xref: /openbmc/linux/block/bio.c (revision e0f3d4c2)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 
32 #include <trace/events/block.h>
33 #include "blk.h"
34 
35 /*
36  * Test patch to inline a certain number of bi_io_vec's inside the bio
37  * itself, to shrink a bio data allocation from two mempool calls to one
38  */
39 #define BIO_INLINE_VECS		4
40 
41 /*
42  * if you change this list, also change bvec_alloc or things will
43  * break badly! cannot be bigger than what you can fit into an
44  * unsigned short
45  */
46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
48 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 };
50 #undef BV
51 
52 /*
53  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54  * IO code that does not need private memory pools.
55  */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58 
59 /*
60  * Our slab pool management
61  */
62 struct bio_slab {
63 	struct kmem_cache *slab;
64 	unsigned int slab_ref;
65 	unsigned int slab_size;
66 	char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71 
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 	unsigned int sz = sizeof(struct bio) + extra_size;
75 	struct kmem_cache *slab = NULL;
76 	struct bio_slab *bslab, *new_bio_slabs;
77 	unsigned int new_bio_slab_max;
78 	unsigned int i, entry = -1;
79 
80 	mutex_lock(&bio_slab_lock);
81 
82 	i = 0;
83 	while (i < bio_slab_nr) {
84 		bslab = &bio_slabs[i];
85 
86 		if (!bslab->slab && entry == -1)
87 			entry = i;
88 		else if (bslab->slab_size == sz) {
89 			slab = bslab->slab;
90 			bslab->slab_ref++;
91 			break;
92 		}
93 		i++;
94 	}
95 
96 	if (slab)
97 		goto out_unlock;
98 
99 	if (bio_slab_nr == bio_slab_max && entry == -1) {
100 		new_bio_slab_max = bio_slab_max << 1;
101 		new_bio_slabs = krealloc(bio_slabs,
102 					 new_bio_slab_max * sizeof(struct bio_slab),
103 					 GFP_KERNEL);
104 		if (!new_bio_slabs)
105 			goto out_unlock;
106 		bio_slab_max = new_bio_slab_max;
107 		bio_slabs = new_bio_slabs;
108 	}
109 	if (entry == -1)
110 		entry = bio_slab_nr++;
111 
112 	bslab = &bio_slabs[entry];
113 
114 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 				 SLAB_HWCACHE_ALIGN, NULL);
117 	if (!slab)
118 		goto out_unlock;
119 
120 	bslab->slab = slab;
121 	bslab->slab_ref = 1;
122 	bslab->slab_size = sz;
123 out_unlock:
124 	mutex_unlock(&bio_slab_lock);
125 	return slab;
126 }
127 
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 	struct bio_slab *bslab = NULL;
131 	unsigned int i;
132 
133 	mutex_lock(&bio_slab_lock);
134 
135 	for (i = 0; i < bio_slab_nr; i++) {
136 		if (bs->bio_slab == bio_slabs[i].slab) {
137 			bslab = &bio_slabs[i];
138 			break;
139 		}
140 	}
141 
142 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 		goto out;
144 
145 	WARN_ON(!bslab->slab_ref);
146 
147 	if (--bslab->slab_ref)
148 		goto out;
149 
150 	kmem_cache_destroy(bslab->slab);
151 	bslab->slab = NULL;
152 
153 out:
154 	mutex_unlock(&bio_slab_lock);
155 }
156 
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 	return bvec_slabs[idx].nr_vecs;
160 }
161 
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 	if (!idx)
165 		return;
166 	idx--;
167 
168 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
169 
170 	if (idx == BVEC_POOL_MAX) {
171 		mempool_free(bv, pool);
172 	} else {
173 		struct biovec_slab *bvs = bvec_slabs + idx;
174 
175 		kmem_cache_free(bvs->slab, bv);
176 	}
177 }
178 
179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 			   mempool_t *pool)
181 {
182 	struct bio_vec *bvl;
183 
184 	/*
185 	 * see comment near bvec_array define!
186 	 */
187 	switch (nr) {
188 	case 1:
189 		*idx = 0;
190 		break;
191 	case 2 ... 4:
192 		*idx = 1;
193 		break;
194 	case 5 ... 16:
195 		*idx = 2;
196 		break;
197 	case 17 ... 64:
198 		*idx = 3;
199 		break;
200 	case 65 ... 128:
201 		*idx = 4;
202 		break;
203 	case 129 ... BIO_MAX_PAGES:
204 		*idx = 5;
205 		break;
206 	default:
207 		return NULL;
208 	}
209 
210 	/*
211 	 * idx now points to the pool we want to allocate from. only the
212 	 * 1-vec entry pool is mempool backed.
213 	 */
214 	if (*idx == BVEC_POOL_MAX) {
215 fallback:
216 		bvl = mempool_alloc(pool, gfp_mask);
217 	} else {
218 		struct biovec_slab *bvs = bvec_slabs + *idx;
219 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
220 
221 		/*
222 		 * Make this allocation restricted and don't dump info on
223 		 * allocation failures, since we'll fallback to the mempool
224 		 * in case of failure.
225 		 */
226 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
227 
228 		/*
229 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
230 		 * is set, retry with the 1-entry mempool
231 		 */
232 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
233 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
234 			*idx = BVEC_POOL_MAX;
235 			goto fallback;
236 		}
237 	}
238 
239 	(*idx)++;
240 	return bvl;
241 }
242 
243 void bio_uninit(struct bio *bio)
244 {
245 	bio_disassociate_task(bio);
246 }
247 EXPORT_SYMBOL(bio_uninit);
248 
249 static void bio_free(struct bio *bio)
250 {
251 	struct bio_set *bs = bio->bi_pool;
252 	void *p;
253 
254 	bio_uninit(bio);
255 
256 	if (bs) {
257 		bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
258 
259 		/*
260 		 * If we have front padding, adjust the bio pointer before freeing
261 		 */
262 		p = bio;
263 		p -= bs->front_pad;
264 
265 		mempool_free(p, bs->bio_pool);
266 	} else {
267 		/* Bio was allocated by bio_kmalloc() */
268 		kfree(bio);
269 	}
270 }
271 
272 /*
273  * Users of this function have their own bio allocation. Subsequently,
274  * they must remember to pair any call to bio_init() with bio_uninit()
275  * when IO has completed, or when the bio is released.
276  */
277 void bio_init(struct bio *bio, struct bio_vec *table,
278 	      unsigned short max_vecs)
279 {
280 	memset(bio, 0, sizeof(*bio));
281 	atomic_set(&bio->__bi_remaining, 1);
282 	atomic_set(&bio->__bi_cnt, 1);
283 
284 	bio->bi_io_vec = table;
285 	bio->bi_max_vecs = max_vecs;
286 }
287 EXPORT_SYMBOL(bio_init);
288 
289 /**
290  * bio_reset - reinitialize a bio
291  * @bio:	bio to reset
292  *
293  * Description:
294  *   After calling bio_reset(), @bio will be in the same state as a freshly
295  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
296  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
297  *   comment in struct bio.
298  */
299 void bio_reset(struct bio *bio)
300 {
301 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
302 
303 	bio_uninit(bio);
304 
305 	memset(bio, 0, BIO_RESET_BYTES);
306 	bio->bi_flags = flags;
307 	atomic_set(&bio->__bi_remaining, 1);
308 }
309 EXPORT_SYMBOL(bio_reset);
310 
311 static struct bio *__bio_chain_endio(struct bio *bio)
312 {
313 	struct bio *parent = bio->bi_private;
314 
315 	if (!parent->bi_status)
316 		parent->bi_status = bio->bi_status;
317 	bio_put(bio);
318 	return parent;
319 }
320 
321 static void bio_chain_endio(struct bio *bio)
322 {
323 	bio_endio(__bio_chain_endio(bio));
324 }
325 
326 /**
327  * bio_chain - chain bio completions
328  * @bio: the target bio
329  * @parent: the @bio's parent bio
330  *
331  * The caller won't have a bi_end_io called when @bio completes - instead,
332  * @parent's bi_end_io won't be called until both @parent and @bio have
333  * completed; the chained bio will also be freed when it completes.
334  *
335  * The caller must not set bi_private or bi_end_io in @bio.
336  */
337 void bio_chain(struct bio *bio, struct bio *parent)
338 {
339 	BUG_ON(bio->bi_private || bio->bi_end_io);
340 
341 	bio->bi_private = parent;
342 	bio->bi_end_io	= bio_chain_endio;
343 	bio_inc_remaining(parent);
344 }
345 EXPORT_SYMBOL(bio_chain);
346 
347 static void bio_alloc_rescue(struct work_struct *work)
348 {
349 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
350 	struct bio *bio;
351 
352 	while (1) {
353 		spin_lock(&bs->rescue_lock);
354 		bio = bio_list_pop(&bs->rescue_list);
355 		spin_unlock(&bs->rescue_lock);
356 
357 		if (!bio)
358 			break;
359 
360 		generic_make_request(bio);
361 	}
362 }
363 
364 static void punt_bios_to_rescuer(struct bio_set *bs)
365 {
366 	struct bio_list punt, nopunt;
367 	struct bio *bio;
368 
369 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
370 		return;
371 	/*
372 	 * In order to guarantee forward progress we must punt only bios that
373 	 * were allocated from this bio_set; otherwise, if there was a bio on
374 	 * there for a stacking driver higher up in the stack, processing it
375 	 * could require allocating bios from this bio_set, and doing that from
376 	 * our own rescuer would be bad.
377 	 *
378 	 * Since bio lists are singly linked, pop them all instead of trying to
379 	 * remove from the middle of the list:
380 	 */
381 
382 	bio_list_init(&punt);
383 	bio_list_init(&nopunt);
384 
385 	while ((bio = bio_list_pop(&current->bio_list[0])))
386 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
387 	current->bio_list[0] = nopunt;
388 
389 	bio_list_init(&nopunt);
390 	while ((bio = bio_list_pop(&current->bio_list[1])))
391 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 	current->bio_list[1] = nopunt;
393 
394 	spin_lock(&bs->rescue_lock);
395 	bio_list_merge(&bs->rescue_list, &punt);
396 	spin_unlock(&bs->rescue_lock);
397 
398 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
399 }
400 
401 /**
402  * bio_alloc_bioset - allocate a bio for I/O
403  * @gfp_mask:   the GFP_* mask given to the slab allocator
404  * @nr_iovecs:	number of iovecs to pre-allocate
405  * @bs:		the bio_set to allocate from.
406  *
407  * Description:
408  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
409  *   backed by the @bs's mempool.
410  *
411  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
412  *   always be able to allocate a bio. This is due to the mempool guarantees.
413  *   To make this work, callers must never allocate more than 1 bio at a time
414  *   from this pool. Callers that need to allocate more than 1 bio must always
415  *   submit the previously allocated bio for IO before attempting to allocate
416  *   a new one. Failure to do so can cause deadlocks under memory pressure.
417  *
418  *   Note that when running under generic_make_request() (i.e. any block
419  *   driver), bios are not submitted until after you return - see the code in
420  *   generic_make_request() that converts recursion into iteration, to prevent
421  *   stack overflows.
422  *
423  *   This would normally mean allocating multiple bios under
424  *   generic_make_request() would be susceptible to deadlocks, but we have
425  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
426  *   thread.
427  *
428  *   However, we do not guarantee forward progress for allocations from other
429  *   mempools. Doing multiple allocations from the same mempool under
430  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
431  *   for per bio allocations.
432  *
433  *   RETURNS:
434  *   Pointer to new bio on success, NULL on failure.
435  */
436 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
437 			     struct bio_set *bs)
438 {
439 	gfp_t saved_gfp = gfp_mask;
440 	unsigned front_pad;
441 	unsigned inline_vecs;
442 	struct bio_vec *bvl = NULL;
443 	struct bio *bio;
444 	void *p;
445 
446 	if (!bs) {
447 		if (nr_iovecs > UIO_MAXIOV)
448 			return NULL;
449 
450 		p = kmalloc(sizeof(struct bio) +
451 			    nr_iovecs * sizeof(struct bio_vec),
452 			    gfp_mask);
453 		front_pad = 0;
454 		inline_vecs = nr_iovecs;
455 	} else {
456 		/* should not use nobvec bioset for nr_iovecs > 0 */
457 		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
458 			return NULL;
459 		/*
460 		 * generic_make_request() converts recursion to iteration; this
461 		 * means if we're running beneath it, any bios we allocate and
462 		 * submit will not be submitted (and thus freed) until after we
463 		 * return.
464 		 *
465 		 * This exposes us to a potential deadlock if we allocate
466 		 * multiple bios from the same bio_set() while running
467 		 * underneath generic_make_request(). If we were to allocate
468 		 * multiple bios (say a stacking block driver that was splitting
469 		 * bios), we would deadlock if we exhausted the mempool's
470 		 * reserve.
471 		 *
472 		 * We solve this, and guarantee forward progress, with a rescuer
473 		 * workqueue per bio_set. If we go to allocate and there are
474 		 * bios on current->bio_list, we first try the allocation
475 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 		 * bios we would be blocking to the rescuer workqueue before
477 		 * we retry with the original gfp_flags.
478 		 */
479 
480 		if (current->bio_list &&
481 		    (!bio_list_empty(&current->bio_list[0]) ||
482 		     !bio_list_empty(&current->bio_list[1])) &&
483 		    bs->rescue_workqueue)
484 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
485 
486 		p = mempool_alloc(bs->bio_pool, gfp_mask);
487 		if (!p && gfp_mask != saved_gfp) {
488 			punt_bios_to_rescuer(bs);
489 			gfp_mask = saved_gfp;
490 			p = mempool_alloc(bs->bio_pool, gfp_mask);
491 		}
492 
493 		front_pad = bs->front_pad;
494 		inline_vecs = BIO_INLINE_VECS;
495 	}
496 
497 	if (unlikely(!p))
498 		return NULL;
499 
500 	bio = p + front_pad;
501 	bio_init(bio, NULL, 0);
502 
503 	if (nr_iovecs > inline_vecs) {
504 		unsigned long idx = 0;
505 
506 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
507 		if (!bvl && gfp_mask != saved_gfp) {
508 			punt_bios_to_rescuer(bs);
509 			gfp_mask = saved_gfp;
510 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
511 		}
512 
513 		if (unlikely(!bvl))
514 			goto err_free;
515 
516 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
517 	} else if (nr_iovecs) {
518 		bvl = bio->bi_inline_vecs;
519 	}
520 
521 	bio->bi_pool = bs;
522 	bio->bi_max_vecs = nr_iovecs;
523 	bio->bi_io_vec = bvl;
524 	return bio;
525 
526 err_free:
527 	mempool_free(p, bs->bio_pool);
528 	return NULL;
529 }
530 EXPORT_SYMBOL(bio_alloc_bioset);
531 
532 void zero_fill_bio(struct bio *bio)
533 {
534 	unsigned long flags;
535 	struct bio_vec bv;
536 	struct bvec_iter iter;
537 
538 	bio_for_each_segment(bv, bio, iter) {
539 		char *data = bvec_kmap_irq(&bv, &flags);
540 		memset(data, 0, bv.bv_len);
541 		flush_dcache_page(bv.bv_page);
542 		bvec_kunmap_irq(data, &flags);
543 	}
544 }
545 EXPORT_SYMBOL(zero_fill_bio);
546 
547 /**
548  * bio_put - release a reference to a bio
549  * @bio:   bio to release reference to
550  *
551  * Description:
552  *   Put a reference to a &struct bio, either one you have gotten with
553  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
554  **/
555 void bio_put(struct bio *bio)
556 {
557 	if (!bio_flagged(bio, BIO_REFFED))
558 		bio_free(bio);
559 	else {
560 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
561 
562 		/*
563 		 * last put frees it
564 		 */
565 		if (atomic_dec_and_test(&bio->__bi_cnt))
566 			bio_free(bio);
567 	}
568 }
569 EXPORT_SYMBOL(bio_put);
570 
571 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
572 {
573 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
574 		blk_recount_segments(q, bio);
575 
576 	return bio->bi_phys_segments;
577 }
578 EXPORT_SYMBOL(bio_phys_segments);
579 
580 /**
581  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
582  * 	@bio: destination bio
583  * 	@bio_src: bio to clone
584  *
585  *	Clone a &bio. Caller will own the returned bio, but not
586  *	the actual data it points to. Reference count of returned
587  * 	bio will be one.
588  *
589  * 	Caller must ensure that @bio_src is not freed before @bio.
590  */
591 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
592 {
593 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
594 
595 	/*
596 	 * most users will be overriding ->bi_disk with a new target,
597 	 * so we don't set nor calculate new physical/hw segment counts here
598 	 */
599 	bio->bi_disk = bio_src->bi_disk;
600 	bio->bi_partno = bio_src->bi_partno;
601 	bio_set_flag(bio, BIO_CLONED);
602 	if (bio_flagged(bio_src, BIO_THROTTLED))
603 		bio_set_flag(bio, BIO_THROTTLED);
604 	bio->bi_opf = bio_src->bi_opf;
605 	bio->bi_write_hint = bio_src->bi_write_hint;
606 	bio->bi_iter = bio_src->bi_iter;
607 	bio->bi_io_vec = bio_src->bi_io_vec;
608 
609 	bio_clone_blkcg_association(bio, bio_src);
610 }
611 EXPORT_SYMBOL(__bio_clone_fast);
612 
613 /**
614  *	bio_clone_fast - clone a bio that shares the original bio's biovec
615  *	@bio: bio to clone
616  *	@gfp_mask: allocation priority
617  *	@bs: bio_set to allocate from
618  *
619  * 	Like __bio_clone_fast, only also allocates the returned bio
620  */
621 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
622 {
623 	struct bio *b;
624 
625 	b = bio_alloc_bioset(gfp_mask, 0, bs);
626 	if (!b)
627 		return NULL;
628 
629 	__bio_clone_fast(b, bio);
630 
631 	if (bio_integrity(bio)) {
632 		int ret;
633 
634 		ret = bio_integrity_clone(b, bio, gfp_mask);
635 
636 		if (ret < 0) {
637 			bio_put(b);
638 			return NULL;
639 		}
640 	}
641 
642 	return b;
643 }
644 EXPORT_SYMBOL(bio_clone_fast);
645 
646 /**
647  * 	bio_clone_bioset - clone a bio
648  * 	@bio_src: bio to clone
649  *	@gfp_mask: allocation priority
650  *	@bs: bio_set to allocate from
651  *
652  *	Clone bio. Caller will own the returned bio, but not the actual data it
653  *	points to. Reference count of returned bio will be one.
654  */
655 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
656 			     struct bio_set *bs)
657 {
658 	struct bvec_iter iter;
659 	struct bio_vec bv;
660 	struct bio *bio;
661 
662 	/*
663 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
664 	 * bio_src->bi_io_vec to bio->bi_io_vec.
665 	 *
666 	 * We can't do that anymore, because:
667 	 *
668 	 *  - The point of cloning the biovec is to produce a bio with a biovec
669 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
670 	 *
671 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
672 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
673 	 *    But the clone should succeed as long as the number of biovecs we
674 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
675 	 *
676 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
677 	 *    that does not own the bio - reason being drivers don't use it for
678 	 *    iterating over the biovec anymore, so expecting it to be kept up
679 	 *    to date (i.e. for clones that share the parent biovec) is just
680 	 *    asking for trouble and would force extra work on
681 	 *    __bio_clone_fast() anyways.
682 	 */
683 
684 	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
685 	if (!bio)
686 		return NULL;
687 	bio->bi_disk		= bio_src->bi_disk;
688 	bio->bi_opf		= bio_src->bi_opf;
689 	bio->bi_write_hint	= bio_src->bi_write_hint;
690 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
691 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
692 
693 	switch (bio_op(bio)) {
694 	case REQ_OP_DISCARD:
695 	case REQ_OP_SECURE_ERASE:
696 	case REQ_OP_WRITE_ZEROES:
697 		break;
698 	case REQ_OP_WRITE_SAME:
699 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
700 		break;
701 	default:
702 		bio_for_each_segment(bv, bio_src, iter)
703 			bio->bi_io_vec[bio->bi_vcnt++] = bv;
704 		break;
705 	}
706 
707 	if (bio_integrity(bio_src)) {
708 		int ret;
709 
710 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
711 		if (ret < 0) {
712 			bio_put(bio);
713 			return NULL;
714 		}
715 	}
716 
717 	bio_clone_blkcg_association(bio, bio_src);
718 
719 	return bio;
720 }
721 EXPORT_SYMBOL(bio_clone_bioset);
722 
723 /**
724  *	bio_add_pc_page	-	attempt to add page to bio
725  *	@q: the target queue
726  *	@bio: destination bio
727  *	@page: page to add
728  *	@len: vec entry length
729  *	@offset: vec entry offset
730  *
731  *	Attempt to add a page to the bio_vec maplist. This can fail for a
732  *	number of reasons, such as the bio being full or target block device
733  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
734  *	so it is always possible to add a single page to an empty bio.
735  *
736  *	This should only be used by REQ_PC bios.
737  */
738 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
739 		    *page, unsigned int len, unsigned int offset)
740 {
741 	int retried_segments = 0;
742 	struct bio_vec *bvec;
743 
744 	/*
745 	 * cloned bio must not modify vec list
746 	 */
747 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
748 		return 0;
749 
750 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
751 		return 0;
752 
753 	/*
754 	 * For filesystems with a blocksize smaller than the pagesize
755 	 * we will often be called with the same page as last time and
756 	 * a consecutive offset.  Optimize this special case.
757 	 */
758 	if (bio->bi_vcnt > 0) {
759 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
760 
761 		if (page == prev->bv_page &&
762 		    offset == prev->bv_offset + prev->bv_len) {
763 			prev->bv_len += len;
764 			bio->bi_iter.bi_size += len;
765 			goto done;
766 		}
767 
768 		/*
769 		 * If the queue doesn't support SG gaps and adding this
770 		 * offset would create a gap, disallow it.
771 		 */
772 		if (bvec_gap_to_prev(q, prev, offset))
773 			return 0;
774 	}
775 
776 	if (bio->bi_vcnt >= bio->bi_max_vecs)
777 		return 0;
778 
779 	/*
780 	 * setup the new entry, we might clear it again later if we
781 	 * cannot add the page
782 	 */
783 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
784 	bvec->bv_page = page;
785 	bvec->bv_len = len;
786 	bvec->bv_offset = offset;
787 	bio->bi_vcnt++;
788 	bio->bi_phys_segments++;
789 	bio->bi_iter.bi_size += len;
790 
791 	/*
792 	 * Perform a recount if the number of segments is greater
793 	 * than queue_max_segments(q).
794 	 */
795 
796 	while (bio->bi_phys_segments > queue_max_segments(q)) {
797 
798 		if (retried_segments)
799 			goto failed;
800 
801 		retried_segments = 1;
802 		blk_recount_segments(q, bio);
803 	}
804 
805 	/* If we may be able to merge these biovecs, force a recount */
806 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
807 		bio_clear_flag(bio, BIO_SEG_VALID);
808 
809  done:
810 	return len;
811 
812  failed:
813 	bvec->bv_page = NULL;
814 	bvec->bv_len = 0;
815 	bvec->bv_offset = 0;
816 	bio->bi_vcnt--;
817 	bio->bi_iter.bi_size -= len;
818 	blk_recount_segments(q, bio);
819 	return 0;
820 }
821 EXPORT_SYMBOL(bio_add_pc_page);
822 
823 /**
824  *	bio_add_page	-	attempt to add page to bio
825  *	@bio: destination bio
826  *	@page: page to add
827  *	@len: vec entry length
828  *	@offset: vec entry offset
829  *
830  *	Attempt to add a page to the bio_vec maplist. This will only fail
831  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
832  */
833 int bio_add_page(struct bio *bio, struct page *page,
834 		 unsigned int len, unsigned int offset)
835 {
836 	struct bio_vec *bv;
837 
838 	/*
839 	 * cloned bio must not modify vec list
840 	 */
841 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
842 		return 0;
843 
844 	/*
845 	 * For filesystems with a blocksize smaller than the pagesize
846 	 * we will often be called with the same page as last time and
847 	 * a consecutive offset.  Optimize this special case.
848 	 */
849 	if (bio->bi_vcnt > 0) {
850 		bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
851 
852 		if (page == bv->bv_page &&
853 		    offset == bv->bv_offset + bv->bv_len) {
854 			bv->bv_len += len;
855 			goto done;
856 		}
857 	}
858 
859 	if (bio->bi_vcnt >= bio->bi_max_vecs)
860 		return 0;
861 
862 	bv		= &bio->bi_io_vec[bio->bi_vcnt];
863 	bv->bv_page	= page;
864 	bv->bv_len	= len;
865 	bv->bv_offset	= offset;
866 
867 	bio->bi_vcnt++;
868 done:
869 	bio->bi_iter.bi_size += len;
870 	return len;
871 }
872 EXPORT_SYMBOL(bio_add_page);
873 
874 /**
875  * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
876  * @bio: bio to add pages to
877  * @iter: iov iterator describing the region to be mapped
878  *
879  * Pins as many pages from *iter and appends them to @bio's bvec array. The
880  * pages will have to be released using put_page() when done.
881  */
882 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
883 {
884 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
885 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
886 	struct page **pages = (struct page **)bv;
887 	size_t offset, diff;
888 	ssize_t size;
889 
890 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
891 	if (unlikely(size <= 0))
892 		return size ? size : -EFAULT;
893 	nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
894 
895 	/*
896 	 * Deep magic below:  We need to walk the pinned pages backwards
897 	 * because we are abusing the space allocated for the bio_vecs
898 	 * for the page array.  Because the bio_vecs are larger than the
899 	 * page pointers by definition this will always work.  But it also
900 	 * means we can't use bio_add_page, so any changes to it's semantics
901 	 * need to be reflected here as well.
902 	 */
903 	bio->bi_iter.bi_size += size;
904 	bio->bi_vcnt += nr_pages;
905 
906 	diff = (nr_pages * PAGE_SIZE - offset) - size;
907 	while (nr_pages--) {
908 		bv[nr_pages].bv_page = pages[nr_pages];
909 		bv[nr_pages].bv_len = PAGE_SIZE;
910 		bv[nr_pages].bv_offset = 0;
911 	}
912 
913 	bv[0].bv_offset += offset;
914 	bv[0].bv_len -= offset;
915 	if (diff)
916 		bv[bio->bi_vcnt - 1].bv_len -= diff;
917 
918 	iov_iter_advance(iter, size);
919 	return 0;
920 }
921 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
922 
923 static void submit_bio_wait_endio(struct bio *bio)
924 {
925 	complete(bio->bi_private);
926 }
927 
928 /**
929  * submit_bio_wait - submit a bio, and wait until it completes
930  * @bio: The &struct bio which describes the I/O
931  *
932  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
933  * bio_endio() on failure.
934  *
935  * WARNING: Unlike to how submit_bio() is usually used, this function does not
936  * result in bio reference to be consumed. The caller must drop the reference
937  * on his own.
938  */
939 int submit_bio_wait(struct bio *bio)
940 {
941 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
942 
943 	bio->bi_private = &done;
944 	bio->bi_end_io = submit_bio_wait_endio;
945 	bio->bi_opf |= REQ_SYNC;
946 	submit_bio(bio);
947 	wait_for_completion_io(&done);
948 
949 	return blk_status_to_errno(bio->bi_status);
950 }
951 EXPORT_SYMBOL(submit_bio_wait);
952 
953 /**
954  * bio_advance - increment/complete a bio by some number of bytes
955  * @bio:	bio to advance
956  * @bytes:	number of bytes to complete
957  *
958  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
959  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
960  * be updated on the last bvec as well.
961  *
962  * @bio will then represent the remaining, uncompleted portion of the io.
963  */
964 void bio_advance(struct bio *bio, unsigned bytes)
965 {
966 	if (bio_integrity(bio))
967 		bio_integrity_advance(bio, bytes);
968 
969 	bio_advance_iter(bio, &bio->bi_iter, bytes);
970 }
971 EXPORT_SYMBOL(bio_advance);
972 
973 /**
974  * bio_alloc_pages - allocates a single page for each bvec in a bio
975  * @bio: bio to allocate pages for
976  * @gfp_mask: flags for allocation
977  *
978  * Allocates pages up to @bio->bi_vcnt.
979  *
980  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
981  * freed.
982  */
983 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
984 {
985 	int i;
986 	struct bio_vec *bv;
987 
988 	bio_for_each_segment_all(bv, bio, i) {
989 		bv->bv_page = alloc_page(gfp_mask);
990 		if (!bv->bv_page) {
991 			while (--bv >= bio->bi_io_vec)
992 				__free_page(bv->bv_page);
993 			return -ENOMEM;
994 		}
995 	}
996 
997 	return 0;
998 }
999 EXPORT_SYMBOL(bio_alloc_pages);
1000 
1001 /**
1002  * bio_copy_data - copy contents of data buffers from one chain of bios to
1003  * another
1004  * @src: source bio list
1005  * @dst: destination bio list
1006  *
1007  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1008  * @src and @dst as linked lists of bios.
1009  *
1010  * Stops when it reaches the end of either @src or @dst - that is, copies
1011  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1012  */
1013 void bio_copy_data(struct bio *dst, struct bio *src)
1014 {
1015 	struct bvec_iter src_iter, dst_iter;
1016 	struct bio_vec src_bv, dst_bv;
1017 	void *src_p, *dst_p;
1018 	unsigned bytes;
1019 
1020 	src_iter = src->bi_iter;
1021 	dst_iter = dst->bi_iter;
1022 
1023 	while (1) {
1024 		if (!src_iter.bi_size) {
1025 			src = src->bi_next;
1026 			if (!src)
1027 				break;
1028 
1029 			src_iter = src->bi_iter;
1030 		}
1031 
1032 		if (!dst_iter.bi_size) {
1033 			dst = dst->bi_next;
1034 			if (!dst)
1035 				break;
1036 
1037 			dst_iter = dst->bi_iter;
1038 		}
1039 
1040 		src_bv = bio_iter_iovec(src, src_iter);
1041 		dst_bv = bio_iter_iovec(dst, dst_iter);
1042 
1043 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1044 
1045 		src_p = kmap_atomic(src_bv.bv_page);
1046 		dst_p = kmap_atomic(dst_bv.bv_page);
1047 
1048 		memcpy(dst_p + dst_bv.bv_offset,
1049 		       src_p + src_bv.bv_offset,
1050 		       bytes);
1051 
1052 		kunmap_atomic(dst_p);
1053 		kunmap_atomic(src_p);
1054 
1055 		bio_advance_iter(src, &src_iter, bytes);
1056 		bio_advance_iter(dst, &dst_iter, bytes);
1057 	}
1058 }
1059 EXPORT_SYMBOL(bio_copy_data);
1060 
1061 struct bio_map_data {
1062 	int is_our_pages;
1063 	struct iov_iter iter;
1064 	struct iovec iov[];
1065 };
1066 
1067 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1068 					       gfp_t gfp_mask)
1069 {
1070 	struct bio_map_data *bmd;
1071 	if (data->nr_segs > UIO_MAXIOV)
1072 		return NULL;
1073 
1074 	bmd = kmalloc(sizeof(struct bio_map_data) +
1075 		       sizeof(struct iovec) * data->nr_segs, gfp_mask);
1076 	if (!bmd)
1077 		return NULL;
1078 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1079 	bmd->iter = *data;
1080 	bmd->iter.iov = bmd->iov;
1081 	return bmd;
1082 }
1083 
1084 /**
1085  * bio_copy_from_iter - copy all pages from iov_iter to bio
1086  * @bio: The &struct bio which describes the I/O as destination
1087  * @iter: iov_iter as source
1088  *
1089  * Copy all pages from iov_iter to bio.
1090  * Returns 0 on success, or error on failure.
1091  */
1092 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1093 {
1094 	int i;
1095 	struct bio_vec *bvec;
1096 
1097 	bio_for_each_segment_all(bvec, bio, i) {
1098 		ssize_t ret;
1099 
1100 		ret = copy_page_from_iter(bvec->bv_page,
1101 					  bvec->bv_offset,
1102 					  bvec->bv_len,
1103 					  iter);
1104 
1105 		if (!iov_iter_count(iter))
1106 			break;
1107 
1108 		if (ret < bvec->bv_len)
1109 			return -EFAULT;
1110 	}
1111 
1112 	return 0;
1113 }
1114 
1115 /**
1116  * bio_copy_to_iter - copy all pages from bio to iov_iter
1117  * @bio: The &struct bio which describes the I/O as source
1118  * @iter: iov_iter as destination
1119  *
1120  * Copy all pages from bio to iov_iter.
1121  * Returns 0 on success, or error on failure.
1122  */
1123 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1124 {
1125 	int i;
1126 	struct bio_vec *bvec;
1127 
1128 	bio_for_each_segment_all(bvec, bio, i) {
1129 		ssize_t ret;
1130 
1131 		ret = copy_page_to_iter(bvec->bv_page,
1132 					bvec->bv_offset,
1133 					bvec->bv_len,
1134 					&iter);
1135 
1136 		if (!iov_iter_count(&iter))
1137 			break;
1138 
1139 		if (ret < bvec->bv_len)
1140 			return -EFAULT;
1141 	}
1142 
1143 	return 0;
1144 }
1145 
1146 void bio_free_pages(struct bio *bio)
1147 {
1148 	struct bio_vec *bvec;
1149 	int i;
1150 
1151 	bio_for_each_segment_all(bvec, bio, i)
1152 		__free_page(bvec->bv_page);
1153 }
1154 EXPORT_SYMBOL(bio_free_pages);
1155 
1156 /**
1157  *	bio_uncopy_user	-	finish previously mapped bio
1158  *	@bio: bio being terminated
1159  *
1160  *	Free pages allocated from bio_copy_user_iov() and write back data
1161  *	to user space in case of a read.
1162  */
1163 int bio_uncopy_user(struct bio *bio)
1164 {
1165 	struct bio_map_data *bmd = bio->bi_private;
1166 	int ret = 0;
1167 
1168 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1169 		/*
1170 		 * if we're in a workqueue, the request is orphaned, so
1171 		 * don't copy into a random user address space, just free
1172 		 * and return -EINTR so user space doesn't expect any data.
1173 		 */
1174 		if (!current->mm)
1175 			ret = -EINTR;
1176 		else if (bio_data_dir(bio) == READ)
1177 			ret = bio_copy_to_iter(bio, bmd->iter);
1178 		if (bmd->is_our_pages)
1179 			bio_free_pages(bio);
1180 	}
1181 	kfree(bmd);
1182 	bio_put(bio);
1183 	return ret;
1184 }
1185 
1186 /**
1187  *	bio_copy_user_iov	-	copy user data to bio
1188  *	@q:		destination block queue
1189  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1190  *	@iter:		iovec iterator
1191  *	@gfp_mask:	memory allocation flags
1192  *
1193  *	Prepares and returns a bio for indirect user io, bouncing data
1194  *	to/from kernel pages as necessary. Must be paired with
1195  *	call bio_uncopy_user() on io completion.
1196  */
1197 struct bio *bio_copy_user_iov(struct request_queue *q,
1198 			      struct rq_map_data *map_data,
1199 			      struct iov_iter *iter,
1200 			      gfp_t gfp_mask)
1201 {
1202 	struct bio_map_data *bmd;
1203 	struct page *page;
1204 	struct bio *bio;
1205 	int i = 0, ret;
1206 	int nr_pages;
1207 	unsigned int len = iter->count;
1208 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1209 
1210 	bmd = bio_alloc_map_data(iter, gfp_mask);
1211 	if (!bmd)
1212 		return ERR_PTR(-ENOMEM);
1213 
1214 	/*
1215 	 * We need to do a deep copy of the iov_iter including the iovecs.
1216 	 * The caller provided iov might point to an on-stack or otherwise
1217 	 * shortlived one.
1218 	 */
1219 	bmd->is_our_pages = map_data ? 0 : 1;
1220 
1221 	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1222 	if (nr_pages > BIO_MAX_PAGES)
1223 		nr_pages = BIO_MAX_PAGES;
1224 
1225 	ret = -ENOMEM;
1226 	bio = bio_kmalloc(gfp_mask, nr_pages);
1227 	if (!bio)
1228 		goto out_bmd;
1229 
1230 	ret = 0;
1231 
1232 	if (map_data) {
1233 		nr_pages = 1 << map_data->page_order;
1234 		i = map_data->offset / PAGE_SIZE;
1235 	}
1236 	while (len) {
1237 		unsigned int bytes = PAGE_SIZE;
1238 
1239 		bytes -= offset;
1240 
1241 		if (bytes > len)
1242 			bytes = len;
1243 
1244 		if (map_data) {
1245 			if (i == map_data->nr_entries * nr_pages) {
1246 				ret = -ENOMEM;
1247 				break;
1248 			}
1249 
1250 			page = map_data->pages[i / nr_pages];
1251 			page += (i % nr_pages);
1252 
1253 			i++;
1254 		} else {
1255 			page = alloc_page(q->bounce_gfp | gfp_mask);
1256 			if (!page) {
1257 				ret = -ENOMEM;
1258 				break;
1259 			}
1260 		}
1261 
1262 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1263 			break;
1264 
1265 		len -= bytes;
1266 		offset = 0;
1267 	}
1268 
1269 	if (ret)
1270 		goto cleanup;
1271 
1272 	if (map_data)
1273 		map_data->offset += bio->bi_iter.bi_size;
1274 
1275 	/*
1276 	 * success
1277 	 */
1278 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1279 	    (map_data && map_data->from_user)) {
1280 		ret = bio_copy_from_iter(bio, iter);
1281 		if (ret)
1282 			goto cleanup;
1283 	} else {
1284 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1285 	}
1286 
1287 	bio->bi_private = bmd;
1288 	if (map_data && map_data->null_mapped)
1289 		bio_set_flag(bio, BIO_NULL_MAPPED);
1290 	return bio;
1291 cleanup:
1292 	if (!map_data)
1293 		bio_free_pages(bio);
1294 	bio_put(bio);
1295 out_bmd:
1296 	kfree(bmd);
1297 	return ERR_PTR(ret);
1298 }
1299 
1300 /**
1301  *	bio_map_user_iov - map user iovec into bio
1302  *	@q:		the struct request_queue for the bio
1303  *	@iter:		iovec iterator
1304  *	@gfp_mask:	memory allocation flags
1305  *
1306  *	Map the user space address into a bio suitable for io to a block
1307  *	device. Returns an error pointer in case of error.
1308  */
1309 struct bio *bio_map_user_iov(struct request_queue *q,
1310 			     struct iov_iter *iter,
1311 			     gfp_t gfp_mask)
1312 {
1313 	int j;
1314 	struct bio *bio;
1315 	int ret;
1316 	struct bio_vec *bvec;
1317 
1318 	if (!iov_iter_count(iter))
1319 		return ERR_PTR(-EINVAL);
1320 
1321 	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1322 	if (!bio)
1323 		return ERR_PTR(-ENOMEM);
1324 
1325 	while (iov_iter_count(iter)) {
1326 		struct page **pages;
1327 		ssize_t bytes;
1328 		size_t offs, added = 0;
1329 		int npages;
1330 
1331 		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1332 		if (unlikely(bytes <= 0)) {
1333 			ret = bytes ? bytes : -EFAULT;
1334 			goto out_unmap;
1335 		}
1336 
1337 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1338 
1339 		if (unlikely(offs & queue_dma_alignment(q))) {
1340 			ret = -EINVAL;
1341 			j = 0;
1342 		} else {
1343 			for (j = 0; j < npages; j++) {
1344 				struct page *page = pages[j];
1345 				unsigned int n = PAGE_SIZE - offs;
1346 				unsigned short prev_bi_vcnt = bio->bi_vcnt;
1347 
1348 				if (n > bytes)
1349 					n = bytes;
1350 
1351 				if (!bio_add_pc_page(q, bio, page, n, offs))
1352 					break;
1353 
1354 				/*
1355 				 * check if vector was merged with previous
1356 				 * drop page reference if needed
1357 				 */
1358 				if (bio->bi_vcnt == prev_bi_vcnt)
1359 					put_page(page);
1360 
1361 				added += n;
1362 				bytes -= n;
1363 				offs = 0;
1364 			}
1365 			iov_iter_advance(iter, added);
1366 		}
1367 		/*
1368 		 * release the pages we didn't map into the bio, if any
1369 		 */
1370 		while (j < npages)
1371 			put_page(pages[j++]);
1372 		kvfree(pages);
1373 		/* couldn't stuff something into bio? */
1374 		if (bytes)
1375 			break;
1376 	}
1377 
1378 	bio_set_flag(bio, BIO_USER_MAPPED);
1379 
1380 	/*
1381 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1382 	 * it would normally disappear when its bi_end_io is run.
1383 	 * however, we need it for the unmap, so grab an extra
1384 	 * reference to it
1385 	 */
1386 	bio_get(bio);
1387 	return bio;
1388 
1389  out_unmap:
1390 	bio_for_each_segment_all(bvec, bio, j) {
1391 		put_page(bvec->bv_page);
1392 	}
1393 	bio_put(bio);
1394 	return ERR_PTR(ret);
1395 }
1396 
1397 static void __bio_unmap_user(struct bio *bio)
1398 {
1399 	struct bio_vec *bvec;
1400 	int i;
1401 
1402 	/*
1403 	 * make sure we dirty pages we wrote to
1404 	 */
1405 	bio_for_each_segment_all(bvec, bio, i) {
1406 		if (bio_data_dir(bio) == READ)
1407 			set_page_dirty_lock(bvec->bv_page);
1408 
1409 		put_page(bvec->bv_page);
1410 	}
1411 
1412 	bio_put(bio);
1413 }
1414 
1415 /**
1416  *	bio_unmap_user	-	unmap a bio
1417  *	@bio:		the bio being unmapped
1418  *
1419  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1420  *	process context.
1421  *
1422  *	bio_unmap_user() may sleep.
1423  */
1424 void bio_unmap_user(struct bio *bio)
1425 {
1426 	__bio_unmap_user(bio);
1427 	bio_put(bio);
1428 }
1429 
1430 static void bio_map_kern_endio(struct bio *bio)
1431 {
1432 	bio_put(bio);
1433 }
1434 
1435 /**
1436  *	bio_map_kern	-	map kernel address into bio
1437  *	@q: the struct request_queue for the bio
1438  *	@data: pointer to buffer to map
1439  *	@len: length in bytes
1440  *	@gfp_mask: allocation flags for bio allocation
1441  *
1442  *	Map the kernel address into a bio suitable for io to a block
1443  *	device. Returns an error pointer in case of error.
1444  */
1445 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1446 			 gfp_t gfp_mask)
1447 {
1448 	unsigned long kaddr = (unsigned long)data;
1449 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1450 	unsigned long start = kaddr >> PAGE_SHIFT;
1451 	const int nr_pages = end - start;
1452 	int offset, i;
1453 	struct bio *bio;
1454 
1455 	bio = bio_kmalloc(gfp_mask, nr_pages);
1456 	if (!bio)
1457 		return ERR_PTR(-ENOMEM);
1458 
1459 	offset = offset_in_page(kaddr);
1460 	for (i = 0; i < nr_pages; i++) {
1461 		unsigned int bytes = PAGE_SIZE - offset;
1462 
1463 		if (len <= 0)
1464 			break;
1465 
1466 		if (bytes > len)
1467 			bytes = len;
1468 
1469 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1470 				    offset) < bytes) {
1471 			/* we don't support partial mappings */
1472 			bio_put(bio);
1473 			return ERR_PTR(-EINVAL);
1474 		}
1475 
1476 		data += bytes;
1477 		len -= bytes;
1478 		offset = 0;
1479 	}
1480 
1481 	bio->bi_end_io = bio_map_kern_endio;
1482 	return bio;
1483 }
1484 EXPORT_SYMBOL(bio_map_kern);
1485 
1486 static void bio_copy_kern_endio(struct bio *bio)
1487 {
1488 	bio_free_pages(bio);
1489 	bio_put(bio);
1490 }
1491 
1492 static void bio_copy_kern_endio_read(struct bio *bio)
1493 {
1494 	char *p = bio->bi_private;
1495 	struct bio_vec *bvec;
1496 	int i;
1497 
1498 	bio_for_each_segment_all(bvec, bio, i) {
1499 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1500 		p += bvec->bv_len;
1501 	}
1502 
1503 	bio_copy_kern_endio(bio);
1504 }
1505 
1506 /**
1507  *	bio_copy_kern	-	copy kernel address into bio
1508  *	@q: the struct request_queue for the bio
1509  *	@data: pointer to buffer to copy
1510  *	@len: length in bytes
1511  *	@gfp_mask: allocation flags for bio and page allocation
1512  *	@reading: data direction is READ
1513  *
1514  *	copy the kernel address into a bio suitable for io to a block
1515  *	device. Returns an error pointer in case of error.
1516  */
1517 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1518 			  gfp_t gfp_mask, int reading)
1519 {
1520 	unsigned long kaddr = (unsigned long)data;
1521 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1522 	unsigned long start = kaddr >> PAGE_SHIFT;
1523 	struct bio *bio;
1524 	void *p = data;
1525 	int nr_pages = 0;
1526 
1527 	/*
1528 	 * Overflow, abort
1529 	 */
1530 	if (end < start)
1531 		return ERR_PTR(-EINVAL);
1532 
1533 	nr_pages = end - start;
1534 	bio = bio_kmalloc(gfp_mask, nr_pages);
1535 	if (!bio)
1536 		return ERR_PTR(-ENOMEM);
1537 
1538 	while (len) {
1539 		struct page *page;
1540 		unsigned int bytes = PAGE_SIZE;
1541 
1542 		if (bytes > len)
1543 			bytes = len;
1544 
1545 		page = alloc_page(q->bounce_gfp | gfp_mask);
1546 		if (!page)
1547 			goto cleanup;
1548 
1549 		if (!reading)
1550 			memcpy(page_address(page), p, bytes);
1551 
1552 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1553 			break;
1554 
1555 		len -= bytes;
1556 		p += bytes;
1557 	}
1558 
1559 	if (reading) {
1560 		bio->bi_end_io = bio_copy_kern_endio_read;
1561 		bio->bi_private = data;
1562 	} else {
1563 		bio->bi_end_io = bio_copy_kern_endio;
1564 	}
1565 
1566 	return bio;
1567 
1568 cleanup:
1569 	bio_free_pages(bio);
1570 	bio_put(bio);
1571 	return ERR_PTR(-ENOMEM);
1572 }
1573 
1574 /*
1575  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1576  * for performing direct-IO in BIOs.
1577  *
1578  * The problem is that we cannot run set_page_dirty() from interrupt context
1579  * because the required locks are not interrupt-safe.  So what we can do is to
1580  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1581  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1582  * in process context.
1583  *
1584  * We special-case compound pages here: normally this means reads into hugetlb
1585  * pages.  The logic in here doesn't really work right for compound pages
1586  * because the VM does not uniformly chase down the head page in all cases.
1587  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1588  * handle them at all.  So we skip compound pages here at an early stage.
1589  *
1590  * Note that this code is very hard to test under normal circumstances because
1591  * direct-io pins the pages with get_user_pages().  This makes
1592  * is_page_cache_freeable return false, and the VM will not clean the pages.
1593  * But other code (eg, flusher threads) could clean the pages if they are mapped
1594  * pagecache.
1595  *
1596  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1597  * deferred bio dirtying paths.
1598  */
1599 
1600 /*
1601  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1602  */
1603 void bio_set_pages_dirty(struct bio *bio)
1604 {
1605 	struct bio_vec *bvec;
1606 	int i;
1607 
1608 	bio_for_each_segment_all(bvec, bio, i) {
1609 		struct page *page = bvec->bv_page;
1610 
1611 		if (page && !PageCompound(page))
1612 			set_page_dirty_lock(page);
1613 	}
1614 }
1615 
1616 static void bio_release_pages(struct bio *bio)
1617 {
1618 	struct bio_vec *bvec;
1619 	int i;
1620 
1621 	bio_for_each_segment_all(bvec, bio, i) {
1622 		struct page *page = bvec->bv_page;
1623 
1624 		if (page)
1625 			put_page(page);
1626 	}
1627 }
1628 
1629 /*
1630  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1631  * If they are, then fine.  If, however, some pages are clean then they must
1632  * have been written out during the direct-IO read.  So we take another ref on
1633  * the BIO and the offending pages and re-dirty the pages in process context.
1634  *
1635  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1636  * here on.  It will run one put_page() against each page and will run one
1637  * bio_put() against the BIO.
1638  */
1639 
1640 static void bio_dirty_fn(struct work_struct *work);
1641 
1642 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1643 static DEFINE_SPINLOCK(bio_dirty_lock);
1644 static struct bio *bio_dirty_list;
1645 
1646 /*
1647  * This runs in process context
1648  */
1649 static void bio_dirty_fn(struct work_struct *work)
1650 {
1651 	unsigned long flags;
1652 	struct bio *bio;
1653 
1654 	spin_lock_irqsave(&bio_dirty_lock, flags);
1655 	bio = bio_dirty_list;
1656 	bio_dirty_list = NULL;
1657 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1658 
1659 	while (bio) {
1660 		struct bio *next = bio->bi_private;
1661 
1662 		bio_set_pages_dirty(bio);
1663 		bio_release_pages(bio);
1664 		bio_put(bio);
1665 		bio = next;
1666 	}
1667 }
1668 
1669 void bio_check_pages_dirty(struct bio *bio)
1670 {
1671 	struct bio_vec *bvec;
1672 	int nr_clean_pages = 0;
1673 	int i;
1674 
1675 	bio_for_each_segment_all(bvec, bio, i) {
1676 		struct page *page = bvec->bv_page;
1677 
1678 		if (PageDirty(page) || PageCompound(page)) {
1679 			put_page(page);
1680 			bvec->bv_page = NULL;
1681 		} else {
1682 			nr_clean_pages++;
1683 		}
1684 	}
1685 
1686 	if (nr_clean_pages) {
1687 		unsigned long flags;
1688 
1689 		spin_lock_irqsave(&bio_dirty_lock, flags);
1690 		bio->bi_private = bio_dirty_list;
1691 		bio_dirty_list = bio;
1692 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1693 		schedule_work(&bio_dirty_work);
1694 	} else {
1695 		bio_put(bio);
1696 	}
1697 }
1698 
1699 void generic_start_io_acct(struct request_queue *q, int rw,
1700 			   unsigned long sectors, struct hd_struct *part)
1701 {
1702 	int cpu = part_stat_lock();
1703 
1704 	part_round_stats(q, cpu, part);
1705 	part_stat_inc(cpu, part, ios[rw]);
1706 	part_stat_add(cpu, part, sectors[rw], sectors);
1707 	part_inc_in_flight(q, part, rw);
1708 
1709 	part_stat_unlock();
1710 }
1711 EXPORT_SYMBOL(generic_start_io_acct);
1712 
1713 void generic_end_io_acct(struct request_queue *q, int rw,
1714 			 struct hd_struct *part, unsigned long start_time)
1715 {
1716 	unsigned long duration = jiffies - start_time;
1717 	int cpu = part_stat_lock();
1718 
1719 	part_stat_add(cpu, part, ticks[rw], duration);
1720 	part_round_stats(q, cpu, part);
1721 	part_dec_in_flight(q, part, rw);
1722 
1723 	part_stat_unlock();
1724 }
1725 EXPORT_SYMBOL(generic_end_io_acct);
1726 
1727 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1728 void bio_flush_dcache_pages(struct bio *bi)
1729 {
1730 	struct bio_vec bvec;
1731 	struct bvec_iter iter;
1732 
1733 	bio_for_each_segment(bvec, bi, iter)
1734 		flush_dcache_page(bvec.bv_page);
1735 }
1736 EXPORT_SYMBOL(bio_flush_dcache_pages);
1737 #endif
1738 
1739 static inline bool bio_remaining_done(struct bio *bio)
1740 {
1741 	/*
1742 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1743 	 * we always end io on the first invocation.
1744 	 */
1745 	if (!bio_flagged(bio, BIO_CHAIN))
1746 		return true;
1747 
1748 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1749 
1750 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1751 		bio_clear_flag(bio, BIO_CHAIN);
1752 		return true;
1753 	}
1754 
1755 	return false;
1756 }
1757 
1758 /**
1759  * bio_endio - end I/O on a bio
1760  * @bio:	bio
1761  *
1762  * Description:
1763  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1764  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1765  *   bio unless they own it and thus know that it has an end_io function.
1766  *
1767  *   bio_endio() can be called several times on a bio that has been chained
1768  *   using bio_chain().  The ->bi_end_io() function will only be called the
1769  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1770  *   generated if BIO_TRACE_COMPLETION is set.
1771  **/
1772 void bio_endio(struct bio *bio)
1773 {
1774 again:
1775 	if (!bio_remaining_done(bio))
1776 		return;
1777 	if (!bio_integrity_endio(bio))
1778 		return;
1779 
1780 	/*
1781 	 * Need to have a real endio function for chained bios, otherwise
1782 	 * various corner cases will break (like stacking block devices that
1783 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1784 	 * recursion and blowing the stack. Tail call optimization would
1785 	 * handle this, but compiling with frame pointers also disables
1786 	 * gcc's sibling call optimization.
1787 	 */
1788 	if (bio->bi_end_io == bio_chain_endio) {
1789 		bio = __bio_chain_endio(bio);
1790 		goto again;
1791 	}
1792 
1793 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1794 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1795 					 blk_status_to_errno(bio->bi_status));
1796 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1797 	}
1798 
1799 	blk_throtl_bio_endio(bio);
1800 	/* release cgroup info */
1801 	bio_uninit(bio);
1802 	if (bio->bi_end_io)
1803 		bio->bi_end_io(bio);
1804 }
1805 EXPORT_SYMBOL(bio_endio);
1806 
1807 /**
1808  * bio_split - split a bio
1809  * @bio:	bio to split
1810  * @sectors:	number of sectors to split from the front of @bio
1811  * @gfp:	gfp mask
1812  * @bs:		bio set to allocate from
1813  *
1814  * Allocates and returns a new bio which represents @sectors from the start of
1815  * @bio, and updates @bio to represent the remaining sectors.
1816  *
1817  * Unless this is a discard request the newly allocated bio will point
1818  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1819  * @bio is not freed before the split.
1820  */
1821 struct bio *bio_split(struct bio *bio, int sectors,
1822 		      gfp_t gfp, struct bio_set *bs)
1823 {
1824 	struct bio *split;
1825 
1826 	BUG_ON(sectors <= 0);
1827 	BUG_ON(sectors >= bio_sectors(bio));
1828 
1829 	split = bio_clone_fast(bio, gfp, bs);
1830 	if (!split)
1831 		return NULL;
1832 
1833 	split->bi_iter.bi_size = sectors << 9;
1834 
1835 	if (bio_integrity(split))
1836 		bio_integrity_trim(split);
1837 
1838 	bio_advance(bio, split->bi_iter.bi_size);
1839 
1840 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1841 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
1842 
1843 	return split;
1844 }
1845 EXPORT_SYMBOL(bio_split);
1846 
1847 /**
1848  * bio_trim - trim a bio
1849  * @bio:	bio to trim
1850  * @offset:	number of sectors to trim from the front of @bio
1851  * @size:	size we want to trim @bio to, in sectors
1852  */
1853 void bio_trim(struct bio *bio, int offset, int size)
1854 {
1855 	/* 'bio' is a cloned bio which we need to trim to match
1856 	 * the given offset and size.
1857 	 */
1858 
1859 	size <<= 9;
1860 	if (offset == 0 && size == bio->bi_iter.bi_size)
1861 		return;
1862 
1863 	bio_clear_flag(bio, BIO_SEG_VALID);
1864 
1865 	bio_advance(bio, offset << 9);
1866 
1867 	bio->bi_iter.bi_size = size;
1868 
1869 	if (bio_integrity(bio))
1870 		bio_integrity_trim(bio);
1871 
1872 }
1873 EXPORT_SYMBOL_GPL(bio_trim);
1874 
1875 /*
1876  * create memory pools for biovec's in a bio_set.
1877  * use the global biovec slabs created for general use.
1878  */
1879 mempool_t *biovec_create_pool(int pool_entries)
1880 {
1881 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1882 
1883 	return mempool_create_slab_pool(pool_entries, bp->slab);
1884 }
1885 
1886 void bioset_free(struct bio_set *bs)
1887 {
1888 	if (bs->rescue_workqueue)
1889 		destroy_workqueue(bs->rescue_workqueue);
1890 
1891 	mempool_destroy(bs->bio_pool);
1892 	mempool_destroy(bs->bvec_pool);
1893 
1894 	bioset_integrity_free(bs);
1895 	bio_put_slab(bs);
1896 
1897 	kfree(bs);
1898 }
1899 EXPORT_SYMBOL(bioset_free);
1900 
1901 /**
1902  * bioset_create  - Create a bio_set
1903  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1904  * @front_pad:	Number of bytes to allocate in front of the returned bio
1905  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1906  *              and %BIOSET_NEED_RESCUER
1907  *
1908  * Description:
1909  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1910  *    to ask for a number of bytes to be allocated in front of the bio.
1911  *    Front pad allocation is useful for embedding the bio inside
1912  *    another structure, to avoid allocating extra data to go with the bio.
1913  *    Note that the bio must be embedded at the END of that structure always,
1914  *    or things will break badly.
1915  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1916  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1917  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1918  *    dispatch queued requests when the mempool runs out of space.
1919  *
1920  */
1921 struct bio_set *bioset_create(unsigned int pool_size,
1922 			      unsigned int front_pad,
1923 			      int flags)
1924 {
1925 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1926 	struct bio_set *bs;
1927 
1928 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1929 	if (!bs)
1930 		return NULL;
1931 
1932 	bs->front_pad = front_pad;
1933 
1934 	spin_lock_init(&bs->rescue_lock);
1935 	bio_list_init(&bs->rescue_list);
1936 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1937 
1938 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1939 	if (!bs->bio_slab) {
1940 		kfree(bs);
1941 		return NULL;
1942 	}
1943 
1944 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1945 	if (!bs->bio_pool)
1946 		goto bad;
1947 
1948 	if (flags & BIOSET_NEED_BVECS) {
1949 		bs->bvec_pool = biovec_create_pool(pool_size);
1950 		if (!bs->bvec_pool)
1951 			goto bad;
1952 	}
1953 
1954 	if (!(flags & BIOSET_NEED_RESCUER))
1955 		return bs;
1956 
1957 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1958 	if (!bs->rescue_workqueue)
1959 		goto bad;
1960 
1961 	return bs;
1962 bad:
1963 	bioset_free(bs);
1964 	return NULL;
1965 }
1966 EXPORT_SYMBOL(bioset_create);
1967 
1968 #ifdef CONFIG_BLK_CGROUP
1969 
1970 /**
1971  * bio_associate_blkcg - associate a bio with the specified blkcg
1972  * @bio: target bio
1973  * @blkcg_css: css of the blkcg to associate
1974  *
1975  * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
1976  * treat @bio as if it were issued by a task which belongs to the blkcg.
1977  *
1978  * This function takes an extra reference of @blkcg_css which will be put
1979  * when @bio is released.  The caller must own @bio and is responsible for
1980  * synchronizing calls to this function.
1981  */
1982 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1983 {
1984 	if (unlikely(bio->bi_css))
1985 		return -EBUSY;
1986 	css_get(blkcg_css);
1987 	bio->bi_css = blkcg_css;
1988 	return 0;
1989 }
1990 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1991 
1992 /**
1993  * bio_disassociate_task - undo bio_associate_current()
1994  * @bio: target bio
1995  */
1996 void bio_disassociate_task(struct bio *bio)
1997 {
1998 	if (bio->bi_ioc) {
1999 		put_io_context(bio->bi_ioc);
2000 		bio->bi_ioc = NULL;
2001 	}
2002 	if (bio->bi_css) {
2003 		css_put(bio->bi_css);
2004 		bio->bi_css = NULL;
2005 	}
2006 }
2007 
2008 /**
2009  * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2010  * @dst: destination bio
2011  * @src: source bio
2012  */
2013 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2014 {
2015 	if (src->bi_css)
2016 		WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2017 }
2018 EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
2019 #endif /* CONFIG_BLK_CGROUP */
2020 
2021 static void __init biovec_init_slabs(void)
2022 {
2023 	int i;
2024 
2025 	for (i = 0; i < BVEC_POOL_NR; i++) {
2026 		int size;
2027 		struct biovec_slab *bvs = bvec_slabs + i;
2028 
2029 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2030 			bvs->slab = NULL;
2031 			continue;
2032 		}
2033 
2034 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2035 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2036                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2037 	}
2038 }
2039 
2040 static int __init init_bio(void)
2041 {
2042 	bio_slab_max = 2;
2043 	bio_slab_nr = 0;
2044 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2045 	if (!bio_slabs)
2046 		panic("bio: can't allocate bios\n");
2047 
2048 	bio_integrity_init();
2049 	biovec_init_slabs();
2050 
2051 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
2052 	if (!fs_bio_set)
2053 		panic("bio: can't allocate bios\n");
2054 
2055 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2056 		panic("bio: can't create integrity pool\n");
2057 
2058 	return 0;
2059 }
2060 subsys_initcall(init_bio);
2061