xref: /openbmc/linux/block/bio.c (revision e6dec923)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 
32 #include <trace/events/block.h>
33 #include "blk.h"
34 
35 /*
36  * Test patch to inline a certain number of bi_io_vec's inside the bio
37  * itself, to shrink a bio data allocation from two mempool calls to one
38  */
39 #define BIO_INLINE_VECS		4
40 
41 /*
42  * if you change this list, also change bvec_alloc or things will
43  * break badly! cannot be bigger than what you can fit into an
44  * unsigned short
45  */
46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
48 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 };
50 #undef BV
51 
52 /*
53  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54  * IO code that does not need private memory pools.
55  */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58 
59 /*
60  * Our slab pool management
61  */
62 struct bio_slab {
63 	struct kmem_cache *slab;
64 	unsigned int slab_ref;
65 	unsigned int slab_size;
66 	char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71 
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 	unsigned int sz = sizeof(struct bio) + extra_size;
75 	struct kmem_cache *slab = NULL;
76 	struct bio_slab *bslab, *new_bio_slabs;
77 	unsigned int new_bio_slab_max;
78 	unsigned int i, entry = -1;
79 
80 	mutex_lock(&bio_slab_lock);
81 
82 	i = 0;
83 	while (i < bio_slab_nr) {
84 		bslab = &bio_slabs[i];
85 
86 		if (!bslab->slab && entry == -1)
87 			entry = i;
88 		else if (bslab->slab_size == sz) {
89 			slab = bslab->slab;
90 			bslab->slab_ref++;
91 			break;
92 		}
93 		i++;
94 	}
95 
96 	if (slab)
97 		goto out_unlock;
98 
99 	if (bio_slab_nr == bio_slab_max && entry == -1) {
100 		new_bio_slab_max = bio_slab_max << 1;
101 		new_bio_slabs = krealloc(bio_slabs,
102 					 new_bio_slab_max * sizeof(struct bio_slab),
103 					 GFP_KERNEL);
104 		if (!new_bio_slabs)
105 			goto out_unlock;
106 		bio_slab_max = new_bio_slab_max;
107 		bio_slabs = new_bio_slabs;
108 	}
109 	if (entry == -1)
110 		entry = bio_slab_nr++;
111 
112 	bslab = &bio_slabs[entry];
113 
114 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 				 SLAB_HWCACHE_ALIGN, NULL);
117 	if (!slab)
118 		goto out_unlock;
119 
120 	bslab->slab = slab;
121 	bslab->slab_ref = 1;
122 	bslab->slab_size = sz;
123 out_unlock:
124 	mutex_unlock(&bio_slab_lock);
125 	return slab;
126 }
127 
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 	struct bio_slab *bslab = NULL;
131 	unsigned int i;
132 
133 	mutex_lock(&bio_slab_lock);
134 
135 	for (i = 0; i < bio_slab_nr; i++) {
136 		if (bs->bio_slab == bio_slabs[i].slab) {
137 			bslab = &bio_slabs[i];
138 			break;
139 		}
140 	}
141 
142 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 		goto out;
144 
145 	WARN_ON(!bslab->slab_ref);
146 
147 	if (--bslab->slab_ref)
148 		goto out;
149 
150 	kmem_cache_destroy(bslab->slab);
151 	bslab->slab = NULL;
152 
153 out:
154 	mutex_unlock(&bio_slab_lock);
155 }
156 
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 	return bvec_slabs[idx].nr_vecs;
160 }
161 
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 	if (!idx)
165 		return;
166 	idx--;
167 
168 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
169 
170 	if (idx == BVEC_POOL_MAX) {
171 		mempool_free(bv, pool);
172 	} else {
173 		struct biovec_slab *bvs = bvec_slabs + idx;
174 
175 		kmem_cache_free(bvs->slab, bv);
176 	}
177 }
178 
179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 			   mempool_t *pool)
181 {
182 	struct bio_vec *bvl;
183 
184 	/*
185 	 * see comment near bvec_array define!
186 	 */
187 	switch (nr) {
188 	case 1:
189 		*idx = 0;
190 		break;
191 	case 2 ... 4:
192 		*idx = 1;
193 		break;
194 	case 5 ... 16:
195 		*idx = 2;
196 		break;
197 	case 17 ... 64:
198 		*idx = 3;
199 		break;
200 	case 65 ... 128:
201 		*idx = 4;
202 		break;
203 	case 129 ... BIO_MAX_PAGES:
204 		*idx = 5;
205 		break;
206 	default:
207 		return NULL;
208 	}
209 
210 	/*
211 	 * idx now points to the pool we want to allocate from. only the
212 	 * 1-vec entry pool is mempool backed.
213 	 */
214 	if (*idx == BVEC_POOL_MAX) {
215 fallback:
216 		bvl = mempool_alloc(pool, gfp_mask);
217 	} else {
218 		struct biovec_slab *bvs = bvec_slabs + *idx;
219 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
220 
221 		/*
222 		 * Make this allocation restricted and don't dump info on
223 		 * allocation failures, since we'll fallback to the mempool
224 		 * in case of failure.
225 		 */
226 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
227 
228 		/*
229 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
230 		 * is set, retry with the 1-entry mempool
231 		 */
232 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
233 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
234 			*idx = BVEC_POOL_MAX;
235 			goto fallback;
236 		}
237 	}
238 
239 	(*idx)++;
240 	return bvl;
241 }
242 
243 void bio_uninit(struct bio *bio)
244 {
245 	bio_disassociate_task(bio);
246 }
247 EXPORT_SYMBOL(bio_uninit);
248 
249 static void bio_free(struct bio *bio)
250 {
251 	struct bio_set *bs = bio->bi_pool;
252 	void *p;
253 
254 	bio_uninit(bio);
255 
256 	if (bs) {
257 		bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
258 
259 		/*
260 		 * If we have front padding, adjust the bio pointer before freeing
261 		 */
262 		p = bio;
263 		p -= bs->front_pad;
264 
265 		mempool_free(p, bs->bio_pool);
266 	} else {
267 		/* Bio was allocated by bio_kmalloc() */
268 		kfree(bio);
269 	}
270 }
271 
272 /*
273  * Users of this function have their own bio allocation. Subsequently,
274  * they must remember to pair any call to bio_init() with bio_uninit()
275  * when IO has completed, or when the bio is released.
276  */
277 void bio_init(struct bio *bio, struct bio_vec *table,
278 	      unsigned short max_vecs)
279 {
280 	memset(bio, 0, sizeof(*bio));
281 	atomic_set(&bio->__bi_remaining, 1);
282 	atomic_set(&bio->__bi_cnt, 1);
283 
284 	bio->bi_io_vec = table;
285 	bio->bi_max_vecs = max_vecs;
286 }
287 EXPORT_SYMBOL(bio_init);
288 
289 /**
290  * bio_reset - reinitialize a bio
291  * @bio:	bio to reset
292  *
293  * Description:
294  *   After calling bio_reset(), @bio will be in the same state as a freshly
295  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
296  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
297  *   comment in struct bio.
298  */
299 void bio_reset(struct bio *bio)
300 {
301 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
302 
303 	bio_uninit(bio);
304 
305 	memset(bio, 0, BIO_RESET_BYTES);
306 	bio->bi_flags = flags;
307 	atomic_set(&bio->__bi_remaining, 1);
308 }
309 EXPORT_SYMBOL(bio_reset);
310 
311 static struct bio *__bio_chain_endio(struct bio *bio)
312 {
313 	struct bio *parent = bio->bi_private;
314 
315 	if (!parent->bi_status)
316 		parent->bi_status = bio->bi_status;
317 	bio_put(bio);
318 	return parent;
319 }
320 
321 static void bio_chain_endio(struct bio *bio)
322 {
323 	bio_endio(__bio_chain_endio(bio));
324 }
325 
326 /**
327  * bio_chain - chain bio completions
328  * @bio: the target bio
329  * @parent: the @bio's parent bio
330  *
331  * The caller won't have a bi_end_io called when @bio completes - instead,
332  * @parent's bi_end_io won't be called until both @parent and @bio have
333  * completed; the chained bio will also be freed when it completes.
334  *
335  * The caller must not set bi_private or bi_end_io in @bio.
336  */
337 void bio_chain(struct bio *bio, struct bio *parent)
338 {
339 	BUG_ON(bio->bi_private || bio->bi_end_io);
340 
341 	bio->bi_private = parent;
342 	bio->bi_end_io	= bio_chain_endio;
343 	bio_inc_remaining(parent);
344 }
345 EXPORT_SYMBOL(bio_chain);
346 
347 static void bio_alloc_rescue(struct work_struct *work)
348 {
349 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
350 	struct bio *bio;
351 
352 	while (1) {
353 		spin_lock(&bs->rescue_lock);
354 		bio = bio_list_pop(&bs->rescue_list);
355 		spin_unlock(&bs->rescue_lock);
356 
357 		if (!bio)
358 			break;
359 
360 		generic_make_request(bio);
361 	}
362 }
363 
364 static void punt_bios_to_rescuer(struct bio_set *bs)
365 {
366 	struct bio_list punt, nopunt;
367 	struct bio *bio;
368 
369 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
370 		return;
371 	/*
372 	 * In order to guarantee forward progress we must punt only bios that
373 	 * were allocated from this bio_set; otherwise, if there was a bio on
374 	 * there for a stacking driver higher up in the stack, processing it
375 	 * could require allocating bios from this bio_set, and doing that from
376 	 * our own rescuer would be bad.
377 	 *
378 	 * Since bio lists are singly linked, pop them all instead of trying to
379 	 * remove from the middle of the list:
380 	 */
381 
382 	bio_list_init(&punt);
383 	bio_list_init(&nopunt);
384 
385 	while ((bio = bio_list_pop(&current->bio_list[0])))
386 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
387 	current->bio_list[0] = nopunt;
388 
389 	bio_list_init(&nopunt);
390 	while ((bio = bio_list_pop(&current->bio_list[1])))
391 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 	current->bio_list[1] = nopunt;
393 
394 	spin_lock(&bs->rescue_lock);
395 	bio_list_merge(&bs->rescue_list, &punt);
396 	spin_unlock(&bs->rescue_lock);
397 
398 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
399 }
400 
401 /**
402  * bio_alloc_bioset - allocate a bio for I/O
403  * @gfp_mask:   the GFP_ mask given to the slab allocator
404  * @nr_iovecs:	number of iovecs to pre-allocate
405  * @bs:		the bio_set to allocate from.
406  *
407  * Description:
408  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
409  *   backed by the @bs's mempool.
410  *
411  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
412  *   always be able to allocate a bio. This is due to the mempool guarantees.
413  *   To make this work, callers must never allocate more than 1 bio at a time
414  *   from this pool. Callers that need to allocate more than 1 bio must always
415  *   submit the previously allocated bio for IO before attempting to allocate
416  *   a new one. Failure to do so can cause deadlocks under memory pressure.
417  *
418  *   Note that when running under generic_make_request() (i.e. any block
419  *   driver), bios are not submitted until after you return - see the code in
420  *   generic_make_request() that converts recursion into iteration, to prevent
421  *   stack overflows.
422  *
423  *   This would normally mean allocating multiple bios under
424  *   generic_make_request() would be susceptible to deadlocks, but we have
425  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
426  *   thread.
427  *
428  *   However, we do not guarantee forward progress for allocations from other
429  *   mempools. Doing multiple allocations from the same mempool under
430  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
431  *   for per bio allocations.
432  *
433  *   RETURNS:
434  *   Pointer to new bio on success, NULL on failure.
435  */
436 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
437 			     struct bio_set *bs)
438 {
439 	gfp_t saved_gfp = gfp_mask;
440 	unsigned front_pad;
441 	unsigned inline_vecs;
442 	struct bio_vec *bvl = NULL;
443 	struct bio *bio;
444 	void *p;
445 
446 	if (!bs) {
447 		if (nr_iovecs > UIO_MAXIOV)
448 			return NULL;
449 
450 		p = kmalloc(sizeof(struct bio) +
451 			    nr_iovecs * sizeof(struct bio_vec),
452 			    gfp_mask);
453 		front_pad = 0;
454 		inline_vecs = nr_iovecs;
455 	} else {
456 		/* should not use nobvec bioset for nr_iovecs > 0 */
457 		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
458 			return NULL;
459 		/*
460 		 * generic_make_request() converts recursion to iteration; this
461 		 * means if we're running beneath it, any bios we allocate and
462 		 * submit will not be submitted (and thus freed) until after we
463 		 * return.
464 		 *
465 		 * This exposes us to a potential deadlock if we allocate
466 		 * multiple bios from the same bio_set() while running
467 		 * underneath generic_make_request(). If we were to allocate
468 		 * multiple bios (say a stacking block driver that was splitting
469 		 * bios), we would deadlock if we exhausted the mempool's
470 		 * reserve.
471 		 *
472 		 * We solve this, and guarantee forward progress, with a rescuer
473 		 * workqueue per bio_set. If we go to allocate and there are
474 		 * bios on current->bio_list, we first try the allocation
475 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 		 * bios we would be blocking to the rescuer workqueue before
477 		 * we retry with the original gfp_flags.
478 		 */
479 
480 		if (current->bio_list &&
481 		    (!bio_list_empty(&current->bio_list[0]) ||
482 		     !bio_list_empty(&current->bio_list[1])) &&
483 		    bs->rescue_workqueue)
484 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
485 
486 		p = mempool_alloc(bs->bio_pool, gfp_mask);
487 		if (!p && gfp_mask != saved_gfp) {
488 			punt_bios_to_rescuer(bs);
489 			gfp_mask = saved_gfp;
490 			p = mempool_alloc(bs->bio_pool, gfp_mask);
491 		}
492 
493 		front_pad = bs->front_pad;
494 		inline_vecs = BIO_INLINE_VECS;
495 	}
496 
497 	if (unlikely(!p))
498 		return NULL;
499 
500 	bio = p + front_pad;
501 	bio_init(bio, NULL, 0);
502 
503 	if (nr_iovecs > inline_vecs) {
504 		unsigned long idx = 0;
505 
506 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
507 		if (!bvl && gfp_mask != saved_gfp) {
508 			punt_bios_to_rescuer(bs);
509 			gfp_mask = saved_gfp;
510 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
511 		}
512 
513 		if (unlikely(!bvl))
514 			goto err_free;
515 
516 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
517 	} else if (nr_iovecs) {
518 		bvl = bio->bi_inline_vecs;
519 	}
520 
521 	bio->bi_pool = bs;
522 	bio->bi_max_vecs = nr_iovecs;
523 	bio->bi_io_vec = bvl;
524 	return bio;
525 
526 err_free:
527 	mempool_free(p, bs->bio_pool);
528 	return NULL;
529 }
530 EXPORT_SYMBOL(bio_alloc_bioset);
531 
532 void zero_fill_bio(struct bio *bio)
533 {
534 	unsigned long flags;
535 	struct bio_vec bv;
536 	struct bvec_iter iter;
537 
538 	bio_for_each_segment(bv, bio, iter) {
539 		char *data = bvec_kmap_irq(&bv, &flags);
540 		memset(data, 0, bv.bv_len);
541 		flush_dcache_page(bv.bv_page);
542 		bvec_kunmap_irq(data, &flags);
543 	}
544 }
545 EXPORT_SYMBOL(zero_fill_bio);
546 
547 /**
548  * bio_put - release a reference to a bio
549  * @bio:   bio to release reference to
550  *
551  * Description:
552  *   Put a reference to a &struct bio, either one you have gotten with
553  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
554  **/
555 void bio_put(struct bio *bio)
556 {
557 	if (!bio_flagged(bio, BIO_REFFED))
558 		bio_free(bio);
559 	else {
560 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
561 
562 		/*
563 		 * last put frees it
564 		 */
565 		if (atomic_dec_and_test(&bio->__bi_cnt))
566 			bio_free(bio);
567 	}
568 }
569 EXPORT_SYMBOL(bio_put);
570 
571 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
572 {
573 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
574 		blk_recount_segments(q, bio);
575 
576 	return bio->bi_phys_segments;
577 }
578 EXPORT_SYMBOL(bio_phys_segments);
579 
580 /**
581  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
582  * 	@bio: destination bio
583  * 	@bio_src: bio to clone
584  *
585  *	Clone a &bio. Caller will own the returned bio, but not
586  *	the actual data it points to. Reference count of returned
587  * 	bio will be one.
588  *
589  * 	Caller must ensure that @bio_src is not freed before @bio.
590  */
591 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
592 {
593 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
594 
595 	/*
596 	 * most users will be overriding ->bi_bdev with a new target,
597 	 * so we don't set nor calculate new physical/hw segment counts here
598 	 */
599 	bio->bi_bdev = bio_src->bi_bdev;
600 	bio_set_flag(bio, BIO_CLONED);
601 	bio->bi_opf = bio_src->bi_opf;
602 	bio->bi_write_hint = bio_src->bi_write_hint;
603 	bio->bi_iter = bio_src->bi_iter;
604 	bio->bi_io_vec = bio_src->bi_io_vec;
605 
606 	bio_clone_blkcg_association(bio, bio_src);
607 }
608 EXPORT_SYMBOL(__bio_clone_fast);
609 
610 /**
611  *	bio_clone_fast - clone a bio that shares the original bio's biovec
612  *	@bio: bio to clone
613  *	@gfp_mask: allocation priority
614  *	@bs: bio_set to allocate from
615  *
616  * 	Like __bio_clone_fast, only also allocates the returned bio
617  */
618 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
619 {
620 	struct bio *b;
621 
622 	b = bio_alloc_bioset(gfp_mask, 0, bs);
623 	if (!b)
624 		return NULL;
625 
626 	__bio_clone_fast(b, bio);
627 
628 	if (bio_integrity(bio)) {
629 		int ret;
630 
631 		ret = bio_integrity_clone(b, bio, gfp_mask);
632 
633 		if (ret < 0) {
634 			bio_put(b);
635 			return NULL;
636 		}
637 	}
638 
639 	return b;
640 }
641 EXPORT_SYMBOL(bio_clone_fast);
642 
643 /**
644  * 	bio_clone_bioset - clone a bio
645  * 	@bio_src: bio to clone
646  *	@gfp_mask: allocation priority
647  *	@bs: bio_set to allocate from
648  *
649  *	Clone bio. Caller will own the returned bio, but not the actual data it
650  *	points to. Reference count of returned bio will be one.
651  */
652 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
653 			     struct bio_set *bs)
654 {
655 	struct bvec_iter iter;
656 	struct bio_vec bv;
657 	struct bio *bio;
658 
659 	/*
660 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
661 	 * bio_src->bi_io_vec to bio->bi_io_vec.
662 	 *
663 	 * We can't do that anymore, because:
664 	 *
665 	 *  - The point of cloning the biovec is to produce a bio with a biovec
666 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
667 	 *
668 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
669 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
670 	 *    But the clone should succeed as long as the number of biovecs we
671 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
672 	 *
673 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
674 	 *    that does not own the bio - reason being drivers don't use it for
675 	 *    iterating over the biovec anymore, so expecting it to be kept up
676 	 *    to date (i.e. for clones that share the parent biovec) is just
677 	 *    asking for trouble and would force extra work on
678 	 *    __bio_clone_fast() anyways.
679 	 */
680 
681 	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
682 	if (!bio)
683 		return NULL;
684 	bio->bi_bdev		= bio_src->bi_bdev;
685 	bio->bi_opf		= bio_src->bi_opf;
686 	bio->bi_write_hint	= bio_src->bi_write_hint;
687 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
688 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
689 
690 	switch (bio_op(bio)) {
691 	case REQ_OP_DISCARD:
692 	case REQ_OP_SECURE_ERASE:
693 	case REQ_OP_WRITE_ZEROES:
694 		break;
695 	case REQ_OP_WRITE_SAME:
696 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
697 		break;
698 	default:
699 		bio_for_each_segment(bv, bio_src, iter)
700 			bio->bi_io_vec[bio->bi_vcnt++] = bv;
701 		break;
702 	}
703 
704 	if (bio_integrity(bio_src)) {
705 		int ret;
706 
707 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
708 		if (ret < 0) {
709 			bio_put(bio);
710 			return NULL;
711 		}
712 	}
713 
714 	bio_clone_blkcg_association(bio, bio_src);
715 
716 	return bio;
717 }
718 EXPORT_SYMBOL(bio_clone_bioset);
719 
720 /**
721  *	bio_add_pc_page	-	attempt to add page to bio
722  *	@q: the target queue
723  *	@bio: destination bio
724  *	@page: page to add
725  *	@len: vec entry length
726  *	@offset: vec entry offset
727  *
728  *	Attempt to add a page to the bio_vec maplist. This can fail for a
729  *	number of reasons, such as the bio being full or target block device
730  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
731  *	so it is always possible to add a single page to an empty bio.
732  *
733  *	This should only be used by REQ_PC bios.
734  */
735 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
736 		    *page, unsigned int len, unsigned int offset)
737 {
738 	int retried_segments = 0;
739 	struct bio_vec *bvec;
740 
741 	/*
742 	 * cloned bio must not modify vec list
743 	 */
744 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
745 		return 0;
746 
747 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
748 		return 0;
749 
750 	/*
751 	 * For filesystems with a blocksize smaller than the pagesize
752 	 * we will often be called with the same page as last time and
753 	 * a consecutive offset.  Optimize this special case.
754 	 */
755 	if (bio->bi_vcnt > 0) {
756 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
757 
758 		if (page == prev->bv_page &&
759 		    offset == prev->bv_offset + prev->bv_len) {
760 			prev->bv_len += len;
761 			bio->bi_iter.bi_size += len;
762 			goto done;
763 		}
764 
765 		/*
766 		 * If the queue doesn't support SG gaps and adding this
767 		 * offset would create a gap, disallow it.
768 		 */
769 		if (bvec_gap_to_prev(q, prev, offset))
770 			return 0;
771 	}
772 
773 	if (bio->bi_vcnt >= bio->bi_max_vecs)
774 		return 0;
775 
776 	/*
777 	 * setup the new entry, we might clear it again later if we
778 	 * cannot add the page
779 	 */
780 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
781 	bvec->bv_page = page;
782 	bvec->bv_len = len;
783 	bvec->bv_offset = offset;
784 	bio->bi_vcnt++;
785 	bio->bi_phys_segments++;
786 	bio->bi_iter.bi_size += len;
787 
788 	/*
789 	 * Perform a recount if the number of segments is greater
790 	 * than queue_max_segments(q).
791 	 */
792 
793 	while (bio->bi_phys_segments > queue_max_segments(q)) {
794 
795 		if (retried_segments)
796 			goto failed;
797 
798 		retried_segments = 1;
799 		blk_recount_segments(q, bio);
800 	}
801 
802 	/* If we may be able to merge these biovecs, force a recount */
803 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
804 		bio_clear_flag(bio, BIO_SEG_VALID);
805 
806  done:
807 	return len;
808 
809  failed:
810 	bvec->bv_page = NULL;
811 	bvec->bv_len = 0;
812 	bvec->bv_offset = 0;
813 	bio->bi_vcnt--;
814 	bio->bi_iter.bi_size -= len;
815 	blk_recount_segments(q, bio);
816 	return 0;
817 }
818 EXPORT_SYMBOL(bio_add_pc_page);
819 
820 /**
821  *	bio_add_page	-	attempt to add page to bio
822  *	@bio: destination bio
823  *	@page: page to add
824  *	@len: vec entry length
825  *	@offset: vec entry offset
826  *
827  *	Attempt to add a page to the bio_vec maplist. This will only fail
828  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
829  */
830 int bio_add_page(struct bio *bio, struct page *page,
831 		 unsigned int len, unsigned int offset)
832 {
833 	struct bio_vec *bv;
834 
835 	/*
836 	 * cloned bio must not modify vec list
837 	 */
838 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
839 		return 0;
840 
841 	/*
842 	 * For filesystems with a blocksize smaller than the pagesize
843 	 * we will often be called with the same page as last time and
844 	 * a consecutive offset.  Optimize this special case.
845 	 */
846 	if (bio->bi_vcnt > 0) {
847 		bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
848 
849 		if (page == bv->bv_page &&
850 		    offset == bv->bv_offset + bv->bv_len) {
851 			bv->bv_len += len;
852 			goto done;
853 		}
854 	}
855 
856 	if (bio->bi_vcnt >= bio->bi_max_vecs)
857 		return 0;
858 
859 	bv		= &bio->bi_io_vec[bio->bi_vcnt];
860 	bv->bv_page	= page;
861 	bv->bv_len	= len;
862 	bv->bv_offset	= offset;
863 
864 	bio->bi_vcnt++;
865 done:
866 	bio->bi_iter.bi_size += len;
867 	return len;
868 }
869 EXPORT_SYMBOL(bio_add_page);
870 
871 /**
872  * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
873  * @bio: bio to add pages to
874  * @iter: iov iterator describing the region to be mapped
875  *
876  * Pins as many pages from *iter and appends them to @bio's bvec array. The
877  * pages will have to be released using put_page() when done.
878  */
879 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
880 {
881 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
882 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
883 	struct page **pages = (struct page **)bv;
884 	size_t offset, diff;
885 	ssize_t size;
886 
887 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
888 	if (unlikely(size <= 0))
889 		return size ? size : -EFAULT;
890 	nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
891 
892 	/*
893 	 * Deep magic below:  We need to walk the pinned pages backwards
894 	 * because we are abusing the space allocated for the bio_vecs
895 	 * for the page array.  Because the bio_vecs are larger than the
896 	 * page pointers by definition this will always work.  But it also
897 	 * means we can't use bio_add_page, so any changes to it's semantics
898 	 * need to be reflected here as well.
899 	 */
900 	bio->bi_iter.bi_size += size;
901 	bio->bi_vcnt += nr_pages;
902 
903 	diff = (nr_pages * PAGE_SIZE - offset) - size;
904 	while (nr_pages--) {
905 		bv[nr_pages].bv_page = pages[nr_pages];
906 		bv[nr_pages].bv_len = PAGE_SIZE;
907 		bv[nr_pages].bv_offset = 0;
908 	}
909 
910 	bv[0].bv_offset += offset;
911 	bv[0].bv_len -= offset;
912 	if (diff)
913 		bv[bio->bi_vcnt - 1].bv_len -= diff;
914 
915 	iov_iter_advance(iter, size);
916 	return 0;
917 }
918 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
919 
920 struct submit_bio_ret {
921 	struct completion event;
922 	int error;
923 };
924 
925 static void submit_bio_wait_endio(struct bio *bio)
926 {
927 	struct submit_bio_ret *ret = bio->bi_private;
928 
929 	ret->error = blk_status_to_errno(bio->bi_status);
930 	complete(&ret->event);
931 }
932 
933 /**
934  * submit_bio_wait - submit a bio, and wait until it completes
935  * @bio: The &struct bio which describes the I/O
936  *
937  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
938  * bio_endio() on failure.
939  */
940 int submit_bio_wait(struct bio *bio)
941 {
942 	struct submit_bio_ret ret;
943 
944 	init_completion(&ret.event);
945 	bio->bi_private = &ret;
946 	bio->bi_end_io = submit_bio_wait_endio;
947 	bio->bi_opf |= REQ_SYNC;
948 	submit_bio(bio);
949 	wait_for_completion_io(&ret.event);
950 
951 	return ret.error;
952 }
953 EXPORT_SYMBOL(submit_bio_wait);
954 
955 /**
956  * bio_advance - increment/complete a bio by some number of bytes
957  * @bio:	bio to advance
958  * @bytes:	number of bytes to complete
959  *
960  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
961  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
962  * be updated on the last bvec as well.
963  *
964  * @bio will then represent the remaining, uncompleted portion of the io.
965  */
966 void bio_advance(struct bio *bio, unsigned bytes)
967 {
968 	if (bio_integrity(bio))
969 		bio_integrity_advance(bio, bytes);
970 
971 	bio_advance_iter(bio, &bio->bi_iter, bytes);
972 }
973 EXPORT_SYMBOL(bio_advance);
974 
975 /**
976  * bio_alloc_pages - allocates a single page for each bvec in a bio
977  * @bio: bio to allocate pages for
978  * @gfp_mask: flags for allocation
979  *
980  * Allocates pages up to @bio->bi_vcnt.
981  *
982  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
983  * freed.
984  */
985 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
986 {
987 	int i;
988 	struct bio_vec *bv;
989 
990 	bio_for_each_segment_all(bv, bio, i) {
991 		bv->bv_page = alloc_page(gfp_mask);
992 		if (!bv->bv_page) {
993 			while (--bv >= bio->bi_io_vec)
994 				__free_page(bv->bv_page);
995 			return -ENOMEM;
996 		}
997 	}
998 
999 	return 0;
1000 }
1001 EXPORT_SYMBOL(bio_alloc_pages);
1002 
1003 /**
1004  * bio_copy_data - copy contents of data buffers from one chain of bios to
1005  * another
1006  * @src: source bio list
1007  * @dst: destination bio list
1008  *
1009  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1010  * @src and @dst as linked lists of bios.
1011  *
1012  * Stops when it reaches the end of either @src or @dst - that is, copies
1013  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1014  */
1015 void bio_copy_data(struct bio *dst, struct bio *src)
1016 {
1017 	struct bvec_iter src_iter, dst_iter;
1018 	struct bio_vec src_bv, dst_bv;
1019 	void *src_p, *dst_p;
1020 	unsigned bytes;
1021 
1022 	src_iter = src->bi_iter;
1023 	dst_iter = dst->bi_iter;
1024 
1025 	while (1) {
1026 		if (!src_iter.bi_size) {
1027 			src = src->bi_next;
1028 			if (!src)
1029 				break;
1030 
1031 			src_iter = src->bi_iter;
1032 		}
1033 
1034 		if (!dst_iter.bi_size) {
1035 			dst = dst->bi_next;
1036 			if (!dst)
1037 				break;
1038 
1039 			dst_iter = dst->bi_iter;
1040 		}
1041 
1042 		src_bv = bio_iter_iovec(src, src_iter);
1043 		dst_bv = bio_iter_iovec(dst, dst_iter);
1044 
1045 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1046 
1047 		src_p = kmap_atomic(src_bv.bv_page);
1048 		dst_p = kmap_atomic(dst_bv.bv_page);
1049 
1050 		memcpy(dst_p + dst_bv.bv_offset,
1051 		       src_p + src_bv.bv_offset,
1052 		       bytes);
1053 
1054 		kunmap_atomic(dst_p);
1055 		kunmap_atomic(src_p);
1056 
1057 		bio_advance_iter(src, &src_iter, bytes);
1058 		bio_advance_iter(dst, &dst_iter, bytes);
1059 	}
1060 }
1061 EXPORT_SYMBOL(bio_copy_data);
1062 
1063 struct bio_map_data {
1064 	int is_our_pages;
1065 	struct iov_iter iter;
1066 	struct iovec iov[];
1067 };
1068 
1069 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1070 					       gfp_t gfp_mask)
1071 {
1072 	if (iov_count > UIO_MAXIOV)
1073 		return NULL;
1074 
1075 	return kmalloc(sizeof(struct bio_map_data) +
1076 		       sizeof(struct iovec) * iov_count, gfp_mask);
1077 }
1078 
1079 /**
1080  * bio_copy_from_iter - copy all pages from iov_iter to bio
1081  * @bio: The &struct bio which describes the I/O as destination
1082  * @iter: iov_iter as source
1083  *
1084  * Copy all pages from iov_iter to bio.
1085  * Returns 0 on success, or error on failure.
1086  */
1087 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1088 {
1089 	int i;
1090 	struct bio_vec *bvec;
1091 
1092 	bio_for_each_segment_all(bvec, bio, i) {
1093 		ssize_t ret;
1094 
1095 		ret = copy_page_from_iter(bvec->bv_page,
1096 					  bvec->bv_offset,
1097 					  bvec->bv_len,
1098 					  &iter);
1099 
1100 		if (!iov_iter_count(&iter))
1101 			break;
1102 
1103 		if (ret < bvec->bv_len)
1104 			return -EFAULT;
1105 	}
1106 
1107 	return 0;
1108 }
1109 
1110 /**
1111  * bio_copy_to_iter - copy all pages from bio to iov_iter
1112  * @bio: The &struct bio which describes the I/O as source
1113  * @iter: iov_iter as destination
1114  *
1115  * Copy all pages from bio to iov_iter.
1116  * Returns 0 on success, or error on failure.
1117  */
1118 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1119 {
1120 	int i;
1121 	struct bio_vec *bvec;
1122 
1123 	bio_for_each_segment_all(bvec, bio, i) {
1124 		ssize_t ret;
1125 
1126 		ret = copy_page_to_iter(bvec->bv_page,
1127 					bvec->bv_offset,
1128 					bvec->bv_len,
1129 					&iter);
1130 
1131 		if (!iov_iter_count(&iter))
1132 			break;
1133 
1134 		if (ret < bvec->bv_len)
1135 			return -EFAULT;
1136 	}
1137 
1138 	return 0;
1139 }
1140 
1141 void bio_free_pages(struct bio *bio)
1142 {
1143 	struct bio_vec *bvec;
1144 	int i;
1145 
1146 	bio_for_each_segment_all(bvec, bio, i)
1147 		__free_page(bvec->bv_page);
1148 }
1149 EXPORT_SYMBOL(bio_free_pages);
1150 
1151 /**
1152  *	bio_uncopy_user	-	finish previously mapped bio
1153  *	@bio: bio being terminated
1154  *
1155  *	Free pages allocated from bio_copy_user_iov() and write back data
1156  *	to user space in case of a read.
1157  */
1158 int bio_uncopy_user(struct bio *bio)
1159 {
1160 	struct bio_map_data *bmd = bio->bi_private;
1161 	int ret = 0;
1162 
1163 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1164 		/*
1165 		 * if we're in a workqueue, the request is orphaned, so
1166 		 * don't copy into a random user address space, just free
1167 		 * and return -EINTR so user space doesn't expect any data.
1168 		 */
1169 		if (!current->mm)
1170 			ret = -EINTR;
1171 		else if (bio_data_dir(bio) == READ)
1172 			ret = bio_copy_to_iter(bio, bmd->iter);
1173 		if (bmd->is_our_pages)
1174 			bio_free_pages(bio);
1175 	}
1176 	kfree(bmd);
1177 	bio_put(bio);
1178 	return ret;
1179 }
1180 
1181 /**
1182  *	bio_copy_user_iov	-	copy user data to bio
1183  *	@q:		destination block queue
1184  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1185  *	@iter:		iovec iterator
1186  *	@gfp_mask:	memory allocation flags
1187  *
1188  *	Prepares and returns a bio for indirect user io, bouncing data
1189  *	to/from kernel pages as necessary. Must be paired with
1190  *	call bio_uncopy_user() on io completion.
1191  */
1192 struct bio *bio_copy_user_iov(struct request_queue *q,
1193 			      struct rq_map_data *map_data,
1194 			      const struct iov_iter *iter,
1195 			      gfp_t gfp_mask)
1196 {
1197 	struct bio_map_data *bmd;
1198 	struct page *page;
1199 	struct bio *bio;
1200 	int i, ret;
1201 	int nr_pages = 0;
1202 	unsigned int len = iter->count;
1203 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1204 
1205 	for (i = 0; i < iter->nr_segs; i++) {
1206 		unsigned long uaddr;
1207 		unsigned long end;
1208 		unsigned long start;
1209 
1210 		uaddr = (unsigned long) iter->iov[i].iov_base;
1211 		end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1212 			>> PAGE_SHIFT;
1213 		start = uaddr >> PAGE_SHIFT;
1214 
1215 		/*
1216 		 * Overflow, abort
1217 		 */
1218 		if (end < start)
1219 			return ERR_PTR(-EINVAL);
1220 
1221 		nr_pages += end - start;
1222 	}
1223 
1224 	if (offset)
1225 		nr_pages++;
1226 
1227 	bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1228 	if (!bmd)
1229 		return ERR_PTR(-ENOMEM);
1230 
1231 	/*
1232 	 * We need to do a deep copy of the iov_iter including the iovecs.
1233 	 * The caller provided iov might point to an on-stack or otherwise
1234 	 * shortlived one.
1235 	 */
1236 	bmd->is_our_pages = map_data ? 0 : 1;
1237 	memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1238 	iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1239 			iter->nr_segs, iter->count);
1240 
1241 	ret = -ENOMEM;
1242 	bio = bio_kmalloc(gfp_mask, nr_pages);
1243 	if (!bio)
1244 		goto out_bmd;
1245 
1246 	ret = 0;
1247 
1248 	if (map_data) {
1249 		nr_pages = 1 << map_data->page_order;
1250 		i = map_data->offset / PAGE_SIZE;
1251 	}
1252 	while (len) {
1253 		unsigned int bytes = PAGE_SIZE;
1254 
1255 		bytes -= offset;
1256 
1257 		if (bytes > len)
1258 			bytes = len;
1259 
1260 		if (map_data) {
1261 			if (i == map_data->nr_entries * nr_pages) {
1262 				ret = -ENOMEM;
1263 				break;
1264 			}
1265 
1266 			page = map_data->pages[i / nr_pages];
1267 			page += (i % nr_pages);
1268 
1269 			i++;
1270 		} else {
1271 			page = alloc_page(q->bounce_gfp | gfp_mask);
1272 			if (!page) {
1273 				ret = -ENOMEM;
1274 				break;
1275 			}
1276 		}
1277 
1278 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1279 			break;
1280 
1281 		len -= bytes;
1282 		offset = 0;
1283 	}
1284 
1285 	if (ret)
1286 		goto cleanup;
1287 
1288 	/*
1289 	 * success
1290 	 */
1291 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1292 	    (map_data && map_data->from_user)) {
1293 		ret = bio_copy_from_iter(bio, *iter);
1294 		if (ret)
1295 			goto cleanup;
1296 	}
1297 
1298 	bio->bi_private = bmd;
1299 	return bio;
1300 cleanup:
1301 	if (!map_data)
1302 		bio_free_pages(bio);
1303 	bio_put(bio);
1304 out_bmd:
1305 	kfree(bmd);
1306 	return ERR_PTR(ret);
1307 }
1308 
1309 /**
1310  *	bio_map_user_iov - map user iovec into bio
1311  *	@q:		the struct request_queue for the bio
1312  *	@iter:		iovec iterator
1313  *	@gfp_mask:	memory allocation flags
1314  *
1315  *	Map the user space address into a bio suitable for io to a block
1316  *	device. Returns an error pointer in case of error.
1317  */
1318 struct bio *bio_map_user_iov(struct request_queue *q,
1319 			     const struct iov_iter *iter,
1320 			     gfp_t gfp_mask)
1321 {
1322 	int j;
1323 	int nr_pages = 0;
1324 	struct page **pages;
1325 	struct bio *bio;
1326 	int cur_page = 0;
1327 	int ret, offset;
1328 	struct iov_iter i;
1329 	struct iovec iov;
1330 
1331 	iov_for_each(iov, i, *iter) {
1332 		unsigned long uaddr = (unsigned long) iov.iov_base;
1333 		unsigned long len = iov.iov_len;
1334 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1335 		unsigned long start = uaddr >> PAGE_SHIFT;
1336 
1337 		/*
1338 		 * Overflow, abort
1339 		 */
1340 		if (end < start)
1341 			return ERR_PTR(-EINVAL);
1342 
1343 		nr_pages += end - start;
1344 		/*
1345 		 * buffer must be aligned to at least logical block size for now
1346 		 */
1347 		if (uaddr & queue_dma_alignment(q))
1348 			return ERR_PTR(-EINVAL);
1349 	}
1350 
1351 	if (!nr_pages)
1352 		return ERR_PTR(-EINVAL);
1353 
1354 	bio = bio_kmalloc(gfp_mask, nr_pages);
1355 	if (!bio)
1356 		return ERR_PTR(-ENOMEM);
1357 
1358 	ret = -ENOMEM;
1359 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1360 	if (!pages)
1361 		goto out;
1362 
1363 	iov_for_each(iov, i, *iter) {
1364 		unsigned long uaddr = (unsigned long) iov.iov_base;
1365 		unsigned long len = iov.iov_len;
1366 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1367 		unsigned long start = uaddr >> PAGE_SHIFT;
1368 		const int local_nr_pages = end - start;
1369 		const int page_limit = cur_page + local_nr_pages;
1370 
1371 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1372 				(iter->type & WRITE) != WRITE,
1373 				&pages[cur_page]);
1374 		if (ret < local_nr_pages) {
1375 			ret = -EFAULT;
1376 			goto out_unmap;
1377 		}
1378 
1379 		offset = offset_in_page(uaddr);
1380 		for (j = cur_page; j < page_limit; j++) {
1381 			unsigned int bytes = PAGE_SIZE - offset;
1382 
1383 			if (len <= 0)
1384 				break;
1385 
1386 			if (bytes > len)
1387 				bytes = len;
1388 
1389 			/*
1390 			 * sorry...
1391 			 */
1392 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1393 					    bytes)
1394 				break;
1395 
1396 			len -= bytes;
1397 			offset = 0;
1398 		}
1399 
1400 		cur_page = j;
1401 		/*
1402 		 * release the pages we didn't map into the bio, if any
1403 		 */
1404 		while (j < page_limit)
1405 			put_page(pages[j++]);
1406 	}
1407 
1408 	kfree(pages);
1409 
1410 	bio_set_flag(bio, BIO_USER_MAPPED);
1411 
1412 	/*
1413 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1414 	 * it would normally disappear when its bi_end_io is run.
1415 	 * however, we need it for the unmap, so grab an extra
1416 	 * reference to it
1417 	 */
1418 	bio_get(bio);
1419 	return bio;
1420 
1421  out_unmap:
1422 	for (j = 0; j < nr_pages; j++) {
1423 		if (!pages[j])
1424 			break;
1425 		put_page(pages[j]);
1426 	}
1427  out:
1428 	kfree(pages);
1429 	bio_put(bio);
1430 	return ERR_PTR(ret);
1431 }
1432 
1433 static void __bio_unmap_user(struct bio *bio)
1434 {
1435 	struct bio_vec *bvec;
1436 	int i;
1437 
1438 	/*
1439 	 * make sure we dirty pages we wrote to
1440 	 */
1441 	bio_for_each_segment_all(bvec, bio, i) {
1442 		if (bio_data_dir(bio) == READ)
1443 			set_page_dirty_lock(bvec->bv_page);
1444 
1445 		put_page(bvec->bv_page);
1446 	}
1447 
1448 	bio_put(bio);
1449 }
1450 
1451 /**
1452  *	bio_unmap_user	-	unmap a bio
1453  *	@bio:		the bio being unmapped
1454  *
1455  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1456  *	process context.
1457  *
1458  *	bio_unmap_user() may sleep.
1459  */
1460 void bio_unmap_user(struct bio *bio)
1461 {
1462 	__bio_unmap_user(bio);
1463 	bio_put(bio);
1464 }
1465 
1466 static void bio_map_kern_endio(struct bio *bio)
1467 {
1468 	bio_put(bio);
1469 }
1470 
1471 /**
1472  *	bio_map_kern	-	map kernel address into bio
1473  *	@q: the struct request_queue for the bio
1474  *	@data: pointer to buffer to map
1475  *	@len: length in bytes
1476  *	@gfp_mask: allocation flags for bio allocation
1477  *
1478  *	Map the kernel address into a bio suitable for io to a block
1479  *	device. Returns an error pointer in case of error.
1480  */
1481 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1482 			 gfp_t gfp_mask)
1483 {
1484 	unsigned long kaddr = (unsigned long)data;
1485 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1486 	unsigned long start = kaddr >> PAGE_SHIFT;
1487 	const int nr_pages = end - start;
1488 	int offset, i;
1489 	struct bio *bio;
1490 
1491 	bio = bio_kmalloc(gfp_mask, nr_pages);
1492 	if (!bio)
1493 		return ERR_PTR(-ENOMEM);
1494 
1495 	offset = offset_in_page(kaddr);
1496 	for (i = 0; i < nr_pages; i++) {
1497 		unsigned int bytes = PAGE_SIZE - offset;
1498 
1499 		if (len <= 0)
1500 			break;
1501 
1502 		if (bytes > len)
1503 			bytes = len;
1504 
1505 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1506 				    offset) < bytes) {
1507 			/* we don't support partial mappings */
1508 			bio_put(bio);
1509 			return ERR_PTR(-EINVAL);
1510 		}
1511 
1512 		data += bytes;
1513 		len -= bytes;
1514 		offset = 0;
1515 	}
1516 
1517 	bio->bi_end_io = bio_map_kern_endio;
1518 	return bio;
1519 }
1520 EXPORT_SYMBOL(bio_map_kern);
1521 
1522 static void bio_copy_kern_endio(struct bio *bio)
1523 {
1524 	bio_free_pages(bio);
1525 	bio_put(bio);
1526 }
1527 
1528 static void bio_copy_kern_endio_read(struct bio *bio)
1529 {
1530 	char *p = bio->bi_private;
1531 	struct bio_vec *bvec;
1532 	int i;
1533 
1534 	bio_for_each_segment_all(bvec, bio, i) {
1535 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1536 		p += bvec->bv_len;
1537 	}
1538 
1539 	bio_copy_kern_endio(bio);
1540 }
1541 
1542 /**
1543  *	bio_copy_kern	-	copy kernel address into bio
1544  *	@q: the struct request_queue for the bio
1545  *	@data: pointer to buffer to copy
1546  *	@len: length in bytes
1547  *	@gfp_mask: allocation flags for bio and page allocation
1548  *	@reading: data direction is READ
1549  *
1550  *	copy the kernel address into a bio suitable for io to a block
1551  *	device. Returns an error pointer in case of error.
1552  */
1553 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1554 			  gfp_t gfp_mask, int reading)
1555 {
1556 	unsigned long kaddr = (unsigned long)data;
1557 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1558 	unsigned long start = kaddr >> PAGE_SHIFT;
1559 	struct bio *bio;
1560 	void *p = data;
1561 	int nr_pages = 0;
1562 
1563 	/*
1564 	 * Overflow, abort
1565 	 */
1566 	if (end < start)
1567 		return ERR_PTR(-EINVAL);
1568 
1569 	nr_pages = end - start;
1570 	bio = bio_kmalloc(gfp_mask, nr_pages);
1571 	if (!bio)
1572 		return ERR_PTR(-ENOMEM);
1573 
1574 	while (len) {
1575 		struct page *page;
1576 		unsigned int bytes = PAGE_SIZE;
1577 
1578 		if (bytes > len)
1579 			bytes = len;
1580 
1581 		page = alloc_page(q->bounce_gfp | gfp_mask);
1582 		if (!page)
1583 			goto cleanup;
1584 
1585 		if (!reading)
1586 			memcpy(page_address(page), p, bytes);
1587 
1588 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1589 			break;
1590 
1591 		len -= bytes;
1592 		p += bytes;
1593 	}
1594 
1595 	if (reading) {
1596 		bio->bi_end_io = bio_copy_kern_endio_read;
1597 		bio->bi_private = data;
1598 	} else {
1599 		bio->bi_end_io = bio_copy_kern_endio;
1600 	}
1601 
1602 	return bio;
1603 
1604 cleanup:
1605 	bio_free_pages(bio);
1606 	bio_put(bio);
1607 	return ERR_PTR(-ENOMEM);
1608 }
1609 
1610 /*
1611  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1612  * for performing direct-IO in BIOs.
1613  *
1614  * The problem is that we cannot run set_page_dirty() from interrupt context
1615  * because the required locks are not interrupt-safe.  So what we can do is to
1616  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1617  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1618  * in process context.
1619  *
1620  * We special-case compound pages here: normally this means reads into hugetlb
1621  * pages.  The logic in here doesn't really work right for compound pages
1622  * because the VM does not uniformly chase down the head page in all cases.
1623  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1624  * handle them at all.  So we skip compound pages here at an early stage.
1625  *
1626  * Note that this code is very hard to test under normal circumstances because
1627  * direct-io pins the pages with get_user_pages().  This makes
1628  * is_page_cache_freeable return false, and the VM will not clean the pages.
1629  * But other code (eg, flusher threads) could clean the pages if they are mapped
1630  * pagecache.
1631  *
1632  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1633  * deferred bio dirtying paths.
1634  */
1635 
1636 /*
1637  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1638  */
1639 void bio_set_pages_dirty(struct bio *bio)
1640 {
1641 	struct bio_vec *bvec;
1642 	int i;
1643 
1644 	bio_for_each_segment_all(bvec, bio, i) {
1645 		struct page *page = bvec->bv_page;
1646 
1647 		if (page && !PageCompound(page))
1648 			set_page_dirty_lock(page);
1649 	}
1650 }
1651 
1652 static void bio_release_pages(struct bio *bio)
1653 {
1654 	struct bio_vec *bvec;
1655 	int i;
1656 
1657 	bio_for_each_segment_all(bvec, bio, i) {
1658 		struct page *page = bvec->bv_page;
1659 
1660 		if (page)
1661 			put_page(page);
1662 	}
1663 }
1664 
1665 /*
1666  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1667  * If they are, then fine.  If, however, some pages are clean then they must
1668  * have been written out during the direct-IO read.  So we take another ref on
1669  * the BIO and the offending pages and re-dirty the pages in process context.
1670  *
1671  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1672  * here on.  It will run one put_page() against each page and will run one
1673  * bio_put() against the BIO.
1674  */
1675 
1676 static void bio_dirty_fn(struct work_struct *work);
1677 
1678 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1679 static DEFINE_SPINLOCK(bio_dirty_lock);
1680 static struct bio *bio_dirty_list;
1681 
1682 /*
1683  * This runs in process context
1684  */
1685 static void bio_dirty_fn(struct work_struct *work)
1686 {
1687 	unsigned long flags;
1688 	struct bio *bio;
1689 
1690 	spin_lock_irqsave(&bio_dirty_lock, flags);
1691 	bio = bio_dirty_list;
1692 	bio_dirty_list = NULL;
1693 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1694 
1695 	while (bio) {
1696 		struct bio *next = bio->bi_private;
1697 
1698 		bio_set_pages_dirty(bio);
1699 		bio_release_pages(bio);
1700 		bio_put(bio);
1701 		bio = next;
1702 	}
1703 }
1704 
1705 void bio_check_pages_dirty(struct bio *bio)
1706 {
1707 	struct bio_vec *bvec;
1708 	int nr_clean_pages = 0;
1709 	int i;
1710 
1711 	bio_for_each_segment_all(bvec, bio, i) {
1712 		struct page *page = bvec->bv_page;
1713 
1714 		if (PageDirty(page) || PageCompound(page)) {
1715 			put_page(page);
1716 			bvec->bv_page = NULL;
1717 		} else {
1718 			nr_clean_pages++;
1719 		}
1720 	}
1721 
1722 	if (nr_clean_pages) {
1723 		unsigned long flags;
1724 
1725 		spin_lock_irqsave(&bio_dirty_lock, flags);
1726 		bio->bi_private = bio_dirty_list;
1727 		bio_dirty_list = bio;
1728 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1729 		schedule_work(&bio_dirty_work);
1730 	} else {
1731 		bio_put(bio);
1732 	}
1733 }
1734 
1735 void generic_start_io_acct(int rw, unsigned long sectors,
1736 			   struct hd_struct *part)
1737 {
1738 	int cpu = part_stat_lock();
1739 
1740 	part_round_stats(cpu, part);
1741 	part_stat_inc(cpu, part, ios[rw]);
1742 	part_stat_add(cpu, part, sectors[rw], sectors);
1743 	part_inc_in_flight(part, rw);
1744 
1745 	part_stat_unlock();
1746 }
1747 EXPORT_SYMBOL(generic_start_io_acct);
1748 
1749 void generic_end_io_acct(int rw, struct hd_struct *part,
1750 			 unsigned long start_time)
1751 {
1752 	unsigned long duration = jiffies - start_time;
1753 	int cpu = part_stat_lock();
1754 
1755 	part_stat_add(cpu, part, ticks[rw], duration);
1756 	part_round_stats(cpu, part);
1757 	part_dec_in_flight(part, rw);
1758 
1759 	part_stat_unlock();
1760 }
1761 EXPORT_SYMBOL(generic_end_io_acct);
1762 
1763 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1764 void bio_flush_dcache_pages(struct bio *bi)
1765 {
1766 	struct bio_vec bvec;
1767 	struct bvec_iter iter;
1768 
1769 	bio_for_each_segment(bvec, bi, iter)
1770 		flush_dcache_page(bvec.bv_page);
1771 }
1772 EXPORT_SYMBOL(bio_flush_dcache_pages);
1773 #endif
1774 
1775 static inline bool bio_remaining_done(struct bio *bio)
1776 {
1777 	/*
1778 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1779 	 * we always end io on the first invocation.
1780 	 */
1781 	if (!bio_flagged(bio, BIO_CHAIN))
1782 		return true;
1783 
1784 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1785 
1786 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1787 		bio_clear_flag(bio, BIO_CHAIN);
1788 		return true;
1789 	}
1790 
1791 	return false;
1792 }
1793 
1794 /**
1795  * bio_endio - end I/O on a bio
1796  * @bio:	bio
1797  *
1798  * Description:
1799  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1800  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1801  *   bio unless they own it and thus know that it has an end_io function.
1802  *
1803  *   bio_endio() can be called several times on a bio that has been chained
1804  *   using bio_chain().  The ->bi_end_io() function will only be called the
1805  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1806  *   generated if BIO_TRACE_COMPLETION is set.
1807  **/
1808 void bio_endio(struct bio *bio)
1809 {
1810 again:
1811 	if (!bio_remaining_done(bio))
1812 		return;
1813 	if (!bio_integrity_endio(bio))
1814 		return;
1815 
1816 	/*
1817 	 * Need to have a real endio function for chained bios, otherwise
1818 	 * various corner cases will break (like stacking block devices that
1819 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1820 	 * recursion and blowing the stack. Tail call optimization would
1821 	 * handle this, but compiling with frame pointers also disables
1822 	 * gcc's sibling call optimization.
1823 	 */
1824 	if (bio->bi_end_io == bio_chain_endio) {
1825 		bio = __bio_chain_endio(bio);
1826 		goto again;
1827 	}
1828 
1829 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1830 		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio,
1831 					 blk_status_to_errno(bio->bi_status));
1832 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1833 	}
1834 
1835 	blk_throtl_bio_endio(bio);
1836 	/* release cgroup info */
1837 	bio_uninit(bio);
1838 	if (bio->bi_end_io)
1839 		bio->bi_end_io(bio);
1840 }
1841 EXPORT_SYMBOL(bio_endio);
1842 
1843 /**
1844  * bio_split - split a bio
1845  * @bio:	bio to split
1846  * @sectors:	number of sectors to split from the front of @bio
1847  * @gfp:	gfp mask
1848  * @bs:		bio set to allocate from
1849  *
1850  * Allocates and returns a new bio which represents @sectors from the start of
1851  * @bio, and updates @bio to represent the remaining sectors.
1852  *
1853  * Unless this is a discard request the newly allocated bio will point
1854  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1855  * @bio is not freed before the split.
1856  */
1857 struct bio *bio_split(struct bio *bio, int sectors,
1858 		      gfp_t gfp, struct bio_set *bs)
1859 {
1860 	struct bio *split = NULL;
1861 
1862 	BUG_ON(sectors <= 0);
1863 	BUG_ON(sectors >= bio_sectors(bio));
1864 
1865 	split = bio_clone_fast(bio, gfp, bs);
1866 	if (!split)
1867 		return NULL;
1868 
1869 	split->bi_iter.bi_size = sectors << 9;
1870 
1871 	if (bio_integrity(split))
1872 		bio_integrity_trim(split);
1873 
1874 	bio_advance(bio, split->bi_iter.bi_size);
1875 
1876 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1877 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
1878 
1879 	return split;
1880 }
1881 EXPORT_SYMBOL(bio_split);
1882 
1883 /**
1884  * bio_trim - trim a bio
1885  * @bio:	bio to trim
1886  * @offset:	number of sectors to trim from the front of @bio
1887  * @size:	size we want to trim @bio to, in sectors
1888  */
1889 void bio_trim(struct bio *bio, int offset, int size)
1890 {
1891 	/* 'bio' is a cloned bio which we need to trim to match
1892 	 * the given offset and size.
1893 	 */
1894 
1895 	size <<= 9;
1896 	if (offset == 0 && size == bio->bi_iter.bi_size)
1897 		return;
1898 
1899 	bio_clear_flag(bio, BIO_SEG_VALID);
1900 
1901 	bio_advance(bio, offset << 9);
1902 
1903 	bio->bi_iter.bi_size = size;
1904 
1905 	if (bio_integrity(bio))
1906 		bio_integrity_trim(bio);
1907 
1908 }
1909 EXPORT_SYMBOL_GPL(bio_trim);
1910 
1911 /*
1912  * create memory pools for biovec's in a bio_set.
1913  * use the global biovec slabs created for general use.
1914  */
1915 mempool_t *biovec_create_pool(int pool_entries)
1916 {
1917 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1918 
1919 	return mempool_create_slab_pool(pool_entries, bp->slab);
1920 }
1921 
1922 void bioset_free(struct bio_set *bs)
1923 {
1924 	if (bs->rescue_workqueue)
1925 		destroy_workqueue(bs->rescue_workqueue);
1926 
1927 	if (bs->bio_pool)
1928 		mempool_destroy(bs->bio_pool);
1929 
1930 	if (bs->bvec_pool)
1931 		mempool_destroy(bs->bvec_pool);
1932 
1933 	bioset_integrity_free(bs);
1934 	bio_put_slab(bs);
1935 
1936 	kfree(bs);
1937 }
1938 EXPORT_SYMBOL(bioset_free);
1939 
1940 /**
1941  * bioset_create  - Create a bio_set
1942  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1943  * @front_pad:	Number of bytes to allocate in front of the returned bio
1944  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1945  *              and %BIOSET_NEED_RESCUER
1946  *
1947  * Description:
1948  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1949  *    to ask for a number of bytes to be allocated in front of the bio.
1950  *    Front pad allocation is useful for embedding the bio inside
1951  *    another structure, to avoid allocating extra data to go with the bio.
1952  *    Note that the bio must be embedded at the END of that structure always,
1953  *    or things will break badly.
1954  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1955  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1956  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1957  *    dispatch queued requests when the mempool runs out of space.
1958  *
1959  */
1960 struct bio_set *bioset_create(unsigned int pool_size,
1961 			      unsigned int front_pad,
1962 			      int flags)
1963 {
1964 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1965 	struct bio_set *bs;
1966 
1967 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1968 	if (!bs)
1969 		return NULL;
1970 
1971 	bs->front_pad = front_pad;
1972 
1973 	spin_lock_init(&bs->rescue_lock);
1974 	bio_list_init(&bs->rescue_list);
1975 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1976 
1977 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1978 	if (!bs->bio_slab) {
1979 		kfree(bs);
1980 		return NULL;
1981 	}
1982 
1983 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1984 	if (!bs->bio_pool)
1985 		goto bad;
1986 
1987 	if (flags & BIOSET_NEED_BVECS) {
1988 		bs->bvec_pool = biovec_create_pool(pool_size);
1989 		if (!bs->bvec_pool)
1990 			goto bad;
1991 	}
1992 
1993 	if (!(flags & BIOSET_NEED_RESCUER))
1994 		return bs;
1995 
1996 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1997 	if (!bs->rescue_workqueue)
1998 		goto bad;
1999 
2000 	return bs;
2001 bad:
2002 	bioset_free(bs);
2003 	return NULL;
2004 }
2005 EXPORT_SYMBOL(bioset_create);
2006 
2007 #ifdef CONFIG_BLK_CGROUP
2008 
2009 /**
2010  * bio_associate_blkcg - associate a bio with the specified blkcg
2011  * @bio: target bio
2012  * @blkcg_css: css of the blkcg to associate
2013  *
2014  * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
2015  * treat @bio as if it were issued by a task which belongs to the blkcg.
2016  *
2017  * This function takes an extra reference of @blkcg_css which will be put
2018  * when @bio is released.  The caller must own @bio and is responsible for
2019  * synchronizing calls to this function.
2020  */
2021 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2022 {
2023 	if (unlikely(bio->bi_css))
2024 		return -EBUSY;
2025 	css_get(blkcg_css);
2026 	bio->bi_css = blkcg_css;
2027 	return 0;
2028 }
2029 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2030 
2031 /**
2032  * bio_associate_current - associate a bio with %current
2033  * @bio: target bio
2034  *
2035  * Associate @bio with %current if it hasn't been associated yet.  Block
2036  * layer will treat @bio as if it were issued by %current no matter which
2037  * task actually issues it.
2038  *
2039  * This function takes an extra reference of @task's io_context and blkcg
2040  * which will be put when @bio is released.  The caller must own @bio,
2041  * ensure %current->io_context exists, and is responsible for synchronizing
2042  * calls to this function.
2043  */
2044 int bio_associate_current(struct bio *bio)
2045 {
2046 	struct io_context *ioc;
2047 
2048 	if (bio->bi_css)
2049 		return -EBUSY;
2050 
2051 	ioc = current->io_context;
2052 	if (!ioc)
2053 		return -ENOENT;
2054 
2055 	get_io_context_active(ioc);
2056 	bio->bi_ioc = ioc;
2057 	bio->bi_css = task_get_css(current, io_cgrp_id);
2058 	return 0;
2059 }
2060 EXPORT_SYMBOL_GPL(bio_associate_current);
2061 
2062 /**
2063  * bio_disassociate_task - undo bio_associate_current()
2064  * @bio: target bio
2065  */
2066 void bio_disassociate_task(struct bio *bio)
2067 {
2068 	if (bio->bi_ioc) {
2069 		put_io_context(bio->bi_ioc);
2070 		bio->bi_ioc = NULL;
2071 	}
2072 	if (bio->bi_css) {
2073 		css_put(bio->bi_css);
2074 		bio->bi_css = NULL;
2075 	}
2076 }
2077 
2078 /**
2079  * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2080  * @dst: destination bio
2081  * @src: source bio
2082  */
2083 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2084 {
2085 	if (src->bi_css)
2086 		WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2087 }
2088 
2089 #endif /* CONFIG_BLK_CGROUP */
2090 
2091 static void __init biovec_init_slabs(void)
2092 {
2093 	int i;
2094 
2095 	for (i = 0; i < BVEC_POOL_NR; i++) {
2096 		int size;
2097 		struct biovec_slab *bvs = bvec_slabs + i;
2098 
2099 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2100 			bvs->slab = NULL;
2101 			continue;
2102 		}
2103 
2104 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2105 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2106                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2107 	}
2108 }
2109 
2110 static int __init init_bio(void)
2111 {
2112 	bio_slab_max = 2;
2113 	bio_slab_nr = 0;
2114 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2115 	if (!bio_slabs)
2116 		panic("bio: can't allocate bios\n");
2117 
2118 	bio_integrity_init();
2119 	biovec_init_slabs();
2120 
2121 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
2122 	if (!fs_bio_set)
2123 		panic("bio: can't allocate bios\n");
2124 
2125 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2126 		panic("bio: can't create integrity pool\n");
2127 
2128 	return 0;
2129 }
2130 subsys_initcall(init_bio);
2131