1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 4 */ 5 #include <linux/mm.h> 6 #include <linux/swap.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/uio.h> 10 #include <linux/iocontext.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/mempool.h> 16 #include <linux/workqueue.h> 17 #include <linux/cgroup.h> 18 #include <linux/blk-cgroup.h> 19 #include <linux/highmem.h> 20 #include <linux/sched/sysctl.h> 21 #include <linux/blk-crypto.h> 22 #include <linux/xarray.h> 23 24 #include <trace/events/block.h> 25 #include "blk.h" 26 #include "blk-rq-qos.h" 27 28 static struct biovec_slab { 29 int nr_vecs; 30 char *name; 31 struct kmem_cache *slab; 32 } bvec_slabs[] __read_mostly = { 33 { .nr_vecs = 16, .name = "biovec-16" }, 34 { .nr_vecs = 64, .name = "biovec-64" }, 35 { .nr_vecs = 128, .name = "biovec-128" }, 36 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" }, 37 }; 38 39 static struct biovec_slab *biovec_slab(unsigned short nr_vecs) 40 { 41 switch (nr_vecs) { 42 /* smaller bios use inline vecs */ 43 case 5 ... 16: 44 return &bvec_slabs[0]; 45 case 17 ... 64: 46 return &bvec_slabs[1]; 47 case 65 ... 128: 48 return &bvec_slabs[2]; 49 case 129 ... BIO_MAX_VECS: 50 return &bvec_slabs[3]; 51 default: 52 BUG(); 53 return NULL; 54 } 55 } 56 57 /* 58 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 59 * IO code that does not need private memory pools. 60 */ 61 struct bio_set fs_bio_set; 62 EXPORT_SYMBOL(fs_bio_set); 63 64 /* 65 * Our slab pool management 66 */ 67 struct bio_slab { 68 struct kmem_cache *slab; 69 unsigned int slab_ref; 70 unsigned int slab_size; 71 char name[8]; 72 }; 73 static DEFINE_MUTEX(bio_slab_lock); 74 static DEFINE_XARRAY(bio_slabs); 75 76 static struct bio_slab *create_bio_slab(unsigned int size) 77 { 78 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL); 79 80 if (!bslab) 81 return NULL; 82 83 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size); 84 bslab->slab = kmem_cache_create(bslab->name, size, 85 ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL); 86 if (!bslab->slab) 87 goto fail_alloc_slab; 88 89 bslab->slab_ref = 1; 90 bslab->slab_size = size; 91 92 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL))) 93 return bslab; 94 95 kmem_cache_destroy(bslab->slab); 96 97 fail_alloc_slab: 98 kfree(bslab); 99 return NULL; 100 } 101 102 static inline unsigned int bs_bio_slab_size(struct bio_set *bs) 103 { 104 return bs->front_pad + sizeof(struct bio) + bs->back_pad; 105 } 106 107 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs) 108 { 109 unsigned int size = bs_bio_slab_size(bs); 110 struct bio_slab *bslab; 111 112 mutex_lock(&bio_slab_lock); 113 bslab = xa_load(&bio_slabs, size); 114 if (bslab) 115 bslab->slab_ref++; 116 else 117 bslab = create_bio_slab(size); 118 mutex_unlock(&bio_slab_lock); 119 120 if (bslab) 121 return bslab->slab; 122 return NULL; 123 } 124 125 static void bio_put_slab(struct bio_set *bs) 126 { 127 struct bio_slab *bslab = NULL; 128 unsigned int slab_size = bs_bio_slab_size(bs); 129 130 mutex_lock(&bio_slab_lock); 131 132 bslab = xa_load(&bio_slabs, slab_size); 133 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 134 goto out; 135 136 WARN_ON_ONCE(bslab->slab != bs->bio_slab); 137 138 WARN_ON(!bslab->slab_ref); 139 140 if (--bslab->slab_ref) 141 goto out; 142 143 xa_erase(&bio_slabs, slab_size); 144 145 kmem_cache_destroy(bslab->slab); 146 kfree(bslab); 147 148 out: 149 mutex_unlock(&bio_slab_lock); 150 } 151 152 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs) 153 { 154 BIO_BUG_ON(nr_vecs > BIO_MAX_VECS); 155 156 if (nr_vecs == BIO_MAX_VECS) 157 mempool_free(bv, pool); 158 else if (nr_vecs > BIO_INLINE_VECS) 159 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv); 160 } 161 162 /* 163 * Make the first allocation restricted and don't dump info on allocation 164 * failures, since we'll fall back to the mempool in case of failure. 165 */ 166 static inline gfp_t bvec_alloc_gfp(gfp_t gfp) 167 { 168 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) | 169 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 170 } 171 172 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 173 gfp_t gfp_mask) 174 { 175 struct biovec_slab *bvs = biovec_slab(*nr_vecs); 176 177 if (WARN_ON_ONCE(!bvs)) 178 return NULL; 179 180 /* 181 * Upgrade the nr_vecs request to take full advantage of the allocation. 182 * We also rely on this in the bvec_free path. 183 */ 184 *nr_vecs = bvs->nr_vecs; 185 186 /* 187 * Try a slab allocation first for all smaller allocations. If that 188 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool. 189 * The mempool is sized to handle up to BIO_MAX_VECS entries. 190 */ 191 if (*nr_vecs < BIO_MAX_VECS) { 192 struct bio_vec *bvl; 193 194 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask)); 195 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 196 return bvl; 197 *nr_vecs = BIO_MAX_VECS; 198 } 199 200 return mempool_alloc(pool, gfp_mask); 201 } 202 203 void bio_uninit(struct bio *bio) 204 { 205 #ifdef CONFIG_BLK_CGROUP 206 if (bio->bi_blkg) { 207 blkg_put(bio->bi_blkg); 208 bio->bi_blkg = NULL; 209 } 210 #endif 211 if (bio_integrity(bio)) 212 bio_integrity_free(bio); 213 214 bio_crypt_free_ctx(bio); 215 } 216 EXPORT_SYMBOL(bio_uninit); 217 218 static void bio_free(struct bio *bio) 219 { 220 struct bio_set *bs = bio->bi_pool; 221 void *p; 222 223 bio_uninit(bio); 224 225 if (bs) { 226 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs); 227 228 /* 229 * If we have front padding, adjust the bio pointer before freeing 230 */ 231 p = bio; 232 p -= bs->front_pad; 233 234 mempool_free(p, &bs->bio_pool); 235 } else { 236 /* Bio was allocated by bio_kmalloc() */ 237 kfree(bio); 238 } 239 } 240 241 /* 242 * Users of this function have their own bio allocation. Subsequently, 243 * they must remember to pair any call to bio_init() with bio_uninit() 244 * when IO has completed, or when the bio is released. 245 */ 246 void bio_init(struct bio *bio, struct bio_vec *table, 247 unsigned short max_vecs) 248 { 249 bio->bi_next = NULL; 250 bio->bi_bdev = NULL; 251 bio->bi_opf = 0; 252 bio->bi_flags = 0; 253 bio->bi_ioprio = 0; 254 bio->bi_write_hint = 0; 255 bio->bi_status = 0; 256 bio->bi_iter.bi_sector = 0; 257 bio->bi_iter.bi_size = 0; 258 bio->bi_iter.bi_idx = 0; 259 bio->bi_iter.bi_bvec_done = 0; 260 bio->bi_end_io = NULL; 261 bio->bi_private = NULL; 262 #ifdef CONFIG_BLK_CGROUP 263 bio->bi_blkg = NULL; 264 bio->bi_issue.value = 0; 265 #ifdef CONFIG_BLK_CGROUP_IOCOST 266 bio->bi_iocost_cost = 0; 267 #endif 268 #endif 269 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 270 bio->bi_crypt_context = NULL; 271 #endif 272 #ifdef CONFIG_BLK_DEV_INTEGRITY 273 bio->bi_integrity = NULL; 274 #endif 275 bio->bi_vcnt = 0; 276 277 atomic_set(&bio->__bi_remaining, 1); 278 atomic_set(&bio->__bi_cnt, 1); 279 280 bio->bi_max_vecs = max_vecs; 281 bio->bi_io_vec = table; 282 bio->bi_pool = NULL; 283 } 284 EXPORT_SYMBOL(bio_init); 285 286 /** 287 * bio_reset - reinitialize a bio 288 * @bio: bio to reset 289 * 290 * Description: 291 * After calling bio_reset(), @bio will be in the same state as a freshly 292 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 293 * preserved are the ones that are initialized by bio_alloc_bioset(). See 294 * comment in struct bio. 295 */ 296 void bio_reset(struct bio *bio) 297 { 298 bio_uninit(bio); 299 memset(bio, 0, BIO_RESET_BYTES); 300 atomic_set(&bio->__bi_remaining, 1); 301 } 302 EXPORT_SYMBOL(bio_reset); 303 304 static struct bio *__bio_chain_endio(struct bio *bio) 305 { 306 struct bio *parent = bio->bi_private; 307 308 if (bio->bi_status && !parent->bi_status) 309 parent->bi_status = bio->bi_status; 310 bio_put(bio); 311 return parent; 312 } 313 314 static void bio_chain_endio(struct bio *bio) 315 { 316 bio_endio(__bio_chain_endio(bio)); 317 } 318 319 /** 320 * bio_chain - chain bio completions 321 * @bio: the target bio 322 * @parent: the parent bio of @bio 323 * 324 * The caller won't have a bi_end_io called when @bio completes - instead, 325 * @parent's bi_end_io won't be called until both @parent and @bio have 326 * completed; the chained bio will also be freed when it completes. 327 * 328 * The caller must not set bi_private or bi_end_io in @bio. 329 */ 330 void bio_chain(struct bio *bio, struct bio *parent) 331 { 332 BUG_ON(bio->bi_private || bio->bi_end_io); 333 334 bio->bi_private = parent; 335 bio->bi_end_io = bio_chain_endio; 336 bio_inc_remaining(parent); 337 } 338 EXPORT_SYMBOL(bio_chain); 339 340 static void bio_alloc_rescue(struct work_struct *work) 341 { 342 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 343 struct bio *bio; 344 345 while (1) { 346 spin_lock(&bs->rescue_lock); 347 bio = bio_list_pop(&bs->rescue_list); 348 spin_unlock(&bs->rescue_lock); 349 350 if (!bio) 351 break; 352 353 submit_bio_noacct(bio); 354 } 355 } 356 357 static void punt_bios_to_rescuer(struct bio_set *bs) 358 { 359 struct bio_list punt, nopunt; 360 struct bio *bio; 361 362 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 363 return; 364 /* 365 * In order to guarantee forward progress we must punt only bios that 366 * were allocated from this bio_set; otherwise, if there was a bio on 367 * there for a stacking driver higher up in the stack, processing it 368 * could require allocating bios from this bio_set, and doing that from 369 * our own rescuer would be bad. 370 * 371 * Since bio lists are singly linked, pop them all instead of trying to 372 * remove from the middle of the list: 373 */ 374 375 bio_list_init(&punt); 376 bio_list_init(&nopunt); 377 378 while ((bio = bio_list_pop(¤t->bio_list[0]))) 379 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 380 current->bio_list[0] = nopunt; 381 382 bio_list_init(&nopunt); 383 while ((bio = bio_list_pop(¤t->bio_list[1]))) 384 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 385 current->bio_list[1] = nopunt; 386 387 spin_lock(&bs->rescue_lock); 388 bio_list_merge(&bs->rescue_list, &punt); 389 spin_unlock(&bs->rescue_lock); 390 391 queue_work(bs->rescue_workqueue, &bs->rescue_work); 392 } 393 394 /** 395 * bio_alloc_bioset - allocate a bio for I/O 396 * @gfp_mask: the GFP_* mask given to the slab allocator 397 * @nr_iovecs: number of iovecs to pre-allocate 398 * @bs: the bio_set to allocate from. 399 * 400 * Allocate a bio from the mempools in @bs. 401 * 402 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to 403 * allocate a bio. This is due to the mempool guarantees. To make this work, 404 * callers must never allocate more than 1 bio at a time from the general pool. 405 * Callers that need to allocate more than 1 bio must always submit the 406 * previously allocated bio for IO before attempting to allocate a new one. 407 * Failure to do so can cause deadlocks under memory pressure. 408 * 409 * Note that when running under submit_bio_noacct() (i.e. any block driver), 410 * bios are not submitted until after you return - see the code in 411 * submit_bio_noacct() that converts recursion into iteration, to prevent 412 * stack overflows. 413 * 414 * This would normally mean allocating multiple bios under submit_bio_noacct() 415 * would be susceptible to deadlocks, but we have 416 * deadlock avoidance code that resubmits any blocked bios from a rescuer 417 * thread. 418 * 419 * However, we do not guarantee forward progress for allocations from other 420 * mempools. Doing multiple allocations from the same mempool under 421 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad 422 * for per bio allocations. 423 * 424 * Returns: Pointer to new bio on success, NULL on failure. 425 */ 426 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs, 427 struct bio_set *bs) 428 { 429 gfp_t saved_gfp = gfp_mask; 430 struct bio *bio; 431 void *p; 432 433 /* should not use nobvec bioset for nr_iovecs > 0 */ 434 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0)) 435 return NULL; 436 437 /* 438 * submit_bio_noacct() converts recursion to iteration; this means if 439 * we're running beneath it, any bios we allocate and submit will not be 440 * submitted (and thus freed) until after we return. 441 * 442 * This exposes us to a potential deadlock if we allocate multiple bios 443 * from the same bio_set() while running underneath submit_bio_noacct(). 444 * If we were to allocate multiple bios (say a stacking block driver 445 * that was splitting bios), we would deadlock if we exhausted the 446 * mempool's reserve. 447 * 448 * We solve this, and guarantee forward progress, with a rescuer 449 * workqueue per bio_set. If we go to allocate and there are bios on 450 * current->bio_list, we first try the allocation without 451 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be 452 * blocking to the rescuer workqueue before we retry with the original 453 * gfp_flags. 454 */ 455 if (current->bio_list && 456 (!bio_list_empty(¤t->bio_list[0]) || 457 !bio_list_empty(¤t->bio_list[1])) && 458 bs->rescue_workqueue) 459 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 460 461 p = mempool_alloc(&bs->bio_pool, gfp_mask); 462 if (!p && gfp_mask != saved_gfp) { 463 punt_bios_to_rescuer(bs); 464 gfp_mask = saved_gfp; 465 p = mempool_alloc(&bs->bio_pool, gfp_mask); 466 } 467 if (unlikely(!p)) 468 return NULL; 469 470 bio = p + bs->front_pad; 471 if (nr_iovecs > BIO_INLINE_VECS) { 472 struct bio_vec *bvl = NULL; 473 474 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask); 475 if (!bvl && gfp_mask != saved_gfp) { 476 punt_bios_to_rescuer(bs); 477 gfp_mask = saved_gfp; 478 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask); 479 } 480 if (unlikely(!bvl)) 481 goto err_free; 482 483 bio_init(bio, bvl, nr_iovecs); 484 } else if (nr_iovecs) { 485 bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS); 486 } else { 487 bio_init(bio, NULL, 0); 488 } 489 490 bio->bi_pool = bs; 491 return bio; 492 493 err_free: 494 mempool_free(p, &bs->bio_pool); 495 return NULL; 496 } 497 EXPORT_SYMBOL(bio_alloc_bioset); 498 499 /** 500 * bio_kmalloc - kmalloc a bio for I/O 501 * @gfp_mask: the GFP_* mask given to the slab allocator 502 * @nr_iovecs: number of iovecs to pre-allocate 503 * 504 * Use kmalloc to allocate and initialize a bio. 505 * 506 * Returns: Pointer to new bio on success, NULL on failure. 507 */ 508 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs) 509 { 510 struct bio *bio; 511 512 if (nr_iovecs > UIO_MAXIOV) 513 return NULL; 514 515 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask); 516 if (unlikely(!bio)) 517 return NULL; 518 bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs); 519 bio->bi_pool = NULL; 520 return bio; 521 } 522 EXPORT_SYMBOL(bio_kmalloc); 523 524 void zero_fill_bio(struct bio *bio) 525 { 526 unsigned long flags; 527 struct bio_vec bv; 528 struct bvec_iter iter; 529 530 bio_for_each_segment(bv, bio, iter) { 531 char *data = bvec_kmap_irq(&bv, &flags); 532 memset(data, 0, bv.bv_len); 533 flush_dcache_page(bv.bv_page); 534 bvec_kunmap_irq(data, &flags); 535 } 536 } 537 EXPORT_SYMBOL(zero_fill_bio); 538 539 /** 540 * bio_truncate - truncate the bio to small size of @new_size 541 * @bio: the bio to be truncated 542 * @new_size: new size for truncating the bio 543 * 544 * Description: 545 * Truncate the bio to new size of @new_size. If bio_op(bio) is 546 * REQ_OP_READ, zero the truncated part. This function should only 547 * be used for handling corner cases, such as bio eod. 548 */ 549 void bio_truncate(struct bio *bio, unsigned new_size) 550 { 551 struct bio_vec bv; 552 struct bvec_iter iter; 553 unsigned int done = 0; 554 bool truncated = false; 555 556 if (new_size >= bio->bi_iter.bi_size) 557 return; 558 559 if (bio_op(bio) != REQ_OP_READ) 560 goto exit; 561 562 bio_for_each_segment(bv, bio, iter) { 563 if (done + bv.bv_len > new_size) { 564 unsigned offset; 565 566 if (!truncated) 567 offset = new_size - done; 568 else 569 offset = 0; 570 zero_user(bv.bv_page, offset, bv.bv_len - offset); 571 truncated = true; 572 } 573 done += bv.bv_len; 574 } 575 576 exit: 577 /* 578 * Don't touch bvec table here and make it really immutable, since 579 * fs bio user has to retrieve all pages via bio_for_each_segment_all 580 * in its .end_bio() callback. 581 * 582 * It is enough to truncate bio by updating .bi_size since we can make 583 * correct bvec with the updated .bi_size for drivers. 584 */ 585 bio->bi_iter.bi_size = new_size; 586 } 587 588 /** 589 * guard_bio_eod - truncate a BIO to fit the block device 590 * @bio: bio to truncate 591 * 592 * This allows us to do IO even on the odd last sectors of a device, even if the 593 * block size is some multiple of the physical sector size. 594 * 595 * We'll just truncate the bio to the size of the device, and clear the end of 596 * the buffer head manually. Truly out-of-range accesses will turn into actual 597 * I/O errors, this only handles the "we need to be able to do I/O at the final 598 * sector" case. 599 */ 600 void guard_bio_eod(struct bio *bio) 601 { 602 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 603 604 if (!maxsector) 605 return; 606 607 /* 608 * If the *whole* IO is past the end of the device, 609 * let it through, and the IO layer will turn it into 610 * an EIO. 611 */ 612 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 613 return; 614 615 maxsector -= bio->bi_iter.bi_sector; 616 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 617 return; 618 619 bio_truncate(bio, maxsector << 9); 620 } 621 622 /** 623 * bio_put - release a reference to a bio 624 * @bio: bio to release reference to 625 * 626 * Description: 627 * Put a reference to a &struct bio, either one you have gotten with 628 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 629 **/ 630 void bio_put(struct bio *bio) 631 { 632 if (!bio_flagged(bio, BIO_REFFED)) 633 bio_free(bio); 634 else { 635 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 636 637 /* 638 * last put frees it 639 */ 640 if (atomic_dec_and_test(&bio->__bi_cnt)) 641 bio_free(bio); 642 } 643 } 644 EXPORT_SYMBOL(bio_put); 645 646 /** 647 * __bio_clone_fast - clone a bio that shares the original bio's biovec 648 * @bio: destination bio 649 * @bio_src: bio to clone 650 * 651 * Clone a &bio. Caller will own the returned bio, but not 652 * the actual data it points to. Reference count of returned 653 * bio will be one. 654 * 655 * Caller must ensure that @bio_src is not freed before @bio. 656 */ 657 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 658 { 659 WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs); 660 661 /* 662 * most users will be overriding ->bi_bdev with a new target, 663 * so we don't set nor calculate new physical/hw segment counts here 664 */ 665 bio->bi_bdev = bio_src->bi_bdev; 666 bio_set_flag(bio, BIO_CLONED); 667 if (bio_flagged(bio_src, BIO_THROTTLED)) 668 bio_set_flag(bio, BIO_THROTTLED); 669 if (bio_flagged(bio_src, BIO_REMAPPED)) 670 bio_set_flag(bio, BIO_REMAPPED); 671 bio->bi_opf = bio_src->bi_opf; 672 bio->bi_ioprio = bio_src->bi_ioprio; 673 bio->bi_write_hint = bio_src->bi_write_hint; 674 bio->bi_iter = bio_src->bi_iter; 675 bio->bi_io_vec = bio_src->bi_io_vec; 676 677 bio_clone_blkg_association(bio, bio_src); 678 blkcg_bio_issue_init(bio); 679 } 680 EXPORT_SYMBOL(__bio_clone_fast); 681 682 /** 683 * bio_clone_fast - clone a bio that shares the original bio's biovec 684 * @bio: bio to clone 685 * @gfp_mask: allocation priority 686 * @bs: bio_set to allocate from 687 * 688 * Like __bio_clone_fast, only also allocates the returned bio 689 */ 690 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 691 { 692 struct bio *b; 693 694 b = bio_alloc_bioset(gfp_mask, 0, bs); 695 if (!b) 696 return NULL; 697 698 __bio_clone_fast(b, bio); 699 700 if (bio_crypt_clone(b, bio, gfp_mask) < 0) 701 goto err_put; 702 703 if (bio_integrity(bio) && 704 bio_integrity_clone(b, bio, gfp_mask) < 0) 705 goto err_put; 706 707 return b; 708 709 err_put: 710 bio_put(b); 711 return NULL; 712 } 713 EXPORT_SYMBOL(bio_clone_fast); 714 715 const char *bio_devname(struct bio *bio, char *buf) 716 { 717 return bdevname(bio->bi_bdev, buf); 718 } 719 EXPORT_SYMBOL(bio_devname); 720 721 static inline bool page_is_mergeable(const struct bio_vec *bv, 722 struct page *page, unsigned int len, unsigned int off, 723 bool *same_page) 724 { 725 size_t bv_end = bv->bv_offset + bv->bv_len; 726 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1; 727 phys_addr_t page_addr = page_to_phys(page); 728 729 if (vec_end_addr + 1 != page_addr + off) 730 return false; 731 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 732 return false; 733 734 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); 735 if (*same_page) 736 return true; 737 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE); 738 } 739 740 /* 741 * Try to merge a page into a segment, while obeying the hardware segment 742 * size limit. This is not for normal read/write bios, but for passthrough 743 * or Zone Append operations that we can't split. 744 */ 745 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio, 746 struct page *page, unsigned len, 747 unsigned offset, bool *same_page) 748 { 749 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 750 unsigned long mask = queue_segment_boundary(q); 751 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; 752 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 753 754 if ((addr1 | mask) != (addr2 | mask)) 755 return false; 756 if (bv->bv_len + len > queue_max_segment_size(q)) 757 return false; 758 return __bio_try_merge_page(bio, page, len, offset, same_page); 759 } 760 761 /** 762 * bio_add_hw_page - attempt to add a page to a bio with hw constraints 763 * @q: the target queue 764 * @bio: destination bio 765 * @page: page to add 766 * @len: vec entry length 767 * @offset: vec entry offset 768 * @max_sectors: maximum number of sectors that can be added 769 * @same_page: return if the segment has been merged inside the same page 770 * 771 * Add a page to a bio while respecting the hardware max_sectors, max_segment 772 * and gap limitations. 773 */ 774 int bio_add_hw_page(struct request_queue *q, struct bio *bio, 775 struct page *page, unsigned int len, unsigned int offset, 776 unsigned int max_sectors, bool *same_page) 777 { 778 struct bio_vec *bvec; 779 780 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 781 return 0; 782 783 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors) 784 return 0; 785 786 if (bio->bi_vcnt > 0) { 787 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page)) 788 return len; 789 790 /* 791 * If the queue doesn't support SG gaps and adding this segment 792 * would create a gap, disallow it. 793 */ 794 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 795 if (bvec_gap_to_prev(q, bvec, offset)) 796 return 0; 797 } 798 799 if (bio_full(bio, len)) 800 return 0; 801 802 if (bio->bi_vcnt >= queue_max_segments(q)) 803 return 0; 804 805 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 806 bvec->bv_page = page; 807 bvec->bv_len = len; 808 bvec->bv_offset = offset; 809 bio->bi_vcnt++; 810 bio->bi_iter.bi_size += len; 811 return len; 812 } 813 814 /** 815 * bio_add_pc_page - attempt to add page to passthrough bio 816 * @q: the target queue 817 * @bio: destination bio 818 * @page: page to add 819 * @len: vec entry length 820 * @offset: vec entry offset 821 * 822 * Attempt to add a page to the bio_vec maplist. This can fail for a 823 * number of reasons, such as the bio being full or target block device 824 * limitations. The target block device must allow bio's up to PAGE_SIZE, 825 * so it is always possible to add a single page to an empty bio. 826 * 827 * This should only be used by passthrough bios. 828 */ 829 int bio_add_pc_page(struct request_queue *q, struct bio *bio, 830 struct page *page, unsigned int len, unsigned int offset) 831 { 832 bool same_page = false; 833 return bio_add_hw_page(q, bio, page, len, offset, 834 queue_max_hw_sectors(q), &same_page); 835 } 836 EXPORT_SYMBOL(bio_add_pc_page); 837 838 /** 839 * bio_add_zone_append_page - attempt to add page to zone-append bio 840 * @bio: destination bio 841 * @page: page to add 842 * @len: vec entry length 843 * @offset: vec entry offset 844 * 845 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted 846 * for a zone-append request. This can fail for a number of reasons, such as the 847 * bio being full or the target block device is not a zoned block device or 848 * other limitations of the target block device. The target block device must 849 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page 850 * to an empty bio. 851 * 852 * Returns: number of bytes added to the bio, or 0 in case of a failure. 853 */ 854 int bio_add_zone_append_page(struct bio *bio, struct page *page, 855 unsigned int len, unsigned int offset) 856 { 857 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 858 bool same_page = false; 859 860 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND)) 861 return 0; 862 863 if (WARN_ON_ONCE(!blk_queue_is_zoned(q))) 864 return 0; 865 866 return bio_add_hw_page(q, bio, page, len, offset, 867 queue_max_zone_append_sectors(q), &same_page); 868 } 869 EXPORT_SYMBOL_GPL(bio_add_zone_append_page); 870 871 /** 872 * __bio_try_merge_page - try appending data to an existing bvec. 873 * @bio: destination bio 874 * @page: start page to add 875 * @len: length of the data to add 876 * @off: offset of the data relative to @page 877 * @same_page: return if the segment has been merged inside the same page 878 * 879 * Try to add the data at @page + @off to the last bvec of @bio. This is a 880 * useful optimisation for file systems with a block size smaller than the 881 * page size. 882 * 883 * Warn if (@len, @off) crosses pages in case that @same_page is true. 884 * 885 * Return %true on success or %false on failure. 886 */ 887 bool __bio_try_merge_page(struct bio *bio, struct page *page, 888 unsigned int len, unsigned int off, bool *same_page) 889 { 890 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 891 return false; 892 893 if (bio->bi_vcnt > 0) { 894 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 895 896 if (page_is_mergeable(bv, page, len, off, same_page)) { 897 if (bio->bi_iter.bi_size > UINT_MAX - len) { 898 *same_page = false; 899 return false; 900 } 901 bv->bv_len += len; 902 bio->bi_iter.bi_size += len; 903 return true; 904 } 905 } 906 return false; 907 } 908 EXPORT_SYMBOL_GPL(__bio_try_merge_page); 909 910 /** 911 * __bio_add_page - add page(s) to a bio in a new segment 912 * @bio: destination bio 913 * @page: start page to add 914 * @len: length of the data to add, may cross pages 915 * @off: offset of the data relative to @page, may cross pages 916 * 917 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 918 * that @bio has space for another bvec. 919 */ 920 void __bio_add_page(struct bio *bio, struct page *page, 921 unsigned int len, unsigned int off) 922 { 923 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt]; 924 925 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 926 WARN_ON_ONCE(bio_full(bio, len)); 927 928 bv->bv_page = page; 929 bv->bv_offset = off; 930 bv->bv_len = len; 931 932 bio->bi_iter.bi_size += len; 933 bio->bi_vcnt++; 934 935 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page))) 936 bio_set_flag(bio, BIO_WORKINGSET); 937 } 938 EXPORT_SYMBOL_GPL(__bio_add_page); 939 940 /** 941 * bio_add_page - attempt to add page(s) to bio 942 * @bio: destination bio 943 * @page: start page to add 944 * @len: vec entry length, may cross pages 945 * @offset: vec entry offset relative to @page, may cross pages 946 * 947 * Attempt to add page(s) to the bio_vec maplist. This will only fail 948 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 949 */ 950 int bio_add_page(struct bio *bio, struct page *page, 951 unsigned int len, unsigned int offset) 952 { 953 bool same_page = false; 954 955 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { 956 if (bio_full(bio, len)) 957 return 0; 958 __bio_add_page(bio, page, len, offset); 959 } 960 return len; 961 } 962 EXPORT_SYMBOL(bio_add_page); 963 964 void bio_release_pages(struct bio *bio, bool mark_dirty) 965 { 966 struct bvec_iter_all iter_all; 967 struct bio_vec *bvec; 968 969 if (bio_flagged(bio, BIO_NO_PAGE_REF)) 970 return; 971 972 bio_for_each_segment_all(bvec, bio, iter_all) { 973 if (mark_dirty && !PageCompound(bvec->bv_page)) 974 set_page_dirty_lock(bvec->bv_page); 975 put_page(bvec->bv_page); 976 } 977 } 978 EXPORT_SYMBOL_GPL(bio_release_pages); 979 980 static void __bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter) 981 { 982 WARN_ON_ONCE(bio->bi_max_vecs); 983 984 bio->bi_vcnt = iter->nr_segs; 985 bio->bi_io_vec = (struct bio_vec *)iter->bvec; 986 bio->bi_iter.bi_bvec_done = iter->iov_offset; 987 bio->bi_iter.bi_size = iter->count; 988 bio_set_flag(bio, BIO_NO_PAGE_REF); 989 bio_set_flag(bio, BIO_CLONED); 990 } 991 992 static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter) 993 { 994 __bio_iov_bvec_set(bio, iter); 995 iov_iter_advance(iter, iter->count); 996 return 0; 997 } 998 999 static int bio_iov_bvec_set_append(struct bio *bio, struct iov_iter *iter) 1000 { 1001 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 1002 struct iov_iter i = *iter; 1003 1004 iov_iter_truncate(&i, queue_max_zone_append_sectors(q) << 9); 1005 __bio_iov_bvec_set(bio, &i); 1006 iov_iter_advance(iter, i.count); 1007 return 0; 1008 } 1009 1010 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 1011 1012 /** 1013 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 1014 * @bio: bio to add pages to 1015 * @iter: iov iterator describing the region to be mapped 1016 * 1017 * Pins pages from *iter and appends them to @bio's bvec array. The 1018 * pages will have to be released using put_page() when done. 1019 * For multi-segment *iter, this function only adds pages from the 1020 * next non-empty segment of the iov iterator. 1021 */ 1022 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1023 { 1024 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 1025 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 1026 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 1027 struct page **pages = (struct page **)bv; 1028 bool same_page = false; 1029 ssize_t size, left; 1030 unsigned len, i; 1031 size_t offset; 1032 1033 /* 1034 * Move page array up in the allocated memory for the bio vecs as far as 1035 * possible so that we can start filling biovecs from the beginning 1036 * without overwriting the temporary page array. 1037 */ 1038 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 1039 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 1040 1041 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 1042 if (unlikely(size <= 0)) 1043 return size ? size : -EFAULT; 1044 1045 for (left = size, i = 0; left > 0; left -= len, i++) { 1046 struct page *page = pages[i]; 1047 1048 len = min_t(size_t, PAGE_SIZE - offset, left); 1049 1050 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) { 1051 if (same_page) 1052 put_page(page); 1053 } else { 1054 if (WARN_ON_ONCE(bio_full(bio, len))) 1055 return -EINVAL; 1056 __bio_add_page(bio, page, len, offset); 1057 } 1058 offset = 0; 1059 } 1060 1061 iov_iter_advance(iter, size); 1062 return 0; 1063 } 1064 1065 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter) 1066 { 1067 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 1068 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 1069 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 1070 unsigned int max_append_sectors = queue_max_zone_append_sectors(q); 1071 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 1072 struct page **pages = (struct page **)bv; 1073 ssize_t size, left; 1074 unsigned len, i; 1075 size_t offset; 1076 int ret = 0; 1077 1078 if (WARN_ON_ONCE(!max_append_sectors)) 1079 return 0; 1080 1081 /* 1082 * Move page array up in the allocated memory for the bio vecs as far as 1083 * possible so that we can start filling biovecs from the beginning 1084 * without overwriting the temporary page array. 1085 */ 1086 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 1087 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 1088 1089 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 1090 if (unlikely(size <= 0)) 1091 return size ? size : -EFAULT; 1092 1093 for (left = size, i = 0; left > 0; left -= len, i++) { 1094 struct page *page = pages[i]; 1095 bool same_page = false; 1096 1097 len = min_t(size_t, PAGE_SIZE - offset, left); 1098 if (bio_add_hw_page(q, bio, page, len, offset, 1099 max_append_sectors, &same_page) != len) { 1100 ret = -EINVAL; 1101 break; 1102 } 1103 if (same_page) 1104 put_page(page); 1105 offset = 0; 1106 } 1107 1108 iov_iter_advance(iter, size - left); 1109 return ret; 1110 } 1111 1112 /** 1113 * bio_iov_iter_get_pages - add user or kernel pages to a bio 1114 * @bio: bio to add pages to 1115 * @iter: iov iterator describing the region to be added 1116 * 1117 * This takes either an iterator pointing to user memory, or one pointing to 1118 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 1119 * map them into the kernel. On IO completion, the caller should put those 1120 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided 1121 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs 1122 * to ensure the bvecs and pages stay referenced until the submitted I/O is 1123 * completed by a call to ->ki_complete() or returns with an error other than 1124 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF 1125 * on IO completion. If it isn't, then pages should be released. 1126 * 1127 * The function tries, but does not guarantee, to pin as many pages as 1128 * fit into the bio, or are requested in @iter, whatever is smaller. If 1129 * MM encounters an error pinning the requested pages, it stops. Error 1130 * is returned only if 0 pages could be pinned. 1131 * 1132 * It's intended for direct IO, so doesn't do PSI tracking, the caller is 1133 * responsible for setting BIO_WORKINGSET if necessary. 1134 */ 1135 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1136 { 1137 int ret = 0; 1138 1139 if (iov_iter_is_bvec(iter)) { 1140 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 1141 return bio_iov_bvec_set_append(bio, iter); 1142 return bio_iov_bvec_set(bio, iter); 1143 } 1144 1145 do { 1146 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 1147 ret = __bio_iov_append_get_pages(bio, iter); 1148 else 1149 ret = __bio_iov_iter_get_pages(bio, iter); 1150 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); 1151 1152 /* don't account direct I/O as memory stall */ 1153 bio_clear_flag(bio, BIO_WORKINGSET); 1154 return bio->bi_vcnt ? 0 : ret; 1155 } 1156 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 1157 1158 static void submit_bio_wait_endio(struct bio *bio) 1159 { 1160 complete(bio->bi_private); 1161 } 1162 1163 /** 1164 * submit_bio_wait - submit a bio, and wait until it completes 1165 * @bio: The &struct bio which describes the I/O 1166 * 1167 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 1168 * bio_endio() on failure. 1169 * 1170 * WARNING: Unlike to how submit_bio() is usually used, this function does not 1171 * result in bio reference to be consumed. The caller must drop the reference 1172 * on his own. 1173 */ 1174 int submit_bio_wait(struct bio *bio) 1175 { 1176 DECLARE_COMPLETION_ONSTACK_MAP(done, 1177 bio->bi_bdev->bd_disk->lockdep_map); 1178 unsigned long hang_check; 1179 1180 bio->bi_private = &done; 1181 bio->bi_end_io = submit_bio_wait_endio; 1182 bio->bi_opf |= REQ_SYNC; 1183 submit_bio(bio); 1184 1185 /* Prevent hang_check timer from firing at us during very long I/O */ 1186 hang_check = sysctl_hung_task_timeout_secs; 1187 if (hang_check) 1188 while (!wait_for_completion_io_timeout(&done, 1189 hang_check * (HZ/2))) 1190 ; 1191 else 1192 wait_for_completion_io(&done); 1193 1194 return blk_status_to_errno(bio->bi_status); 1195 } 1196 EXPORT_SYMBOL(submit_bio_wait); 1197 1198 /** 1199 * bio_advance - increment/complete a bio by some number of bytes 1200 * @bio: bio to advance 1201 * @bytes: number of bytes to complete 1202 * 1203 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 1204 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 1205 * be updated on the last bvec as well. 1206 * 1207 * @bio will then represent the remaining, uncompleted portion of the io. 1208 */ 1209 void bio_advance(struct bio *bio, unsigned bytes) 1210 { 1211 if (bio_integrity(bio)) 1212 bio_integrity_advance(bio, bytes); 1213 1214 bio_crypt_advance(bio, bytes); 1215 bio_advance_iter(bio, &bio->bi_iter, bytes); 1216 } 1217 EXPORT_SYMBOL(bio_advance); 1218 1219 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 1220 struct bio *src, struct bvec_iter *src_iter) 1221 { 1222 struct bio_vec src_bv, dst_bv; 1223 void *src_p, *dst_p; 1224 unsigned bytes; 1225 1226 while (src_iter->bi_size && dst_iter->bi_size) { 1227 src_bv = bio_iter_iovec(src, *src_iter); 1228 dst_bv = bio_iter_iovec(dst, *dst_iter); 1229 1230 bytes = min(src_bv.bv_len, dst_bv.bv_len); 1231 1232 src_p = kmap_atomic(src_bv.bv_page); 1233 dst_p = kmap_atomic(dst_bv.bv_page); 1234 1235 memcpy(dst_p + dst_bv.bv_offset, 1236 src_p + src_bv.bv_offset, 1237 bytes); 1238 1239 kunmap_atomic(dst_p); 1240 kunmap_atomic(src_p); 1241 1242 flush_dcache_page(dst_bv.bv_page); 1243 1244 bio_advance_iter_single(src, src_iter, bytes); 1245 bio_advance_iter_single(dst, dst_iter, bytes); 1246 } 1247 } 1248 EXPORT_SYMBOL(bio_copy_data_iter); 1249 1250 /** 1251 * bio_copy_data - copy contents of data buffers from one bio to another 1252 * @src: source bio 1253 * @dst: destination bio 1254 * 1255 * Stops when it reaches the end of either @src or @dst - that is, copies 1256 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1257 */ 1258 void bio_copy_data(struct bio *dst, struct bio *src) 1259 { 1260 struct bvec_iter src_iter = src->bi_iter; 1261 struct bvec_iter dst_iter = dst->bi_iter; 1262 1263 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1264 } 1265 EXPORT_SYMBOL(bio_copy_data); 1266 1267 void bio_free_pages(struct bio *bio) 1268 { 1269 struct bio_vec *bvec; 1270 struct bvec_iter_all iter_all; 1271 1272 bio_for_each_segment_all(bvec, bio, iter_all) 1273 __free_page(bvec->bv_page); 1274 } 1275 EXPORT_SYMBOL(bio_free_pages); 1276 1277 /* 1278 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1279 * for performing direct-IO in BIOs. 1280 * 1281 * The problem is that we cannot run set_page_dirty() from interrupt context 1282 * because the required locks are not interrupt-safe. So what we can do is to 1283 * mark the pages dirty _before_ performing IO. And in interrupt context, 1284 * check that the pages are still dirty. If so, fine. If not, redirty them 1285 * in process context. 1286 * 1287 * We special-case compound pages here: normally this means reads into hugetlb 1288 * pages. The logic in here doesn't really work right for compound pages 1289 * because the VM does not uniformly chase down the head page in all cases. 1290 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1291 * handle them at all. So we skip compound pages here at an early stage. 1292 * 1293 * Note that this code is very hard to test under normal circumstances because 1294 * direct-io pins the pages with get_user_pages(). This makes 1295 * is_page_cache_freeable return false, and the VM will not clean the pages. 1296 * But other code (eg, flusher threads) could clean the pages if they are mapped 1297 * pagecache. 1298 * 1299 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1300 * deferred bio dirtying paths. 1301 */ 1302 1303 /* 1304 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1305 */ 1306 void bio_set_pages_dirty(struct bio *bio) 1307 { 1308 struct bio_vec *bvec; 1309 struct bvec_iter_all iter_all; 1310 1311 bio_for_each_segment_all(bvec, bio, iter_all) { 1312 if (!PageCompound(bvec->bv_page)) 1313 set_page_dirty_lock(bvec->bv_page); 1314 } 1315 } 1316 1317 /* 1318 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1319 * If they are, then fine. If, however, some pages are clean then they must 1320 * have been written out during the direct-IO read. So we take another ref on 1321 * the BIO and re-dirty the pages in process context. 1322 * 1323 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1324 * here on. It will run one put_page() against each page and will run one 1325 * bio_put() against the BIO. 1326 */ 1327 1328 static void bio_dirty_fn(struct work_struct *work); 1329 1330 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1331 static DEFINE_SPINLOCK(bio_dirty_lock); 1332 static struct bio *bio_dirty_list; 1333 1334 /* 1335 * This runs in process context 1336 */ 1337 static void bio_dirty_fn(struct work_struct *work) 1338 { 1339 struct bio *bio, *next; 1340 1341 spin_lock_irq(&bio_dirty_lock); 1342 next = bio_dirty_list; 1343 bio_dirty_list = NULL; 1344 spin_unlock_irq(&bio_dirty_lock); 1345 1346 while ((bio = next) != NULL) { 1347 next = bio->bi_private; 1348 1349 bio_release_pages(bio, true); 1350 bio_put(bio); 1351 } 1352 } 1353 1354 void bio_check_pages_dirty(struct bio *bio) 1355 { 1356 struct bio_vec *bvec; 1357 unsigned long flags; 1358 struct bvec_iter_all iter_all; 1359 1360 bio_for_each_segment_all(bvec, bio, iter_all) { 1361 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page)) 1362 goto defer; 1363 } 1364 1365 bio_release_pages(bio, false); 1366 bio_put(bio); 1367 return; 1368 defer: 1369 spin_lock_irqsave(&bio_dirty_lock, flags); 1370 bio->bi_private = bio_dirty_list; 1371 bio_dirty_list = bio; 1372 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1373 schedule_work(&bio_dirty_work); 1374 } 1375 1376 static inline bool bio_remaining_done(struct bio *bio) 1377 { 1378 /* 1379 * If we're not chaining, then ->__bi_remaining is always 1 and 1380 * we always end io on the first invocation. 1381 */ 1382 if (!bio_flagged(bio, BIO_CHAIN)) 1383 return true; 1384 1385 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1386 1387 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1388 bio_clear_flag(bio, BIO_CHAIN); 1389 return true; 1390 } 1391 1392 return false; 1393 } 1394 1395 /** 1396 * bio_endio - end I/O on a bio 1397 * @bio: bio 1398 * 1399 * Description: 1400 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1401 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1402 * bio unless they own it and thus know that it has an end_io function. 1403 * 1404 * bio_endio() can be called several times on a bio that has been chained 1405 * using bio_chain(). The ->bi_end_io() function will only be called the 1406 * last time. 1407 **/ 1408 void bio_endio(struct bio *bio) 1409 { 1410 again: 1411 if (!bio_remaining_done(bio)) 1412 return; 1413 if (!bio_integrity_endio(bio)) 1414 return; 1415 1416 if (bio->bi_bdev) 1417 rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio); 1418 1419 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1420 trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio); 1421 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1422 } 1423 1424 /* 1425 * Need to have a real endio function for chained bios, otherwise 1426 * various corner cases will break (like stacking block devices that 1427 * save/restore bi_end_io) - however, we want to avoid unbounded 1428 * recursion and blowing the stack. Tail call optimization would 1429 * handle this, but compiling with frame pointers also disables 1430 * gcc's sibling call optimization. 1431 */ 1432 if (bio->bi_end_io == bio_chain_endio) { 1433 bio = __bio_chain_endio(bio); 1434 goto again; 1435 } 1436 1437 blk_throtl_bio_endio(bio); 1438 /* release cgroup info */ 1439 bio_uninit(bio); 1440 if (bio->bi_end_io) 1441 bio->bi_end_io(bio); 1442 } 1443 EXPORT_SYMBOL(bio_endio); 1444 1445 /** 1446 * bio_split - split a bio 1447 * @bio: bio to split 1448 * @sectors: number of sectors to split from the front of @bio 1449 * @gfp: gfp mask 1450 * @bs: bio set to allocate from 1451 * 1452 * Allocates and returns a new bio which represents @sectors from the start of 1453 * @bio, and updates @bio to represent the remaining sectors. 1454 * 1455 * Unless this is a discard request the newly allocated bio will point 1456 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that 1457 * neither @bio nor @bs are freed before the split bio. 1458 */ 1459 struct bio *bio_split(struct bio *bio, int sectors, 1460 gfp_t gfp, struct bio_set *bs) 1461 { 1462 struct bio *split; 1463 1464 BUG_ON(sectors <= 0); 1465 BUG_ON(sectors >= bio_sectors(bio)); 1466 1467 /* Zone append commands cannot be split */ 1468 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND)) 1469 return NULL; 1470 1471 split = bio_clone_fast(bio, gfp, bs); 1472 if (!split) 1473 return NULL; 1474 1475 split->bi_iter.bi_size = sectors << 9; 1476 1477 if (bio_integrity(split)) 1478 bio_integrity_trim(split); 1479 1480 bio_advance(bio, split->bi_iter.bi_size); 1481 1482 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1483 bio_set_flag(split, BIO_TRACE_COMPLETION); 1484 1485 return split; 1486 } 1487 EXPORT_SYMBOL(bio_split); 1488 1489 /** 1490 * bio_trim - trim a bio 1491 * @bio: bio to trim 1492 * @offset: number of sectors to trim from the front of @bio 1493 * @size: size we want to trim @bio to, in sectors 1494 */ 1495 void bio_trim(struct bio *bio, int offset, int size) 1496 { 1497 /* 'bio' is a cloned bio which we need to trim to match 1498 * the given offset and size. 1499 */ 1500 1501 size <<= 9; 1502 if (offset == 0 && size == bio->bi_iter.bi_size) 1503 return; 1504 1505 bio_advance(bio, offset << 9); 1506 bio->bi_iter.bi_size = size; 1507 1508 if (bio_integrity(bio)) 1509 bio_integrity_trim(bio); 1510 1511 } 1512 EXPORT_SYMBOL_GPL(bio_trim); 1513 1514 /* 1515 * create memory pools for biovec's in a bio_set. 1516 * use the global biovec slabs created for general use. 1517 */ 1518 int biovec_init_pool(mempool_t *pool, int pool_entries) 1519 { 1520 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1; 1521 1522 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1523 } 1524 1525 /* 1526 * bioset_exit - exit a bioset initialized with bioset_init() 1527 * 1528 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1529 * kzalloc()). 1530 */ 1531 void bioset_exit(struct bio_set *bs) 1532 { 1533 if (bs->rescue_workqueue) 1534 destroy_workqueue(bs->rescue_workqueue); 1535 bs->rescue_workqueue = NULL; 1536 1537 mempool_exit(&bs->bio_pool); 1538 mempool_exit(&bs->bvec_pool); 1539 1540 bioset_integrity_free(bs); 1541 if (bs->bio_slab) 1542 bio_put_slab(bs); 1543 bs->bio_slab = NULL; 1544 } 1545 EXPORT_SYMBOL(bioset_exit); 1546 1547 /** 1548 * bioset_init - Initialize a bio_set 1549 * @bs: pool to initialize 1550 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1551 * @front_pad: Number of bytes to allocate in front of the returned bio 1552 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1553 * and %BIOSET_NEED_RESCUER 1554 * 1555 * Description: 1556 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1557 * to ask for a number of bytes to be allocated in front of the bio. 1558 * Front pad allocation is useful for embedding the bio inside 1559 * another structure, to avoid allocating extra data to go with the bio. 1560 * Note that the bio must be embedded at the END of that structure always, 1561 * or things will break badly. 1562 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1563 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast(). 1564 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to 1565 * dispatch queued requests when the mempool runs out of space. 1566 * 1567 */ 1568 int bioset_init(struct bio_set *bs, 1569 unsigned int pool_size, 1570 unsigned int front_pad, 1571 int flags) 1572 { 1573 bs->front_pad = front_pad; 1574 if (flags & BIOSET_NEED_BVECS) 1575 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1576 else 1577 bs->back_pad = 0; 1578 1579 spin_lock_init(&bs->rescue_lock); 1580 bio_list_init(&bs->rescue_list); 1581 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1582 1583 bs->bio_slab = bio_find_or_create_slab(bs); 1584 if (!bs->bio_slab) 1585 return -ENOMEM; 1586 1587 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 1588 goto bad; 1589 1590 if ((flags & BIOSET_NEED_BVECS) && 1591 biovec_init_pool(&bs->bvec_pool, pool_size)) 1592 goto bad; 1593 1594 if (!(flags & BIOSET_NEED_RESCUER)) 1595 return 0; 1596 1597 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1598 if (!bs->rescue_workqueue) 1599 goto bad; 1600 1601 return 0; 1602 bad: 1603 bioset_exit(bs); 1604 return -ENOMEM; 1605 } 1606 EXPORT_SYMBOL(bioset_init); 1607 1608 /* 1609 * Initialize and setup a new bio_set, based on the settings from 1610 * another bio_set. 1611 */ 1612 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src) 1613 { 1614 int flags; 1615 1616 flags = 0; 1617 if (src->bvec_pool.min_nr) 1618 flags |= BIOSET_NEED_BVECS; 1619 if (src->rescue_workqueue) 1620 flags |= BIOSET_NEED_RESCUER; 1621 1622 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags); 1623 } 1624 EXPORT_SYMBOL(bioset_init_from_src); 1625 1626 static int __init init_bio(void) 1627 { 1628 int i; 1629 1630 bio_integrity_init(); 1631 1632 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) { 1633 struct biovec_slab *bvs = bvec_slabs + i; 1634 1635 bvs->slab = kmem_cache_create(bvs->name, 1636 bvs->nr_vecs * sizeof(struct bio_vec), 0, 1637 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1638 } 1639 1640 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS)) 1641 panic("bio: can't allocate bios\n"); 1642 1643 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) 1644 panic("bio: can't create integrity pool\n"); 1645 1646 return 0; 1647 } 1648 subsys_initcall(init_bio); 1649