 
916 	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
917 		return 0;
918 
919 	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
920 		return 0;
921 
922 	return bio_add_hw_page(q, bio, page, len, offset,
923 			       queue_max_zone_append_sectors(q), &same_page);
924 }
925 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
926 
927 /**
928  * __bio_try_merge_page - try appending data to an existing bvec.
929  * @bio: destination bio
930  * @page: start page to add
931  * @len: length of the data to add
932  * @off: offset of the data relative to @page
933  * @same_page: return if the segment has been merged inside the same page
934  *
935  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
936  * useful optimisation for file systems with a block size smaller than the
937  * page size.
938  *
939  * Warn if (@len, @off) crosses pages in case that @same_page is true.
940  *
941  * Return %true on success or %false on failure.
942  */
943 bool __bio_try_merge_page(struct bio *bio, struct page *page,
944 		unsigned int len, unsigned int off, bool *same_page)
945 {
946 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
947 		return false;
948 
949 	if (bio->bi_vcnt > 0) {
950 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
951 
952 		if (page_is_mergeable(bv, page, len, off, same_page)) {
953 			if (bio->bi_iter.bi_size > UINT_MAX - len) {
954 				*same_page = false;
955 				return false;
956 			}
957 			bv->bv_len += len;
958 			bio->bi_iter.bi_size += len;
959 			return true;
960 		}
961 	}
962 	return false;
963 }
964 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
965 
966 /**
967  * __bio_add_page - add page(s) to a bio in a new segment
968  * @bio: destination bio
969  * @page: start page to add
970  * @len: length of the data to add, may cross pages
971  * @off: offset of the data relative to @page, may cross pages
972  *
973  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
974  * that @bio has space for another bvec.
975  */
976 void __bio_add_page(struct bio *bio, struct page *page,
977 		unsigned int len, unsigned int off)
978 {
979 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
980 
981 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
982 	WARN_ON_ONCE(bio_full(bio, len));
983 
984 	bv->bv_page = page;
985 	bv->bv_offset = off;
986 	bv->bv_len = len;
987 
988 	bio->bi_iter.bi_size += len;
989 	bio->bi_vcnt++;
990 
991 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
992 		bio_set_flag(bio, BIO_WORKINGSET);
993 }
994 EXPORT_SYMBOL_GPL(__bio_add_page);
995 
996 /**
997  *	bio_add_page	-	attempt to add page(s) to bio
998  *	@bio: destination bio
999  *	@page: start page to add
1000  *	@len: vec entry length, may cross pages
1001  *	@offset: vec entry offset relative to @page, may cross pages
1002  *
1003  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1004  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1005  */
1006 int bio_add_page(struct bio *bio, struct page *page,
1007 		 unsigned int len, unsigned int offset)
1008 {
1009 	bool same_page = false;
1010 
1011 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1012 		if (bio_full(bio, len))
1013 			return 0;
1014 		__bio_add_page(bio, page, len, offset);
1015 	}
1016 	return len;
1017 }
1018 EXPORT_SYMBOL(bio_add_page);
1019 
1020 void bio_release_pages(struct bio *bio, bool mark_dirty)
1021 {
1022 	struct bvec_iter_all iter_all;
1023 	struct bio_vec *bvec;
1024 
1025 	if (bio_flagged(bio, BIO_NO_PAGE_REF))
1026 		return;
1027 
1028 	bio_for_each_segment_all(bvec, bio, iter_all) {
1029 		if (mark_dirty && !PageCompound(bvec->bv_page))
1030 			set_page_dirty_lock(bvec->bv_page);
1031 		put_page(bvec->bv_page);
1032 	}
1033 }
1034 EXPORT_SYMBOL_GPL(bio_release_pages);
1035 
1036 static void __bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1037 {
1038 	WARN_ON_ONCE(bio->bi_max_vecs);
1039 
1040 	bio->bi_vcnt = iter->nr_segs;
1041 	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1042 	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1043 	bio->bi_iter.bi_size = iter->count;
1044 	bio_set_flag(bio, BIO_NO_PAGE_REF);
1045 	bio_set_flag(bio, BIO_CLONED);
1046 }
1047 
1048 static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1049 {
1050 	__bio_iov_bvec_set(bio, iter);
1051 	iov_iter_advance(iter, iter->count);
1052 	return 0;
1053 }
1054 
1055 static int bio_iov_bvec_set_append(struct bio *bio, struct iov_iter *iter)
1056 {
1057 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1058 	struct iov_iter i = *iter;
1059 
1060 	iov_iter_truncate(&i, queue_max_zone_append_sectors(q) << 9);
1061 	__bio_iov_bvec_set(bio, &i);
1062 	iov_iter_advance(iter, i.count);
1063 	return 0;
1064 }
1065 
1066 static void bio_put_pages(struct page **pages, size_t size, size_t off)
1067 {
1068 	size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1069 
1070 	for (i = 0; i < nr; i++)
1071 		put_page(pages[i]);
1072 }
1073 
1074 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
1075 
1076 /**
1077  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1078  * @bio: bio to add pages to
1079  * @iter: iov iterator describing the region to be mapped
1080  *
1081  * Pins pages from *iter and appends them to @bio's bvec array. The
1082  * pages will have to be released using put_page() when done.
1083  * For multi-segment *iter, this function only adds pages from the
1084  * next non-empty segment of the iov iterator.
1085  */
1086 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1087 {
1088 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1089 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1090 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1091 	struct page **pages = (struct page **)bv;
1092 	bool same_page = false;
1093 	ssize_t size, left;
1094 	unsigned len, i;
1095 	size_t offset;
1096 
1097 	/*
1098 	 * Move page array up in the allocated memory for the bio vecs as far as
1099 	 * possible so that we can start filling biovecs from the beginning
1100 	 * without overwriting the temporary page array.
1101 	*/
1102 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1103 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1104 
1105 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1106 	if (unlikely(size <= 0))
1107 		return size ? size : -EFAULT;
1108 
1109 	for (left = size, i = 0; left > 0; left -= len, i++) {
1110 		struct page *page = pages[i];
1111 
1112 		len = min_t(size_t, PAGE_SIZE - offset, left);
1113 
1114 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1115 			if (same_page)
1116 				put_page(page);
1117 		} else {
1118 			if (WARN_ON_ONCE(bio_full(bio, len))) {
1119 				bio_put_pages(pages + i, left, offset);
1120 				return -EINVAL;
1121 			}
1122 			__bio_add_page(bio, page, len, offset);
1123 		}
1124 		offset = 0;
1125 	}
1126 
1127 	iov_iter_advance(iter, size);
1128 	return 0;
1129 }
1130 
1131 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1132 {
1133 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1134 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1135 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1136 	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1137 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1138 	struct page **pages = (struct page **)bv;
1139 	ssize_t size, left;
1140 	unsigned len, i;
1141 	size_t offset;
1142 	int ret = 0;
1143 
1144 	if (WARN_ON_ONCE(!max_append_sectors))
1145 		return 0;
1146 
1147 	/*
1148 	 * Move page array up in the allocated memory for the bio vecs as far as
1149 	 * possible so that we can start filling biovecs from the beginning
1150 	 * without overwriting the temporary page array.
1151 	 */
1152 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1153 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1154 
1155 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1156 	if (unlikely(size <= 0))
1157 		return size ? size : -EFAULT;
1158 
1159 	for (left = size, i = 0; left > 0; left -= len, i++) {
1160 		struct page *page = pages[i];
1161 		bool same_page = false;
1162 
1163 		len = min_t(size_t, PAGE_SIZE - offset, left);
1164 		if (bio_add_hw_page(q, bio, page, len, offset,
1165 				max_append_sectors, &same_page) != len) {
1166 			bio_put_pages(pages + i, left, offset);
1167 			ret = -EINVAL;
1168 			break;
1169 		}
1170 		if (same_page)
1171 			put_page(page);
1172 		offset = 0;
1173 	}
1174 
1175 	iov_iter_advance(iter, size - left);
1176 	return ret;
1177 }
1178 
1179 /**
1180  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1181  * @bio: bio to add pages to
1182  * @iter: iov iterator describing the region to be added
1183  *
1184  * This takes either an iterator pointing to user memory, or one pointing to
1185  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1186  * map them into the kernel. On IO completion, the caller should put those
1187  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1188  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1189  * to ensure the bvecs and pages stay referenced until the submitted I/O is
1190  * completed by a call to ->ki_complete() or returns with an error other than
1191  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1192  * on IO completion. If it isn't, then pages should be released.
1193  *
1194  * The function tries, but does not guarantee, to pin as many pages as
1195  * fit into the bio, or are requested in @iter, whatever is smaller. If
1196  * MM encounters an error pinning the requested pages, it stops. Error
1197  * is returned only if 0 pages could be pinned.
1198  *
1199  * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1200  * responsible for setting BIO_WORKINGSET if necessary.
1201  */
1202 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1203 {
1204 	int ret = 0;
1205 
1206 	if (iov_iter_is_bvec(iter)) {
1207 		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1208 			return bio_iov_bvec_set_append(bio, iter);
1209 		return bio_iov_bvec_set(bio, iter);
1210 	}
1211 
1212 	do {
1213 		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1214 			ret = __bio_iov_append_get_pages(bio, iter);
1215 		else
1216 			ret = __bio_iov_iter_get_pages(bio, iter);
1217 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1218 
1219 	/* don't account direct I/O as memory stall */
1220 	bio_clear_flag(bio, BIO_WORKINGSET);
1221 	return bio->bi_vcnt ? 0 : ret;
1222 }
1223 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1224 
1225 static void submit_bio_wait_endio(struct bio *bio)
1226 {
1227 	complete(bio->bi_private);
1228 }
1229 
1230 /**
1231  * submit_bio_wait - submit a bio, and wait until it completes
1232  * @bio: The &struct bio which describes the I/O
1233  *
1234  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1235  * bio_endio() on failure.
1236  *
1237  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1238  * result in bio reference to be consumed. The caller must drop the reference
1239  * on his own.
1240  */
1241 int submit_bio_wait(struct bio *bio)
1242 {
1243 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1244 			bio->bi_bdev->bd_disk->lockdep_map);
1245 	unsigned long hang_check;
1246 
1247 	bio->bi_private = &done;
1248 	bio->bi_end_io = submit_bio_wait_endio;
1249 	bio->bi_opf |= REQ_SYNC;
1250 	submit_bio(bio);
1251 
1252 	/* Prevent hang_check timer from firing at us during very long I/O */
1253 	hang_check = sysctl_hung_task_timeout_secs;
1254 	if (hang_check)
1255 		while (!wait_for_completion_io_timeout(&done,
1256 					hang_check * (HZ/2)))
1257 			;
1258 	else
1259 		wait_for_completion_io(&done);
1260 
1261 	return blk_status_to_errno(bio->bi_status);
1262 }
1263 EXPORT_SYMBOL(submit_bio_wait);
1264 
1265 /**
1266  * bio_advance - increment/complete a bio by some number of bytes
1267  * @bio:	bio to advance
1268  * @bytes:	number of bytes to complete
1269  *
1270  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1271  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1272  * be updated on the last bvec as well.
1273  *
1274  * @bio will then represent the remaining, uncompleted portion of the io.
1275  */
1276 void bio_advance(struct bio *bio, unsigned bytes)
1277 {
1278 	if (bio_integrity(bio))
1279 		bio_integrity_advance(bio, bytes);
1280 
1281 	bio_crypt_advance(bio, bytes);
1282 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1283 }
1284 EXPORT_SYMBOL(bio_advance);
1285 
1286 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1287 			struct bio *src, struct bvec_iter *src_iter)
1288 {
1289 	while (src_iter->bi_size && dst_iter->bi_size) {
1290 		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1291 		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1292 		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1293 		void *src_buf = bvec_kmap_local(&src_bv);
1294 		void *dst_buf = bvec_kmap_local(&dst_bv);
1295 
1296 		memcpy(dst_buf, src_buf, bytes);
1297 
1298 		kunmap_local(dst_buf);
1299 		kunmap_local(src_buf);
1300 
1301 		bio_advance_iter_single(src, src_iter, bytes);
1302 		bio_advance_iter_single(dst, dst_iter, bytes);
1303 	}
1304 }
1305 EXPORT_SYMBOL(bio_copy_data_iter);
1306 
1307 /**
1308  * bio_copy_data - copy contents of data buffers from one bio to another
1309  * @src: source bio
1310  * @dst: destination bio
1311  *
1312  * Stops when it reaches the end of either @src or @dst - that is, copies
1313  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1314  */
1315 void bio_copy_data(struct bio *dst, struct bio *src)
1316 {
1317 	struct bvec_iter src_iter = src->bi_iter;
1318 	struct bvec_iter dst_iter = dst->bi_iter;
1319 
1320 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1321 }
1322 EXPORT_SYMBOL(bio_copy_data);
1323 
1324 void bio_free_pages(struct bio *bio)
1325 {
1326 	struct bio_vec *bvec;
1327 	struct bvec_iter_all iter_all;
1328 
1329 	bio_for_each_segment_all(bvec, bio, iter_all)
1330 		__free_page(bvec->bv_page);
1331 }
1332 EXPORT_SYMBOL(bio_free_pages);
1333 
1334 /*
1335  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1336  * for performing direct-IO in BIOs.
1337  *
1338  * The problem is that we cannot run set_page_dirty() from interrupt context
1339  * because the required locks are not interrupt-safe.  So what we can do is to
1340  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1341  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1342  * in process context.
1343  *
1344  * We special-case compound pages here: normally this means reads into hugetlb
1345  * pages.  The logic in here doesn't really work right for compound pages
1346  * because the VM does not uniformly chase down the head page in all cases.
1347  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1348  * handle them at all.  So we skip compound pages here at an early stage.
1349  *
1350  * Note that this code is very hard to test under normal circumstances because
1351  * direct-io pins the pages with get_user_pages().  This makes
1352  * is_page_cache_freeable return false, and the VM will not clean the pages.
1353  * But other code (eg, flusher threads) could clean the pages if they are mapped
1354  * pagecache.
1355  *
1356  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1357  * deferred bio dirtying paths.
1358  */
1359 
1360 /*
1361  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1362  */
1363 void bio_set_pages_dirty(struct bio *bio)
1364 {
1365 	struct bio_vec *bvec;
1366 	struct bvec_iter_all iter_all;
1367 
1368 	bio_for_each_segment_all(bvec, bio, iter_all) {
1369 		if (!PageCompound(bvec->bv_page))
1370 			set_page_dirty_lock(bvec->bv_page);
1371 	}
1372 }
1373 
1374 /*
1375  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1376  * If they are, then fine.  If, however, some pages are clean then they must
1377  * have been written out during the direct-IO read.  So we take another ref on
1378  * the BIO and re-dirty the pages in process context.
1379  *
1380  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1381  * here on.  It will run one put_page() against each page and will run one
1382  * bio_put() against the BIO.
1383  */
1384 
1385 static void bio_dirty_fn(struct work_struct *work);
1386 
1387 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1388 static DEFINE_SPINLOCK(bio_dirty_lock);
1389 static struct bio *bio_dirty_list;
1390 
1391 /*
1392  * This runs in process context
1393  */
1394 static void bio_dirty_fn(struct work_struct *work)
1395 {
1396 	struct bio *bio, *next;
1397 
1398 	spin_lock_irq(&bio_dirty_lock);
1399 	next = bio_dirty_list;
1400 	bio_dirty_list = NULL;
1401 	spin_unlock_irq(&bio_dirty_lock);
1402 
1403 	while ((bio = next) != NULL) {
1404 		next = bio->bi_private;
1405 
1406 		bio_release_pages(bio, true);
1407 		bio_put(bio);
1408 	}
1409 }
1410 
1411 void bio_check_pages_dirty(struct bio *bio)
1412 {
1413 	struct bio_vec *bvec;
1414 	unsigned long flags;
1415 	struct bvec_iter_all iter_all;
1416 
1417 	bio_for_each_segment_all(bvec, bio, iter_all) {
1418 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1419 			goto defer;
1420 	}
1421 
1422 	bio_release_pages(bio, false);
1423 	bio_put(bio);
1424 	return;
1425 defer:
1426 	spin_lock_irqsave(&bio_dirty_lock, flags);
1427 	bio->bi_private = bio_dirty_list;
1428 	bio_dirty_list = bio;
1429 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1430 	schedule_work(&bio_dirty_work);
1431 }
1432 
1433 static inline bool bio_remaining_done(struct bio *bio)
1434 {
1435 	/*
1436 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1437 	 * we always end io on the first invocation.
1438 	 */
1439 	if (!bio_flagged(bio, BIO_CHAIN))
1440 		return true;
1441 
1442 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1443 
1444 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1445 		bio_clear_flag(bio, BIO_CHAIN);
1446 		return true;
1447 	}
1448 
1449 	return false;
1450 }
1451 
1452 /**
1453  * bio_endio - end I/O on a bio
1454  * @bio:	bio
1455  *
1456  * Description:
1457  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1458  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1459  *   bio unless they own it and thus know that it has an end_io function.
1460  *
1461  *   bio_endio() can be called several times on a bio that has been chained
1462  *   using bio_chain().  The ->bi_end_io() function will only be called the
1463  *   last time.
1464  **/
1465 void bio_endio(struct bio *bio)
1466 {
1467 again:
1468 	if (!bio_remaining_done(bio))
1469 		return;
1470 	if (!bio_integrity_endio(bio))
1471 		return;
1472 
1473 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACKED))
1474 		rq_qos_done_bio(bdev_get_queue(bio->bi_bdev), bio);
1475 
1476 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1477 		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1478 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1479 	}
1480 
1481 	/*
1482 	 * Need to have a real endio function for chained bios, otherwise
1483 	 * various corner cases will break (like stacking block devices that
1484 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1485 	 * recursion and blowing the stack. Tail call optimization would
1486 	 * handle this, but compiling with frame pointers also disables
1487 	 * gcc's sibling call optimization.
1488 	 */
1489 	if (bio->bi_end_io == bio_chain_endio) {
1490 		bio = __bio_chain_endio(bio);
1491 		goto again;
1492 	}
1493 
1494 	blk_throtl_bio_endio(bio);
1495 	/* release cgroup info */
1496 	bio_uninit(bio);
1497 	if (bio->bi_end_io)
1498 		bio->bi_end_io(bio);
1499 }
1500 EXPORT_SYMBOL(bio_endio);
1501 
1502 /**
1503  * bio_split - split a bio
1504  * @bio:	bio to split
1505  * @sectors:	number of sectors to split from the front of @bio
1506  * @gfp:	gfp mask
1507  * @bs:		bio set to allocate from
1508  *
1509  * Allocates and returns a new bio which represents @sectors from the start of
1510  * @bio, and updates @bio to represent the remaining sectors.
1511  *
1512  * Unless this is a discard request the newly allocated bio will point
1513  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1514  * neither @bio nor @bs are freed before the split bio.
1515  */
1516 struct bio *bio_split(struct bio *bio, int sectors,
1517 		      gfp_t gfp, struct bio_set *bs)
1518 {
1519 	struct bio *split;
1520 
1521 	BUG_ON(sectors <= 0);
1522 	BUG_ON(sectors >= bio_sectors(bio));
1523 
1524 	/* Zone append commands cannot be split */
1525 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1526 		return NULL;
1527 
1528 	split = bio_clone_fast(bio, gfp, bs);
1529 	if (!split)
1530 		return NULL;
1531 
1532 	split->bi_iter.bi_size = sectors << 9;
1533 
1534 	if (bio_integrity(split))
1535 		bio_integrity_trim(split);
1536 
1537 	bio_advance(bio, split->bi_iter.bi_size);
1538 
1539 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1540 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1541 
1542 	return split;
1543 }
1544 EXPORT_SYMBOL(bio_split);
1545 
1546 /**
1547  * bio_trim - trim a bio
1548  * @bio:	bio to trim
1549  * @offset:	number of sectors to trim from the front of @bio
1550  * @size:	size we want to trim @bio to, in sectors
1551  *
1552  * This function is typically used for bios that are cloned and submitted
1553  * to the underlying device in parts.
1554  */
1555 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1556 {
1557 	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1558 			 offset + size > bio_sectors(bio)))
1559 		return;
1560 
1561 	size <<= 9;
1562 	if (offset == 0 && size == bio->bi_iter.bi_size)
1563 		return;
1564 
1565 	bio_advance(bio, offset << 9);
1566 	bio->bi_iter.bi_size = size;
1567 
1568 	if (bio_integrity(bio))
1569 		bio_integrity_trim(bio);
1570 }
1571 EXPORT_SYMBOL_GPL(bio_trim);
1572 
1573 /*
1574  * create memory pools for biovec's in a bio_set.
1575  * use the global biovec slabs created for general use.
1576  */
1577 int biovec_init_pool(mempool_t *pool, int pool_entries)
1578 {
1579 	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1580 
1581 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1582 }
1583 
1584 /*
1585  * bioset_exit - exit a bioset initialized with bioset_init()
1586  *
1587  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1588  * kzalloc()).
1589  */
1590 void bioset_exit(struct bio_set *bs)
1591 {
1592 	bio_alloc_cache_destroy(bs);
1593 	if (bs->rescue_workqueue)
1594 		destroy_workqueue(bs->rescue_workqueue);
1595 	bs->rescue_workqueue = NULL;
1596 
1597 	mempool_exit(&bs->bio_pool);
1598 	mempool_exit(&bs->bvec_pool);
1599 
1600 	bioset_integrity_free(bs);
1601 	if (bs->bio_slab)
1602 		bio_put_slab(bs);
1603 	bs->bio_slab = NULL;
1604 }
1605 EXPORT_SYMBOL(bioset_exit);
1606 
1607 /**
1608  * bioset_init - Initialize a bio_set
1609  * @bs:		pool to initialize
1610  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1611  * @front_pad:	Number of bytes to allocate in front of the returned bio
1612  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1613  *              and %BIOSET_NEED_RESCUER
1614  *
1615  * Description:
1616  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1617  *    to ask for a number of bytes to be allocated in front of the bio.
1618  *    Front pad allocation is useful for embedding the bio inside
1619  *    another structure, to avoid allocating extra data to go with the bio.
1620  *    Note that the bio must be embedded at the END of that structure always,
1621  *    or things will break badly.
1622  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1623  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1624  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1625  *    dispatch queued requests when the mempool runs out of space.
1626  *
1627  */
1628 int bioset_init(struct bio_set *bs,
1629 		unsigned int pool_size,
1630 		unsigned int front_pad,
1631 		int flags)
1632 {
1633 	bs->front_pad = front_pad;
1634 	if (flags & BIOSET_NEED_BVECS)
1635 		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1636 	else
1637 		bs->back_pad = 0;
1638 
1639 	spin_lock_init(&bs->rescue_lock);
1640 	bio_list_init(&bs->rescue_list);
1641 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1642 
1643 	bs->bio_slab = bio_find_or_create_slab(bs);
1644 	if (!bs->bio_slab)
1645 		return -ENOMEM;
1646 
1647 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1648 		goto bad;
1649 
1650 	if ((flags & BIOSET_NEED_BVECS) &&
1651 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1652 		goto bad;
1653 
1654 	if (flags & BIOSET_NEED_RESCUER) {
1655 		bs->rescue_workqueue = alloc_workqueue("bioset",
1656 							WQ_MEM_RECLAIM, 0);
1657 		if (!bs->rescue_workqueue)
1658 			goto bad;
1659 	}
1660 	if (flags & BIOSET_PERCPU_CACHE) {
1661 		bs->cache = alloc_percpu(struct bio_alloc_cache);
1662 		if (!bs->cache)
1663 			goto bad;
1664 		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1665 	}
1666 
1667 	return 0;
1668 bad:
1669 	bioset_exit(bs);
1670 	return -ENOMEM;
1671 }
1672 EXPORT_SYMBOL(bioset_init);
1673 
1674 /*
1675  * Initialize and setup a new bio_set, based on the settings from
1676  * another bio_set.
1677  */
1678 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1679 {
1680 	int flags;
1681 
1682 	flags = 0;
1683 	if (src->bvec_pool.min_nr)
1684 		flags |= BIOSET_NEED_BVECS;
1685 	if (src->rescue_workqueue)
1686 		flags |= BIOSET_NEED_RESCUER;
1687 
1688 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1689 }
1690 EXPORT_SYMBOL(bioset_init_from_src);
1691 
1692 /**
1693  * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
1694  * @kiocb:	kiocb describing the IO
1695  * @nr_vecs:	number of iovecs to pre-allocate
1696  * @bs:		bio_set to allocate from
1697  *
1698  * Description:
1699  *    Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
1700  *    used to check if we should dip into the per-cpu bio_set allocation
1701  *    cache. The allocation uses GFP_KERNEL internally. On return, the
1702  *    bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
1703  *    MUST be done from process context, not hard/soft IRQ.
1704  *
1705  */
1706 struct bio *bio_alloc_kiocb(struct kiocb *kiocb, unsigned short nr_vecs,
1707 			    struct bio_set *bs)
1708 {
1709 	struct bio_alloc_cache *cache;
1710 	struct bio *bio;
1711 
1712 	if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
1713 		return bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1714 
1715 	cache = per_cpu_ptr(bs->cache, get_cpu());
1716 	bio = bio_list_pop(&cache->free_list);
1717 	if (bio) {
1718 		cache->nr--;
1719 		put_cpu();
1720 		bio_init(bio, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs);
1721 		bio->bi_pool = bs;
1722 		bio_set_flag(bio, BIO_PERCPU_CACHE);
1723 		return bio;
1724 	}
1725 	put_cpu();
1726 	bio = bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1727 	bio_set_flag(bio, BIO_PERCPU_CACHE);
1728 	return bio;
1729 }
1730 EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
1731 
1732 static int __init init_bio(void)
1733 {
1734 	int i;
1735 
1736 	bio_integrity_init();
1737 
1738 	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1739 		struct biovec_slab *bvs = bvec_slabs + i;
1740 
1741 		bvs->slab = kmem_cache_create(bvs->name,
1742 				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1743 				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1744 	}
1745 
1746 	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1747 					bio_cpu_dead);
1748 
1749 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1750 		panic("bio: can't allocate bios\n");
1751 
1752 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1753 		panic("bio: can't create integrity pool\n");
1754 
1755 	return 0;
1756 }
1757 subsys_initcall(init_bio);
1758