xref: /openbmc/linux/block/bio.c (revision e5c86679)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 
32 #include <trace/events/block.h>
33 
34 /*
35  * Test patch to inline a certain number of bi_io_vec's inside the bio
36  * itself, to shrink a bio data allocation from two mempool calls to one
37  */
38 #define BIO_INLINE_VECS		4
39 
40 /*
41  * if you change this list, also change bvec_alloc or things will
42  * break badly! cannot be bigger than what you can fit into an
43  * unsigned short
44  */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
47 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50 
51 /*
52  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53  * IO code that does not need private memory pools.
54  */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57 
58 /*
59  * Our slab pool management
60  */
61 struct bio_slab {
62 	struct kmem_cache *slab;
63 	unsigned int slab_ref;
64 	unsigned int slab_size;
65 	char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70 
71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 	unsigned int sz = sizeof(struct bio) + extra_size;
74 	struct kmem_cache *slab = NULL;
75 	struct bio_slab *bslab, *new_bio_slabs;
76 	unsigned int new_bio_slab_max;
77 	unsigned int i, entry = -1;
78 
79 	mutex_lock(&bio_slab_lock);
80 
81 	i = 0;
82 	while (i < bio_slab_nr) {
83 		bslab = &bio_slabs[i];
84 
85 		if (!bslab->slab && entry == -1)
86 			entry = i;
87 		else if (bslab->slab_size == sz) {
88 			slab = bslab->slab;
89 			bslab->slab_ref++;
90 			break;
91 		}
92 		i++;
93 	}
94 
95 	if (slab)
96 		goto out_unlock;
97 
98 	if (bio_slab_nr == bio_slab_max && entry == -1) {
99 		new_bio_slab_max = bio_slab_max << 1;
100 		new_bio_slabs = krealloc(bio_slabs,
101 					 new_bio_slab_max * sizeof(struct bio_slab),
102 					 GFP_KERNEL);
103 		if (!new_bio_slabs)
104 			goto out_unlock;
105 		bio_slab_max = new_bio_slab_max;
106 		bio_slabs = new_bio_slabs;
107 	}
108 	if (entry == -1)
109 		entry = bio_slab_nr++;
110 
111 	bslab = &bio_slabs[entry];
112 
113 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 				 SLAB_HWCACHE_ALIGN, NULL);
116 	if (!slab)
117 		goto out_unlock;
118 
119 	bslab->slab = slab;
120 	bslab->slab_ref = 1;
121 	bslab->slab_size = sz;
122 out_unlock:
123 	mutex_unlock(&bio_slab_lock);
124 	return slab;
125 }
126 
127 static void bio_put_slab(struct bio_set *bs)
128 {
129 	struct bio_slab *bslab = NULL;
130 	unsigned int i;
131 
132 	mutex_lock(&bio_slab_lock);
133 
134 	for (i = 0; i < bio_slab_nr; i++) {
135 		if (bs->bio_slab == bio_slabs[i].slab) {
136 			bslab = &bio_slabs[i];
137 			break;
138 		}
139 	}
140 
141 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 		goto out;
143 
144 	WARN_ON(!bslab->slab_ref);
145 
146 	if (--bslab->slab_ref)
147 		goto out;
148 
149 	kmem_cache_destroy(bslab->slab);
150 	bslab->slab = NULL;
151 
152 out:
153 	mutex_unlock(&bio_slab_lock);
154 }
155 
156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 	return bvec_slabs[idx].nr_vecs;
159 }
160 
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 	if (!idx)
164 		return;
165 	idx--;
166 
167 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
168 
169 	if (idx == BVEC_POOL_MAX) {
170 		mempool_free(bv, pool);
171 	} else {
172 		struct biovec_slab *bvs = bvec_slabs + idx;
173 
174 		kmem_cache_free(bvs->slab, bv);
175 	}
176 }
177 
178 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
179 			   mempool_t *pool)
180 {
181 	struct bio_vec *bvl;
182 
183 	/*
184 	 * see comment near bvec_array define!
185 	 */
186 	switch (nr) {
187 	case 1:
188 		*idx = 0;
189 		break;
190 	case 2 ... 4:
191 		*idx = 1;
192 		break;
193 	case 5 ... 16:
194 		*idx = 2;
195 		break;
196 	case 17 ... 64:
197 		*idx = 3;
198 		break;
199 	case 65 ... 128:
200 		*idx = 4;
201 		break;
202 	case 129 ... BIO_MAX_PAGES:
203 		*idx = 5;
204 		break;
205 	default:
206 		return NULL;
207 	}
208 
209 	/*
210 	 * idx now points to the pool we want to allocate from. only the
211 	 * 1-vec entry pool is mempool backed.
212 	 */
213 	if (*idx == BVEC_POOL_MAX) {
214 fallback:
215 		bvl = mempool_alloc(pool, gfp_mask);
216 	} else {
217 		struct biovec_slab *bvs = bvec_slabs + *idx;
218 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
219 
220 		/*
221 		 * Make this allocation restricted and don't dump info on
222 		 * allocation failures, since we'll fallback to the mempool
223 		 * in case of failure.
224 		 */
225 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
226 
227 		/*
228 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
229 		 * is set, retry with the 1-entry mempool
230 		 */
231 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
232 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
233 			*idx = BVEC_POOL_MAX;
234 			goto fallback;
235 		}
236 	}
237 
238 	(*idx)++;
239 	return bvl;
240 }
241 
242 static void __bio_free(struct bio *bio)
243 {
244 	bio_disassociate_task(bio);
245 
246 	if (bio_integrity(bio))
247 		bio_integrity_free(bio);
248 }
249 
250 static void bio_free(struct bio *bio)
251 {
252 	struct bio_set *bs = bio->bi_pool;
253 	void *p;
254 
255 	__bio_free(bio);
256 
257 	if (bs) {
258 		bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
259 
260 		/*
261 		 * If we have front padding, adjust the bio pointer before freeing
262 		 */
263 		p = bio;
264 		p -= bs->front_pad;
265 
266 		mempool_free(p, bs->bio_pool);
267 	} else {
268 		/* Bio was allocated by bio_kmalloc() */
269 		kfree(bio);
270 	}
271 }
272 
273 void bio_init(struct bio *bio, struct bio_vec *table,
274 	      unsigned short max_vecs)
275 {
276 	memset(bio, 0, sizeof(*bio));
277 	atomic_set(&bio->__bi_remaining, 1);
278 	atomic_set(&bio->__bi_cnt, 1);
279 
280 	bio->bi_io_vec = table;
281 	bio->bi_max_vecs = max_vecs;
282 }
283 EXPORT_SYMBOL(bio_init);
284 
285 /**
286  * bio_reset - reinitialize a bio
287  * @bio:	bio to reset
288  *
289  * Description:
290  *   After calling bio_reset(), @bio will be in the same state as a freshly
291  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
292  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
293  *   comment in struct bio.
294  */
295 void bio_reset(struct bio *bio)
296 {
297 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
298 
299 	__bio_free(bio);
300 
301 	memset(bio, 0, BIO_RESET_BYTES);
302 	bio->bi_flags = flags;
303 	atomic_set(&bio->__bi_remaining, 1);
304 }
305 EXPORT_SYMBOL(bio_reset);
306 
307 static struct bio *__bio_chain_endio(struct bio *bio)
308 {
309 	struct bio *parent = bio->bi_private;
310 
311 	if (!parent->bi_error)
312 		parent->bi_error = bio->bi_error;
313 	bio_put(bio);
314 	return parent;
315 }
316 
317 static void bio_chain_endio(struct bio *bio)
318 {
319 	bio_endio(__bio_chain_endio(bio));
320 }
321 
322 /**
323  * bio_chain - chain bio completions
324  * @bio: the target bio
325  * @parent: the @bio's parent bio
326  *
327  * The caller won't have a bi_end_io called when @bio completes - instead,
328  * @parent's bi_end_io won't be called until both @parent and @bio have
329  * completed; the chained bio will also be freed when it completes.
330  *
331  * The caller must not set bi_private or bi_end_io in @bio.
332  */
333 void bio_chain(struct bio *bio, struct bio *parent)
334 {
335 	BUG_ON(bio->bi_private || bio->bi_end_io);
336 
337 	bio->bi_private = parent;
338 	bio->bi_end_io	= bio_chain_endio;
339 	bio_inc_remaining(parent);
340 }
341 EXPORT_SYMBOL(bio_chain);
342 
343 static void bio_alloc_rescue(struct work_struct *work)
344 {
345 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
346 	struct bio *bio;
347 
348 	while (1) {
349 		spin_lock(&bs->rescue_lock);
350 		bio = bio_list_pop(&bs->rescue_list);
351 		spin_unlock(&bs->rescue_lock);
352 
353 		if (!bio)
354 			break;
355 
356 		generic_make_request(bio);
357 	}
358 }
359 
360 static void punt_bios_to_rescuer(struct bio_set *bs)
361 {
362 	struct bio_list punt, nopunt;
363 	struct bio *bio;
364 
365 	/*
366 	 * In order to guarantee forward progress we must punt only bios that
367 	 * were allocated from this bio_set; otherwise, if there was a bio on
368 	 * there for a stacking driver higher up in the stack, processing it
369 	 * could require allocating bios from this bio_set, and doing that from
370 	 * our own rescuer would be bad.
371 	 *
372 	 * Since bio lists are singly linked, pop them all instead of trying to
373 	 * remove from the middle of the list:
374 	 */
375 
376 	bio_list_init(&punt);
377 	bio_list_init(&nopunt);
378 
379 	while ((bio = bio_list_pop(&current->bio_list[0])))
380 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
381 	current->bio_list[0] = nopunt;
382 
383 	bio_list_init(&nopunt);
384 	while ((bio = bio_list_pop(&current->bio_list[1])))
385 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
386 	current->bio_list[1] = nopunt;
387 
388 	spin_lock(&bs->rescue_lock);
389 	bio_list_merge(&bs->rescue_list, &punt);
390 	spin_unlock(&bs->rescue_lock);
391 
392 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
393 }
394 
395 /**
396  * bio_alloc_bioset - allocate a bio for I/O
397  * @gfp_mask:   the GFP_ mask given to the slab allocator
398  * @nr_iovecs:	number of iovecs to pre-allocate
399  * @bs:		the bio_set to allocate from.
400  *
401  * Description:
402  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
403  *   backed by the @bs's mempool.
404  *
405  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
406  *   always be able to allocate a bio. This is due to the mempool guarantees.
407  *   To make this work, callers must never allocate more than 1 bio at a time
408  *   from this pool. Callers that need to allocate more than 1 bio must always
409  *   submit the previously allocated bio for IO before attempting to allocate
410  *   a new one. Failure to do so can cause deadlocks under memory pressure.
411  *
412  *   Note that when running under generic_make_request() (i.e. any block
413  *   driver), bios are not submitted until after you return - see the code in
414  *   generic_make_request() that converts recursion into iteration, to prevent
415  *   stack overflows.
416  *
417  *   This would normally mean allocating multiple bios under
418  *   generic_make_request() would be susceptible to deadlocks, but we have
419  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
420  *   thread.
421  *
422  *   However, we do not guarantee forward progress for allocations from other
423  *   mempools. Doing multiple allocations from the same mempool under
424  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
425  *   for per bio allocations.
426  *
427  *   RETURNS:
428  *   Pointer to new bio on success, NULL on failure.
429  */
430 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
431 {
432 	gfp_t saved_gfp = gfp_mask;
433 	unsigned front_pad;
434 	unsigned inline_vecs;
435 	struct bio_vec *bvl = NULL;
436 	struct bio *bio;
437 	void *p;
438 
439 	if (!bs) {
440 		if (nr_iovecs > UIO_MAXIOV)
441 			return NULL;
442 
443 		p = kmalloc(sizeof(struct bio) +
444 			    nr_iovecs * sizeof(struct bio_vec),
445 			    gfp_mask);
446 		front_pad = 0;
447 		inline_vecs = nr_iovecs;
448 	} else {
449 		/* should not use nobvec bioset for nr_iovecs > 0 */
450 		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
451 			return NULL;
452 		/*
453 		 * generic_make_request() converts recursion to iteration; this
454 		 * means if we're running beneath it, any bios we allocate and
455 		 * submit will not be submitted (and thus freed) until after we
456 		 * return.
457 		 *
458 		 * This exposes us to a potential deadlock if we allocate
459 		 * multiple bios from the same bio_set() while running
460 		 * underneath generic_make_request(). If we were to allocate
461 		 * multiple bios (say a stacking block driver that was splitting
462 		 * bios), we would deadlock if we exhausted the mempool's
463 		 * reserve.
464 		 *
465 		 * We solve this, and guarantee forward progress, with a rescuer
466 		 * workqueue per bio_set. If we go to allocate and there are
467 		 * bios on current->bio_list, we first try the allocation
468 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
469 		 * bios we would be blocking to the rescuer workqueue before
470 		 * we retry with the original gfp_flags.
471 		 */
472 
473 		if (current->bio_list &&
474 		    (!bio_list_empty(&current->bio_list[0]) ||
475 		     !bio_list_empty(&current->bio_list[1])))
476 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
477 
478 		p = mempool_alloc(bs->bio_pool, gfp_mask);
479 		if (!p && gfp_mask != saved_gfp) {
480 			punt_bios_to_rescuer(bs);
481 			gfp_mask = saved_gfp;
482 			p = mempool_alloc(bs->bio_pool, gfp_mask);
483 		}
484 
485 		front_pad = bs->front_pad;
486 		inline_vecs = BIO_INLINE_VECS;
487 	}
488 
489 	if (unlikely(!p))
490 		return NULL;
491 
492 	bio = p + front_pad;
493 	bio_init(bio, NULL, 0);
494 
495 	if (nr_iovecs > inline_vecs) {
496 		unsigned long idx = 0;
497 
498 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
499 		if (!bvl && gfp_mask != saved_gfp) {
500 			punt_bios_to_rescuer(bs);
501 			gfp_mask = saved_gfp;
502 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
503 		}
504 
505 		if (unlikely(!bvl))
506 			goto err_free;
507 
508 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
509 	} else if (nr_iovecs) {
510 		bvl = bio->bi_inline_vecs;
511 	}
512 
513 	bio->bi_pool = bs;
514 	bio->bi_max_vecs = nr_iovecs;
515 	bio->bi_io_vec = bvl;
516 	return bio;
517 
518 err_free:
519 	mempool_free(p, bs->bio_pool);
520 	return NULL;
521 }
522 EXPORT_SYMBOL(bio_alloc_bioset);
523 
524 void zero_fill_bio(struct bio *bio)
525 {
526 	unsigned long flags;
527 	struct bio_vec bv;
528 	struct bvec_iter iter;
529 
530 	bio_for_each_segment(bv, bio, iter) {
531 		char *data = bvec_kmap_irq(&bv, &flags);
532 		memset(data, 0, bv.bv_len);
533 		flush_dcache_page(bv.bv_page);
534 		bvec_kunmap_irq(data, &flags);
535 	}
536 }
537 EXPORT_SYMBOL(zero_fill_bio);
538 
539 /**
540  * bio_put - release a reference to a bio
541  * @bio:   bio to release reference to
542  *
543  * Description:
544  *   Put a reference to a &struct bio, either one you have gotten with
545  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
546  **/
547 void bio_put(struct bio *bio)
548 {
549 	if (!bio_flagged(bio, BIO_REFFED))
550 		bio_free(bio);
551 	else {
552 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
553 
554 		/*
555 		 * last put frees it
556 		 */
557 		if (atomic_dec_and_test(&bio->__bi_cnt))
558 			bio_free(bio);
559 	}
560 }
561 EXPORT_SYMBOL(bio_put);
562 
563 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
564 {
565 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
566 		blk_recount_segments(q, bio);
567 
568 	return bio->bi_phys_segments;
569 }
570 EXPORT_SYMBOL(bio_phys_segments);
571 
572 /**
573  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
574  * 	@bio: destination bio
575  * 	@bio_src: bio to clone
576  *
577  *	Clone a &bio. Caller will own the returned bio, but not
578  *	the actual data it points to. Reference count of returned
579  * 	bio will be one.
580  *
581  * 	Caller must ensure that @bio_src is not freed before @bio.
582  */
583 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
584 {
585 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
586 
587 	/*
588 	 * most users will be overriding ->bi_bdev with a new target,
589 	 * so we don't set nor calculate new physical/hw segment counts here
590 	 */
591 	bio->bi_bdev = bio_src->bi_bdev;
592 	bio_set_flag(bio, BIO_CLONED);
593 	bio->bi_opf = bio_src->bi_opf;
594 	bio->bi_iter = bio_src->bi_iter;
595 	bio->bi_io_vec = bio_src->bi_io_vec;
596 
597 	bio_clone_blkcg_association(bio, bio_src);
598 }
599 EXPORT_SYMBOL(__bio_clone_fast);
600 
601 /**
602  *	bio_clone_fast - clone a bio that shares the original bio's biovec
603  *	@bio: bio to clone
604  *	@gfp_mask: allocation priority
605  *	@bs: bio_set to allocate from
606  *
607  * 	Like __bio_clone_fast, only also allocates the returned bio
608  */
609 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
610 {
611 	struct bio *b;
612 
613 	b = bio_alloc_bioset(gfp_mask, 0, bs);
614 	if (!b)
615 		return NULL;
616 
617 	__bio_clone_fast(b, bio);
618 
619 	if (bio_integrity(bio)) {
620 		int ret;
621 
622 		ret = bio_integrity_clone(b, bio, gfp_mask);
623 
624 		if (ret < 0) {
625 			bio_put(b);
626 			return NULL;
627 		}
628 	}
629 
630 	return b;
631 }
632 EXPORT_SYMBOL(bio_clone_fast);
633 
634 static struct bio *__bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
635 				      struct bio_set *bs, int offset,
636 				      int size)
637 {
638 	struct bvec_iter iter;
639 	struct bio_vec bv;
640 	struct bio *bio;
641 	struct bvec_iter iter_src = bio_src->bi_iter;
642 
643 	/* for supporting partial clone */
644 	if (offset || size != bio_src->bi_iter.bi_size) {
645 		bio_advance_iter(bio_src, &iter_src, offset);
646 		iter_src.bi_size = size;
647 	}
648 
649 	/*
650 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
651 	 * bio_src->bi_io_vec to bio->bi_io_vec.
652 	 *
653 	 * We can't do that anymore, because:
654 	 *
655 	 *  - The point of cloning the biovec is to produce a bio with a biovec
656 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
657 	 *
658 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
659 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
660 	 *    But the clone should succeed as long as the number of biovecs we
661 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
662 	 *
663 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
664 	 *    that does not own the bio - reason being drivers don't use it for
665 	 *    iterating over the biovec anymore, so expecting it to be kept up
666 	 *    to date (i.e. for clones that share the parent biovec) is just
667 	 *    asking for trouble and would force extra work on
668 	 *    __bio_clone_fast() anyways.
669 	 */
670 
671 	bio = bio_alloc_bioset(gfp_mask, __bio_segments(bio_src,
672 			       &iter_src), bs);
673 	if (!bio)
674 		return NULL;
675 	bio->bi_bdev		= bio_src->bi_bdev;
676 	bio->bi_opf		= bio_src->bi_opf;
677 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
678 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
679 
680 	switch (bio_op(bio)) {
681 	case REQ_OP_DISCARD:
682 	case REQ_OP_SECURE_ERASE:
683 	case REQ_OP_WRITE_ZEROES:
684 		break;
685 	case REQ_OP_WRITE_SAME:
686 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
687 		break;
688 	default:
689 		__bio_for_each_segment(bv, bio_src, iter, iter_src)
690 			bio->bi_io_vec[bio->bi_vcnt++] = bv;
691 		break;
692 	}
693 
694 	if (bio_integrity(bio_src)) {
695 		int ret;
696 
697 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
698 		if (ret < 0) {
699 			bio_put(bio);
700 			return NULL;
701 		}
702 	}
703 
704 	bio_clone_blkcg_association(bio, bio_src);
705 
706 	return bio;
707 }
708 
709 /**
710  * 	bio_clone_bioset - clone a bio
711  * 	@bio_src: bio to clone
712  *	@gfp_mask: allocation priority
713  *	@bs: bio_set to allocate from
714  *
715  *	Clone bio. Caller will own the returned bio, but not the actual data it
716  *	points to. Reference count of returned bio will be one.
717  */
718 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
719 			     struct bio_set *bs)
720 {
721 	return __bio_clone_bioset(bio_src, gfp_mask, bs, 0,
722 				  bio_src->bi_iter.bi_size);
723 }
724 EXPORT_SYMBOL(bio_clone_bioset);
725 
726 /**
727  * 	bio_clone_bioset_partial - clone a partial bio
728  * 	@bio_src: bio to clone
729  *	@gfp_mask: allocation priority
730  *	@bs: bio_set to allocate from
731  *	@offset: cloned starting from the offset
732  *	@size: size for the cloned bio
733  *
734  *	Clone bio. Caller will own the returned bio, but not the actual data it
735  *	points to. Reference count of returned bio will be one.
736  */
737 struct bio *bio_clone_bioset_partial(struct bio *bio_src, gfp_t gfp_mask,
738 				     struct bio_set *bs, int offset,
739 				     int size)
740 {
741 	return __bio_clone_bioset(bio_src, gfp_mask, bs, offset, size);
742 }
743 EXPORT_SYMBOL(bio_clone_bioset_partial);
744 
745 /**
746  *	bio_add_pc_page	-	attempt to add page to bio
747  *	@q: the target queue
748  *	@bio: destination bio
749  *	@page: page to add
750  *	@len: vec entry length
751  *	@offset: vec entry offset
752  *
753  *	Attempt to add a page to the bio_vec maplist. This can fail for a
754  *	number of reasons, such as the bio being full or target block device
755  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
756  *	so it is always possible to add a single page to an empty bio.
757  *
758  *	This should only be used by REQ_PC bios.
759  */
760 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
761 		    *page, unsigned int len, unsigned int offset)
762 {
763 	int retried_segments = 0;
764 	struct bio_vec *bvec;
765 
766 	/*
767 	 * cloned bio must not modify vec list
768 	 */
769 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
770 		return 0;
771 
772 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
773 		return 0;
774 
775 	/*
776 	 * For filesystems with a blocksize smaller than the pagesize
777 	 * we will often be called with the same page as last time and
778 	 * a consecutive offset.  Optimize this special case.
779 	 */
780 	if (bio->bi_vcnt > 0) {
781 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
782 
783 		if (page == prev->bv_page &&
784 		    offset == prev->bv_offset + prev->bv_len) {
785 			prev->bv_len += len;
786 			bio->bi_iter.bi_size += len;
787 			goto done;
788 		}
789 
790 		/*
791 		 * If the queue doesn't support SG gaps and adding this
792 		 * offset would create a gap, disallow it.
793 		 */
794 		if (bvec_gap_to_prev(q, prev, offset))
795 			return 0;
796 	}
797 
798 	if (bio->bi_vcnt >= bio->bi_max_vecs)
799 		return 0;
800 
801 	/*
802 	 * setup the new entry, we might clear it again later if we
803 	 * cannot add the page
804 	 */
805 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
806 	bvec->bv_page = page;
807 	bvec->bv_len = len;
808 	bvec->bv_offset = offset;
809 	bio->bi_vcnt++;
810 	bio->bi_phys_segments++;
811 	bio->bi_iter.bi_size += len;
812 
813 	/*
814 	 * Perform a recount if the number of segments is greater
815 	 * than queue_max_segments(q).
816 	 */
817 
818 	while (bio->bi_phys_segments > queue_max_segments(q)) {
819 
820 		if (retried_segments)
821 			goto failed;
822 
823 		retried_segments = 1;
824 		blk_recount_segments(q, bio);
825 	}
826 
827 	/* If we may be able to merge these biovecs, force a recount */
828 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
829 		bio_clear_flag(bio, BIO_SEG_VALID);
830 
831  done:
832 	return len;
833 
834  failed:
835 	bvec->bv_page = NULL;
836 	bvec->bv_len = 0;
837 	bvec->bv_offset = 0;
838 	bio->bi_vcnt--;
839 	bio->bi_iter.bi_size -= len;
840 	blk_recount_segments(q, bio);
841 	return 0;
842 }
843 EXPORT_SYMBOL(bio_add_pc_page);
844 
845 /**
846  *	bio_add_page	-	attempt to add page to bio
847  *	@bio: destination bio
848  *	@page: page to add
849  *	@len: vec entry length
850  *	@offset: vec entry offset
851  *
852  *	Attempt to add a page to the bio_vec maplist. This will only fail
853  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
854  */
855 int bio_add_page(struct bio *bio, struct page *page,
856 		 unsigned int len, unsigned int offset)
857 {
858 	struct bio_vec *bv;
859 
860 	/*
861 	 * cloned bio must not modify vec list
862 	 */
863 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
864 		return 0;
865 
866 	/*
867 	 * For filesystems with a blocksize smaller than the pagesize
868 	 * we will often be called with the same page as last time and
869 	 * a consecutive offset.  Optimize this special case.
870 	 */
871 	if (bio->bi_vcnt > 0) {
872 		bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
873 
874 		if (page == bv->bv_page &&
875 		    offset == bv->bv_offset + bv->bv_len) {
876 			bv->bv_len += len;
877 			goto done;
878 		}
879 	}
880 
881 	if (bio->bi_vcnt >= bio->bi_max_vecs)
882 		return 0;
883 
884 	bv		= &bio->bi_io_vec[bio->bi_vcnt];
885 	bv->bv_page	= page;
886 	bv->bv_len	= len;
887 	bv->bv_offset	= offset;
888 
889 	bio->bi_vcnt++;
890 done:
891 	bio->bi_iter.bi_size += len;
892 	return len;
893 }
894 EXPORT_SYMBOL(bio_add_page);
895 
896 /**
897  * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
898  * @bio: bio to add pages to
899  * @iter: iov iterator describing the region to be mapped
900  *
901  * Pins as many pages from *iter and appends them to @bio's bvec array. The
902  * pages will have to be released using put_page() when done.
903  */
904 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
905 {
906 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
907 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
908 	struct page **pages = (struct page **)bv;
909 	size_t offset, diff;
910 	ssize_t size;
911 
912 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
913 	if (unlikely(size <= 0))
914 		return size ? size : -EFAULT;
915 	nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
916 
917 	/*
918 	 * Deep magic below:  We need to walk the pinned pages backwards
919 	 * because we are abusing the space allocated for the bio_vecs
920 	 * for the page array.  Because the bio_vecs are larger than the
921 	 * page pointers by definition this will always work.  But it also
922 	 * means we can't use bio_add_page, so any changes to it's semantics
923 	 * need to be reflected here as well.
924 	 */
925 	bio->bi_iter.bi_size += size;
926 	bio->bi_vcnt += nr_pages;
927 
928 	diff = (nr_pages * PAGE_SIZE - offset) - size;
929 	while (nr_pages--) {
930 		bv[nr_pages].bv_page = pages[nr_pages];
931 		bv[nr_pages].bv_len = PAGE_SIZE;
932 		bv[nr_pages].bv_offset = 0;
933 	}
934 
935 	bv[0].bv_offset += offset;
936 	bv[0].bv_len -= offset;
937 	if (diff)
938 		bv[bio->bi_vcnt - 1].bv_len -= diff;
939 
940 	iov_iter_advance(iter, size);
941 	return 0;
942 }
943 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
944 
945 struct submit_bio_ret {
946 	struct completion event;
947 	int error;
948 };
949 
950 static void submit_bio_wait_endio(struct bio *bio)
951 {
952 	struct submit_bio_ret *ret = bio->bi_private;
953 
954 	ret->error = bio->bi_error;
955 	complete(&ret->event);
956 }
957 
958 /**
959  * submit_bio_wait - submit a bio, and wait until it completes
960  * @bio: The &struct bio which describes the I/O
961  *
962  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
963  * bio_endio() on failure.
964  */
965 int submit_bio_wait(struct bio *bio)
966 {
967 	struct submit_bio_ret ret;
968 
969 	init_completion(&ret.event);
970 	bio->bi_private = &ret;
971 	bio->bi_end_io = submit_bio_wait_endio;
972 	bio->bi_opf |= REQ_SYNC;
973 	submit_bio(bio);
974 	wait_for_completion_io(&ret.event);
975 
976 	return ret.error;
977 }
978 EXPORT_SYMBOL(submit_bio_wait);
979 
980 /**
981  * bio_advance - increment/complete a bio by some number of bytes
982  * @bio:	bio to advance
983  * @bytes:	number of bytes to complete
984  *
985  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
986  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
987  * be updated on the last bvec as well.
988  *
989  * @bio will then represent the remaining, uncompleted portion of the io.
990  */
991 void bio_advance(struct bio *bio, unsigned bytes)
992 {
993 	if (bio_integrity(bio))
994 		bio_integrity_advance(bio, bytes);
995 
996 	bio_advance_iter(bio, &bio->bi_iter, bytes);
997 }
998 EXPORT_SYMBOL(bio_advance);
999 
1000 /**
1001  * bio_alloc_pages - allocates a single page for each bvec in a bio
1002  * @bio: bio to allocate pages for
1003  * @gfp_mask: flags for allocation
1004  *
1005  * Allocates pages up to @bio->bi_vcnt.
1006  *
1007  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
1008  * freed.
1009  */
1010 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
1011 {
1012 	int i;
1013 	struct bio_vec *bv;
1014 
1015 	bio_for_each_segment_all(bv, bio, i) {
1016 		bv->bv_page = alloc_page(gfp_mask);
1017 		if (!bv->bv_page) {
1018 			while (--bv >= bio->bi_io_vec)
1019 				__free_page(bv->bv_page);
1020 			return -ENOMEM;
1021 		}
1022 	}
1023 
1024 	return 0;
1025 }
1026 EXPORT_SYMBOL(bio_alloc_pages);
1027 
1028 /**
1029  * bio_copy_data - copy contents of data buffers from one chain of bios to
1030  * another
1031  * @src: source bio list
1032  * @dst: destination bio list
1033  *
1034  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1035  * @src and @dst as linked lists of bios.
1036  *
1037  * Stops when it reaches the end of either @src or @dst - that is, copies
1038  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1039  */
1040 void bio_copy_data(struct bio *dst, struct bio *src)
1041 {
1042 	struct bvec_iter src_iter, dst_iter;
1043 	struct bio_vec src_bv, dst_bv;
1044 	void *src_p, *dst_p;
1045 	unsigned bytes;
1046 
1047 	src_iter = src->bi_iter;
1048 	dst_iter = dst->bi_iter;
1049 
1050 	while (1) {
1051 		if (!src_iter.bi_size) {
1052 			src = src->bi_next;
1053 			if (!src)
1054 				break;
1055 
1056 			src_iter = src->bi_iter;
1057 		}
1058 
1059 		if (!dst_iter.bi_size) {
1060 			dst = dst->bi_next;
1061 			if (!dst)
1062 				break;
1063 
1064 			dst_iter = dst->bi_iter;
1065 		}
1066 
1067 		src_bv = bio_iter_iovec(src, src_iter);
1068 		dst_bv = bio_iter_iovec(dst, dst_iter);
1069 
1070 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1071 
1072 		src_p = kmap_atomic(src_bv.bv_page);
1073 		dst_p = kmap_atomic(dst_bv.bv_page);
1074 
1075 		memcpy(dst_p + dst_bv.bv_offset,
1076 		       src_p + src_bv.bv_offset,
1077 		       bytes);
1078 
1079 		kunmap_atomic(dst_p);
1080 		kunmap_atomic(src_p);
1081 
1082 		bio_advance_iter(src, &src_iter, bytes);
1083 		bio_advance_iter(dst, &dst_iter, bytes);
1084 	}
1085 }
1086 EXPORT_SYMBOL(bio_copy_data);
1087 
1088 struct bio_map_data {
1089 	int is_our_pages;
1090 	struct iov_iter iter;
1091 	struct iovec iov[];
1092 };
1093 
1094 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1095 					       gfp_t gfp_mask)
1096 {
1097 	if (iov_count > UIO_MAXIOV)
1098 		return NULL;
1099 
1100 	return kmalloc(sizeof(struct bio_map_data) +
1101 		       sizeof(struct iovec) * iov_count, gfp_mask);
1102 }
1103 
1104 /**
1105  * bio_copy_from_iter - copy all pages from iov_iter to bio
1106  * @bio: The &struct bio which describes the I/O as destination
1107  * @iter: iov_iter as source
1108  *
1109  * Copy all pages from iov_iter to bio.
1110  * Returns 0 on success, or error on failure.
1111  */
1112 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1113 {
1114 	int i;
1115 	struct bio_vec *bvec;
1116 
1117 	bio_for_each_segment_all(bvec, bio, i) {
1118 		ssize_t ret;
1119 
1120 		ret = copy_page_from_iter(bvec->bv_page,
1121 					  bvec->bv_offset,
1122 					  bvec->bv_len,
1123 					  &iter);
1124 
1125 		if (!iov_iter_count(&iter))
1126 			break;
1127 
1128 		if (ret < bvec->bv_len)
1129 			return -EFAULT;
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 /**
1136  * bio_copy_to_iter - copy all pages from bio to iov_iter
1137  * @bio: The &struct bio which describes the I/O as source
1138  * @iter: iov_iter as destination
1139  *
1140  * Copy all pages from bio to iov_iter.
1141  * Returns 0 on success, or error on failure.
1142  */
1143 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1144 {
1145 	int i;
1146 	struct bio_vec *bvec;
1147 
1148 	bio_for_each_segment_all(bvec, bio, i) {
1149 		ssize_t ret;
1150 
1151 		ret = copy_page_to_iter(bvec->bv_page,
1152 					bvec->bv_offset,
1153 					bvec->bv_len,
1154 					&iter);
1155 
1156 		if (!iov_iter_count(&iter))
1157 			break;
1158 
1159 		if (ret < bvec->bv_len)
1160 			return -EFAULT;
1161 	}
1162 
1163 	return 0;
1164 }
1165 
1166 void bio_free_pages(struct bio *bio)
1167 {
1168 	struct bio_vec *bvec;
1169 	int i;
1170 
1171 	bio_for_each_segment_all(bvec, bio, i)
1172 		__free_page(bvec->bv_page);
1173 }
1174 EXPORT_SYMBOL(bio_free_pages);
1175 
1176 /**
1177  *	bio_uncopy_user	-	finish previously mapped bio
1178  *	@bio: bio being terminated
1179  *
1180  *	Free pages allocated from bio_copy_user_iov() and write back data
1181  *	to user space in case of a read.
1182  */
1183 int bio_uncopy_user(struct bio *bio)
1184 {
1185 	struct bio_map_data *bmd = bio->bi_private;
1186 	int ret = 0;
1187 
1188 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1189 		/*
1190 		 * if we're in a workqueue, the request is orphaned, so
1191 		 * don't copy into a random user address space, just free
1192 		 * and return -EINTR so user space doesn't expect any data.
1193 		 */
1194 		if (!current->mm)
1195 			ret = -EINTR;
1196 		else if (bio_data_dir(bio) == READ)
1197 			ret = bio_copy_to_iter(bio, bmd->iter);
1198 		if (bmd->is_our_pages)
1199 			bio_free_pages(bio);
1200 	}
1201 	kfree(bmd);
1202 	bio_put(bio);
1203 	return ret;
1204 }
1205 
1206 /**
1207  *	bio_copy_user_iov	-	copy user data to bio
1208  *	@q:		destination block queue
1209  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1210  *	@iter:		iovec iterator
1211  *	@gfp_mask:	memory allocation flags
1212  *
1213  *	Prepares and returns a bio for indirect user io, bouncing data
1214  *	to/from kernel pages as necessary. Must be paired with
1215  *	call bio_uncopy_user() on io completion.
1216  */
1217 struct bio *bio_copy_user_iov(struct request_queue *q,
1218 			      struct rq_map_data *map_data,
1219 			      const struct iov_iter *iter,
1220 			      gfp_t gfp_mask)
1221 {
1222 	struct bio_map_data *bmd;
1223 	struct page *page;
1224 	struct bio *bio;
1225 	int i, ret;
1226 	int nr_pages = 0;
1227 	unsigned int len = iter->count;
1228 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1229 
1230 	for (i = 0; i < iter->nr_segs; i++) {
1231 		unsigned long uaddr;
1232 		unsigned long end;
1233 		unsigned long start;
1234 
1235 		uaddr = (unsigned long) iter->iov[i].iov_base;
1236 		end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1237 			>> PAGE_SHIFT;
1238 		start = uaddr >> PAGE_SHIFT;
1239 
1240 		/*
1241 		 * Overflow, abort
1242 		 */
1243 		if (end < start)
1244 			return ERR_PTR(-EINVAL);
1245 
1246 		nr_pages += end - start;
1247 	}
1248 
1249 	if (offset)
1250 		nr_pages++;
1251 
1252 	bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1253 	if (!bmd)
1254 		return ERR_PTR(-ENOMEM);
1255 
1256 	/*
1257 	 * We need to do a deep copy of the iov_iter including the iovecs.
1258 	 * The caller provided iov might point to an on-stack or otherwise
1259 	 * shortlived one.
1260 	 */
1261 	bmd->is_our_pages = map_data ? 0 : 1;
1262 	memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1263 	iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1264 			iter->nr_segs, iter->count);
1265 
1266 	ret = -ENOMEM;
1267 	bio = bio_kmalloc(gfp_mask, nr_pages);
1268 	if (!bio)
1269 		goto out_bmd;
1270 
1271 	ret = 0;
1272 
1273 	if (map_data) {
1274 		nr_pages = 1 << map_data->page_order;
1275 		i = map_data->offset / PAGE_SIZE;
1276 	}
1277 	while (len) {
1278 		unsigned int bytes = PAGE_SIZE;
1279 
1280 		bytes -= offset;
1281 
1282 		if (bytes > len)
1283 			bytes = len;
1284 
1285 		if (map_data) {
1286 			if (i == map_data->nr_entries * nr_pages) {
1287 				ret = -ENOMEM;
1288 				break;
1289 			}
1290 
1291 			page = map_data->pages[i / nr_pages];
1292 			page += (i % nr_pages);
1293 
1294 			i++;
1295 		} else {
1296 			page = alloc_page(q->bounce_gfp | gfp_mask);
1297 			if (!page) {
1298 				ret = -ENOMEM;
1299 				break;
1300 			}
1301 		}
1302 
1303 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1304 			break;
1305 
1306 		len -= bytes;
1307 		offset = 0;
1308 	}
1309 
1310 	if (ret)
1311 		goto cleanup;
1312 
1313 	/*
1314 	 * success
1315 	 */
1316 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1317 	    (map_data && map_data->from_user)) {
1318 		ret = bio_copy_from_iter(bio, *iter);
1319 		if (ret)
1320 			goto cleanup;
1321 	}
1322 
1323 	bio->bi_private = bmd;
1324 	return bio;
1325 cleanup:
1326 	if (!map_data)
1327 		bio_free_pages(bio);
1328 	bio_put(bio);
1329 out_bmd:
1330 	kfree(bmd);
1331 	return ERR_PTR(ret);
1332 }
1333 
1334 /**
1335  *	bio_map_user_iov - map user iovec into bio
1336  *	@q:		the struct request_queue for the bio
1337  *	@iter:		iovec iterator
1338  *	@gfp_mask:	memory allocation flags
1339  *
1340  *	Map the user space address into a bio suitable for io to a block
1341  *	device. Returns an error pointer in case of error.
1342  */
1343 struct bio *bio_map_user_iov(struct request_queue *q,
1344 			     const struct iov_iter *iter,
1345 			     gfp_t gfp_mask)
1346 {
1347 	int j;
1348 	int nr_pages = 0;
1349 	struct page **pages;
1350 	struct bio *bio;
1351 	int cur_page = 0;
1352 	int ret, offset;
1353 	struct iov_iter i;
1354 	struct iovec iov;
1355 
1356 	iov_for_each(iov, i, *iter) {
1357 		unsigned long uaddr = (unsigned long) iov.iov_base;
1358 		unsigned long len = iov.iov_len;
1359 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1360 		unsigned long start = uaddr >> PAGE_SHIFT;
1361 
1362 		/*
1363 		 * Overflow, abort
1364 		 */
1365 		if (end < start)
1366 			return ERR_PTR(-EINVAL);
1367 
1368 		nr_pages += end - start;
1369 		/*
1370 		 * buffer must be aligned to at least logical block size for now
1371 		 */
1372 		if (uaddr & queue_dma_alignment(q))
1373 			return ERR_PTR(-EINVAL);
1374 	}
1375 
1376 	if (!nr_pages)
1377 		return ERR_PTR(-EINVAL);
1378 
1379 	bio = bio_kmalloc(gfp_mask, nr_pages);
1380 	if (!bio)
1381 		return ERR_PTR(-ENOMEM);
1382 
1383 	ret = -ENOMEM;
1384 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1385 	if (!pages)
1386 		goto out;
1387 
1388 	iov_for_each(iov, i, *iter) {
1389 		unsigned long uaddr = (unsigned long) iov.iov_base;
1390 		unsigned long len = iov.iov_len;
1391 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1392 		unsigned long start = uaddr >> PAGE_SHIFT;
1393 		const int local_nr_pages = end - start;
1394 		const int page_limit = cur_page + local_nr_pages;
1395 
1396 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1397 				(iter->type & WRITE) != WRITE,
1398 				&pages[cur_page]);
1399 		if (ret < local_nr_pages) {
1400 			ret = -EFAULT;
1401 			goto out_unmap;
1402 		}
1403 
1404 		offset = offset_in_page(uaddr);
1405 		for (j = cur_page; j < page_limit; j++) {
1406 			unsigned int bytes = PAGE_SIZE - offset;
1407 
1408 			if (len <= 0)
1409 				break;
1410 
1411 			if (bytes > len)
1412 				bytes = len;
1413 
1414 			/*
1415 			 * sorry...
1416 			 */
1417 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1418 					    bytes)
1419 				break;
1420 
1421 			len -= bytes;
1422 			offset = 0;
1423 		}
1424 
1425 		cur_page = j;
1426 		/*
1427 		 * release the pages we didn't map into the bio, if any
1428 		 */
1429 		while (j < page_limit)
1430 			put_page(pages[j++]);
1431 	}
1432 
1433 	kfree(pages);
1434 
1435 	bio_set_flag(bio, BIO_USER_MAPPED);
1436 
1437 	/*
1438 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1439 	 * it would normally disappear when its bi_end_io is run.
1440 	 * however, we need it for the unmap, so grab an extra
1441 	 * reference to it
1442 	 */
1443 	bio_get(bio);
1444 	return bio;
1445 
1446  out_unmap:
1447 	for (j = 0; j < nr_pages; j++) {
1448 		if (!pages[j])
1449 			break;
1450 		put_page(pages[j]);
1451 	}
1452  out:
1453 	kfree(pages);
1454 	bio_put(bio);
1455 	return ERR_PTR(ret);
1456 }
1457 
1458 static void __bio_unmap_user(struct bio *bio)
1459 {
1460 	struct bio_vec *bvec;
1461 	int i;
1462 
1463 	/*
1464 	 * make sure we dirty pages we wrote to
1465 	 */
1466 	bio_for_each_segment_all(bvec, bio, i) {
1467 		if (bio_data_dir(bio) == READ)
1468 			set_page_dirty_lock(bvec->bv_page);
1469 
1470 		put_page(bvec->bv_page);
1471 	}
1472 
1473 	bio_put(bio);
1474 }
1475 
1476 /**
1477  *	bio_unmap_user	-	unmap a bio
1478  *	@bio:		the bio being unmapped
1479  *
1480  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1481  *	process context.
1482  *
1483  *	bio_unmap_user() may sleep.
1484  */
1485 void bio_unmap_user(struct bio *bio)
1486 {
1487 	__bio_unmap_user(bio);
1488 	bio_put(bio);
1489 }
1490 
1491 static void bio_map_kern_endio(struct bio *bio)
1492 {
1493 	bio_put(bio);
1494 }
1495 
1496 /**
1497  *	bio_map_kern	-	map kernel address into bio
1498  *	@q: the struct request_queue for the bio
1499  *	@data: pointer to buffer to map
1500  *	@len: length in bytes
1501  *	@gfp_mask: allocation flags for bio allocation
1502  *
1503  *	Map the kernel address into a bio suitable for io to a block
1504  *	device. Returns an error pointer in case of error.
1505  */
1506 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1507 			 gfp_t gfp_mask)
1508 {
1509 	unsigned long kaddr = (unsigned long)data;
1510 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1511 	unsigned long start = kaddr >> PAGE_SHIFT;
1512 	const int nr_pages = end - start;
1513 	int offset, i;
1514 	struct bio *bio;
1515 
1516 	bio = bio_kmalloc(gfp_mask, nr_pages);
1517 	if (!bio)
1518 		return ERR_PTR(-ENOMEM);
1519 
1520 	offset = offset_in_page(kaddr);
1521 	for (i = 0; i < nr_pages; i++) {
1522 		unsigned int bytes = PAGE_SIZE - offset;
1523 
1524 		if (len <= 0)
1525 			break;
1526 
1527 		if (bytes > len)
1528 			bytes = len;
1529 
1530 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1531 				    offset) < bytes) {
1532 			/* we don't support partial mappings */
1533 			bio_put(bio);
1534 			return ERR_PTR(-EINVAL);
1535 		}
1536 
1537 		data += bytes;
1538 		len -= bytes;
1539 		offset = 0;
1540 	}
1541 
1542 	bio->bi_end_io = bio_map_kern_endio;
1543 	return bio;
1544 }
1545 EXPORT_SYMBOL(bio_map_kern);
1546 
1547 static void bio_copy_kern_endio(struct bio *bio)
1548 {
1549 	bio_free_pages(bio);
1550 	bio_put(bio);
1551 }
1552 
1553 static void bio_copy_kern_endio_read(struct bio *bio)
1554 {
1555 	char *p = bio->bi_private;
1556 	struct bio_vec *bvec;
1557 	int i;
1558 
1559 	bio_for_each_segment_all(bvec, bio, i) {
1560 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1561 		p += bvec->bv_len;
1562 	}
1563 
1564 	bio_copy_kern_endio(bio);
1565 }
1566 
1567 /**
1568  *	bio_copy_kern	-	copy kernel address into bio
1569  *	@q: the struct request_queue for the bio
1570  *	@data: pointer to buffer to copy
1571  *	@len: length in bytes
1572  *	@gfp_mask: allocation flags for bio and page allocation
1573  *	@reading: data direction is READ
1574  *
1575  *	copy the kernel address into a bio suitable for io to a block
1576  *	device. Returns an error pointer in case of error.
1577  */
1578 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1579 			  gfp_t gfp_mask, int reading)
1580 {
1581 	unsigned long kaddr = (unsigned long)data;
1582 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1583 	unsigned long start = kaddr >> PAGE_SHIFT;
1584 	struct bio *bio;
1585 	void *p = data;
1586 	int nr_pages = 0;
1587 
1588 	/*
1589 	 * Overflow, abort
1590 	 */
1591 	if (end < start)
1592 		return ERR_PTR(-EINVAL);
1593 
1594 	nr_pages = end - start;
1595 	bio = bio_kmalloc(gfp_mask, nr_pages);
1596 	if (!bio)
1597 		return ERR_PTR(-ENOMEM);
1598 
1599 	while (len) {
1600 		struct page *page;
1601 		unsigned int bytes = PAGE_SIZE;
1602 
1603 		if (bytes > len)
1604 			bytes = len;
1605 
1606 		page = alloc_page(q->bounce_gfp | gfp_mask);
1607 		if (!page)
1608 			goto cleanup;
1609 
1610 		if (!reading)
1611 			memcpy(page_address(page), p, bytes);
1612 
1613 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1614 			break;
1615 
1616 		len -= bytes;
1617 		p += bytes;
1618 	}
1619 
1620 	if (reading) {
1621 		bio->bi_end_io = bio_copy_kern_endio_read;
1622 		bio->bi_private = data;
1623 	} else {
1624 		bio->bi_end_io = bio_copy_kern_endio;
1625 	}
1626 
1627 	return bio;
1628 
1629 cleanup:
1630 	bio_free_pages(bio);
1631 	bio_put(bio);
1632 	return ERR_PTR(-ENOMEM);
1633 }
1634 
1635 /*
1636  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1637  * for performing direct-IO in BIOs.
1638  *
1639  * The problem is that we cannot run set_page_dirty() from interrupt context
1640  * because the required locks are not interrupt-safe.  So what we can do is to
1641  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1642  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1643  * in process context.
1644  *
1645  * We special-case compound pages here: normally this means reads into hugetlb
1646  * pages.  The logic in here doesn't really work right for compound pages
1647  * because the VM does not uniformly chase down the head page in all cases.
1648  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1649  * handle them at all.  So we skip compound pages here at an early stage.
1650  *
1651  * Note that this code is very hard to test under normal circumstances because
1652  * direct-io pins the pages with get_user_pages().  This makes
1653  * is_page_cache_freeable return false, and the VM will not clean the pages.
1654  * But other code (eg, flusher threads) could clean the pages if they are mapped
1655  * pagecache.
1656  *
1657  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1658  * deferred bio dirtying paths.
1659  */
1660 
1661 /*
1662  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1663  */
1664 void bio_set_pages_dirty(struct bio *bio)
1665 {
1666 	struct bio_vec *bvec;
1667 	int i;
1668 
1669 	bio_for_each_segment_all(bvec, bio, i) {
1670 		struct page *page = bvec->bv_page;
1671 
1672 		if (page && !PageCompound(page))
1673 			set_page_dirty_lock(page);
1674 	}
1675 }
1676 
1677 static void bio_release_pages(struct bio *bio)
1678 {
1679 	struct bio_vec *bvec;
1680 	int i;
1681 
1682 	bio_for_each_segment_all(bvec, bio, i) {
1683 		struct page *page = bvec->bv_page;
1684 
1685 		if (page)
1686 			put_page(page);
1687 	}
1688 }
1689 
1690 /*
1691  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1692  * If they are, then fine.  If, however, some pages are clean then they must
1693  * have been written out during the direct-IO read.  So we take another ref on
1694  * the BIO and the offending pages and re-dirty the pages in process context.
1695  *
1696  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1697  * here on.  It will run one put_page() against each page and will run one
1698  * bio_put() against the BIO.
1699  */
1700 
1701 static void bio_dirty_fn(struct work_struct *work);
1702 
1703 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1704 static DEFINE_SPINLOCK(bio_dirty_lock);
1705 static struct bio *bio_dirty_list;
1706 
1707 /*
1708  * This runs in process context
1709  */
1710 static void bio_dirty_fn(struct work_struct *work)
1711 {
1712 	unsigned long flags;
1713 	struct bio *bio;
1714 
1715 	spin_lock_irqsave(&bio_dirty_lock, flags);
1716 	bio = bio_dirty_list;
1717 	bio_dirty_list = NULL;
1718 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1719 
1720 	while (bio) {
1721 		struct bio *next = bio->bi_private;
1722 
1723 		bio_set_pages_dirty(bio);
1724 		bio_release_pages(bio);
1725 		bio_put(bio);
1726 		bio = next;
1727 	}
1728 }
1729 
1730 void bio_check_pages_dirty(struct bio *bio)
1731 {
1732 	struct bio_vec *bvec;
1733 	int nr_clean_pages = 0;
1734 	int i;
1735 
1736 	bio_for_each_segment_all(bvec, bio, i) {
1737 		struct page *page = bvec->bv_page;
1738 
1739 		if (PageDirty(page) || PageCompound(page)) {
1740 			put_page(page);
1741 			bvec->bv_page = NULL;
1742 		} else {
1743 			nr_clean_pages++;
1744 		}
1745 	}
1746 
1747 	if (nr_clean_pages) {
1748 		unsigned long flags;
1749 
1750 		spin_lock_irqsave(&bio_dirty_lock, flags);
1751 		bio->bi_private = bio_dirty_list;
1752 		bio_dirty_list = bio;
1753 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1754 		schedule_work(&bio_dirty_work);
1755 	} else {
1756 		bio_put(bio);
1757 	}
1758 }
1759 
1760 void generic_start_io_acct(int rw, unsigned long sectors,
1761 			   struct hd_struct *part)
1762 {
1763 	int cpu = part_stat_lock();
1764 
1765 	part_round_stats(cpu, part);
1766 	part_stat_inc(cpu, part, ios[rw]);
1767 	part_stat_add(cpu, part, sectors[rw], sectors);
1768 	part_inc_in_flight(part, rw);
1769 
1770 	part_stat_unlock();
1771 }
1772 EXPORT_SYMBOL(generic_start_io_acct);
1773 
1774 void generic_end_io_acct(int rw, struct hd_struct *part,
1775 			 unsigned long start_time)
1776 {
1777 	unsigned long duration = jiffies - start_time;
1778 	int cpu = part_stat_lock();
1779 
1780 	part_stat_add(cpu, part, ticks[rw], duration);
1781 	part_round_stats(cpu, part);
1782 	part_dec_in_flight(part, rw);
1783 
1784 	part_stat_unlock();
1785 }
1786 EXPORT_SYMBOL(generic_end_io_acct);
1787 
1788 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1789 void bio_flush_dcache_pages(struct bio *bi)
1790 {
1791 	struct bio_vec bvec;
1792 	struct bvec_iter iter;
1793 
1794 	bio_for_each_segment(bvec, bi, iter)
1795 		flush_dcache_page(bvec.bv_page);
1796 }
1797 EXPORT_SYMBOL(bio_flush_dcache_pages);
1798 #endif
1799 
1800 static inline bool bio_remaining_done(struct bio *bio)
1801 {
1802 	/*
1803 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1804 	 * we always end io on the first invocation.
1805 	 */
1806 	if (!bio_flagged(bio, BIO_CHAIN))
1807 		return true;
1808 
1809 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1810 
1811 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1812 		bio_clear_flag(bio, BIO_CHAIN);
1813 		return true;
1814 	}
1815 
1816 	return false;
1817 }
1818 
1819 /**
1820  * bio_endio - end I/O on a bio
1821  * @bio:	bio
1822  *
1823  * Description:
1824  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1825  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1826  *   bio unless they own it and thus know that it has an end_io function.
1827  **/
1828 void bio_endio(struct bio *bio)
1829 {
1830 again:
1831 	if (!bio_remaining_done(bio))
1832 		return;
1833 
1834 	/*
1835 	 * Need to have a real endio function for chained bios, otherwise
1836 	 * various corner cases will break (like stacking block devices that
1837 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1838 	 * recursion and blowing the stack. Tail call optimization would
1839 	 * handle this, but compiling with frame pointers also disables
1840 	 * gcc's sibling call optimization.
1841 	 */
1842 	if (bio->bi_end_io == bio_chain_endio) {
1843 		bio = __bio_chain_endio(bio);
1844 		goto again;
1845 	}
1846 
1847 	if (bio->bi_end_io)
1848 		bio->bi_end_io(bio);
1849 }
1850 EXPORT_SYMBOL(bio_endio);
1851 
1852 /**
1853  * bio_split - split a bio
1854  * @bio:	bio to split
1855  * @sectors:	number of sectors to split from the front of @bio
1856  * @gfp:	gfp mask
1857  * @bs:		bio set to allocate from
1858  *
1859  * Allocates and returns a new bio which represents @sectors from the start of
1860  * @bio, and updates @bio to represent the remaining sectors.
1861  *
1862  * Unless this is a discard request the newly allocated bio will point
1863  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1864  * @bio is not freed before the split.
1865  */
1866 struct bio *bio_split(struct bio *bio, int sectors,
1867 		      gfp_t gfp, struct bio_set *bs)
1868 {
1869 	struct bio *split = NULL;
1870 
1871 	BUG_ON(sectors <= 0);
1872 	BUG_ON(sectors >= bio_sectors(bio));
1873 
1874 	split = bio_clone_fast(bio, gfp, bs);
1875 	if (!split)
1876 		return NULL;
1877 
1878 	split->bi_iter.bi_size = sectors << 9;
1879 
1880 	if (bio_integrity(split))
1881 		bio_integrity_trim(split, 0, sectors);
1882 
1883 	bio_advance(bio, split->bi_iter.bi_size);
1884 
1885 	return split;
1886 }
1887 EXPORT_SYMBOL(bio_split);
1888 
1889 /**
1890  * bio_trim - trim a bio
1891  * @bio:	bio to trim
1892  * @offset:	number of sectors to trim from the front of @bio
1893  * @size:	size we want to trim @bio to, in sectors
1894  */
1895 void bio_trim(struct bio *bio, int offset, int size)
1896 {
1897 	/* 'bio' is a cloned bio which we need to trim to match
1898 	 * the given offset and size.
1899 	 */
1900 
1901 	size <<= 9;
1902 	if (offset == 0 && size == bio->bi_iter.bi_size)
1903 		return;
1904 
1905 	bio_clear_flag(bio, BIO_SEG_VALID);
1906 
1907 	bio_advance(bio, offset << 9);
1908 
1909 	bio->bi_iter.bi_size = size;
1910 }
1911 EXPORT_SYMBOL_GPL(bio_trim);
1912 
1913 /*
1914  * create memory pools for biovec's in a bio_set.
1915  * use the global biovec slabs created for general use.
1916  */
1917 mempool_t *biovec_create_pool(int pool_entries)
1918 {
1919 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1920 
1921 	return mempool_create_slab_pool(pool_entries, bp->slab);
1922 }
1923 
1924 void bioset_free(struct bio_set *bs)
1925 {
1926 	if (bs->rescue_workqueue)
1927 		destroy_workqueue(bs->rescue_workqueue);
1928 
1929 	if (bs->bio_pool)
1930 		mempool_destroy(bs->bio_pool);
1931 
1932 	if (bs->bvec_pool)
1933 		mempool_destroy(bs->bvec_pool);
1934 
1935 	bioset_integrity_free(bs);
1936 	bio_put_slab(bs);
1937 
1938 	kfree(bs);
1939 }
1940 EXPORT_SYMBOL(bioset_free);
1941 
1942 static struct bio_set *__bioset_create(unsigned int pool_size,
1943 				       unsigned int front_pad,
1944 				       bool create_bvec_pool)
1945 {
1946 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1947 	struct bio_set *bs;
1948 
1949 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1950 	if (!bs)
1951 		return NULL;
1952 
1953 	bs->front_pad = front_pad;
1954 
1955 	spin_lock_init(&bs->rescue_lock);
1956 	bio_list_init(&bs->rescue_list);
1957 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1958 
1959 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1960 	if (!bs->bio_slab) {
1961 		kfree(bs);
1962 		return NULL;
1963 	}
1964 
1965 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1966 	if (!bs->bio_pool)
1967 		goto bad;
1968 
1969 	if (create_bvec_pool) {
1970 		bs->bvec_pool = biovec_create_pool(pool_size);
1971 		if (!bs->bvec_pool)
1972 			goto bad;
1973 	}
1974 
1975 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1976 	if (!bs->rescue_workqueue)
1977 		goto bad;
1978 
1979 	return bs;
1980 bad:
1981 	bioset_free(bs);
1982 	return NULL;
1983 }
1984 
1985 /**
1986  * bioset_create  - Create a bio_set
1987  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1988  * @front_pad:	Number of bytes to allocate in front of the returned bio
1989  *
1990  * Description:
1991  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1992  *    to ask for a number of bytes to be allocated in front of the bio.
1993  *    Front pad allocation is useful for embedding the bio inside
1994  *    another structure, to avoid allocating extra data to go with the bio.
1995  *    Note that the bio must be embedded at the END of that structure always,
1996  *    or things will break badly.
1997  */
1998 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1999 {
2000 	return __bioset_create(pool_size, front_pad, true);
2001 }
2002 EXPORT_SYMBOL(bioset_create);
2003 
2004 /**
2005  * bioset_create_nobvec  - Create a bio_set without bio_vec mempool
2006  * @pool_size:	Number of bio to cache in the mempool
2007  * @front_pad:	Number of bytes to allocate in front of the returned bio
2008  *
2009  * Description:
2010  *    Same functionality as bioset_create() except that mempool is not
2011  *    created for bio_vecs. Saving some memory for bio_clone_fast() users.
2012  */
2013 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
2014 {
2015 	return __bioset_create(pool_size, front_pad, false);
2016 }
2017 EXPORT_SYMBOL(bioset_create_nobvec);
2018 
2019 #ifdef CONFIG_BLK_CGROUP
2020 
2021 /**
2022  * bio_associate_blkcg - associate a bio with the specified blkcg
2023  * @bio: target bio
2024  * @blkcg_css: css of the blkcg to associate
2025  *
2026  * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
2027  * treat @bio as if it were issued by a task which belongs to the blkcg.
2028  *
2029  * This function takes an extra reference of @blkcg_css which will be put
2030  * when @bio is released.  The caller must own @bio and is responsible for
2031  * synchronizing calls to this function.
2032  */
2033 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2034 {
2035 	if (unlikely(bio->bi_css))
2036 		return -EBUSY;
2037 	css_get(blkcg_css);
2038 	bio->bi_css = blkcg_css;
2039 	return 0;
2040 }
2041 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2042 
2043 /**
2044  * bio_associate_current - associate a bio with %current
2045  * @bio: target bio
2046  *
2047  * Associate @bio with %current if it hasn't been associated yet.  Block
2048  * layer will treat @bio as if it were issued by %current no matter which
2049  * task actually issues it.
2050  *
2051  * This function takes an extra reference of @task's io_context and blkcg
2052  * which will be put when @bio is released.  The caller must own @bio,
2053  * ensure %current->io_context exists, and is responsible for synchronizing
2054  * calls to this function.
2055  */
2056 int bio_associate_current(struct bio *bio)
2057 {
2058 	struct io_context *ioc;
2059 
2060 	if (bio->bi_css)
2061 		return -EBUSY;
2062 
2063 	ioc = current->io_context;
2064 	if (!ioc)
2065 		return -ENOENT;
2066 
2067 	get_io_context_active(ioc);
2068 	bio->bi_ioc = ioc;
2069 	bio->bi_css = task_get_css(current, io_cgrp_id);
2070 	return 0;
2071 }
2072 EXPORT_SYMBOL_GPL(bio_associate_current);
2073 
2074 /**
2075  * bio_disassociate_task - undo bio_associate_current()
2076  * @bio: target bio
2077  */
2078 void bio_disassociate_task(struct bio *bio)
2079 {
2080 	if (bio->bi_ioc) {
2081 		put_io_context(bio->bi_ioc);
2082 		bio->bi_ioc = NULL;
2083 	}
2084 	if (bio->bi_css) {
2085 		css_put(bio->bi_css);
2086 		bio->bi_css = NULL;
2087 	}
2088 }
2089 
2090 /**
2091  * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2092  * @dst: destination bio
2093  * @src: source bio
2094  */
2095 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2096 {
2097 	if (src->bi_css)
2098 		WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2099 }
2100 
2101 #endif /* CONFIG_BLK_CGROUP */
2102 
2103 static void __init biovec_init_slabs(void)
2104 {
2105 	int i;
2106 
2107 	for (i = 0; i < BVEC_POOL_NR; i++) {
2108 		int size;
2109 		struct biovec_slab *bvs = bvec_slabs + i;
2110 
2111 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2112 			bvs->slab = NULL;
2113 			continue;
2114 		}
2115 
2116 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2117 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2118                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2119 	}
2120 }
2121 
2122 static int __init init_bio(void)
2123 {
2124 	bio_slab_max = 2;
2125 	bio_slab_nr = 0;
2126 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2127 	if (!bio_slabs)
2128 		panic("bio: can't allocate bios\n");
2129 
2130 	bio_integrity_init();
2131 	biovec_init_slabs();
2132 
2133 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2134 	if (!fs_bio_set)
2135 		panic("bio: can't allocate bios\n");
2136 
2137 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2138 		panic("bio: can't create integrity pool\n");
2139 
2140 	return 0;
2141 }
2142 subsys_initcall(init_bio);
2143