xref: /openbmc/linux/block/bio.c (revision e1f7c9ee)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <scsi/sg.h>		/* for struct sg_iovec */
32 
33 #include <trace/events/block.h>
34 
35 /*
36  * Test patch to inline a certain number of bi_io_vec's inside the bio
37  * itself, to shrink a bio data allocation from two mempool calls to one
38  */
39 #define BIO_INLINE_VECS		4
40 
41 /*
42  * if you change this list, also change bvec_alloc or things will
43  * break badly! cannot be bigger than what you can fit into an
44  * unsigned short
45  */
46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
48 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 };
50 #undef BV
51 
52 /*
53  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54  * IO code that does not need private memory pools.
55  */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58 
59 /*
60  * Our slab pool management
61  */
62 struct bio_slab {
63 	struct kmem_cache *slab;
64 	unsigned int slab_ref;
65 	unsigned int slab_size;
66 	char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71 
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 	unsigned int sz = sizeof(struct bio) + extra_size;
75 	struct kmem_cache *slab = NULL;
76 	struct bio_slab *bslab, *new_bio_slabs;
77 	unsigned int new_bio_slab_max;
78 	unsigned int i, entry = -1;
79 
80 	mutex_lock(&bio_slab_lock);
81 
82 	i = 0;
83 	while (i < bio_slab_nr) {
84 		bslab = &bio_slabs[i];
85 
86 		if (!bslab->slab && entry == -1)
87 			entry = i;
88 		else if (bslab->slab_size == sz) {
89 			slab = bslab->slab;
90 			bslab->slab_ref++;
91 			break;
92 		}
93 		i++;
94 	}
95 
96 	if (slab)
97 		goto out_unlock;
98 
99 	if (bio_slab_nr == bio_slab_max && entry == -1) {
100 		new_bio_slab_max = bio_slab_max << 1;
101 		new_bio_slabs = krealloc(bio_slabs,
102 					 new_bio_slab_max * sizeof(struct bio_slab),
103 					 GFP_KERNEL);
104 		if (!new_bio_slabs)
105 			goto out_unlock;
106 		bio_slab_max = new_bio_slab_max;
107 		bio_slabs = new_bio_slabs;
108 	}
109 	if (entry == -1)
110 		entry = bio_slab_nr++;
111 
112 	bslab = &bio_slabs[entry];
113 
114 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 				 SLAB_HWCACHE_ALIGN, NULL);
117 	if (!slab)
118 		goto out_unlock;
119 
120 	bslab->slab = slab;
121 	bslab->slab_ref = 1;
122 	bslab->slab_size = sz;
123 out_unlock:
124 	mutex_unlock(&bio_slab_lock);
125 	return slab;
126 }
127 
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 	struct bio_slab *bslab = NULL;
131 	unsigned int i;
132 
133 	mutex_lock(&bio_slab_lock);
134 
135 	for (i = 0; i < bio_slab_nr; i++) {
136 		if (bs->bio_slab == bio_slabs[i].slab) {
137 			bslab = &bio_slabs[i];
138 			break;
139 		}
140 	}
141 
142 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 		goto out;
144 
145 	WARN_ON(!bslab->slab_ref);
146 
147 	if (--bslab->slab_ref)
148 		goto out;
149 
150 	kmem_cache_destroy(bslab->slab);
151 	bslab->slab = NULL;
152 
153 out:
154 	mutex_unlock(&bio_slab_lock);
155 }
156 
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 	return bvec_slabs[idx].nr_vecs;
160 }
161 
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
165 
166 	if (idx == BIOVEC_MAX_IDX)
167 		mempool_free(bv, pool);
168 	else {
169 		struct biovec_slab *bvs = bvec_slabs + idx;
170 
171 		kmem_cache_free(bvs->slab, bv);
172 	}
173 }
174 
175 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
176 			   mempool_t *pool)
177 {
178 	struct bio_vec *bvl;
179 
180 	/*
181 	 * see comment near bvec_array define!
182 	 */
183 	switch (nr) {
184 	case 1:
185 		*idx = 0;
186 		break;
187 	case 2 ... 4:
188 		*idx = 1;
189 		break;
190 	case 5 ... 16:
191 		*idx = 2;
192 		break;
193 	case 17 ... 64:
194 		*idx = 3;
195 		break;
196 	case 65 ... 128:
197 		*idx = 4;
198 		break;
199 	case 129 ... BIO_MAX_PAGES:
200 		*idx = 5;
201 		break;
202 	default:
203 		return NULL;
204 	}
205 
206 	/*
207 	 * idx now points to the pool we want to allocate from. only the
208 	 * 1-vec entry pool is mempool backed.
209 	 */
210 	if (*idx == BIOVEC_MAX_IDX) {
211 fallback:
212 		bvl = mempool_alloc(pool, gfp_mask);
213 	} else {
214 		struct biovec_slab *bvs = bvec_slabs + *idx;
215 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
216 
217 		/*
218 		 * Make this allocation restricted and don't dump info on
219 		 * allocation failures, since we'll fallback to the mempool
220 		 * in case of failure.
221 		 */
222 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
223 
224 		/*
225 		 * Try a slab allocation. If this fails and __GFP_WAIT
226 		 * is set, retry with the 1-entry mempool
227 		 */
228 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
229 		if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
230 			*idx = BIOVEC_MAX_IDX;
231 			goto fallback;
232 		}
233 	}
234 
235 	return bvl;
236 }
237 
238 static void __bio_free(struct bio *bio)
239 {
240 	bio_disassociate_task(bio);
241 
242 	if (bio_integrity(bio))
243 		bio_integrity_free(bio);
244 }
245 
246 static void bio_free(struct bio *bio)
247 {
248 	struct bio_set *bs = bio->bi_pool;
249 	void *p;
250 
251 	__bio_free(bio);
252 
253 	if (bs) {
254 		if (bio_flagged(bio, BIO_OWNS_VEC))
255 			bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
256 
257 		/*
258 		 * If we have front padding, adjust the bio pointer before freeing
259 		 */
260 		p = bio;
261 		p -= bs->front_pad;
262 
263 		mempool_free(p, bs->bio_pool);
264 	} else {
265 		/* Bio was allocated by bio_kmalloc() */
266 		kfree(bio);
267 	}
268 }
269 
270 void bio_init(struct bio *bio)
271 {
272 	memset(bio, 0, sizeof(*bio));
273 	bio->bi_flags = 1 << BIO_UPTODATE;
274 	atomic_set(&bio->bi_remaining, 1);
275 	atomic_set(&bio->bi_cnt, 1);
276 }
277 EXPORT_SYMBOL(bio_init);
278 
279 /**
280  * bio_reset - reinitialize a bio
281  * @bio:	bio to reset
282  *
283  * Description:
284  *   After calling bio_reset(), @bio will be in the same state as a freshly
285  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
286  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
287  *   comment in struct bio.
288  */
289 void bio_reset(struct bio *bio)
290 {
291 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
292 
293 	__bio_free(bio);
294 
295 	memset(bio, 0, BIO_RESET_BYTES);
296 	bio->bi_flags = flags|(1 << BIO_UPTODATE);
297 	atomic_set(&bio->bi_remaining, 1);
298 }
299 EXPORT_SYMBOL(bio_reset);
300 
301 static void bio_chain_endio(struct bio *bio, int error)
302 {
303 	bio_endio(bio->bi_private, error);
304 	bio_put(bio);
305 }
306 
307 /**
308  * bio_chain - chain bio completions
309  * @bio: the target bio
310  * @parent: the @bio's parent bio
311  *
312  * The caller won't have a bi_end_io called when @bio completes - instead,
313  * @parent's bi_end_io won't be called until both @parent and @bio have
314  * completed; the chained bio will also be freed when it completes.
315  *
316  * The caller must not set bi_private or bi_end_io in @bio.
317  */
318 void bio_chain(struct bio *bio, struct bio *parent)
319 {
320 	BUG_ON(bio->bi_private || bio->bi_end_io);
321 
322 	bio->bi_private = parent;
323 	bio->bi_end_io	= bio_chain_endio;
324 	atomic_inc(&parent->bi_remaining);
325 }
326 EXPORT_SYMBOL(bio_chain);
327 
328 static void bio_alloc_rescue(struct work_struct *work)
329 {
330 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
331 	struct bio *bio;
332 
333 	while (1) {
334 		spin_lock(&bs->rescue_lock);
335 		bio = bio_list_pop(&bs->rescue_list);
336 		spin_unlock(&bs->rescue_lock);
337 
338 		if (!bio)
339 			break;
340 
341 		generic_make_request(bio);
342 	}
343 }
344 
345 static void punt_bios_to_rescuer(struct bio_set *bs)
346 {
347 	struct bio_list punt, nopunt;
348 	struct bio *bio;
349 
350 	/*
351 	 * In order to guarantee forward progress we must punt only bios that
352 	 * were allocated from this bio_set; otherwise, if there was a bio on
353 	 * there for a stacking driver higher up in the stack, processing it
354 	 * could require allocating bios from this bio_set, and doing that from
355 	 * our own rescuer would be bad.
356 	 *
357 	 * Since bio lists are singly linked, pop them all instead of trying to
358 	 * remove from the middle of the list:
359 	 */
360 
361 	bio_list_init(&punt);
362 	bio_list_init(&nopunt);
363 
364 	while ((bio = bio_list_pop(current->bio_list)))
365 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
366 
367 	*current->bio_list = nopunt;
368 
369 	spin_lock(&bs->rescue_lock);
370 	bio_list_merge(&bs->rescue_list, &punt);
371 	spin_unlock(&bs->rescue_lock);
372 
373 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
374 }
375 
376 /**
377  * bio_alloc_bioset - allocate a bio for I/O
378  * @gfp_mask:   the GFP_ mask given to the slab allocator
379  * @nr_iovecs:	number of iovecs to pre-allocate
380  * @bs:		the bio_set to allocate from.
381  *
382  * Description:
383  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
384  *   backed by the @bs's mempool.
385  *
386  *   When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
387  *   able to allocate a bio. This is due to the mempool guarantees. To make this
388  *   work, callers must never allocate more than 1 bio at a time from this pool.
389  *   Callers that need to allocate more than 1 bio must always submit the
390  *   previously allocated bio for IO before attempting to allocate a new one.
391  *   Failure to do so can cause deadlocks under memory pressure.
392  *
393  *   Note that when running under generic_make_request() (i.e. any block
394  *   driver), bios are not submitted until after you return - see the code in
395  *   generic_make_request() that converts recursion into iteration, to prevent
396  *   stack overflows.
397  *
398  *   This would normally mean allocating multiple bios under
399  *   generic_make_request() would be susceptible to deadlocks, but we have
400  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
401  *   thread.
402  *
403  *   However, we do not guarantee forward progress for allocations from other
404  *   mempools. Doing multiple allocations from the same mempool under
405  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
406  *   for per bio allocations.
407  *
408  *   RETURNS:
409  *   Pointer to new bio on success, NULL on failure.
410  */
411 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
412 {
413 	gfp_t saved_gfp = gfp_mask;
414 	unsigned front_pad;
415 	unsigned inline_vecs;
416 	unsigned long idx = BIO_POOL_NONE;
417 	struct bio_vec *bvl = NULL;
418 	struct bio *bio;
419 	void *p;
420 
421 	if (!bs) {
422 		if (nr_iovecs > UIO_MAXIOV)
423 			return NULL;
424 
425 		p = kmalloc(sizeof(struct bio) +
426 			    nr_iovecs * sizeof(struct bio_vec),
427 			    gfp_mask);
428 		front_pad = 0;
429 		inline_vecs = nr_iovecs;
430 	} else {
431 		/* should not use nobvec bioset for nr_iovecs > 0 */
432 		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
433 			return NULL;
434 		/*
435 		 * generic_make_request() converts recursion to iteration; this
436 		 * means if we're running beneath it, any bios we allocate and
437 		 * submit will not be submitted (and thus freed) until after we
438 		 * return.
439 		 *
440 		 * This exposes us to a potential deadlock if we allocate
441 		 * multiple bios from the same bio_set() while running
442 		 * underneath generic_make_request(). If we were to allocate
443 		 * multiple bios (say a stacking block driver that was splitting
444 		 * bios), we would deadlock if we exhausted the mempool's
445 		 * reserve.
446 		 *
447 		 * We solve this, and guarantee forward progress, with a rescuer
448 		 * workqueue per bio_set. If we go to allocate and there are
449 		 * bios on current->bio_list, we first try the allocation
450 		 * without __GFP_WAIT; if that fails, we punt those bios we
451 		 * would be blocking to the rescuer workqueue before we retry
452 		 * with the original gfp_flags.
453 		 */
454 
455 		if (current->bio_list && !bio_list_empty(current->bio_list))
456 			gfp_mask &= ~__GFP_WAIT;
457 
458 		p = mempool_alloc(bs->bio_pool, gfp_mask);
459 		if (!p && gfp_mask != saved_gfp) {
460 			punt_bios_to_rescuer(bs);
461 			gfp_mask = saved_gfp;
462 			p = mempool_alloc(bs->bio_pool, gfp_mask);
463 		}
464 
465 		front_pad = bs->front_pad;
466 		inline_vecs = BIO_INLINE_VECS;
467 	}
468 
469 	if (unlikely(!p))
470 		return NULL;
471 
472 	bio = p + front_pad;
473 	bio_init(bio);
474 
475 	if (nr_iovecs > inline_vecs) {
476 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
477 		if (!bvl && gfp_mask != saved_gfp) {
478 			punt_bios_to_rescuer(bs);
479 			gfp_mask = saved_gfp;
480 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
481 		}
482 
483 		if (unlikely(!bvl))
484 			goto err_free;
485 
486 		bio->bi_flags |= 1 << BIO_OWNS_VEC;
487 	} else if (nr_iovecs) {
488 		bvl = bio->bi_inline_vecs;
489 	}
490 
491 	bio->bi_pool = bs;
492 	bio->bi_flags |= idx << BIO_POOL_OFFSET;
493 	bio->bi_max_vecs = nr_iovecs;
494 	bio->bi_io_vec = bvl;
495 	return bio;
496 
497 err_free:
498 	mempool_free(p, bs->bio_pool);
499 	return NULL;
500 }
501 EXPORT_SYMBOL(bio_alloc_bioset);
502 
503 void zero_fill_bio(struct bio *bio)
504 {
505 	unsigned long flags;
506 	struct bio_vec bv;
507 	struct bvec_iter iter;
508 
509 	bio_for_each_segment(bv, bio, iter) {
510 		char *data = bvec_kmap_irq(&bv, &flags);
511 		memset(data, 0, bv.bv_len);
512 		flush_dcache_page(bv.bv_page);
513 		bvec_kunmap_irq(data, &flags);
514 	}
515 }
516 EXPORT_SYMBOL(zero_fill_bio);
517 
518 /**
519  * bio_put - release a reference to a bio
520  * @bio:   bio to release reference to
521  *
522  * Description:
523  *   Put a reference to a &struct bio, either one you have gotten with
524  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
525  **/
526 void bio_put(struct bio *bio)
527 {
528 	BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
529 
530 	/*
531 	 * last put frees it
532 	 */
533 	if (atomic_dec_and_test(&bio->bi_cnt))
534 		bio_free(bio);
535 }
536 EXPORT_SYMBOL(bio_put);
537 
538 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
539 {
540 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
541 		blk_recount_segments(q, bio);
542 
543 	return bio->bi_phys_segments;
544 }
545 EXPORT_SYMBOL(bio_phys_segments);
546 
547 /**
548  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
549  * 	@bio: destination bio
550  * 	@bio_src: bio to clone
551  *
552  *	Clone a &bio. Caller will own the returned bio, but not
553  *	the actual data it points to. Reference count of returned
554  * 	bio will be one.
555  *
556  * 	Caller must ensure that @bio_src is not freed before @bio.
557  */
558 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
559 {
560 	BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
561 
562 	/*
563 	 * most users will be overriding ->bi_bdev with a new target,
564 	 * so we don't set nor calculate new physical/hw segment counts here
565 	 */
566 	bio->bi_bdev = bio_src->bi_bdev;
567 	bio->bi_flags |= 1 << BIO_CLONED;
568 	bio->bi_rw = bio_src->bi_rw;
569 	bio->bi_iter = bio_src->bi_iter;
570 	bio->bi_io_vec = bio_src->bi_io_vec;
571 }
572 EXPORT_SYMBOL(__bio_clone_fast);
573 
574 /**
575  *	bio_clone_fast - clone a bio that shares the original bio's biovec
576  *	@bio: bio to clone
577  *	@gfp_mask: allocation priority
578  *	@bs: bio_set to allocate from
579  *
580  * 	Like __bio_clone_fast, only also allocates the returned bio
581  */
582 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
583 {
584 	struct bio *b;
585 
586 	b = bio_alloc_bioset(gfp_mask, 0, bs);
587 	if (!b)
588 		return NULL;
589 
590 	__bio_clone_fast(b, bio);
591 
592 	if (bio_integrity(bio)) {
593 		int ret;
594 
595 		ret = bio_integrity_clone(b, bio, gfp_mask);
596 
597 		if (ret < 0) {
598 			bio_put(b);
599 			return NULL;
600 		}
601 	}
602 
603 	return b;
604 }
605 EXPORT_SYMBOL(bio_clone_fast);
606 
607 /**
608  * 	bio_clone_bioset - clone a bio
609  * 	@bio_src: bio to clone
610  *	@gfp_mask: allocation priority
611  *	@bs: bio_set to allocate from
612  *
613  *	Clone bio. Caller will own the returned bio, but not the actual data it
614  *	points to. Reference count of returned bio will be one.
615  */
616 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
617 			     struct bio_set *bs)
618 {
619 	struct bvec_iter iter;
620 	struct bio_vec bv;
621 	struct bio *bio;
622 
623 	/*
624 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
625 	 * bio_src->bi_io_vec to bio->bi_io_vec.
626 	 *
627 	 * We can't do that anymore, because:
628 	 *
629 	 *  - The point of cloning the biovec is to produce a bio with a biovec
630 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
631 	 *
632 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
633 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
634 	 *    But the clone should succeed as long as the number of biovecs we
635 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
636 	 *
637 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
638 	 *    that does not own the bio - reason being drivers don't use it for
639 	 *    iterating over the biovec anymore, so expecting it to be kept up
640 	 *    to date (i.e. for clones that share the parent biovec) is just
641 	 *    asking for trouble and would force extra work on
642 	 *    __bio_clone_fast() anyways.
643 	 */
644 
645 	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
646 	if (!bio)
647 		return NULL;
648 
649 	bio->bi_bdev		= bio_src->bi_bdev;
650 	bio->bi_rw		= bio_src->bi_rw;
651 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
652 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
653 
654 	if (bio->bi_rw & REQ_DISCARD)
655 		goto integrity_clone;
656 
657 	if (bio->bi_rw & REQ_WRITE_SAME) {
658 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
659 		goto integrity_clone;
660 	}
661 
662 	bio_for_each_segment(bv, bio_src, iter)
663 		bio->bi_io_vec[bio->bi_vcnt++] = bv;
664 
665 integrity_clone:
666 	if (bio_integrity(bio_src)) {
667 		int ret;
668 
669 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
670 		if (ret < 0) {
671 			bio_put(bio);
672 			return NULL;
673 		}
674 	}
675 
676 	return bio;
677 }
678 EXPORT_SYMBOL(bio_clone_bioset);
679 
680 /**
681  *	bio_get_nr_vecs		- return approx number of vecs
682  *	@bdev:  I/O target
683  *
684  *	Return the approximate number of pages we can send to this target.
685  *	There's no guarantee that you will be able to fit this number of pages
686  *	into a bio, it does not account for dynamic restrictions that vary
687  *	on offset.
688  */
689 int bio_get_nr_vecs(struct block_device *bdev)
690 {
691 	struct request_queue *q = bdev_get_queue(bdev);
692 	int nr_pages;
693 
694 	nr_pages = min_t(unsigned,
695 		     queue_max_segments(q),
696 		     queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
697 
698 	return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
699 
700 }
701 EXPORT_SYMBOL(bio_get_nr_vecs);
702 
703 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
704 			  *page, unsigned int len, unsigned int offset,
705 			  unsigned int max_sectors)
706 {
707 	int retried_segments = 0;
708 	struct bio_vec *bvec;
709 
710 	/*
711 	 * cloned bio must not modify vec list
712 	 */
713 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
714 		return 0;
715 
716 	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
717 		return 0;
718 
719 	/*
720 	 * For filesystems with a blocksize smaller than the pagesize
721 	 * we will often be called with the same page as last time and
722 	 * a consecutive offset.  Optimize this special case.
723 	 */
724 	if (bio->bi_vcnt > 0) {
725 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
726 
727 		if (page == prev->bv_page &&
728 		    offset == prev->bv_offset + prev->bv_len) {
729 			unsigned int prev_bv_len = prev->bv_len;
730 			prev->bv_len += len;
731 
732 			if (q->merge_bvec_fn) {
733 				struct bvec_merge_data bvm = {
734 					/* prev_bvec is already charged in
735 					   bi_size, discharge it in order to
736 					   simulate merging updated prev_bvec
737 					   as new bvec. */
738 					.bi_bdev = bio->bi_bdev,
739 					.bi_sector = bio->bi_iter.bi_sector,
740 					.bi_size = bio->bi_iter.bi_size -
741 						prev_bv_len,
742 					.bi_rw = bio->bi_rw,
743 				};
744 
745 				if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
746 					prev->bv_len -= len;
747 					return 0;
748 				}
749 			}
750 
751 			goto done;
752 		}
753 
754 		/*
755 		 * If the queue doesn't support SG gaps and adding this
756 		 * offset would create a gap, disallow it.
757 		 */
758 		if (q->queue_flags & (1 << QUEUE_FLAG_SG_GAPS) &&
759 		    bvec_gap_to_prev(prev, offset))
760 			return 0;
761 	}
762 
763 	if (bio->bi_vcnt >= bio->bi_max_vecs)
764 		return 0;
765 
766 	/*
767 	 * we might lose a segment or two here, but rather that than
768 	 * make this too complex.
769 	 */
770 
771 	while (bio->bi_phys_segments >= queue_max_segments(q)) {
772 
773 		if (retried_segments)
774 			return 0;
775 
776 		retried_segments = 1;
777 		blk_recount_segments(q, bio);
778 	}
779 
780 	/*
781 	 * setup the new entry, we might clear it again later if we
782 	 * cannot add the page
783 	 */
784 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
785 	bvec->bv_page = page;
786 	bvec->bv_len = len;
787 	bvec->bv_offset = offset;
788 
789 	/*
790 	 * if queue has other restrictions (eg varying max sector size
791 	 * depending on offset), it can specify a merge_bvec_fn in the
792 	 * queue to get further control
793 	 */
794 	if (q->merge_bvec_fn) {
795 		struct bvec_merge_data bvm = {
796 			.bi_bdev = bio->bi_bdev,
797 			.bi_sector = bio->bi_iter.bi_sector,
798 			.bi_size = bio->bi_iter.bi_size,
799 			.bi_rw = bio->bi_rw,
800 		};
801 
802 		/*
803 		 * merge_bvec_fn() returns number of bytes it can accept
804 		 * at this offset
805 		 */
806 		if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
807 			bvec->bv_page = NULL;
808 			bvec->bv_len = 0;
809 			bvec->bv_offset = 0;
810 			return 0;
811 		}
812 	}
813 
814 	/* If we may be able to merge these biovecs, force a recount */
815 	if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
816 		bio->bi_flags &= ~(1 << BIO_SEG_VALID);
817 
818 	bio->bi_vcnt++;
819 	bio->bi_phys_segments++;
820  done:
821 	bio->bi_iter.bi_size += len;
822 	return len;
823 }
824 
825 /**
826  *	bio_add_pc_page	-	attempt to add page to bio
827  *	@q: the target queue
828  *	@bio: destination bio
829  *	@page: page to add
830  *	@len: vec entry length
831  *	@offset: vec entry offset
832  *
833  *	Attempt to add a page to the bio_vec maplist. This can fail for a
834  *	number of reasons, such as the bio being full or target block device
835  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
836  *	so it is always possible to add a single page to an empty bio.
837  *
838  *	This should only be used by REQ_PC bios.
839  */
840 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
841 		    unsigned int len, unsigned int offset)
842 {
843 	return __bio_add_page(q, bio, page, len, offset,
844 			      queue_max_hw_sectors(q));
845 }
846 EXPORT_SYMBOL(bio_add_pc_page);
847 
848 /**
849  *	bio_add_page	-	attempt to add page to bio
850  *	@bio: destination bio
851  *	@page: page to add
852  *	@len: vec entry length
853  *	@offset: vec entry offset
854  *
855  *	Attempt to add a page to the bio_vec maplist. This can fail for a
856  *	number of reasons, such as the bio being full or target block device
857  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
858  *	so it is always possible to add a single page to an empty bio.
859  */
860 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
861 		 unsigned int offset)
862 {
863 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
864 	unsigned int max_sectors;
865 
866 	max_sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
867 	if ((max_sectors < (len >> 9)) && !bio->bi_iter.bi_size)
868 		max_sectors = len >> 9;
869 
870 	return __bio_add_page(q, bio, page, len, offset, max_sectors);
871 }
872 EXPORT_SYMBOL(bio_add_page);
873 
874 struct submit_bio_ret {
875 	struct completion event;
876 	int error;
877 };
878 
879 static void submit_bio_wait_endio(struct bio *bio, int error)
880 {
881 	struct submit_bio_ret *ret = bio->bi_private;
882 
883 	ret->error = error;
884 	complete(&ret->event);
885 }
886 
887 /**
888  * submit_bio_wait - submit a bio, and wait until it completes
889  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
890  * @bio: The &struct bio which describes the I/O
891  *
892  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
893  * bio_endio() on failure.
894  */
895 int submit_bio_wait(int rw, struct bio *bio)
896 {
897 	struct submit_bio_ret ret;
898 
899 	rw |= REQ_SYNC;
900 	init_completion(&ret.event);
901 	bio->bi_private = &ret;
902 	bio->bi_end_io = submit_bio_wait_endio;
903 	submit_bio(rw, bio);
904 	wait_for_completion(&ret.event);
905 
906 	return ret.error;
907 }
908 EXPORT_SYMBOL(submit_bio_wait);
909 
910 /**
911  * bio_advance - increment/complete a bio by some number of bytes
912  * @bio:	bio to advance
913  * @bytes:	number of bytes to complete
914  *
915  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
916  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
917  * be updated on the last bvec as well.
918  *
919  * @bio will then represent the remaining, uncompleted portion of the io.
920  */
921 void bio_advance(struct bio *bio, unsigned bytes)
922 {
923 	if (bio_integrity(bio))
924 		bio_integrity_advance(bio, bytes);
925 
926 	bio_advance_iter(bio, &bio->bi_iter, bytes);
927 }
928 EXPORT_SYMBOL(bio_advance);
929 
930 /**
931  * bio_alloc_pages - allocates a single page for each bvec in a bio
932  * @bio: bio to allocate pages for
933  * @gfp_mask: flags for allocation
934  *
935  * Allocates pages up to @bio->bi_vcnt.
936  *
937  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
938  * freed.
939  */
940 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
941 {
942 	int i;
943 	struct bio_vec *bv;
944 
945 	bio_for_each_segment_all(bv, bio, i) {
946 		bv->bv_page = alloc_page(gfp_mask);
947 		if (!bv->bv_page) {
948 			while (--bv >= bio->bi_io_vec)
949 				__free_page(bv->bv_page);
950 			return -ENOMEM;
951 		}
952 	}
953 
954 	return 0;
955 }
956 EXPORT_SYMBOL(bio_alloc_pages);
957 
958 /**
959  * bio_copy_data - copy contents of data buffers from one chain of bios to
960  * another
961  * @src: source bio list
962  * @dst: destination bio list
963  *
964  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
965  * @src and @dst as linked lists of bios.
966  *
967  * Stops when it reaches the end of either @src or @dst - that is, copies
968  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
969  */
970 void bio_copy_data(struct bio *dst, struct bio *src)
971 {
972 	struct bvec_iter src_iter, dst_iter;
973 	struct bio_vec src_bv, dst_bv;
974 	void *src_p, *dst_p;
975 	unsigned bytes;
976 
977 	src_iter = src->bi_iter;
978 	dst_iter = dst->bi_iter;
979 
980 	while (1) {
981 		if (!src_iter.bi_size) {
982 			src = src->bi_next;
983 			if (!src)
984 				break;
985 
986 			src_iter = src->bi_iter;
987 		}
988 
989 		if (!dst_iter.bi_size) {
990 			dst = dst->bi_next;
991 			if (!dst)
992 				break;
993 
994 			dst_iter = dst->bi_iter;
995 		}
996 
997 		src_bv = bio_iter_iovec(src, src_iter);
998 		dst_bv = bio_iter_iovec(dst, dst_iter);
999 
1000 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1001 
1002 		src_p = kmap_atomic(src_bv.bv_page);
1003 		dst_p = kmap_atomic(dst_bv.bv_page);
1004 
1005 		memcpy(dst_p + dst_bv.bv_offset,
1006 		       src_p + src_bv.bv_offset,
1007 		       bytes);
1008 
1009 		kunmap_atomic(dst_p);
1010 		kunmap_atomic(src_p);
1011 
1012 		bio_advance_iter(src, &src_iter, bytes);
1013 		bio_advance_iter(dst, &dst_iter, bytes);
1014 	}
1015 }
1016 EXPORT_SYMBOL(bio_copy_data);
1017 
1018 struct bio_map_data {
1019 	int nr_sgvecs;
1020 	int is_our_pages;
1021 	struct sg_iovec sgvecs[];
1022 };
1023 
1024 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
1025 			     const struct sg_iovec *iov, int iov_count,
1026 			     int is_our_pages)
1027 {
1028 	memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
1029 	bmd->nr_sgvecs = iov_count;
1030 	bmd->is_our_pages = is_our_pages;
1031 	bio->bi_private = bmd;
1032 }
1033 
1034 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1035 					       gfp_t gfp_mask)
1036 {
1037 	if (iov_count > UIO_MAXIOV)
1038 		return NULL;
1039 
1040 	return kmalloc(sizeof(struct bio_map_data) +
1041 		       sizeof(struct sg_iovec) * iov_count, gfp_mask);
1042 }
1043 
1044 static int __bio_copy_iov(struct bio *bio, const struct sg_iovec *iov, int iov_count,
1045 			  int to_user, int from_user, int do_free_page)
1046 {
1047 	int ret = 0, i;
1048 	struct bio_vec *bvec;
1049 	int iov_idx = 0;
1050 	unsigned int iov_off = 0;
1051 
1052 	bio_for_each_segment_all(bvec, bio, i) {
1053 		char *bv_addr = page_address(bvec->bv_page);
1054 		unsigned int bv_len = bvec->bv_len;
1055 
1056 		while (bv_len && iov_idx < iov_count) {
1057 			unsigned int bytes;
1058 			char __user *iov_addr;
1059 
1060 			bytes = min_t(unsigned int,
1061 				      iov[iov_idx].iov_len - iov_off, bv_len);
1062 			iov_addr = iov[iov_idx].iov_base + iov_off;
1063 
1064 			if (!ret) {
1065 				if (to_user)
1066 					ret = copy_to_user(iov_addr, bv_addr,
1067 							   bytes);
1068 
1069 				if (from_user)
1070 					ret = copy_from_user(bv_addr, iov_addr,
1071 							     bytes);
1072 
1073 				if (ret)
1074 					ret = -EFAULT;
1075 			}
1076 
1077 			bv_len -= bytes;
1078 			bv_addr += bytes;
1079 			iov_addr += bytes;
1080 			iov_off += bytes;
1081 
1082 			if (iov[iov_idx].iov_len == iov_off) {
1083 				iov_idx++;
1084 				iov_off = 0;
1085 			}
1086 		}
1087 
1088 		if (do_free_page)
1089 			__free_page(bvec->bv_page);
1090 	}
1091 
1092 	return ret;
1093 }
1094 
1095 /**
1096  *	bio_uncopy_user	-	finish previously mapped bio
1097  *	@bio: bio being terminated
1098  *
1099  *	Free pages allocated from bio_copy_user() and write back data
1100  *	to user space in case of a read.
1101  */
1102 int bio_uncopy_user(struct bio *bio)
1103 {
1104 	struct bio_map_data *bmd = bio->bi_private;
1105 	struct bio_vec *bvec;
1106 	int ret = 0, i;
1107 
1108 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1109 		/*
1110 		 * if we're in a workqueue, the request is orphaned, so
1111 		 * don't copy into a random user address space, just free.
1112 		 */
1113 		if (current->mm)
1114 			ret = __bio_copy_iov(bio, bmd->sgvecs, bmd->nr_sgvecs,
1115 					     bio_data_dir(bio) == READ,
1116 					     0, bmd->is_our_pages);
1117 		else if (bmd->is_our_pages)
1118 			bio_for_each_segment_all(bvec, bio, i)
1119 				__free_page(bvec->bv_page);
1120 	}
1121 	kfree(bmd);
1122 	bio_put(bio);
1123 	return ret;
1124 }
1125 EXPORT_SYMBOL(bio_uncopy_user);
1126 
1127 /**
1128  *	bio_copy_user_iov	-	copy user data to bio
1129  *	@q: destination block queue
1130  *	@map_data: pointer to the rq_map_data holding pages (if necessary)
1131  *	@iov:	the iovec.
1132  *	@iov_count: number of elements in the iovec
1133  *	@write_to_vm: bool indicating writing to pages or not
1134  *	@gfp_mask: memory allocation flags
1135  *
1136  *	Prepares and returns a bio for indirect user io, bouncing data
1137  *	to/from kernel pages as necessary. Must be paired with
1138  *	call bio_uncopy_user() on io completion.
1139  */
1140 struct bio *bio_copy_user_iov(struct request_queue *q,
1141 			      struct rq_map_data *map_data,
1142 			      const struct sg_iovec *iov, int iov_count,
1143 			      int write_to_vm, gfp_t gfp_mask)
1144 {
1145 	struct bio_map_data *bmd;
1146 	struct bio_vec *bvec;
1147 	struct page *page;
1148 	struct bio *bio;
1149 	int i, ret;
1150 	int nr_pages = 0;
1151 	unsigned int len = 0;
1152 	unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1153 
1154 	for (i = 0; i < iov_count; i++) {
1155 		unsigned long uaddr;
1156 		unsigned long end;
1157 		unsigned long start;
1158 
1159 		uaddr = (unsigned long)iov[i].iov_base;
1160 		end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1161 		start = uaddr >> PAGE_SHIFT;
1162 
1163 		/*
1164 		 * Overflow, abort
1165 		 */
1166 		if (end < start)
1167 			return ERR_PTR(-EINVAL);
1168 
1169 		nr_pages += end - start;
1170 		len += iov[i].iov_len;
1171 	}
1172 
1173 	if (offset)
1174 		nr_pages++;
1175 
1176 	bmd = bio_alloc_map_data(iov_count, gfp_mask);
1177 	if (!bmd)
1178 		return ERR_PTR(-ENOMEM);
1179 
1180 	ret = -ENOMEM;
1181 	bio = bio_kmalloc(gfp_mask, nr_pages);
1182 	if (!bio)
1183 		goto out_bmd;
1184 
1185 	if (!write_to_vm)
1186 		bio->bi_rw |= REQ_WRITE;
1187 
1188 	ret = 0;
1189 
1190 	if (map_data) {
1191 		nr_pages = 1 << map_data->page_order;
1192 		i = map_data->offset / PAGE_SIZE;
1193 	}
1194 	while (len) {
1195 		unsigned int bytes = PAGE_SIZE;
1196 
1197 		bytes -= offset;
1198 
1199 		if (bytes > len)
1200 			bytes = len;
1201 
1202 		if (map_data) {
1203 			if (i == map_data->nr_entries * nr_pages) {
1204 				ret = -ENOMEM;
1205 				break;
1206 			}
1207 
1208 			page = map_data->pages[i / nr_pages];
1209 			page += (i % nr_pages);
1210 
1211 			i++;
1212 		} else {
1213 			page = alloc_page(q->bounce_gfp | gfp_mask);
1214 			if (!page) {
1215 				ret = -ENOMEM;
1216 				break;
1217 			}
1218 		}
1219 
1220 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1221 			break;
1222 
1223 		len -= bytes;
1224 		offset = 0;
1225 	}
1226 
1227 	if (ret)
1228 		goto cleanup;
1229 
1230 	/*
1231 	 * success
1232 	 */
1233 	if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1234 	    (map_data && map_data->from_user)) {
1235 		ret = __bio_copy_iov(bio, iov, iov_count, 0, 1, 0);
1236 		if (ret)
1237 			goto cleanup;
1238 	}
1239 
1240 	bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1241 	return bio;
1242 cleanup:
1243 	if (!map_data)
1244 		bio_for_each_segment_all(bvec, bio, i)
1245 			__free_page(bvec->bv_page);
1246 
1247 	bio_put(bio);
1248 out_bmd:
1249 	kfree(bmd);
1250 	return ERR_PTR(ret);
1251 }
1252 
1253 /**
1254  *	bio_copy_user	-	copy user data to bio
1255  *	@q: destination block queue
1256  *	@map_data: pointer to the rq_map_data holding pages (if necessary)
1257  *	@uaddr: start of user address
1258  *	@len: length in bytes
1259  *	@write_to_vm: bool indicating writing to pages or not
1260  *	@gfp_mask: memory allocation flags
1261  *
1262  *	Prepares and returns a bio for indirect user io, bouncing data
1263  *	to/from kernel pages as necessary. Must be paired with
1264  *	call bio_uncopy_user() on io completion.
1265  */
1266 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1267 			  unsigned long uaddr, unsigned int len,
1268 			  int write_to_vm, gfp_t gfp_mask)
1269 {
1270 	struct sg_iovec iov;
1271 
1272 	iov.iov_base = (void __user *)uaddr;
1273 	iov.iov_len = len;
1274 
1275 	return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
1276 }
1277 EXPORT_SYMBOL(bio_copy_user);
1278 
1279 static struct bio *__bio_map_user_iov(struct request_queue *q,
1280 				      struct block_device *bdev,
1281 				      const struct sg_iovec *iov, int iov_count,
1282 				      int write_to_vm, gfp_t gfp_mask)
1283 {
1284 	int i, j;
1285 	int nr_pages = 0;
1286 	struct page **pages;
1287 	struct bio *bio;
1288 	int cur_page = 0;
1289 	int ret, offset;
1290 
1291 	for (i = 0; i < iov_count; i++) {
1292 		unsigned long uaddr = (unsigned long)iov[i].iov_base;
1293 		unsigned long len = iov[i].iov_len;
1294 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1295 		unsigned long start = uaddr >> PAGE_SHIFT;
1296 
1297 		/*
1298 		 * Overflow, abort
1299 		 */
1300 		if (end < start)
1301 			return ERR_PTR(-EINVAL);
1302 
1303 		nr_pages += end - start;
1304 		/*
1305 		 * buffer must be aligned to at least hardsector size for now
1306 		 */
1307 		if (uaddr & queue_dma_alignment(q))
1308 			return ERR_PTR(-EINVAL);
1309 	}
1310 
1311 	if (!nr_pages)
1312 		return ERR_PTR(-EINVAL);
1313 
1314 	bio = bio_kmalloc(gfp_mask, nr_pages);
1315 	if (!bio)
1316 		return ERR_PTR(-ENOMEM);
1317 
1318 	ret = -ENOMEM;
1319 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1320 	if (!pages)
1321 		goto out;
1322 
1323 	for (i = 0; i < iov_count; i++) {
1324 		unsigned long uaddr = (unsigned long)iov[i].iov_base;
1325 		unsigned long len = iov[i].iov_len;
1326 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1327 		unsigned long start = uaddr >> PAGE_SHIFT;
1328 		const int local_nr_pages = end - start;
1329 		const int page_limit = cur_page + local_nr_pages;
1330 
1331 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1332 				write_to_vm, &pages[cur_page]);
1333 		if (ret < local_nr_pages) {
1334 			ret = -EFAULT;
1335 			goto out_unmap;
1336 		}
1337 
1338 		offset = uaddr & ~PAGE_MASK;
1339 		for (j = cur_page; j < page_limit; j++) {
1340 			unsigned int bytes = PAGE_SIZE - offset;
1341 
1342 			if (len <= 0)
1343 				break;
1344 
1345 			if (bytes > len)
1346 				bytes = len;
1347 
1348 			/*
1349 			 * sorry...
1350 			 */
1351 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1352 					    bytes)
1353 				break;
1354 
1355 			len -= bytes;
1356 			offset = 0;
1357 		}
1358 
1359 		cur_page = j;
1360 		/*
1361 		 * release the pages we didn't map into the bio, if any
1362 		 */
1363 		while (j < page_limit)
1364 			page_cache_release(pages[j++]);
1365 	}
1366 
1367 	kfree(pages);
1368 
1369 	/*
1370 	 * set data direction, and check if mapped pages need bouncing
1371 	 */
1372 	if (!write_to_vm)
1373 		bio->bi_rw |= REQ_WRITE;
1374 
1375 	bio->bi_bdev = bdev;
1376 	bio->bi_flags |= (1 << BIO_USER_MAPPED);
1377 	return bio;
1378 
1379  out_unmap:
1380 	for (i = 0; i < nr_pages; i++) {
1381 		if(!pages[i])
1382 			break;
1383 		page_cache_release(pages[i]);
1384 	}
1385  out:
1386 	kfree(pages);
1387 	bio_put(bio);
1388 	return ERR_PTR(ret);
1389 }
1390 
1391 /**
1392  *	bio_map_user	-	map user address into bio
1393  *	@q: the struct request_queue for the bio
1394  *	@bdev: destination block device
1395  *	@uaddr: start of user address
1396  *	@len: length in bytes
1397  *	@write_to_vm: bool indicating writing to pages or not
1398  *	@gfp_mask: memory allocation flags
1399  *
1400  *	Map the user space address into a bio suitable for io to a block
1401  *	device. Returns an error pointer in case of error.
1402  */
1403 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1404 			 unsigned long uaddr, unsigned int len, int write_to_vm,
1405 			 gfp_t gfp_mask)
1406 {
1407 	struct sg_iovec iov;
1408 
1409 	iov.iov_base = (void __user *)uaddr;
1410 	iov.iov_len = len;
1411 
1412 	return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1413 }
1414 EXPORT_SYMBOL(bio_map_user);
1415 
1416 /**
1417  *	bio_map_user_iov - map user sg_iovec table into bio
1418  *	@q: the struct request_queue for the bio
1419  *	@bdev: destination block device
1420  *	@iov:	the iovec.
1421  *	@iov_count: number of elements in the iovec
1422  *	@write_to_vm: bool indicating writing to pages or not
1423  *	@gfp_mask: memory allocation flags
1424  *
1425  *	Map the user space address into a bio suitable for io to a block
1426  *	device. Returns an error pointer in case of error.
1427  */
1428 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1429 			     const struct sg_iovec *iov, int iov_count,
1430 			     int write_to_vm, gfp_t gfp_mask)
1431 {
1432 	struct bio *bio;
1433 
1434 	bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1435 				 gfp_mask);
1436 	if (IS_ERR(bio))
1437 		return bio;
1438 
1439 	/*
1440 	 * subtle -- if __bio_map_user() ended up bouncing a bio,
1441 	 * it would normally disappear when its bi_end_io is run.
1442 	 * however, we need it for the unmap, so grab an extra
1443 	 * reference to it
1444 	 */
1445 	bio_get(bio);
1446 
1447 	return bio;
1448 }
1449 
1450 static void __bio_unmap_user(struct bio *bio)
1451 {
1452 	struct bio_vec *bvec;
1453 	int i;
1454 
1455 	/*
1456 	 * make sure we dirty pages we wrote to
1457 	 */
1458 	bio_for_each_segment_all(bvec, bio, i) {
1459 		if (bio_data_dir(bio) == READ)
1460 			set_page_dirty_lock(bvec->bv_page);
1461 
1462 		page_cache_release(bvec->bv_page);
1463 	}
1464 
1465 	bio_put(bio);
1466 }
1467 
1468 /**
1469  *	bio_unmap_user	-	unmap a bio
1470  *	@bio:		the bio being unmapped
1471  *
1472  *	Unmap a bio previously mapped by bio_map_user(). Must be called with
1473  *	a process context.
1474  *
1475  *	bio_unmap_user() may sleep.
1476  */
1477 void bio_unmap_user(struct bio *bio)
1478 {
1479 	__bio_unmap_user(bio);
1480 	bio_put(bio);
1481 }
1482 EXPORT_SYMBOL(bio_unmap_user);
1483 
1484 static void bio_map_kern_endio(struct bio *bio, int err)
1485 {
1486 	bio_put(bio);
1487 }
1488 
1489 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1490 				  unsigned int len, gfp_t gfp_mask)
1491 {
1492 	unsigned long kaddr = (unsigned long)data;
1493 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1494 	unsigned long start = kaddr >> PAGE_SHIFT;
1495 	const int nr_pages = end - start;
1496 	int offset, i;
1497 	struct bio *bio;
1498 
1499 	bio = bio_kmalloc(gfp_mask, nr_pages);
1500 	if (!bio)
1501 		return ERR_PTR(-ENOMEM);
1502 
1503 	offset = offset_in_page(kaddr);
1504 	for (i = 0; i < nr_pages; i++) {
1505 		unsigned int bytes = PAGE_SIZE - offset;
1506 
1507 		if (len <= 0)
1508 			break;
1509 
1510 		if (bytes > len)
1511 			bytes = len;
1512 
1513 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1514 				    offset) < bytes)
1515 			break;
1516 
1517 		data += bytes;
1518 		len -= bytes;
1519 		offset = 0;
1520 	}
1521 
1522 	bio->bi_end_io = bio_map_kern_endio;
1523 	return bio;
1524 }
1525 
1526 /**
1527  *	bio_map_kern	-	map kernel address into bio
1528  *	@q: the struct request_queue for the bio
1529  *	@data: pointer to buffer to map
1530  *	@len: length in bytes
1531  *	@gfp_mask: allocation flags for bio allocation
1532  *
1533  *	Map the kernel address into a bio suitable for io to a block
1534  *	device. Returns an error pointer in case of error.
1535  */
1536 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1537 			 gfp_t gfp_mask)
1538 {
1539 	struct bio *bio;
1540 
1541 	bio = __bio_map_kern(q, data, len, gfp_mask);
1542 	if (IS_ERR(bio))
1543 		return bio;
1544 
1545 	if (bio->bi_iter.bi_size == len)
1546 		return bio;
1547 
1548 	/*
1549 	 * Don't support partial mappings.
1550 	 */
1551 	bio_put(bio);
1552 	return ERR_PTR(-EINVAL);
1553 }
1554 EXPORT_SYMBOL(bio_map_kern);
1555 
1556 static void bio_copy_kern_endio(struct bio *bio, int err)
1557 {
1558 	struct bio_vec *bvec;
1559 	const int read = bio_data_dir(bio) == READ;
1560 	struct bio_map_data *bmd = bio->bi_private;
1561 	int i;
1562 	char *p = bmd->sgvecs[0].iov_base;
1563 
1564 	bio_for_each_segment_all(bvec, bio, i) {
1565 		char *addr = page_address(bvec->bv_page);
1566 
1567 		if (read)
1568 			memcpy(p, addr, bvec->bv_len);
1569 
1570 		__free_page(bvec->bv_page);
1571 		p += bvec->bv_len;
1572 	}
1573 
1574 	kfree(bmd);
1575 	bio_put(bio);
1576 }
1577 
1578 /**
1579  *	bio_copy_kern	-	copy kernel address into bio
1580  *	@q: the struct request_queue for the bio
1581  *	@data: pointer to buffer to copy
1582  *	@len: length in bytes
1583  *	@gfp_mask: allocation flags for bio and page allocation
1584  *	@reading: data direction is READ
1585  *
1586  *	copy the kernel address into a bio suitable for io to a block
1587  *	device. Returns an error pointer in case of error.
1588  */
1589 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1590 			  gfp_t gfp_mask, int reading)
1591 {
1592 	struct bio *bio;
1593 	struct bio_vec *bvec;
1594 	int i;
1595 
1596 	bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1597 	if (IS_ERR(bio))
1598 		return bio;
1599 
1600 	if (!reading) {
1601 		void *p = data;
1602 
1603 		bio_for_each_segment_all(bvec, bio, i) {
1604 			char *addr = page_address(bvec->bv_page);
1605 
1606 			memcpy(addr, p, bvec->bv_len);
1607 			p += bvec->bv_len;
1608 		}
1609 	}
1610 
1611 	bio->bi_end_io = bio_copy_kern_endio;
1612 
1613 	return bio;
1614 }
1615 EXPORT_SYMBOL(bio_copy_kern);
1616 
1617 /*
1618  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1619  * for performing direct-IO in BIOs.
1620  *
1621  * The problem is that we cannot run set_page_dirty() from interrupt context
1622  * because the required locks are not interrupt-safe.  So what we can do is to
1623  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1624  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1625  * in process context.
1626  *
1627  * We special-case compound pages here: normally this means reads into hugetlb
1628  * pages.  The logic in here doesn't really work right for compound pages
1629  * because the VM does not uniformly chase down the head page in all cases.
1630  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1631  * handle them at all.  So we skip compound pages here at an early stage.
1632  *
1633  * Note that this code is very hard to test under normal circumstances because
1634  * direct-io pins the pages with get_user_pages().  This makes
1635  * is_page_cache_freeable return false, and the VM will not clean the pages.
1636  * But other code (eg, flusher threads) could clean the pages if they are mapped
1637  * pagecache.
1638  *
1639  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1640  * deferred bio dirtying paths.
1641  */
1642 
1643 /*
1644  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1645  */
1646 void bio_set_pages_dirty(struct bio *bio)
1647 {
1648 	struct bio_vec *bvec;
1649 	int i;
1650 
1651 	bio_for_each_segment_all(bvec, bio, i) {
1652 		struct page *page = bvec->bv_page;
1653 
1654 		if (page && !PageCompound(page))
1655 			set_page_dirty_lock(page);
1656 	}
1657 }
1658 
1659 static void bio_release_pages(struct bio *bio)
1660 {
1661 	struct bio_vec *bvec;
1662 	int i;
1663 
1664 	bio_for_each_segment_all(bvec, bio, i) {
1665 		struct page *page = bvec->bv_page;
1666 
1667 		if (page)
1668 			put_page(page);
1669 	}
1670 }
1671 
1672 /*
1673  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1674  * If they are, then fine.  If, however, some pages are clean then they must
1675  * have been written out during the direct-IO read.  So we take another ref on
1676  * the BIO and the offending pages and re-dirty the pages in process context.
1677  *
1678  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1679  * here on.  It will run one page_cache_release() against each page and will
1680  * run one bio_put() against the BIO.
1681  */
1682 
1683 static void bio_dirty_fn(struct work_struct *work);
1684 
1685 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1686 static DEFINE_SPINLOCK(bio_dirty_lock);
1687 static struct bio *bio_dirty_list;
1688 
1689 /*
1690  * This runs in process context
1691  */
1692 static void bio_dirty_fn(struct work_struct *work)
1693 {
1694 	unsigned long flags;
1695 	struct bio *bio;
1696 
1697 	spin_lock_irqsave(&bio_dirty_lock, flags);
1698 	bio = bio_dirty_list;
1699 	bio_dirty_list = NULL;
1700 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1701 
1702 	while (bio) {
1703 		struct bio *next = bio->bi_private;
1704 
1705 		bio_set_pages_dirty(bio);
1706 		bio_release_pages(bio);
1707 		bio_put(bio);
1708 		bio = next;
1709 	}
1710 }
1711 
1712 void bio_check_pages_dirty(struct bio *bio)
1713 {
1714 	struct bio_vec *bvec;
1715 	int nr_clean_pages = 0;
1716 	int i;
1717 
1718 	bio_for_each_segment_all(bvec, bio, i) {
1719 		struct page *page = bvec->bv_page;
1720 
1721 		if (PageDirty(page) || PageCompound(page)) {
1722 			page_cache_release(page);
1723 			bvec->bv_page = NULL;
1724 		} else {
1725 			nr_clean_pages++;
1726 		}
1727 	}
1728 
1729 	if (nr_clean_pages) {
1730 		unsigned long flags;
1731 
1732 		spin_lock_irqsave(&bio_dirty_lock, flags);
1733 		bio->bi_private = bio_dirty_list;
1734 		bio_dirty_list = bio;
1735 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1736 		schedule_work(&bio_dirty_work);
1737 	} else {
1738 		bio_put(bio);
1739 	}
1740 }
1741 
1742 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1743 void bio_flush_dcache_pages(struct bio *bi)
1744 {
1745 	struct bio_vec bvec;
1746 	struct bvec_iter iter;
1747 
1748 	bio_for_each_segment(bvec, bi, iter)
1749 		flush_dcache_page(bvec.bv_page);
1750 }
1751 EXPORT_SYMBOL(bio_flush_dcache_pages);
1752 #endif
1753 
1754 /**
1755  * bio_endio - end I/O on a bio
1756  * @bio:	bio
1757  * @error:	error, if any
1758  *
1759  * Description:
1760  *   bio_endio() will end I/O on the whole bio. bio_endio() is the
1761  *   preferred way to end I/O on a bio, it takes care of clearing
1762  *   BIO_UPTODATE on error. @error is 0 on success, and and one of the
1763  *   established -Exxxx (-EIO, for instance) error values in case
1764  *   something went wrong. No one should call bi_end_io() directly on a
1765  *   bio unless they own it and thus know that it has an end_io
1766  *   function.
1767  **/
1768 void bio_endio(struct bio *bio, int error)
1769 {
1770 	while (bio) {
1771 		BUG_ON(atomic_read(&bio->bi_remaining) <= 0);
1772 
1773 		if (error)
1774 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
1775 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1776 			error = -EIO;
1777 
1778 		if (!atomic_dec_and_test(&bio->bi_remaining))
1779 			return;
1780 
1781 		/*
1782 		 * Need to have a real endio function for chained bios,
1783 		 * otherwise various corner cases will break (like stacking
1784 		 * block devices that save/restore bi_end_io) - however, we want
1785 		 * to avoid unbounded recursion and blowing the stack. Tail call
1786 		 * optimization would handle this, but compiling with frame
1787 		 * pointers also disables gcc's sibling call optimization.
1788 		 */
1789 		if (bio->bi_end_io == bio_chain_endio) {
1790 			struct bio *parent = bio->bi_private;
1791 			bio_put(bio);
1792 			bio = parent;
1793 		} else {
1794 			if (bio->bi_end_io)
1795 				bio->bi_end_io(bio, error);
1796 			bio = NULL;
1797 		}
1798 	}
1799 }
1800 EXPORT_SYMBOL(bio_endio);
1801 
1802 /**
1803  * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining
1804  * @bio:	bio
1805  * @error:	error, if any
1806  *
1807  * For code that has saved and restored bi_end_io; thing hard before using this
1808  * function, probably you should've cloned the entire bio.
1809  **/
1810 void bio_endio_nodec(struct bio *bio, int error)
1811 {
1812 	atomic_inc(&bio->bi_remaining);
1813 	bio_endio(bio, error);
1814 }
1815 EXPORT_SYMBOL(bio_endio_nodec);
1816 
1817 /**
1818  * bio_split - split a bio
1819  * @bio:	bio to split
1820  * @sectors:	number of sectors to split from the front of @bio
1821  * @gfp:	gfp mask
1822  * @bs:		bio set to allocate from
1823  *
1824  * Allocates and returns a new bio which represents @sectors from the start of
1825  * @bio, and updates @bio to represent the remaining sectors.
1826  *
1827  * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
1828  * responsibility to ensure that @bio is not freed before the split.
1829  */
1830 struct bio *bio_split(struct bio *bio, int sectors,
1831 		      gfp_t gfp, struct bio_set *bs)
1832 {
1833 	struct bio *split = NULL;
1834 
1835 	BUG_ON(sectors <= 0);
1836 	BUG_ON(sectors >= bio_sectors(bio));
1837 
1838 	split = bio_clone_fast(bio, gfp, bs);
1839 	if (!split)
1840 		return NULL;
1841 
1842 	split->bi_iter.bi_size = sectors << 9;
1843 
1844 	if (bio_integrity(split))
1845 		bio_integrity_trim(split, 0, sectors);
1846 
1847 	bio_advance(bio, split->bi_iter.bi_size);
1848 
1849 	return split;
1850 }
1851 EXPORT_SYMBOL(bio_split);
1852 
1853 /**
1854  * bio_trim - trim a bio
1855  * @bio:	bio to trim
1856  * @offset:	number of sectors to trim from the front of @bio
1857  * @size:	size we want to trim @bio to, in sectors
1858  */
1859 void bio_trim(struct bio *bio, int offset, int size)
1860 {
1861 	/* 'bio' is a cloned bio which we need to trim to match
1862 	 * the given offset and size.
1863 	 */
1864 
1865 	size <<= 9;
1866 	if (offset == 0 && size == bio->bi_iter.bi_size)
1867 		return;
1868 
1869 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1870 
1871 	bio_advance(bio, offset << 9);
1872 
1873 	bio->bi_iter.bi_size = size;
1874 }
1875 EXPORT_SYMBOL_GPL(bio_trim);
1876 
1877 /*
1878  * create memory pools for biovec's in a bio_set.
1879  * use the global biovec slabs created for general use.
1880  */
1881 mempool_t *biovec_create_pool(int pool_entries)
1882 {
1883 	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1884 
1885 	return mempool_create_slab_pool(pool_entries, bp->slab);
1886 }
1887 
1888 void bioset_free(struct bio_set *bs)
1889 {
1890 	if (bs->rescue_workqueue)
1891 		destroy_workqueue(bs->rescue_workqueue);
1892 
1893 	if (bs->bio_pool)
1894 		mempool_destroy(bs->bio_pool);
1895 
1896 	if (bs->bvec_pool)
1897 		mempool_destroy(bs->bvec_pool);
1898 
1899 	bioset_integrity_free(bs);
1900 	bio_put_slab(bs);
1901 
1902 	kfree(bs);
1903 }
1904 EXPORT_SYMBOL(bioset_free);
1905 
1906 static struct bio_set *__bioset_create(unsigned int pool_size,
1907 				       unsigned int front_pad,
1908 				       bool create_bvec_pool)
1909 {
1910 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1911 	struct bio_set *bs;
1912 
1913 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1914 	if (!bs)
1915 		return NULL;
1916 
1917 	bs->front_pad = front_pad;
1918 
1919 	spin_lock_init(&bs->rescue_lock);
1920 	bio_list_init(&bs->rescue_list);
1921 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1922 
1923 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1924 	if (!bs->bio_slab) {
1925 		kfree(bs);
1926 		return NULL;
1927 	}
1928 
1929 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1930 	if (!bs->bio_pool)
1931 		goto bad;
1932 
1933 	if (create_bvec_pool) {
1934 		bs->bvec_pool = biovec_create_pool(pool_size);
1935 		if (!bs->bvec_pool)
1936 			goto bad;
1937 	}
1938 
1939 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1940 	if (!bs->rescue_workqueue)
1941 		goto bad;
1942 
1943 	return bs;
1944 bad:
1945 	bioset_free(bs);
1946 	return NULL;
1947 }
1948 
1949 /**
1950  * bioset_create  - Create a bio_set
1951  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1952  * @front_pad:	Number of bytes to allocate in front of the returned bio
1953  *
1954  * Description:
1955  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1956  *    to ask for a number of bytes to be allocated in front of the bio.
1957  *    Front pad allocation is useful for embedding the bio inside
1958  *    another structure, to avoid allocating extra data to go with the bio.
1959  *    Note that the bio must be embedded at the END of that structure always,
1960  *    or things will break badly.
1961  */
1962 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1963 {
1964 	return __bioset_create(pool_size, front_pad, true);
1965 }
1966 EXPORT_SYMBOL(bioset_create);
1967 
1968 /**
1969  * bioset_create_nobvec  - Create a bio_set without bio_vec mempool
1970  * @pool_size:	Number of bio to cache in the mempool
1971  * @front_pad:	Number of bytes to allocate in front of the returned bio
1972  *
1973  * Description:
1974  *    Same functionality as bioset_create() except that mempool is not
1975  *    created for bio_vecs. Saving some memory for bio_clone_fast() users.
1976  */
1977 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1978 {
1979 	return __bioset_create(pool_size, front_pad, false);
1980 }
1981 EXPORT_SYMBOL(bioset_create_nobvec);
1982 
1983 #ifdef CONFIG_BLK_CGROUP
1984 /**
1985  * bio_associate_current - associate a bio with %current
1986  * @bio: target bio
1987  *
1988  * Associate @bio with %current if it hasn't been associated yet.  Block
1989  * layer will treat @bio as if it were issued by %current no matter which
1990  * task actually issues it.
1991  *
1992  * This function takes an extra reference of @task's io_context and blkcg
1993  * which will be put when @bio is released.  The caller must own @bio,
1994  * ensure %current->io_context exists, and is responsible for synchronizing
1995  * calls to this function.
1996  */
1997 int bio_associate_current(struct bio *bio)
1998 {
1999 	struct io_context *ioc;
2000 	struct cgroup_subsys_state *css;
2001 
2002 	if (bio->bi_ioc)
2003 		return -EBUSY;
2004 
2005 	ioc = current->io_context;
2006 	if (!ioc)
2007 		return -ENOENT;
2008 
2009 	/* acquire active ref on @ioc and associate */
2010 	get_io_context_active(ioc);
2011 	bio->bi_ioc = ioc;
2012 
2013 	/* associate blkcg if exists */
2014 	rcu_read_lock();
2015 	css = task_css(current, blkio_cgrp_id);
2016 	if (css && css_tryget_online(css))
2017 		bio->bi_css = css;
2018 	rcu_read_unlock();
2019 
2020 	return 0;
2021 }
2022 
2023 /**
2024  * bio_disassociate_task - undo bio_associate_current()
2025  * @bio: target bio
2026  */
2027 void bio_disassociate_task(struct bio *bio)
2028 {
2029 	if (bio->bi_ioc) {
2030 		put_io_context(bio->bi_ioc);
2031 		bio->bi_ioc = NULL;
2032 	}
2033 	if (bio->bi_css) {
2034 		css_put(bio->bi_css);
2035 		bio->bi_css = NULL;
2036 	}
2037 }
2038 
2039 #endif /* CONFIG_BLK_CGROUP */
2040 
2041 static void __init biovec_init_slabs(void)
2042 {
2043 	int i;
2044 
2045 	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2046 		int size;
2047 		struct biovec_slab *bvs = bvec_slabs + i;
2048 
2049 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2050 			bvs->slab = NULL;
2051 			continue;
2052 		}
2053 
2054 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2055 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2056                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2057 	}
2058 }
2059 
2060 static int __init init_bio(void)
2061 {
2062 	bio_slab_max = 2;
2063 	bio_slab_nr = 0;
2064 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2065 	if (!bio_slabs)
2066 		panic("bio: can't allocate bios\n");
2067 
2068 	bio_integrity_init();
2069 	biovec_init_slabs();
2070 
2071 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2072 	if (!fs_bio_set)
2073 		panic("bio: can't allocate bios\n");
2074 
2075 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2076 		panic("bio: can't create integrity pool\n");
2077 
2078 	return 0;
2079 }
2080 subsys_initcall(init_bio);
2081