xref: /openbmc/linux/block/bio.c (revision d8bcaabe)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 
32 #include <trace/events/block.h>
33 #include "blk.h"
34 
35 /*
36  * Test patch to inline a certain number of bi_io_vec's inside the bio
37  * itself, to shrink a bio data allocation from two mempool calls to one
38  */
39 #define BIO_INLINE_VECS		4
40 
41 /*
42  * if you change this list, also change bvec_alloc or things will
43  * break badly! cannot be bigger than what you can fit into an
44  * unsigned short
45  */
46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
48 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 };
50 #undef BV
51 
52 /*
53  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54  * IO code that does not need private memory pools.
55  */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58 
59 /*
60  * Our slab pool management
61  */
62 struct bio_slab {
63 	struct kmem_cache *slab;
64 	unsigned int slab_ref;
65 	unsigned int slab_size;
66 	char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71 
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 	unsigned int sz = sizeof(struct bio) + extra_size;
75 	struct kmem_cache *slab = NULL;
76 	struct bio_slab *bslab, *new_bio_slabs;
77 	unsigned int new_bio_slab_max;
78 	unsigned int i, entry = -1;
79 
80 	mutex_lock(&bio_slab_lock);
81 
82 	i = 0;
83 	while (i < bio_slab_nr) {
84 		bslab = &bio_slabs[i];
85 
86 		if (!bslab->slab && entry == -1)
87 			entry = i;
88 		else if (bslab->slab_size == sz) {
89 			slab = bslab->slab;
90 			bslab->slab_ref++;
91 			break;
92 		}
93 		i++;
94 	}
95 
96 	if (slab)
97 		goto out_unlock;
98 
99 	if (bio_slab_nr == bio_slab_max && entry == -1) {
100 		new_bio_slab_max = bio_slab_max << 1;
101 		new_bio_slabs = krealloc(bio_slabs,
102 					 new_bio_slab_max * sizeof(struct bio_slab),
103 					 GFP_KERNEL);
104 		if (!new_bio_slabs)
105 			goto out_unlock;
106 		bio_slab_max = new_bio_slab_max;
107 		bio_slabs = new_bio_slabs;
108 	}
109 	if (entry == -1)
110 		entry = bio_slab_nr++;
111 
112 	bslab = &bio_slabs[entry];
113 
114 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 				 SLAB_HWCACHE_ALIGN, NULL);
117 	if (!slab)
118 		goto out_unlock;
119 
120 	bslab->slab = slab;
121 	bslab->slab_ref = 1;
122 	bslab->slab_size = sz;
123 out_unlock:
124 	mutex_unlock(&bio_slab_lock);
125 	return slab;
126 }
127 
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 	struct bio_slab *bslab = NULL;
131 	unsigned int i;
132 
133 	mutex_lock(&bio_slab_lock);
134 
135 	for (i = 0; i < bio_slab_nr; i++) {
136 		if (bs->bio_slab == bio_slabs[i].slab) {
137 			bslab = &bio_slabs[i];
138 			break;
139 		}
140 	}
141 
142 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 		goto out;
144 
145 	WARN_ON(!bslab->slab_ref);
146 
147 	if (--bslab->slab_ref)
148 		goto out;
149 
150 	kmem_cache_destroy(bslab->slab);
151 	bslab->slab = NULL;
152 
153 out:
154 	mutex_unlock(&bio_slab_lock);
155 }
156 
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 	return bvec_slabs[idx].nr_vecs;
160 }
161 
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 	if (!idx)
165 		return;
166 	idx--;
167 
168 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
169 
170 	if (idx == BVEC_POOL_MAX) {
171 		mempool_free(bv, pool);
172 	} else {
173 		struct biovec_slab *bvs = bvec_slabs + idx;
174 
175 		kmem_cache_free(bvs->slab, bv);
176 	}
177 }
178 
179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 			   mempool_t *pool)
181 {
182 	struct bio_vec *bvl;
183 
184 	/*
185 	 * see comment near bvec_array define!
186 	 */
187 	switch (nr) {
188 	case 1:
189 		*idx = 0;
190 		break;
191 	case 2 ... 4:
192 		*idx = 1;
193 		break;
194 	case 5 ... 16:
195 		*idx = 2;
196 		break;
197 	case 17 ... 64:
198 		*idx = 3;
199 		break;
200 	case 65 ... 128:
201 		*idx = 4;
202 		break;
203 	case 129 ... BIO_MAX_PAGES:
204 		*idx = 5;
205 		break;
206 	default:
207 		return NULL;
208 	}
209 
210 	/*
211 	 * idx now points to the pool we want to allocate from. only the
212 	 * 1-vec entry pool is mempool backed.
213 	 */
214 	if (*idx == BVEC_POOL_MAX) {
215 fallback:
216 		bvl = mempool_alloc(pool, gfp_mask);
217 	} else {
218 		struct biovec_slab *bvs = bvec_slabs + *idx;
219 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
220 
221 		/*
222 		 * Make this allocation restricted and don't dump info on
223 		 * allocation failures, since we'll fallback to the mempool
224 		 * in case of failure.
225 		 */
226 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
227 
228 		/*
229 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
230 		 * is set, retry with the 1-entry mempool
231 		 */
232 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
233 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
234 			*idx = BVEC_POOL_MAX;
235 			goto fallback;
236 		}
237 	}
238 
239 	(*idx)++;
240 	return bvl;
241 }
242 
243 void bio_uninit(struct bio *bio)
244 {
245 	bio_disassociate_task(bio);
246 }
247 EXPORT_SYMBOL(bio_uninit);
248 
249 static void bio_free(struct bio *bio)
250 {
251 	struct bio_set *bs = bio->bi_pool;
252 	void *p;
253 
254 	bio_uninit(bio);
255 
256 	if (bs) {
257 		bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
258 
259 		/*
260 		 * If we have front padding, adjust the bio pointer before freeing
261 		 */
262 		p = bio;
263 		p -= bs->front_pad;
264 
265 		mempool_free(p, bs->bio_pool);
266 	} else {
267 		/* Bio was allocated by bio_kmalloc() */
268 		kfree(bio);
269 	}
270 }
271 
272 /*
273  * Users of this function have their own bio allocation. Subsequently,
274  * they must remember to pair any call to bio_init() with bio_uninit()
275  * when IO has completed, or when the bio is released.
276  */
277 void bio_init(struct bio *bio, struct bio_vec *table,
278 	      unsigned short max_vecs)
279 {
280 	memset(bio, 0, sizeof(*bio));
281 	atomic_set(&bio->__bi_remaining, 1);
282 	atomic_set(&bio->__bi_cnt, 1);
283 
284 	bio->bi_io_vec = table;
285 	bio->bi_max_vecs = max_vecs;
286 }
287 EXPORT_SYMBOL(bio_init);
288 
289 /**
290  * bio_reset - reinitialize a bio
291  * @bio:	bio to reset
292  *
293  * Description:
294  *   After calling bio_reset(), @bio will be in the same state as a freshly
295  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
296  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
297  *   comment in struct bio.
298  */
299 void bio_reset(struct bio *bio)
300 {
301 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
302 
303 	bio_uninit(bio);
304 
305 	memset(bio, 0, BIO_RESET_BYTES);
306 	bio->bi_flags = flags;
307 	atomic_set(&bio->__bi_remaining, 1);
308 }
309 EXPORT_SYMBOL(bio_reset);
310 
311 static struct bio *__bio_chain_endio(struct bio *bio)
312 {
313 	struct bio *parent = bio->bi_private;
314 
315 	if (!parent->bi_status)
316 		parent->bi_status = bio->bi_status;
317 	bio_put(bio);
318 	return parent;
319 }
320 
321 static void bio_chain_endio(struct bio *bio)
322 {
323 	bio_endio(__bio_chain_endio(bio));
324 }
325 
326 /**
327  * bio_chain - chain bio completions
328  * @bio: the target bio
329  * @parent: the @bio's parent bio
330  *
331  * The caller won't have a bi_end_io called when @bio completes - instead,
332  * @parent's bi_end_io won't be called until both @parent and @bio have
333  * completed; the chained bio will also be freed when it completes.
334  *
335  * The caller must not set bi_private or bi_end_io in @bio.
336  */
337 void bio_chain(struct bio *bio, struct bio *parent)
338 {
339 	BUG_ON(bio->bi_private || bio->bi_end_io);
340 
341 	bio->bi_private = parent;
342 	bio->bi_end_io	= bio_chain_endio;
343 	bio_inc_remaining(parent);
344 }
345 EXPORT_SYMBOL(bio_chain);
346 
347 static void bio_alloc_rescue(struct work_struct *work)
348 {
349 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
350 	struct bio *bio;
351 
352 	while (1) {
353 		spin_lock(&bs->rescue_lock);
354 		bio = bio_list_pop(&bs->rescue_list);
355 		spin_unlock(&bs->rescue_lock);
356 
357 		if (!bio)
358 			break;
359 
360 		generic_make_request(bio);
361 	}
362 }
363 
364 static void punt_bios_to_rescuer(struct bio_set *bs)
365 {
366 	struct bio_list punt, nopunt;
367 	struct bio *bio;
368 
369 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
370 		return;
371 	/*
372 	 * In order to guarantee forward progress we must punt only bios that
373 	 * were allocated from this bio_set; otherwise, if there was a bio on
374 	 * there for a stacking driver higher up in the stack, processing it
375 	 * could require allocating bios from this bio_set, and doing that from
376 	 * our own rescuer would be bad.
377 	 *
378 	 * Since bio lists are singly linked, pop them all instead of trying to
379 	 * remove from the middle of the list:
380 	 */
381 
382 	bio_list_init(&punt);
383 	bio_list_init(&nopunt);
384 
385 	while ((bio = bio_list_pop(&current->bio_list[0])))
386 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
387 	current->bio_list[0] = nopunt;
388 
389 	bio_list_init(&nopunt);
390 	while ((bio = bio_list_pop(&current->bio_list[1])))
391 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 	current->bio_list[1] = nopunt;
393 
394 	spin_lock(&bs->rescue_lock);
395 	bio_list_merge(&bs->rescue_list, &punt);
396 	spin_unlock(&bs->rescue_lock);
397 
398 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
399 }
400 
401 /**
402  * bio_alloc_bioset - allocate a bio for I/O
403  * @gfp_mask:   the GFP_ mask given to the slab allocator
404  * @nr_iovecs:	number of iovecs to pre-allocate
405  * @bs:		the bio_set to allocate from.
406  *
407  * Description:
408  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
409  *   backed by the @bs's mempool.
410  *
411  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
412  *   always be able to allocate a bio. This is due to the mempool guarantees.
413  *   To make this work, callers must never allocate more than 1 bio at a time
414  *   from this pool. Callers that need to allocate more than 1 bio must always
415  *   submit the previously allocated bio for IO before attempting to allocate
416  *   a new one. Failure to do so can cause deadlocks under memory pressure.
417  *
418  *   Note that when running under generic_make_request() (i.e. any block
419  *   driver), bios are not submitted until after you return - see the code in
420  *   generic_make_request() that converts recursion into iteration, to prevent
421  *   stack overflows.
422  *
423  *   This would normally mean allocating multiple bios under
424  *   generic_make_request() would be susceptible to deadlocks, but we have
425  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
426  *   thread.
427  *
428  *   However, we do not guarantee forward progress for allocations from other
429  *   mempools. Doing multiple allocations from the same mempool under
430  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
431  *   for per bio allocations.
432  *
433  *   RETURNS:
434  *   Pointer to new bio on success, NULL on failure.
435  */
436 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
437 			     struct bio_set *bs)
438 {
439 	gfp_t saved_gfp = gfp_mask;
440 	unsigned front_pad;
441 	unsigned inline_vecs;
442 	struct bio_vec *bvl = NULL;
443 	struct bio *bio;
444 	void *p;
445 
446 	if (!bs) {
447 		if (nr_iovecs > UIO_MAXIOV)
448 			return NULL;
449 
450 		p = kmalloc(sizeof(struct bio) +
451 			    nr_iovecs * sizeof(struct bio_vec),
452 			    gfp_mask);
453 		front_pad = 0;
454 		inline_vecs = nr_iovecs;
455 	} else {
456 		/* should not use nobvec bioset for nr_iovecs > 0 */
457 		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
458 			return NULL;
459 		/*
460 		 * generic_make_request() converts recursion to iteration; this
461 		 * means if we're running beneath it, any bios we allocate and
462 		 * submit will not be submitted (and thus freed) until after we
463 		 * return.
464 		 *
465 		 * This exposes us to a potential deadlock if we allocate
466 		 * multiple bios from the same bio_set() while running
467 		 * underneath generic_make_request(). If we were to allocate
468 		 * multiple bios (say a stacking block driver that was splitting
469 		 * bios), we would deadlock if we exhausted the mempool's
470 		 * reserve.
471 		 *
472 		 * We solve this, and guarantee forward progress, with a rescuer
473 		 * workqueue per bio_set. If we go to allocate and there are
474 		 * bios on current->bio_list, we first try the allocation
475 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 		 * bios we would be blocking to the rescuer workqueue before
477 		 * we retry with the original gfp_flags.
478 		 */
479 
480 		if (current->bio_list &&
481 		    (!bio_list_empty(&current->bio_list[0]) ||
482 		     !bio_list_empty(&current->bio_list[1])) &&
483 		    bs->rescue_workqueue)
484 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
485 
486 		p = mempool_alloc(bs->bio_pool, gfp_mask);
487 		if (!p && gfp_mask != saved_gfp) {
488 			punt_bios_to_rescuer(bs);
489 			gfp_mask = saved_gfp;
490 			p = mempool_alloc(bs->bio_pool, gfp_mask);
491 		}
492 
493 		front_pad = bs->front_pad;
494 		inline_vecs = BIO_INLINE_VECS;
495 	}
496 
497 	if (unlikely(!p))
498 		return NULL;
499 
500 	bio = p + front_pad;
501 	bio_init(bio, NULL, 0);
502 
503 	if (nr_iovecs > inline_vecs) {
504 		unsigned long idx = 0;
505 
506 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
507 		if (!bvl && gfp_mask != saved_gfp) {
508 			punt_bios_to_rescuer(bs);
509 			gfp_mask = saved_gfp;
510 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
511 		}
512 
513 		if (unlikely(!bvl))
514 			goto err_free;
515 
516 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
517 	} else if (nr_iovecs) {
518 		bvl = bio->bi_inline_vecs;
519 	}
520 
521 	bio->bi_pool = bs;
522 	bio->bi_max_vecs = nr_iovecs;
523 	bio->bi_io_vec = bvl;
524 	return bio;
525 
526 err_free:
527 	mempool_free(p, bs->bio_pool);
528 	return NULL;
529 }
530 EXPORT_SYMBOL(bio_alloc_bioset);
531 
532 void zero_fill_bio(struct bio *bio)
533 {
534 	unsigned long flags;
535 	struct bio_vec bv;
536 	struct bvec_iter iter;
537 
538 	bio_for_each_segment(bv, bio, iter) {
539 		char *data = bvec_kmap_irq(&bv, &flags);
540 		memset(data, 0, bv.bv_len);
541 		flush_dcache_page(bv.bv_page);
542 		bvec_kunmap_irq(data, &flags);
543 	}
544 }
545 EXPORT_SYMBOL(zero_fill_bio);
546 
547 /**
548  * bio_put - release a reference to a bio
549  * @bio:   bio to release reference to
550  *
551  * Description:
552  *   Put a reference to a &struct bio, either one you have gotten with
553  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
554  **/
555 void bio_put(struct bio *bio)
556 {
557 	if (!bio_flagged(bio, BIO_REFFED))
558 		bio_free(bio);
559 	else {
560 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
561 
562 		/*
563 		 * last put frees it
564 		 */
565 		if (atomic_dec_and_test(&bio->__bi_cnt))
566 			bio_free(bio);
567 	}
568 }
569 EXPORT_SYMBOL(bio_put);
570 
571 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
572 {
573 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
574 		blk_recount_segments(q, bio);
575 
576 	return bio->bi_phys_segments;
577 }
578 EXPORT_SYMBOL(bio_phys_segments);
579 
580 /**
581  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
582  * 	@bio: destination bio
583  * 	@bio_src: bio to clone
584  *
585  *	Clone a &bio. Caller will own the returned bio, but not
586  *	the actual data it points to. Reference count of returned
587  * 	bio will be one.
588  *
589  * 	Caller must ensure that @bio_src is not freed before @bio.
590  */
591 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
592 {
593 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
594 
595 	/*
596 	 * most users will be overriding ->bi_disk with a new target,
597 	 * so we don't set nor calculate new physical/hw segment counts here
598 	 */
599 	bio->bi_disk = bio_src->bi_disk;
600 	bio_set_flag(bio, BIO_CLONED);
601 	bio->bi_opf = bio_src->bi_opf;
602 	bio->bi_write_hint = bio_src->bi_write_hint;
603 	bio->bi_iter = bio_src->bi_iter;
604 	bio->bi_io_vec = bio_src->bi_io_vec;
605 
606 	bio_clone_blkcg_association(bio, bio_src);
607 }
608 EXPORT_SYMBOL(__bio_clone_fast);
609 
610 /**
611  *	bio_clone_fast - clone a bio that shares the original bio's biovec
612  *	@bio: bio to clone
613  *	@gfp_mask: allocation priority
614  *	@bs: bio_set to allocate from
615  *
616  * 	Like __bio_clone_fast, only also allocates the returned bio
617  */
618 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
619 {
620 	struct bio *b;
621 
622 	b = bio_alloc_bioset(gfp_mask, 0, bs);
623 	if (!b)
624 		return NULL;
625 
626 	__bio_clone_fast(b, bio);
627 
628 	if (bio_integrity(bio)) {
629 		int ret;
630 
631 		ret = bio_integrity_clone(b, bio, gfp_mask);
632 
633 		if (ret < 0) {
634 			bio_put(b);
635 			return NULL;
636 		}
637 	}
638 
639 	return b;
640 }
641 EXPORT_SYMBOL(bio_clone_fast);
642 
643 /**
644  * 	bio_clone_bioset - clone a bio
645  * 	@bio_src: bio to clone
646  *	@gfp_mask: allocation priority
647  *	@bs: bio_set to allocate from
648  *
649  *	Clone bio. Caller will own the returned bio, but not the actual data it
650  *	points to. Reference count of returned bio will be one.
651  */
652 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
653 			     struct bio_set *bs)
654 {
655 	struct bvec_iter iter;
656 	struct bio_vec bv;
657 	struct bio *bio;
658 
659 	/*
660 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
661 	 * bio_src->bi_io_vec to bio->bi_io_vec.
662 	 *
663 	 * We can't do that anymore, because:
664 	 *
665 	 *  - The point of cloning the biovec is to produce a bio with a biovec
666 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
667 	 *
668 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
669 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
670 	 *    But the clone should succeed as long as the number of biovecs we
671 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
672 	 *
673 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
674 	 *    that does not own the bio - reason being drivers don't use it for
675 	 *    iterating over the biovec anymore, so expecting it to be kept up
676 	 *    to date (i.e. for clones that share the parent biovec) is just
677 	 *    asking for trouble and would force extra work on
678 	 *    __bio_clone_fast() anyways.
679 	 */
680 
681 	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
682 	if (!bio)
683 		return NULL;
684 	bio->bi_disk		= bio_src->bi_disk;
685 	bio->bi_opf		= bio_src->bi_opf;
686 	bio->bi_write_hint	= bio_src->bi_write_hint;
687 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
688 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
689 
690 	switch (bio_op(bio)) {
691 	case REQ_OP_DISCARD:
692 	case REQ_OP_SECURE_ERASE:
693 	case REQ_OP_WRITE_ZEROES:
694 		break;
695 	case REQ_OP_WRITE_SAME:
696 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
697 		break;
698 	default:
699 		bio_for_each_segment(bv, bio_src, iter)
700 			bio->bi_io_vec[bio->bi_vcnt++] = bv;
701 		break;
702 	}
703 
704 	if (bio_integrity(bio_src)) {
705 		int ret;
706 
707 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
708 		if (ret < 0) {
709 			bio_put(bio);
710 			return NULL;
711 		}
712 	}
713 
714 	bio_clone_blkcg_association(bio, bio_src);
715 
716 	return bio;
717 }
718 EXPORT_SYMBOL(bio_clone_bioset);
719 
720 /**
721  *	bio_add_pc_page	-	attempt to add page to bio
722  *	@q: the target queue
723  *	@bio: destination bio
724  *	@page: page to add
725  *	@len: vec entry length
726  *	@offset: vec entry offset
727  *
728  *	Attempt to add a page to the bio_vec maplist. This can fail for a
729  *	number of reasons, such as the bio being full or target block device
730  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
731  *	so it is always possible to add a single page to an empty bio.
732  *
733  *	This should only be used by REQ_PC bios.
734  */
735 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
736 		    *page, unsigned int len, unsigned int offset)
737 {
738 	int retried_segments = 0;
739 	struct bio_vec *bvec;
740 
741 	/*
742 	 * cloned bio must not modify vec list
743 	 */
744 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
745 		return 0;
746 
747 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
748 		return 0;
749 
750 	/*
751 	 * For filesystems with a blocksize smaller than the pagesize
752 	 * we will often be called with the same page as last time and
753 	 * a consecutive offset.  Optimize this special case.
754 	 */
755 	if (bio->bi_vcnt > 0) {
756 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
757 
758 		if (page == prev->bv_page &&
759 		    offset == prev->bv_offset + prev->bv_len) {
760 			prev->bv_len += len;
761 			bio->bi_iter.bi_size += len;
762 			goto done;
763 		}
764 
765 		/*
766 		 * If the queue doesn't support SG gaps and adding this
767 		 * offset would create a gap, disallow it.
768 		 */
769 		if (bvec_gap_to_prev(q, prev, offset))
770 			return 0;
771 	}
772 
773 	if (bio->bi_vcnt >= bio->bi_max_vecs)
774 		return 0;
775 
776 	/*
777 	 * setup the new entry, we might clear it again later if we
778 	 * cannot add the page
779 	 */
780 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
781 	bvec->bv_page = page;
782 	bvec->bv_len = len;
783 	bvec->bv_offset = offset;
784 	bio->bi_vcnt++;
785 	bio->bi_phys_segments++;
786 	bio->bi_iter.bi_size += len;
787 
788 	/*
789 	 * Perform a recount if the number of segments is greater
790 	 * than queue_max_segments(q).
791 	 */
792 
793 	while (bio->bi_phys_segments > queue_max_segments(q)) {
794 
795 		if (retried_segments)
796 			goto failed;
797 
798 		retried_segments = 1;
799 		blk_recount_segments(q, bio);
800 	}
801 
802 	/* If we may be able to merge these biovecs, force a recount */
803 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
804 		bio_clear_flag(bio, BIO_SEG_VALID);
805 
806  done:
807 	return len;
808 
809  failed:
810 	bvec->bv_page = NULL;
811 	bvec->bv_len = 0;
812 	bvec->bv_offset = 0;
813 	bio->bi_vcnt--;
814 	bio->bi_iter.bi_size -= len;
815 	blk_recount_segments(q, bio);
816 	return 0;
817 }
818 EXPORT_SYMBOL(bio_add_pc_page);
819 
820 /**
821  *	bio_add_page	-	attempt to add page to bio
822  *	@bio: destination bio
823  *	@page: page to add
824  *	@len: vec entry length
825  *	@offset: vec entry offset
826  *
827  *	Attempt to add a page to the bio_vec maplist. This will only fail
828  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
829  */
830 int bio_add_page(struct bio *bio, struct page *page,
831 		 unsigned int len, unsigned int offset)
832 {
833 	struct bio_vec *bv;
834 
835 	/*
836 	 * cloned bio must not modify vec list
837 	 */
838 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
839 		return 0;
840 
841 	/*
842 	 * For filesystems with a blocksize smaller than the pagesize
843 	 * we will often be called with the same page as last time and
844 	 * a consecutive offset.  Optimize this special case.
845 	 */
846 	if (bio->bi_vcnt > 0) {
847 		bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
848 
849 		if (page == bv->bv_page &&
850 		    offset == bv->bv_offset + bv->bv_len) {
851 			bv->bv_len += len;
852 			goto done;
853 		}
854 	}
855 
856 	if (bio->bi_vcnt >= bio->bi_max_vecs)
857 		return 0;
858 
859 	bv		= &bio->bi_io_vec[bio->bi_vcnt];
860 	bv->bv_page	= page;
861 	bv->bv_len	= len;
862 	bv->bv_offset	= offset;
863 
864 	bio->bi_vcnt++;
865 done:
866 	bio->bi_iter.bi_size += len;
867 	return len;
868 }
869 EXPORT_SYMBOL(bio_add_page);
870 
871 /**
872  * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
873  * @bio: bio to add pages to
874  * @iter: iov iterator describing the region to be mapped
875  *
876  * Pins as many pages from *iter and appends them to @bio's bvec array. The
877  * pages will have to be released using put_page() when done.
878  */
879 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
880 {
881 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
882 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
883 	struct page **pages = (struct page **)bv;
884 	size_t offset, diff;
885 	ssize_t size;
886 
887 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
888 	if (unlikely(size <= 0))
889 		return size ? size : -EFAULT;
890 	nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
891 
892 	/*
893 	 * Deep magic below:  We need to walk the pinned pages backwards
894 	 * because we are abusing the space allocated for the bio_vecs
895 	 * for the page array.  Because the bio_vecs are larger than the
896 	 * page pointers by definition this will always work.  But it also
897 	 * means we can't use bio_add_page, so any changes to it's semantics
898 	 * need to be reflected here as well.
899 	 */
900 	bio->bi_iter.bi_size += size;
901 	bio->bi_vcnt += nr_pages;
902 
903 	diff = (nr_pages * PAGE_SIZE - offset) - size;
904 	while (nr_pages--) {
905 		bv[nr_pages].bv_page = pages[nr_pages];
906 		bv[nr_pages].bv_len = PAGE_SIZE;
907 		bv[nr_pages].bv_offset = 0;
908 	}
909 
910 	bv[0].bv_offset += offset;
911 	bv[0].bv_len -= offset;
912 	if (diff)
913 		bv[bio->bi_vcnt - 1].bv_len -= diff;
914 
915 	iov_iter_advance(iter, size);
916 	return 0;
917 }
918 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
919 
920 struct submit_bio_ret {
921 	struct completion event;
922 	int error;
923 };
924 
925 static void submit_bio_wait_endio(struct bio *bio)
926 {
927 	struct submit_bio_ret *ret = bio->bi_private;
928 
929 	ret->error = blk_status_to_errno(bio->bi_status);
930 	complete(&ret->event);
931 }
932 
933 /**
934  * submit_bio_wait - submit a bio, and wait until it completes
935  * @bio: The &struct bio which describes the I/O
936  *
937  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
938  * bio_endio() on failure.
939  *
940  * WARNING: Unlike to how submit_bio() is usually used, this function does not
941  * result in bio reference to be consumed. The caller must drop the reference
942  * on his own.
943  */
944 int submit_bio_wait(struct bio *bio)
945 {
946 	struct submit_bio_ret ret;
947 
948 	init_completion(&ret.event);
949 	bio->bi_private = &ret;
950 	bio->bi_end_io = submit_bio_wait_endio;
951 	bio->bi_opf |= REQ_SYNC;
952 	submit_bio(bio);
953 	wait_for_completion_io(&ret.event);
954 
955 	return ret.error;
956 }
957 EXPORT_SYMBOL(submit_bio_wait);
958 
959 /**
960  * bio_advance - increment/complete a bio by some number of bytes
961  * @bio:	bio to advance
962  * @bytes:	number of bytes to complete
963  *
964  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
965  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
966  * be updated on the last bvec as well.
967  *
968  * @bio will then represent the remaining, uncompleted portion of the io.
969  */
970 void bio_advance(struct bio *bio, unsigned bytes)
971 {
972 	if (bio_integrity(bio))
973 		bio_integrity_advance(bio, bytes);
974 
975 	bio_advance_iter(bio, &bio->bi_iter, bytes);
976 }
977 EXPORT_SYMBOL(bio_advance);
978 
979 /**
980  * bio_alloc_pages - allocates a single page for each bvec in a bio
981  * @bio: bio to allocate pages for
982  * @gfp_mask: flags for allocation
983  *
984  * Allocates pages up to @bio->bi_vcnt.
985  *
986  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
987  * freed.
988  */
989 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
990 {
991 	int i;
992 	struct bio_vec *bv;
993 
994 	bio_for_each_segment_all(bv, bio, i) {
995 		bv->bv_page = alloc_page(gfp_mask);
996 		if (!bv->bv_page) {
997 			while (--bv >= bio->bi_io_vec)
998 				__free_page(bv->bv_page);
999 			return -ENOMEM;
1000 		}
1001 	}
1002 
1003 	return 0;
1004 }
1005 EXPORT_SYMBOL(bio_alloc_pages);
1006 
1007 /**
1008  * bio_copy_data - copy contents of data buffers from one chain of bios to
1009  * another
1010  * @src: source bio list
1011  * @dst: destination bio list
1012  *
1013  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1014  * @src and @dst as linked lists of bios.
1015  *
1016  * Stops when it reaches the end of either @src or @dst - that is, copies
1017  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1018  */
1019 void bio_copy_data(struct bio *dst, struct bio *src)
1020 {
1021 	struct bvec_iter src_iter, dst_iter;
1022 	struct bio_vec src_bv, dst_bv;
1023 	void *src_p, *dst_p;
1024 	unsigned bytes;
1025 
1026 	src_iter = src->bi_iter;
1027 	dst_iter = dst->bi_iter;
1028 
1029 	while (1) {
1030 		if (!src_iter.bi_size) {
1031 			src = src->bi_next;
1032 			if (!src)
1033 				break;
1034 
1035 			src_iter = src->bi_iter;
1036 		}
1037 
1038 		if (!dst_iter.bi_size) {
1039 			dst = dst->bi_next;
1040 			if (!dst)
1041 				break;
1042 
1043 			dst_iter = dst->bi_iter;
1044 		}
1045 
1046 		src_bv = bio_iter_iovec(src, src_iter);
1047 		dst_bv = bio_iter_iovec(dst, dst_iter);
1048 
1049 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1050 
1051 		src_p = kmap_atomic(src_bv.bv_page);
1052 		dst_p = kmap_atomic(dst_bv.bv_page);
1053 
1054 		memcpy(dst_p + dst_bv.bv_offset,
1055 		       src_p + src_bv.bv_offset,
1056 		       bytes);
1057 
1058 		kunmap_atomic(dst_p);
1059 		kunmap_atomic(src_p);
1060 
1061 		bio_advance_iter(src, &src_iter, bytes);
1062 		bio_advance_iter(dst, &dst_iter, bytes);
1063 	}
1064 }
1065 EXPORT_SYMBOL(bio_copy_data);
1066 
1067 struct bio_map_data {
1068 	int is_our_pages;
1069 	struct iov_iter iter;
1070 	struct iovec iov[];
1071 };
1072 
1073 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1074 					       gfp_t gfp_mask)
1075 {
1076 	if (iov_count > UIO_MAXIOV)
1077 		return NULL;
1078 
1079 	return kmalloc(sizeof(struct bio_map_data) +
1080 		       sizeof(struct iovec) * iov_count, gfp_mask);
1081 }
1082 
1083 /**
1084  * bio_copy_from_iter - copy all pages from iov_iter to bio
1085  * @bio: The &struct bio which describes the I/O as destination
1086  * @iter: iov_iter as source
1087  *
1088  * Copy all pages from iov_iter to bio.
1089  * Returns 0 on success, or error on failure.
1090  */
1091 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1092 {
1093 	int i;
1094 	struct bio_vec *bvec;
1095 
1096 	bio_for_each_segment_all(bvec, bio, i) {
1097 		ssize_t ret;
1098 
1099 		ret = copy_page_from_iter(bvec->bv_page,
1100 					  bvec->bv_offset,
1101 					  bvec->bv_len,
1102 					  &iter);
1103 
1104 		if (!iov_iter_count(&iter))
1105 			break;
1106 
1107 		if (ret < bvec->bv_len)
1108 			return -EFAULT;
1109 	}
1110 
1111 	return 0;
1112 }
1113 
1114 /**
1115  * bio_copy_to_iter - copy all pages from bio to iov_iter
1116  * @bio: The &struct bio which describes the I/O as source
1117  * @iter: iov_iter as destination
1118  *
1119  * Copy all pages from bio to iov_iter.
1120  * Returns 0 on success, or error on failure.
1121  */
1122 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1123 {
1124 	int i;
1125 	struct bio_vec *bvec;
1126 
1127 	bio_for_each_segment_all(bvec, bio, i) {
1128 		ssize_t ret;
1129 
1130 		ret = copy_page_to_iter(bvec->bv_page,
1131 					bvec->bv_offset,
1132 					bvec->bv_len,
1133 					&iter);
1134 
1135 		if (!iov_iter_count(&iter))
1136 			break;
1137 
1138 		if (ret < bvec->bv_len)
1139 			return -EFAULT;
1140 	}
1141 
1142 	return 0;
1143 }
1144 
1145 void bio_free_pages(struct bio *bio)
1146 {
1147 	struct bio_vec *bvec;
1148 	int i;
1149 
1150 	bio_for_each_segment_all(bvec, bio, i)
1151 		__free_page(bvec->bv_page);
1152 }
1153 EXPORT_SYMBOL(bio_free_pages);
1154 
1155 /**
1156  *	bio_uncopy_user	-	finish previously mapped bio
1157  *	@bio: bio being terminated
1158  *
1159  *	Free pages allocated from bio_copy_user_iov() and write back data
1160  *	to user space in case of a read.
1161  */
1162 int bio_uncopy_user(struct bio *bio)
1163 {
1164 	struct bio_map_data *bmd = bio->bi_private;
1165 	int ret = 0;
1166 
1167 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1168 		/*
1169 		 * if we're in a workqueue, the request is orphaned, so
1170 		 * don't copy into a random user address space, just free
1171 		 * and return -EINTR so user space doesn't expect any data.
1172 		 */
1173 		if (!current->mm)
1174 			ret = -EINTR;
1175 		else if (bio_data_dir(bio) == READ)
1176 			ret = bio_copy_to_iter(bio, bmd->iter);
1177 		if (bmd->is_our_pages)
1178 			bio_free_pages(bio);
1179 	}
1180 	kfree(bmd);
1181 	bio_put(bio);
1182 	return ret;
1183 }
1184 
1185 /**
1186  *	bio_copy_user_iov	-	copy user data to bio
1187  *	@q:		destination block queue
1188  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1189  *	@iter:		iovec iterator
1190  *	@gfp_mask:	memory allocation flags
1191  *
1192  *	Prepares and returns a bio for indirect user io, bouncing data
1193  *	to/from kernel pages as necessary. Must be paired with
1194  *	call bio_uncopy_user() on io completion.
1195  */
1196 struct bio *bio_copy_user_iov(struct request_queue *q,
1197 			      struct rq_map_data *map_data,
1198 			      const struct iov_iter *iter,
1199 			      gfp_t gfp_mask)
1200 {
1201 	struct bio_map_data *bmd;
1202 	struct page *page;
1203 	struct bio *bio;
1204 	int i, ret;
1205 	int nr_pages = 0;
1206 	unsigned int len = iter->count;
1207 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1208 
1209 	for (i = 0; i < iter->nr_segs; i++) {
1210 		unsigned long uaddr;
1211 		unsigned long end;
1212 		unsigned long start;
1213 
1214 		uaddr = (unsigned long) iter->iov[i].iov_base;
1215 		end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1216 			>> PAGE_SHIFT;
1217 		start = uaddr >> PAGE_SHIFT;
1218 
1219 		/*
1220 		 * Overflow, abort
1221 		 */
1222 		if (end < start)
1223 			return ERR_PTR(-EINVAL);
1224 
1225 		nr_pages += end - start;
1226 	}
1227 
1228 	if (offset)
1229 		nr_pages++;
1230 
1231 	bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1232 	if (!bmd)
1233 		return ERR_PTR(-ENOMEM);
1234 
1235 	/*
1236 	 * We need to do a deep copy of the iov_iter including the iovecs.
1237 	 * The caller provided iov might point to an on-stack or otherwise
1238 	 * shortlived one.
1239 	 */
1240 	bmd->is_our_pages = map_data ? 0 : 1;
1241 	memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1242 	iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1243 			iter->nr_segs, iter->count);
1244 
1245 	ret = -ENOMEM;
1246 	bio = bio_kmalloc(gfp_mask, nr_pages);
1247 	if (!bio)
1248 		goto out_bmd;
1249 
1250 	ret = 0;
1251 
1252 	if (map_data) {
1253 		nr_pages = 1 << map_data->page_order;
1254 		i = map_data->offset / PAGE_SIZE;
1255 	}
1256 	while (len) {
1257 		unsigned int bytes = PAGE_SIZE;
1258 
1259 		bytes -= offset;
1260 
1261 		if (bytes > len)
1262 			bytes = len;
1263 
1264 		if (map_data) {
1265 			if (i == map_data->nr_entries * nr_pages) {
1266 				ret = -ENOMEM;
1267 				break;
1268 			}
1269 
1270 			page = map_data->pages[i / nr_pages];
1271 			page += (i % nr_pages);
1272 
1273 			i++;
1274 		} else {
1275 			page = alloc_page(q->bounce_gfp | gfp_mask);
1276 			if (!page) {
1277 				ret = -ENOMEM;
1278 				break;
1279 			}
1280 		}
1281 
1282 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1283 			break;
1284 
1285 		len -= bytes;
1286 		offset = 0;
1287 	}
1288 
1289 	if (ret)
1290 		goto cleanup;
1291 
1292 	/*
1293 	 * success
1294 	 */
1295 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1296 	    (map_data && map_data->from_user)) {
1297 		ret = bio_copy_from_iter(bio, *iter);
1298 		if (ret)
1299 			goto cleanup;
1300 	}
1301 
1302 	bio->bi_private = bmd;
1303 	return bio;
1304 cleanup:
1305 	if (!map_data)
1306 		bio_free_pages(bio);
1307 	bio_put(bio);
1308 out_bmd:
1309 	kfree(bmd);
1310 	return ERR_PTR(ret);
1311 }
1312 
1313 /**
1314  *	bio_map_user_iov - map user iovec into bio
1315  *	@q:		the struct request_queue for the bio
1316  *	@iter:		iovec iterator
1317  *	@gfp_mask:	memory allocation flags
1318  *
1319  *	Map the user space address into a bio suitable for io to a block
1320  *	device. Returns an error pointer in case of error.
1321  */
1322 struct bio *bio_map_user_iov(struct request_queue *q,
1323 			     const struct iov_iter *iter,
1324 			     gfp_t gfp_mask)
1325 {
1326 	int j;
1327 	int nr_pages = 0;
1328 	struct page **pages;
1329 	struct bio *bio;
1330 	int cur_page = 0;
1331 	int ret, offset;
1332 	struct iov_iter i;
1333 	struct iovec iov;
1334 
1335 	iov_for_each(iov, i, *iter) {
1336 		unsigned long uaddr = (unsigned long) iov.iov_base;
1337 		unsigned long len = iov.iov_len;
1338 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1339 		unsigned long start = uaddr >> PAGE_SHIFT;
1340 
1341 		/*
1342 		 * Overflow, abort
1343 		 */
1344 		if (end < start)
1345 			return ERR_PTR(-EINVAL);
1346 
1347 		nr_pages += end - start;
1348 		/*
1349 		 * buffer must be aligned to at least logical block size for now
1350 		 */
1351 		if (uaddr & queue_dma_alignment(q))
1352 			return ERR_PTR(-EINVAL);
1353 	}
1354 
1355 	if (!nr_pages)
1356 		return ERR_PTR(-EINVAL);
1357 
1358 	bio = bio_kmalloc(gfp_mask, nr_pages);
1359 	if (!bio)
1360 		return ERR_PTR(-ENOMEM);
1361 
1362 	ret = -ENOMEM;
1363 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1364 	if (!pages)
1365 		goto out;
1366 
1367 	iov_for_each(iov, i, *iter) {
1368 		unsigned long uaddr = (unsigned long) iov.iov_base;
1369 		unsigned long len = iov.iov_len;
1370 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1371 		unsigned long start = uaddr >> PAGE_SHIFT;
1372 		const int local_nr_pages = end - start;
1373 		const int page_limit = cur_page + local_nr_pages;
1374 
1375 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1376 				(iter->type & WRITE) != WRITE,
1377 				&pages[cur_page]);
1378 		if (ret < local_nr_pages) {
1379 			ret = -EFAULT;
1380 			goto out_unmap;
1381 		}
1382 
1383 		offset = offset_in_page(uaddr);
1384 		for (j = cur_page; j < page_limit; j++) {
1385 			unsigned int bytes = PAGE_SIZE - offset;
1386 
1387 			if (len <= 0)
1388 				break;
1389 
1390 			if (bytes > len)
1391 				bytes = len;
1392 
1393 			/*
1394 			 * sorry...
1395 			 */
1396 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1397 					    bytes)
1398 				break;
1399 
1400 			len -= bytes;
1401 			offset = 0;
1402 		}
1403 
1404 		cur_page = j;
1405 		/*
1406 		 * release the pages we didn't map into the bio, if any
1407 		 */
1408 		while (j < page_limit)
1409 			put_page(pages[j++]);
1410 	}
1411 
1412 	kfree(pages);
1413 
1414 	bio_set_flag(bio, BIO_USER_MAPPED);
1415 
1416 	/*
1417 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1418 	 * it would normally disappear when its bi_end_io is run.
1419 	 * however, we need it for the unmap, so grab an extra
1420 	 * reference to it
1421 	 */
1422 	bio_get(bio);
1423 	return bio;
1424 
1425  out_unmap:
1426 	for (j = 0; j < nr_pages; j++) {
1427 		if (!pages[j])
1428 			break;
1429 		put_page(pages[j]);
1430 	}
1431  out:
1432 	kfree(pages);
1433 	bio_put(bio);
1434 	return ERR_PTR(ret);
1435 }
1436 
1437 static void __bio_unmap_user(struct bio *bio)
1438 {
1439 	struct bio_vec *bvec;
1440 	int i;
1441 
1442 	/*
1443 	 * make sure we dirty pages we wrote to
1444 	 */
1445 	bio_for_each_segment_all(bvec, bio, i) {
1446 		if (bio_data_dir(bio) == READ)
1447 			set_page_dirty_lock(bvec->bv_page);
1448 
1449 		put_page(bvec->bv_page);
1450 	}
1451 
1452 	bio_put(bio);
1453 }
1454 
1455 /**
1456  *	bio_unmap_user	-	unmap a bio
1457  *	@bio:		the bio being unmapped
1458  *
1459  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1460  *	process context.
1461  *
1462  *	bio_unmap_user() may sleep.
1463  */
1464 void bio_unmap_user(struct bio *bio)
1465 {
1466 	__bio_unmap_user(bio);
1467 	bio_put(bio);
1468 }
1469 
1470 static void bio_map_kern_endio(struct bio *bio)
1471 {
1472 	bio_put(bio);
1473 }
1474 
1475 /**
1476  *	bio_map_kern	-	map kernel address into bio
1477  *	@q: the struct request_queue for the bio
1478  *	@data: pointer to buffer to map
1479  *	@len: length in bytes
1480  *	@gfp_mask: allocation flags for bio allocation
1481  *
1482  *	Map the kernel address into a bio suitable for io to a block
1483  *	device. Returns an error pointer in case of error.
1484  */
1485 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1486 			 gfp_t gfp_mask)
1487 {
1488 	unsigned long kaddr = (unsigned long)data;
1489 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1490 	unsigned long start = kaddr >> PAGE_SHIFT;
1491 	const int nr_pages = end - start;
1492 	int offset, i;
1493 	struct bio *bio;
1494 
1495 	bio = bio_kmalloc(gfp_mask, nr_pages);
1496 	if (!bio)
1497 		return ERR_PTR(-ENOMEM);
1498 
1499 	offset = offset_in_page(kaddr);
1500 	for (i = 0; i < nr_pages; i++) {
1501 		unsigned int bytes = PAGE_SIZE - offset;
1502 
1503 		if (len <= 0)
1504 			break;
1505 
1506 		if (bytes > len)
1507 			bytes = len;
1508 
1509 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1510 				    offset) < bytes) {
1511 			/* we don't support partial mappings */
1512 			bio_put(bio);
1513 			return ERR_PTR(-EINVAL);
1514 		}
1515 
1516 		data += bytes;
1517 		len -= bytes;
1518 		offset = 0;
1519 	}
1520 
1521 	bio->bi_end_io = bio_map_kern_endio;
1522 	return bio;
1523 }
1524 EXPORT_SYMBOL(bio_map_kern);
1525 
1526 static void bio_copy_kern_endio(struct bio *bio)
1527 {
1528 	bio_free_pages(bio);
1529 	bio_put(bio);
1530 }
1531 
1532 static void bio_copy_kern_endio_read(struct bio *bio)
1533 {
1534 	char *p = bio->bi_private;
1535 	struct bio_vec *bvec;
1536 	int i;
1537 
1538 	bio_for_each_segment_all(bvec, bio, i) {
1539 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1540 		p += bvec->bv_len;
1541 	}
1542 
1543 	bio_copy_kern_endio(bio);
1544 }
1545 
1546 /**
1547  *	bio_copy_kern	-	copy kernel address into bio
1548  *	@q: the struct request_queue for the bio
1549  *	@data: pointer to buffer to copy
1550  *	@len: length in bytes
1551  *	@gfp_mask: allocation flags for bio and page allocation
1552  *	@reading: data direction is READ
1553  *
1554  *	copy the kernel address into a bio suitable for io to a block
1555  *	device. Returns an error pointer in case of error.
1556  */
1557 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1558 			  gfp_t gfp_mask, int reading)
1559 {
1560 	unsigned long kaddr = (unsigned long)data;
1561 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1562 	unsigned long start = kaddr >> PAGE_SHIFT;
1563 	struct bio *bio;
1564 	void *p = data;
1565 	int nr_pages = 0;
1566 
1567 	/*
1568 	 * Overflow, abort
1569 	 */
1570 	if (end < start)
1571 		return ERR_PTR(-EINVAL);
1572 
1573 	nr_pages = end - start;
1574 	bio = bio_kmalloc(gfp_mask, nr_pages);
1575 	if (!bio)
1576 		return ERR_PTR(-ENOMEM);
1577 
1578 	while (len) {
1579 		struct page *page;
1580 		unsigned int bytes = PAGE_SIZE;
1581 
1582 		if (bytes > len)
1583 			bytes = len;
1584 
1585 		page = alloc_page(q->bounce_gfp | gfp_mask);
1586 		if (!page)
1587 			goto cleanup;
1588 
1589 		if (!reading)
1590 			memcpy(page_address(page), p, bytes);
1591 
1592 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1593 			break;
1594 
1595 		len -= bytes;
1596 		p += bytes;
1597 	}
1598 
1599 	if (reading) {
1600 		bio->bi_end_io = bio_copy_kern_endio_read;
1601 		bio->bi_private = data;
1602 	} else {
1603 		bio->bi_end_io = bio_copy_kern_endio;
1604 	}
1605 
1606 	return bio;
1607 
1608 cleanup:
1609 	bio_free_pages(bio);
1610 	bio_put(bio);
1611 	return ERR_PTR(-ENOMEM);
1612 }
1613 
1614 /*
1615  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1616  * for performing direct-IO in BIOs.
1617  *
1618  * The problem is that we cannot run set_page_dirty() from interrupt context
1619  * because the required locks are not interrupt-safe.  So what we can do is to
1620  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1621  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1622  * in process context.
1623  *
1624  * We special-case compound pages here: normally this means reads into hugetlb
1625  * pages.  The logic in here doesn't really work right for compound pages
1626  * because the VM does not uniformly chase down the head page in all cases.
1627  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1628  * handle them at all.  So we skip compound pages here at an early stage.
1629  *
1630  * Note that this code is very hard to test under normal circumstances because
1631  * direct-io pins the pages with get_user_pages().  This makes
1632  * is_page_cache_freeable return false, and the VM will not clean the pages.
1633  * But other code (eg, flusher threads) could clean the pages if they are mapped
1634  * pagecache.
1635  *
1636  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1637  * deferred bio dirtying paths.
1638  */
1639 
1640 /*
1641  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1642  */
1643 void bio_set_pages_dirty(struct bio *bio)
1644 {
1645 	struct bio_vec *bvec;
1646 	int i;
1647 
1648 	bio_for_each_segment_all(bvec, bio, i) {
1649 		struct page *page = bvec->bv_page;
1650 
1651 		if (page && !PageCompound(page))
1652 			set_page_dirty_lock(page);
1653 	}
1654 }
1655 
1656 static void bio_release_pages(struct bio *bio)
1657 {
1658 	struct bio_vec *bvec;
1659 	int i;
1660 
1661 	bio_for_each_segment_all(bvec, bio, i) {
1662 		struct page *page = bvec->bv_page;
1663 
1664 		if (page)
1665 			put_page(page);
1666 	}
1667 }
1668 
1669 /*
1670  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1671  * If they are, then fine.  If, however, some pages are clean then they must
1672  * have been written out during the direct-IO read.  So we take another ref on
1673  * the BIO and the offending pages and re-dirty the pages in process context.
1674  *
1675  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1676  * here on.  It will run one put_page() against each page and will run one
1677  * bio_put() against the BIO.
1678  */
1679 
1680 static void bio_dirty_fn(struct work_struct *work);
1681 
1682 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1683 static DEFINE_SPINLOCK(bio_dirty_lock);
1684 static struct bio *bio_dirty_list;
1685 
1686 /*
1687  * This runs in process context
1688  */
1689 static void bio_dirty_fn(struct work_struct *work)
1690 {
1691 	unsigned long flags;
1692 	struct bio *bio;
1693 
1694 	spin_lock_irqsave(&bio_dirty_lock, flags);
1695 	bio = bio_dirty_list;
1696 	bio_dirty_list = NULL;
1697 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1698 
1699 	while (bio) {
1700 		struct bio *next = bio->bi_private;
1701 
1702 		bio_set_pages_dirty(bio);
1703 		bio_release_pages(bio);
1704 		bio_put(bio);
1705 		bio = next;
1706 	}
1707 }
1708 
1709 void bio_check_pages_dirty(struct bio *bio)
1710 {
1711 	struct bio_vec *bvec;
1712 	int nr_clean_pages = 0;
1713 	int i;
1714 
1715 	bio_for_each_segment_all(bvec, bio, i) {
1716 		struct page *page = bvec->bv_page;
1717 
1718 		if (PageDirty(page) || PageCompound(page)) {
1719 			put_page(page);
1720 			bvec->bv_page = NULL;
1721 		} else {
1722 			nr_clean_pages++;
1723 		}
1724 	}
1725 
1726 	if (nr_clean_pages) {
1727 		unsigned long flags;
1728 
1729 		spin_lock_irqsave(&bio_dirty_lock, flags);
1730 		bio->bi_private = bio_dirty_list;
1731 		bio_dirty_list = bio;
1732 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1733 		schedule_work(&bio_dirty_work);
1734 	} else {
1735 		bio_put(bio);
1736 	}
1737 }
1738 
1739 void generic_start_io_acct(struct request_queue *q, int rw,
1740 			   unsigned long sectors, struct hd_struct *part)
1741 {
1742 	int cpu = part_stat_lock();
1743 
1744 	part_round_stats(q, cpu, part);
1745 	part_stat_inc(cpu, part, ios[rw]);
1746 	part_stat_add(cpu, part, sectors[rw], sectors);
1747 	part_inc_in_flight(q, part, rw);
1748 
1749 	part_stat_unlock();
1750 }
1751 EXPORT_SYMBOL(generic_start_io_acct);
1752 
1753 void generic_end_io_acct(struct request_queue *q, int rw,
1754 			 struct hd_struct *part, unsigned long start_time)
1755 {
1756 	unsigned long duration = jiffies - start_time;
1757 	int cpu = part_stat_lock();
1758 
1759 	part_stat_add(cpu, part, ticks[rw], duration);
1760 	part_round_stats(q, cpu, part);
1761 	part_dec_in_flight(q, part, rw);
1762 
1763 	part_stat_unlock();
1764 }
1765 EXPORT_SYMBOL(generic_end_io_acct);
1766 
1767 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1768 void bio_flush_dcache_pages(struct bio *bi)
1769 {
1770 	struct bio_vec bvec;
1771 	struct bvec_iter iter;
1772 
1773 	bio_for_each_segment(bvec, bi, iter)
1774 		flush_dcache_page(bvec.bv_page);
1775 }
1776 EXPORT_SYMBOL(bio_flush_dcache_pages);
1777 #endif
1778 
1779 static inline bool bio_remaining_done(struct bio *bio)
1780 {
1781 	/*
1782 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1783 	 * we always end io on the first invocation.
1784 	 */
1785 	if (!bio_flagged(bio, BIO_CHAIN))
1786 		return true;
1787 
1788 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1789 
1790 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1791 		bio_clear_flag(bio, BIO_CHAIN);
1792 		return true;
1793 	}
1794 
1795 	return false;
1796 }
1797 
1798 /**
1799  * bio_endio - end I/O on a bio
1800  * @bio:	bio
1801  *
1802  * Description:
1803  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1804  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1805  *   bio unless they own it and thus know that it has an end_io function.
1806  *
1807  *   bio_endio() can be called several times on a bio that has been chained
1808  *   using bio_chain().  The ->bi_end_io() function will only be called the
1809  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1810  *   generated if BIO_TRACE_COMPLETION is set.
1811  **/
1812 void bio_endio(struct bio *bio)
1813 {
1814 again:
1815 	if (!bio_remaining_done(bio))
1816 		return;
1817 	if (!bio_integrity_endio(bio))
1818 		return;
1819 
1820 	/*
1821 	 * Need to have a real endio function for chained bios, otherwise
1822 	 * various corner cases will break (like stacking block devices that
1823 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1824 	 * recursion and blowing the stack. Tail call optimization would
1825 	 * handle this, but compiling with frame pointers also disables
1826 	 * gcc's sibling call optimization.
1827 	 */
1828 	if (bio->bi_end_io == bio_chain_endio) {
1829 		bio = __bio_chain_endio(bio);
1830 		goto again;
1831 	}
1832 
1833 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1834 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1835 					 blk_status_to_errno(bio->bi_status));
1836 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1837 	}
1838 
1839 	blk_throtl_bio_endio(bio);
1840 	/* release cgroup info */
1841 	bio_uninit(bio);
1842 	if (bio->bi_end_io)
1843 		bio->bi_end_io(bio);
1844 }
1845 EXPORT_SYMBOL(bio_endio);
1846 
1847 /**
1848  * bio_split - split a bio
1849  * @bio:	bio to split
1850  * @sectors:	number of sectors to split from the front of @bio
1851  * @gfp:	gfp mask
1852  * @bs:		bio set to allocate from
1853  *
1854  * Allocates and returns a new bio which represents @sectors from the start of
1855  * @bio, and updates @bio to represent the remaining sectors.
1856  *
1857  * Unless this is a discard request the newly allocated bio will point
1858  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1859  * @bio is not freed before the split.
1860  */
1861 struct bio *bio_split(struct bio *bio, int sectors,
1862 		      gfp_t gfp, struct bio_set *bs)
1863 {
1864 	struct bio *split = NULL;
1865 
1866 	BUG_ON(sectors <= 0);
1867 	BUG_ON(sectors >= bio_sectors(bio));
1868 
1869 	split = bio_clone_fast(bio, gfp, bs);
1870 	if (!split)
1871 		return NULL;
1872 
1873 	split->bi_iter.bi_size = sectors << 9;
1874 
1875 	if (bio_integrity(split))
1876 		bio_integrity_trim(split);
1877 
1878 	bio_advance(bio, split->bi_iter.bi_size);
1879 
1880 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1881 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
1882 
1883 	return split;
1884 }
1885 EXPORT_SYMBOL(bio_split);
1886 
1887 /**
1888  * bio_trim - trim a bio
1889  * @bio:	bio to trim
1890  * @offset:	number of sectors to trim from the front of @bio
1891  * @size:	size we want to trim @bio to, in sectors
1892  */
1893 void bio_trim(struct bio *bio, int offset, int size)
1894 {
1895 	/* 'bio' is a cloned bio which we need to trim to match
1896 	 * the given offset and size.
1897 	 */
1898 
1899 	size <<= 9;
1900 	if (offset == 0 && size == bio->bi_iter.bi_size)
1901 		return;
1902 
1903 	bio_clear_flag(bio, BIO_SEG_VALID);
1904 
1905 	bio_advance(bio, offset << 9);
1906 
1907 	bio->bi_iter.bi_size = size;
1908 
1909 	if (bio_integrity(bio))
1910 		bio_integrity_trim(bio);
1911 
1912 }
1913 EXPORT_SYMBOL_GPL(bio_trim);
1914 
1915 /*
1916  * create memory pools for biovec's in a bio_set.
1917  * use the global biovec slabs created for general use.
1918  */
1919 mempool_t *biovec_create_pool(int pool_entries)
1920 {
1921 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1922 
1923 	return mempool_create_slab_pool(pool_entries, bp->slab);
1924 }
1925 
1926 void bioset_free(struct bio_set *bs)
1927 {
1928 	if (bs->rescue_workqueue)
1929 		destroy_workqueue(bs->rescue_workqueue);
1930 
1931 	if (bs->bio_pool)
1932 		mempool_destroy(bs->bio_pool);
1933 
1934 	if (bs->bvec_pool)
1935 		mempool_destroy(bs->bvec_pool);
1936 
1937 	bioset_integrity_free(bs);
1938 	bio_put_slab(bs);
1939 
1940 	kfree(bs);
1941 }
1942 EXPORT_SYMBOL(bioset_free);
1943 
1944 /**
1945  * bioset_create  - Create a bio_set
1946  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1947  * @front_pad:	Number of bytes to allocate in front of the returned bio
1948  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1949  *              and %BIOSET_NEED_RESCUER
1950  *
1951  * Description:
1952  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1953  *    to ask for a number of bytes to be allocated in front of the bio.
1954  *    Front pad allocation is useful for embedding the bio inside
1955  *    another structure, to avoid allocating extra data to go with the bio.
1956  *    Note that the bio must be embedded at the END of that structure always,
1957  *    or things will break badly.
1958  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1959  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1960  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1961  *    dispatch queued requests when the mempool runs out of space.
1962  *
1963  */
1964 struct bio_set *bioset_create(unsigned int pool_size,
1965 			      unsigned int front_pad,
1966 			      int flags)
1967 {
1968 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1969 	struct bio_set *bs;
1970 
1971 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1972 	if (!bs)
1973 		return NULL;
1974 
1975 	bs->front_pad = front_pad;
1976 
1977 	spin_lock_init(&bs->rescue_lock);
1978 	bio_list_init(&bs->rescue_list);
1979 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1980 
1981 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1982 	if (!bs->bio_slab) {
1983 		kfree(bs);
1984 		return NULL;
1985 	}
1986 
1987 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1988 	if (!bs->bio_pool)
1989 		goto bad;
1990 
1991 	if (flags & BIOSET_NEED_BVECS) {
1992 		bs->bvec_pool = biovec_create_pool(pool_size);
1993 		if (!bs->bvec_pool)
1994 			goto bad;
1995 	}
1996 
1997 	if (!(flags & BIOSET_NEED_RESCUER))
1998 		return bs;
1999 
2000 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2001 	if (!bs->rescue_workqueue)
2002 		goto bad;
2003 
2004 	return bs;
2005 bad:
2006 	bioset_free(bs);
2007 	return NULL;
2008 }
2009 EXPORT_SYMBOL(bioset_create);
2010 
2011 #ifdef CONFIG_BLK_CGROUP
2012 
2013 /**
2014  * bio_associate_blkcg - associate a bio with the specified blkcg
2015  * @bio: target bio
2016  * @blkcg_css: css of the blkcg to associate
2017  *
2018  * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
2019  * treat @bio as if it were issued by a task which belongs to the blkcg.
2020  *
2021  * This function takes an extra reference of @blkcg_css which will be put
2022  * when @bio is released.  The caller must own @bio and is responsible for
2023  * synchronizing calls to this function.
2024  */
2025 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2026 {
2027 	if (unlikely(bio->bi_css))
2028 		return -EBUSY;
2029 	css_get(blkcg_css);
2030 	bio->bi_css = blkcg_css;
2031 	return 0;
2032 }
2033 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2034 
2035 /**
2036  * bio_associate_current - associate a bio with %current
2037  * @bio: target bio
2038  *
2039  * Associate @bio with %current if it hasn't been associated yet.  Block
2040  * layer will treat @bio as if it were issued by %current no matter which
2041  * task actually issues it.
2042  *
2043  * This function takes an extra reference of @task's io_context and blkcg
2044  * which will be put when @bio is released.  The caller must own @bio,
2045  * ensure %current->io_context exists, and is responsible for synchronizing
2046  * calls to this function.
2047  */
2048 int bio_associate_current(struct bio *bio)
2049 {
2050 	struct io_context *ioc;
2051 
2052 	if (bio->bi_css)
2053 		return -EBUSY;
2054 
2055 	ioc = current->io_context;
2056 	if (!ioc)
2057 		return -ENOENT;
2058 
2059 	get_io_context_active(ioc);
2060 	bio->bi_ioc = ioc;
2061 	bio->bi_css = task_get_css(current, io_cgrp_id);
2062 	return 0;
2063 }
2064 EXPORT_SYMBOL_GPL(bio_associate_current);
2065 
2066 /**
2067  * bio_disassociate_task - undo bio_associate_current()
2068  * @bio: target bio
2069  */
2070 void bio_disassociate_task(struct bio *bio)
2071 {
2072 	if (bio->bi_ioc) {
2073 		put_io_context(bio->bi_ioc);
2074 		bio->bi_ioc = NULL;
2075 	}
2076 	if (bio->bi_css) {
2077 		css_put(bio->bi_css);
2078 		bio->bi_css = NULL;
2079 	}
2080 }
2081 
2082 /**
2083  * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2084  * @dst: destination bio
2085  * @src: source bio
2086  */
2087 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2088 {
2089 	if (src->bi_css)
2090 		WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2091 }
2092 EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
2093 #endif /* CONFIG_BLK_CGROUP */
2094 
2095 static void __init biovec_init_slabs(void)
2096 {
2097 	int i;
2098 
2099 	for (i = 0; i < BVEC_POOL_NR; i++) {
2100 		int size;
2101 		struct biovec_slab *bvs = bvec_slabs + i;
2102 
2103 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2104 			bvs->slab = NULL;
2105 			continue;
2106 		}
2107 
2108 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2109 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2110                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2111 	}
2112 }
2113 
2114 static int __init init_bio(void)
2115 {
2116 	bio_slab_max = 2;
2117 	bio_slab_nr = 0;
2118 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2119 	if (!bio_slabs)
2120 		panic("bio: can't allocate bios\n");
2121 
2122 	bio_integrity_init();
2123 	biovec_init_slabs();
2124 
2125 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
2126 	if (!fs_bio_set)
2127 		panic("bio: can't allocate bios\n");
2128 
2129 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2130 		panic("bio: can't create integrity pool\n");
2131 
2132 	return 0;
2133 }
2134 subsys_initcall(init_bio);
2135