xref: /openbmc/linux/block/bio.c (revision d623f60d)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 
32 #include <trace/events/block.h>
33 #include "blk.h"
34 
35 /*
36  * Test patch to inline a certain number of bi_io_vec's inside the bio
37  * itself, to shrink a bio data allocation from two mempool calls to one
38  */
39 #define BIO_INLINE_VECS		4
40 
41 /*
42  * if you change this list, also change bvec_alloc or things will
43  * break badly! cannot be bigger than what you can fit into an
44  * unsigned short
45  */
46 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
48 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
49 };
50 #undef BV
51 
52 /*
53  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54  * IO code that does not need private memory pools.
55  */
56 struct bio_set fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58 
59 /*
60  * Our slab pool management
61  */
62 struct bio_slab {
63 	struct kmem_cache *slab;
64 	unsigned int slab_ref;
65 	unsigned int slab_size;
66 	char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71 
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 	unsigned int sz = sizeof(struct bio) + extra_size;
75 	struct kmem_cache *slab = NULL;
76 	struct bio_slab *bslab, *new_bio_slabs;
77 	unsigned int new_bio_slab_max;
78 	unsigned int i, entry = -1;
79 
80 	mutex_lock(&bio_slab_lock);
81 
82 	i = 0;
83 	while (i < bio_slab_nr) {
84 		bslab = &bio_slabs[i];
85 
86 		if (!bslab->slab && entry == -1)
87 			entry = i;
88 		else if (bslab->slab_size == sz) {
89 			slab = bslab->slab;
90 			bslab->slab_ref++;
91 			break;
92 		}
93 		i++;
94 	}
95 
96 	if (slab)
97 		goto out_unlock;
98 
99 	if (bio_slab_nr == bio_slab_max && entry == -1) {
100 		new_bio_slab_max = bio_slab_max << 1;
101 		new_bio_slabs = krealloc(bio_slabs,
102 					 new_bio_slab_max * sizeof(struct bio_slab),
103 					 GFP_KERNEL);
104 		if (!new_bio_slabs)
105 			goto out_unlock;
106 		bio_slab_max = new_bio_slab_max;
107 		bio_slabs = new_bio_slabs;
108 	}
109 	if (entry == -1)
110 		entry = bio_slab_nr++;
111 
112 	bslab = &bio_slabs[entry];
113 
114 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 				 SLAB_HWCACHE_ALIGN, NULL);
117 	if (!slab)
118 		goto out_unlock;
119 
120 	bslab->slab = slab;
121 	bslab->slab_ref = 1;
122 	bslab->slab_size = sz;
123 out_unlock:
124 	mutex_unlock(&bio_slab_lock);
125 	return slab;
126 }
127 
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 	struct bio_slab *bslab = NULL;
131 	unsigned int i;
132 
133 	mutex_lock(&bio_slab_lock);
134 
135 	for (i = 0; i < bio_slab_nr; i++) {
136 		if (bs->bio_slab == bio_slabs[i].slab) {
137 			bslab = &bio_slabs[i];
138 			break;
139 		}
140 	}
141 
142 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 		goto out;
144 
145 	WARN_ON(!bslab->slab_ref);
146 
147 	if (--bslab->slab_ref)
148 		goto out;
149 
150 	kmem_cache_destroy(bslab->slab);
151 	bslab->slab = NULL;
152 
153 out:
154 	mutex_unlock(&bio_slab_lock);
155 }
156 
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 	return bvec_slabs[idx].nr_vecs;
160 }
161 
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 	if (!idx)
165 		return;
166 	idx--;
167 
168 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
169 
170 	if (idx == BVEC_POOL_MAX) {
171 		mempool_free(bv, pool);
172 	} else {
173 		struct biovec_slab *bvs = bvec_slabs + idx;
174 
175 		kmem_cache_free(bvs->slab, bv);
176 	}
177 }
178 
179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 			   mempool_t *pool)
181 {
182 	struct bio_vec *bvl;
183 
184 	/*
185 	 * see comment near bvec_array define!
186 	 */
187 	switch (nr) {
188 	case 1:
189 		*idx = 0;
190 		break;
191 	case 2 ... 4:
192 		*idx = 1;
193 		break;
194 	case 5 ... 16:
195 		*idx = 2;
196 		break;
197 	case 17 ... 64:
198 		*idx = 3;
199 		break;
200 	case 65 ... 128:
201 		*idx = 4;
202 		break;
203 	case 129 ... BIO_MAX_PAGES:
204 		*idx = 5;
205 		break;
206 	default:
207 		return NULL;
208 	}
209 
210 	/*
211 	 * idx now points to the pool we want to allocate from. only the
212 	 * 1-vec entry pool is mempool backed.
213 	 */
214 	if (*idx == BVEC_POOL_MAX) {
215 fallback:
216 		bvl = mempool_alloc(pool, gfp_mask);
217 	} else {
218 		struct biovec_slab *bvs = bvec_slabs + *idx;
219 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
220 
221 		/*
222 		 * Make this allocation restricted and don't dump info on
223 		 * allocation failures, since we'll fallback to the mempool
224 		 * in case of failure.
225 		 */
226 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
227 
228 		/*
229 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
230 		 * is set, retry with the 1-entry mempool
231 		 */
232 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
233 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
234 			*idx = BVEC_POOL_MAX;
235 			goto fallback;
236 		}
237 	}
238 
239 	(*idx)++;
240 	return bvl;
241 }
242 
243 void bio_uninit(struct bio *bio)
244 {
245 	bio_disassociate_task(bio);
246 }
247 EXPORT_SYMBOL(bio_uninit);
248 
249 static void bio_free(struct bio *bio)
250 {
251 	struct bio_set *bs = bio->bi_pool;
252 	void *p;
253 
254 	bio_uninit(bio);
255 
256 	if (bs) {
257 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
258 
259 		/*
260 		 * If we have front padding, adjust the bio pointer before freeing
261 		 */
262 		p = bio;
263 		p -= bs->front_pad;
264 
265 		mempool_free(p, &bs->bio_pool);
266 	} else {
267 		/* Bio was allocated by bio_kmalloc() */
268 		kfree(bio);
269 	}
270 }
271 
272 /*
273  * Users of this function have their own bio allocation. Subsequently,
274  * they must remember to pair any call to bio_init() with bio_uninit()
275  * when IO has completed, or when the bio is released.
276  */
277 void bio_init(struct bio *bio, struct bio_vec *table,
278 	      unsigned short max_vecs)
279 {
280 	memset(bio, 0, sizeof(*bio));
281 	atomic_set(&bio->__bi_remaining, 1);
282 	atomic_set(&bio->__bi_cnt, 1);
283 
284 	bio->bi_io_vec = table;
285 	bio->bi_max_vecs = max_vecs;
286 }
287 EXPORT_SYMBOL(bio_init);
288 
289 /**
290  * bio_reset - reinitialize a bio
291  * @bio:	bio to reset
292  *
293  * Description:
294  *   After calling bio_reset(), @bio will be in the same state as a freshly
295  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
296  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
297  *   comment in struct bio.
298  */
299 void bio_reset(struct bio *bio)
300 {
301 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
302 
303 	bio_uninit(bio);
304 
305 	memset(bio, 0, BIO_RESET_BYTES);
306 	bio->bi_flags = flags;
307 	atomic_set(&bio->__bi_remaining, 1);
308 }
309 EXPORT_SYMBOL(bio_reset);
310 
311 static struct bio *__bio_chain_endio(struct bio *bio)
312 {
313 	struct bio *parent = bio->bi_private;
314 
315 	if (!parent->bi_status)
316 		parent->bi_status = bio->bi_status;
317 	bio_put(bio);
318 	return parent;
319 }
320 
321 static void bio_chain_endio(struct bio *bio)
322 {
323 	bio_endio(__bio_chain_endio(bio));
324 }
325 
326 /**
327  * bio_chain - chain bio completions
328  * @bio: the target bio
329  * @parent: the @bio's parent bio
330  *
331  * The caller won't have a bi_end_io called when @bio completes - instead,
332  * @parent's bi_end_io won't be called until both @parent and @bio have
333  * completed; the chained bio will also be freed when it completes.
334  *
335  * The caller must not set bi_private or bi_end_io in @bio.
336  */
337 void bio_chain(struct bio *bio, struct bio *parent)
338 {
339 	BUG_ON(bio->bi_private || bio->bi_end_io);
340 
341 	bio->bi_private = parent;
342 	bio->bi_end_io	= bio_chain_endio;
343 	bio_inc_remaining(parent);
344 }
345 EXPORT_SYMBOL(bio_chain);
346 
347 static void bio_alloc_rescue(struct work_struct *work)
348 {
349 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
350 	struct bio *bio;
351 
352 	while (1) {
353 		spin_lock(&bs->rescue_lock);
354 		bio = bio_list_pop(&bs->rescue_list);
355 		spin_unlock(&bs->rescue_lock);
356 
357 		if (!bio)
358 			break;
359 
360 		generic_make_request(bio);
361 	}
362 }
363 
364 static void punt_bios_to_rescuer(struct bio_set *bs)
365 {
366 	struct bio_list punt, nopunt;
367 	struct bio *bio;
368 
369 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
370 		return;
371 	/*
372 	 * In order to guarantee forward progress we must punt only bios that
373 	 * were allocated from this bio_set; otherwise, if there was a bio on
374 	 * there for a stacking driver higher up in the stack, processing it
375 	 * could require allocating bios from this bio_set, and doing that from
376 	 * our own rescuer would be bad.
377 	 *
378 	 * Since bio lists are singly linked, pop them all instead of trying to
379 	 * remove from the middle of the list:
380 	 */
381 
382 	bio_list_init(&punt);
383 	bio_list_init(&nopunt);
384 
385 	while ((bio = bio_list_pop(&current->bio_list[0])))
386 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
387 	current->bio_list[0] = nopunt;
388 
389 	bio_list_init(&nopunt);
390 	while ((bio = bio_list_pop(&current->bio_list[1])))
391 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 	current->bio_list[1] = nopunt;
393 
394 	spin_lock(&bs->rescue_lock);
395 	bio_list_merge(&bs->rescue_list, &punt);
396 	spin_unlock(&bs->rescue_lock);
397 
398 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
399 }
400 
401 /**
402  * bio_alloc_bioset - allocate a bio for I/O
403  * @gfp_mask:   the GFP_* mask given to the slab allocator
404  * @nr_iovecs:	number of iovecs to pre-allocate
405  * @bs:		the bio_set to allocate from.
406  *
407  * Description:
408  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
409  *   backed by the @bs's mempool.
410  *
411  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
412  *   always be able to allocate a bio. This is due to the mempool guarantees.
413  *   To make this work, callers must never allocate more than 1 bio at a time
414  *   from this pool. Callers that need to allocate more than 1 bio must always
415  *   submit the previously allocated bio for IO before attempting to allocate
416  *   a new one. Failure to do so can cause deadlocks under memory pressure.
417  *
418  *   Note that when running under generic_make_request() (i.e. any block
419  *   driver), bios are not submitted until after you return - see the code in
420  *   generic_make_request() that converts recursion into iteration, to prevent
421  *   stack overflows.
422  *
423  *   This would normally mean allocating multiple bios under
424  *   generic_make_request() would be susceptible to deadlocks, but we have
425  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
426  *   thread.
427  *
428  *   However, we do not guarantee forward progress for allocations from other
429  *   mempools. Doing multiple allocations from the same mempool under
430  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
431  *   for per bio allocations.
432  *
433  *   RETURNS:
434  *   Pointer to new bio on success, NULL on failure.
435  */
436 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
437 			     struct bio_set *bs)
438 {
439 	gfp_t saved_gfp = gfp_mask;
440 	unsigned front_pad;
441 	unsigned inline_vecs;
442 	struct bio_vec *bvl = NULL;
443 	struct bio *bio;
444 	void *p;
445 
446 	if (!bs) {
447 		if (nr_iovecs > UIO_MAXIOV)
448 			return NULL;
449 
450 		p = kmalloc(sizeof(struct bio) +
451 			    nr_iovecs * sizeof(struct bio_vec),
452 			    gfp_mask);
453 		front_pad = 0;
454 		inline_vecs = nr_iovecs;
455 	} else {
456 		/* should not use nobvec bioset for nr_iovecs > 0 */
457 		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
458 				 nr_iovecs > 0))
459 			return NULL;
460 		/*
461 		 * generic_make_request() converts recursion to iteration; this
462 		 * means if we're running beneath it, any bios we allocate and
463 		 * submit will not be submitted (and thus freed) until after we
464 		 * return.
465 		 *
466 		 * This exposes us to a potential deadlock if we allocate
467 		 * multiple bios from the same bio_set() while running
468 		 * underneath generic_make_request(). If we were to allocate
469 		 * multiple bios (say a stacking block driver that was splitting
470 		 * bios), we would deadlock if we exhausted the mempool's
471 		 * reserve.
472 		 *
473 		 * We solve this, and guarantee forward progress, with a rescuer
474 		 * workqueue per bio_set. If we go to allocate and there are
475 		 * bios on current->bio_list, we first try the allocation
476 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
477 		 * bios we would be blocking to the rescuer workqueue before
478 		 * we retry with the original gfp_flags.
479 		 */
480 
481 		if (current->bio_list &&
482 		    (!bio_list_empty(&current->bio_list[0]) ||
483 		     !bio_list_empty(&current->bio_list[1])) &&
484 		    bs->rescue_workqueue)
485 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
486 
487 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
488 		if (!p && gfp_mask != saved_gfp) {
489 			punt_bios_to_rescuer(bs);
490 			gfp_mask = saved_gfp;
491 			p = mempool_alloc(&bs->bio_pool, gfp_mask);
492 		}
493 
494 		front_pad = bs->front_pad;
495 		inline_vecs = BIO_INLINE_VECS;
496 	}
497 
498 	if (unlikely(!p))
499 		return NULL;
500 
501 	bio = p + front_pad;
502 	bio_init(bio, NULL, 0);
503 
504 	if (nr_iovecs > inline_vecs) {
505 		unsigned long idx = 0;
506 
507 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
508 		if (!bvl && gfp_mask != saved_gfp) {
509 			punt_bios_to_rescuer(bs);
510 			gfp_mask = saved_gfp;
511 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
512 		}
513 
514 		if (unlikely(!bvl))
515 			goto err_free;
516 
517 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
518 	} else if (nr_iovecs) {
519 		bvl = bio->bi_inline_vecs;
520 	}
521 
522 	bio->bi_pool = bs;
523 	bio->bi_max_vecs = nr_iovecs;
524 	bio->bi_io_vec = bvl;
525 	return bio;
526 
527 err_free:
528 	mempool_free(p, &bs->bio_pool);
529 	return NULL;
530 }
531 EXPORT_SYMBOL(bio_alloc_bioset);
532 
533 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
534 {
535 	unsigned long flags;
536 	struct bio_vec bv;
537 	struct bvec_iter iter;
538 
539 	__bio_for_each_segment(bv, bio, iter, start) {
540 		char *data = bvec_kmap_irq(&bv, &flags);
541 		memset(data, 0, bv.bv_len);
542 		flush_dcache_page(bv.bv_page);
543 		bvec_kunmap_irq(data, &flags);
544 	}
545 }
546 EXPORT_SYMBOL(zero_fill_bio_iter);
547 
548 /**
549  * bio_put - release a reference to a bio
550  * @bio:   bio to release reference to
551  *
552  * Description:
553  *   Put a reference to a &struct bio, either one you have gotten with
554  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
555  **/
556 void bio_put(struct bio *bio)
557 {
558 	if (!bio_flagged(bio, BIO_REFFED))
559 		bio_free(bio);
560 	else {
561 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
562 
563 		/*
564 		 * last put frees it
565 		 */
566 		if (atomic_dec_and_test(&bio->__bi_cnt))
567 			bio_free(bio);
568 	}
569 }
570 EXPORT_SYMBOL(bio_put);
571 
572 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
573 {
574 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
575 		blk_recount_segments(q, bio);
576 
577 	return bio->bi_phys_segments;
578 }
579 EXPORT_SYMBOL(bio_phys_segments);
580 
581 /**
582  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
583  * 	@bio: destination bio
584  * 	@bio_src: bio to clone
585  *
586  *	Clone a &bio. Caller will own the returned bio, but not
587  *	the actual data it points to. Reference count of returned
588  * 	bio will be one.
589  *
590  * 	Caller must ensure that @bio_src is not freed before @bio.
591  */
592 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
593 {
594 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
595 
596 	/*
597 	 * most users will be overriding ->bi_disk with a new target,
598 	 * so we don't set nor calculate new physical/hw segment counts here
599 	 */
600 	bio->bi_disk = bio_src->bi_disk;
601 	bio->bi_partno = bio_src->bi_partno;
602 	bio_set_flag(bio, BIO_CLONED);
603 	if (bio_flagged(bio_src, BIO_THROTTLED))
604 		bio_set_flag(bio, BIO_THROTTLED);
605 	bio->bi_opf = bio_src->bi_opf;
606 	bio->bi_write_hint = bio_src->bi_write_hint;
607 	bio->bi_iter = bio_src->bi_iter;
608 	bio->bi_io_vec = bio_src->bi_io_vec;
609 
610 	bio_clone_blkcg_association(bio, bio_src);
611 }
612 EXPORT_SYMBOL(__bio_clone_fast);
613 
614 /**
615  *	bio_clone_fast - clone a bio that shares the original bio's biovec
616  *	@bio: bio to clone
617  *	@gfp_mask: allocation priority
618  *	@bs: bio_set to allocate from
619  *
620  * 	Like __bio_clone_fast, only also allocates the returned bio
621  */
622 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
623 {
624 	struct bio *b;
625 
626 	b = bio_alloc_bioset(gfp_mask, 0, bs);
627 	if (!b)
628 		return NULL;
629 
630 	__bio_clone_fast(b, bio);
631 
632 	if (bio_integrity(bio)) {
633 		int ret;
634 
635 		ret = bio_integrity_clone(b, bio, gfp_mask);
636 
637 		if (ret < 0) {
638 			bio_put(b);
639 			return NULL;
640 		}
641 	}
642 
643 	return b;
644 }
645 EXPORT_SYMBOL(bio_clone_fast);
646 
647 /**
648  * 	bio_clone_bioset - clone a bio
649  * 	@bio_src: bio to clone
650  *	@gfp_mask: allocation priority
651  *	@bs: bio_set to allocate from
652  *
653  *	Clone bio. Caller will own the returned bio, but not the actual data it
654  *	points to. Reference count of returned bio will be one.
655  */
656 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
657 			     struct bio_set *bs)
658 {
659 	struct bvec_iter iter;
660 	struct bio_vec bv;
661 	struct bio *bio;
662 
663 	/*
664 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
665 	 * bio_src->bi_io_vec to bio->bi_io_vec.
666 	 *
667 	 * We can't do that anymore, because:
668 	 *
669 	 *  - The point of cloning the biovec is to produce a bio with a biovec
670 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
671 	 *
672 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
673 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
674 	 *    But the clone should succeed as long as the number of biovecs we
675 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
676 	 *
677 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
678 	 *    that does not own the bio - reason being drivers don't use it for
679 	 *    iterating over the biovec anymore, so expecting it to be kept up
680 	 *    to date (i.e. for clones that share the parent biovec) is just
681 	 *    asking for trouble and would force extra work on
682 	 *    __bio_clone_fast() anyways.
683 	 */
684 
685 	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
686 	if (!bio)
687 		return NULL;
688 	bio->bi_disk		= bio_src->bi_disk;
689 	bio->bi_opf		= bio_src->bi_opf;
690 	bio->bi_write_hint	= bio_src->bi_write_hint;
691 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
692 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
693 
694 	switch (bio_op(bio)) {
695 	case REQ_OP_DISCARD:
696 	case REQ_OP_SECURE_ERASE:
697 	case REQ_OP_WRITE_ZEROES:
698 		break;
699 	case REQ_OP_WRITE_SAME:
700 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
701 		break;
702 	default:
703 		bio_for_each_segment(bv, bio_src, iter)
704 			bio->bi_io_vec[bio->bi_vcnt++] = bv;
705 		break;
706 	}
707 
708 	if (bio_integrity(bio_src)) {
709 		int ret;
710 
711 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
712 		if (ret < 0) {
713 			bio_put(bio);
714 			return NULL;
715 		}
716 	}
717 
718 	bio_clone_blkcg_association(bio, bio_src);
719 
720 	return bio;
721 }
722 EXPORT_SYMBOL(bio_clone_bioset);
723 
724 /**
725  *	bio_add_pc_page	-	attempt to add page to bio
726  *	@q: the target queue
727  *	@bio: destination bio
728  *	@page: page to add
729  *	@len: vec entry length
730  *	@offset: vec entry offset
731  *
732  *	Attempt to add a page to the bio_vec maplist. This can fail for a
733  *	number of reasons, such as the bio being full or target block device
734  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
735  *	so it is always possible to add a single page to an empty bio.
736  *
737  *	This should only be used by REQ_PC bios.
738  */
739 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
740 		    *page, unsigned int len, unsigned int offset)
741 {
742 	int retried_segments = 0;
743 	struct bio_vec *bvec;
744 
745 	/*
746 	 * cloned bio must not modify vec list
747 	 */
748 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
749 		return 0;
750 
751 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
752 		return 0;
753 
754 	/*
755 	 * For filesystems with a blocksize smaller than the pagesize
756 	 * we will often be called with the same page as last time and
757 	 * a consecutive offset.  Optimize this special case.
758 	 */
759 	if (bio->bi_vcnt > 0) {
760 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
761 
762 		if (page == prev->bv_page &&
763 		    offset == prev->bv_offset + prev->bv_len) {
764 			prev->bv_len += len;
765 			bio->bi_iter.bi_size += len;
766 			goto done;
767 		}
768 
769 		/*
770 		 * If the queue doesn't support SG gaps and adding this
771 		 * offset would create a gap, disallow it.
772 		 */
773 		if (bvec_gap_to_prev(q, prev, offset))
774 			return 0;
775 	}
776 
777 	if (bio_full(bio))
778 		return 0;
779 
780 	/*
781 	 * setup the new entry, we might clear it again later if we
782 	 * cannot add the page
783 	 */
784 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
785 	bvec->bv_page = page;
786 	bvec->bv_len = len;
787 	bvec->bv_offset = offset;
788 	bio->bi_vcnt++;
789 	bio->bi_phys_segments++;
790 	bio->bi_iter.bi_size += len;
791 
792 	/*
793 	 * Perform a recount if the number of segments is greater
794 	 * than queue_max_segments(q).
795 	 */
796 
797 	while (bio->bi_phys_segments > queue_max_segments(q)) {
798 
799 		if (retried_segments)
800 			goto failed;
801 
802 		retried_segments = 1;
803 		blk_recount_segments(q, bio);
804 	}
805 
806 	/* If we may be able to merge these biovecs, force a recount */
807 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
808 		bio_clear_flag(bio, BIO_SEG_VALID);
809 
810  done:
811 	return len;
812 
813  failed:
814 	bvec->bv_page = NULL;
815 	bvec->bv_len = 0;
816 	bvec->bv_offset = 0;
817 	bio->bi_vcnt--;
818 	bio->bi_iter.bi_size -= len;
819 	blk_recount_segments(q, bio);
820 	return 0;
821 }
822 EXPORT_SYMBOL(bio_add_pc_page);
823 
824 /**
825  * __bio_try_merge_page - try appending data to an existing bvec.
826  * @bio: destination bio
827  * @page: page to add
828  * @len: length of the data to add
829  * @off: offset of the data in @page
830  *
831  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
832  * a useful optimisation for file systems with a block size smaller than the
833  * page size.
834  *
835  * Return %true on success or %false on failure.
836  */
837 bool __bio_try_merge_page(struct bio *bio, struct page *page,
838 		unsigned int len, unsigned int off)
839 {
840 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
841 		return false;
842 
843 	if (bio->bi_vcnt > 0) {
844 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
845 
846 		if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) {
847 			bv->bv_len += len;
848 			bio->bi_iter.bi_size += len;
849 			return true;
850 		}
851 	}
852 	return false;
853 }
854 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
855 
856 /**
857  * __bio_add_page - add page to a bio in a new segment
858  * @bio: destination bio
859  * @page: page to add
860  * @len: length of the data to add
861  * @off: offset of the data in @page
862  *
863  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
864  * that @bio has space for another bvec.
865  */
866 void __bio_add_page(struct bio *bio, struct page *page,
867 		unsigned int len, unsigned int off)
868 {
869 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
870 
871 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
872 	WARN_ON_ONCE(bio_full(bio));
873 
874 	bv->bv_page = page;
875 	bv->bv_offset = off;
876 	bv->bv_len = len;
877 
878 	bio->bi_iter.bi_size += len;
879 	bio->bi_vcnt++;
880 }
881 EXPORT_SYMBOL_GPL(__bio_add_page);
882 
883 /**
884  *	bio_add_page	-	attempt to add page to bio
885  *	@bio: destination bio
886  *	@page: page to add
887  *	@len: vec entry length
888  *	@offset: vec entry offset
889  *
890  *	Attempt to add a page to the bio_vec maplist. This will only fail
891  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
892  */
893 int bio_add_page(struct bio *bio, struct page *page,
894 		 unsigned int len, unsigned int offset)
895 {
896 	if (!__bio_try_merge_page(bio, page, len, offset)) {
897 		if (bio_full(bio))
898 			return 0;
899 		__bio_add_page(bio, page, len, offset);
900 	}
901 	return len;
902 }
903 EXPORT_SYMBOL(bio_add_page);
904 
905 /**
906  * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
907  * @bio: bio to add pages to
908  * @iter: iov iterator describing the region to be mapped
909  *
910  * Pins as many pages from *iter and appends them to @bio's bvec array. The
911  * pages will have to be released using put_page() when done.
912  */
913 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
914 {
915 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
916 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
917 	struct page **pages = (struct page **)bv;
918 	size_t offset, diff;
919 	ssize_t size;
920 
921 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
922 	if (unlikely(size <= 0))
923 		return size ? size : -EFAULT;
924 	nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
925 
926 	/*
927 	 * Deep magic below:  We need to walk the pinned pages backwards
928 	 * because we are abusing the space allocated for the bio_vecs
929 	 * for the page array.  Because the bio_vecs are larger than the
930 	 * page pointers by definition this will always work.  But it also
931 	 * means we can't use bio_add_page, so any changes to it's semantics
932 	 * need to be reflected here as well.
933 	 */
934 	bio->bi_iter.bi_size += size;
935 	bio->bi_vcnt += nr_pages;
936 
937 	diff = (nr_pages * PAGE_SIZE - offset) - size;
938 	while (nr_pages--) {
939 		bv[nr_pages].bv_page = pages[nr_pages];
940 		bv[nr_pages].bv_len = PAGE_SIZE;
941 		bv[nr_pages].bv_offset = 0;
942 	}
943 
944 	bv[0].bv_offset += offset;
945 	bv[0].bv_len -= offset;
946 	if (diff)
947 		bv[bio->bi_vcnt - 1].bv_len -= diff;
948 
949 	iov_iter_advance(iter, size);
950 	return 0;
951 }
952 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
953 
954 static void submit_bio_wait_endio(struct bio *bio)
955 {
956 	complete(bio->bi_private);
957 }
958 
959 /**
960  * submit_bio_wait - submit a bio, and wait until it completes
961  * @bio: The &struct bio which describes the I/O
962  *
963  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
964  * bio_endio() on failure.
965  *
966  * WARNING: Unlike to how submit_bio() is usually used, this function does not
967  * result in bio reference to be consumed. The caller must drop the reference
968  * on his own.
969  */
970 int submit_bio_wait(struct bio *bio)
971 {
972 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
973 
974 	bio->bi_private = &done;
975 	bio->bi_end_io = submit_bio_wait_endio;
976 	bio->bi_opf |= REQ_SYNC;
977 	submit_bio(bio);
978 	wait_for_completion_io(&done);
979 
980 	return blk_status_to_errno(bio->bi_status);
981 }
982 EXPORT_SYMBOL(submit_bio_wait);
983 
984 /**
985  * bio_advance - increment/complete a bio by some number of bytes
986  * @bio:	bio to advance
987  * @bytes:	number of bytes to complete
988  *
989  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
990  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
991  * be updated on the last bvec as well.
992  *
993  * @bio will then represent the remaining, uncompleted portion of the io.
994  */
995 void bio_advance(struct bio *bio, unsigned bytes)
996 {
997 	if (bio_integrity(bio))
998 		bio_integrity_advance(bio, bytes);
999 
1000 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1001 }
1002 EXPORT_SYMBOL(bio_advance);
1003 
1004 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1005 			struct bio *src, struct bvec_iter *src_iter)
1006 {
1007 	struct bio_vec src_bv, dst_bv;
1008 	void *src_p, *dst_p;
1009 	unsigned bytes;
1010 
1011 	while (src_iter->bi_size && dst_iter->bi_size) {
1012 		src_bv = bio_iter_iovec(src, *src_iter);
1013 		dst_bv = bio_iter_iovec(dst, *dst_iter);
1014 
1015 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1016 
1017 		src_p = kmap_atomic(src_bv.bv_page);
1018 		dst_p = kmap_atomic(dst_bv.bv_page);
1019 
1020 		memcpy(dst_p + dst_bv.bv_offset,
1021 		       src_p + src_bv.bv_offset,
1022 		       bytes);
1023 
1024 		kunmap_atomic(dst_p);
1025 		kunmap_atomic(src_p);
1026 
1027 		flush_dcache_page(dst_bv.bv_page);
1028 
1029 		bio_advance_iter(src, src_iter, bytes);
1030 		bio_advance_iter(dst, dst_iter, bytes);
1031 	}
1032 }
1033 EXPORT_SYMBOL(bio_copy_data_iter);
1034 
1035 /**
1036  * bio_copy_data - copy contents of data buffers from one bio to another
1037  * @src: source bio
1038  * @dst: destination bio
1039  *
1040  * Stops when it reaches the end of either @src or @dst - that is, copies
1041  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1042  */
1043 void bio_copy_data(struct bio *dst, struct bio *src)
1044 {
1045 	struct bvec_iter src_iter = src->bi_iter;
1046 	struct bvec_iter dst_iter = dst->bi_iter;
1047 
1048 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1049 }
1050 EXPORT_SYMBOL(bio_copy_data);
1051 
1052 /**
1053  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1054  * another
1055  * @src: source bio list
1056  * @dst: destination bio list
1057  *
1058  * Stops when it reaches the end of either the @src list or @dst list - that is,
1059  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1060  * bios).
1061  */
1062 void bio_list_copy_data(struct bio *dst, struct bio *src)
1063 {
1064 	struct bvec_iter src_iter = src->bi_iter;
1065 	struct bvec_iter dst_iter = dst->bi_iter;
1066 
1067 	while (1) {
1068 		if (!src_iter.bi_size) {
1069 			src = src->bi_next;
1070 			if (!src)
1071 				break;
1072 
1073 			src_iter = src->bi_iter;
1074 		}
1075 
1076 		if (!dst_iter.bi_size) {
1077 			dst = dst->bi_next;
1078 			if (!dst)
1079 				break;
1080 
1081 			dst_iter = dst->bi_iter;
1082 		}
1083 
1084 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1085 	}
1086 }
1087 EXPORT_SYMBOL(bio_list_copy_data);
1088 
1089 struct bio_map_data {
1090 	int is_our_pages;
1091 	struct iov_iter iter;
1092 	struct iovec iov[];
1093 };
1094 
1095 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1096 					       gfp_t gfp_mask)
1097 {
1098 	struct bio_map_data *bmd;
1099 	if (data->nr_segs > UIO_MAXIOV)
1100 		return NULL;
1101 
1102 	bmd = kmalloc(sizeof(struct bio_map_data) +
1103 		       sizeof(struct iovec) * data->nr_segs, gfp_mask);
1104 	if (!bmd)
1105 		return NULL;
1106 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1107 	bmd->iter = *data;
1108 	bmd->iter.iov = bmd->iov;
1109 	return bmd;
1110 }
1111 
1112 /**
1113  * bio_copy_from_iter - copy all pages from iov_iter to bio
1114  * @bio: The &struct bio which describes the I/O as destination
1115  * @iter: iov_iter as source
1116  *
1117  * Copy all pages from iov_iter to bio.
1118  * Returns 0 on success, or error on failure.
1119  */
1120 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1121 {
1122 	int i;
1123 	struct bio_vec *bvec;
1124 
1125 	bio_for_each_segment_all(bvec, bio, i) {
1126 		ssize_t ret;
1127 
1128 		ret = copy_page_from_iter(bvec->bv_page,
1129 					  bvec->bv_offset,
1130 					  bvec->bv_len,
1131 					  iter);
1132 
1133 		if (!iov_iter_count(iter))
1134 			break;
1135 
1136 		if (ret < bvec->bv_len)
1137 			return -EFAULT;
1138 	}
1139 
1140 	return 0;
1141 }
1142 
1143 /**
1144  * bio_copy_to_iter - copy all pages from bio to iov_iter
1145  * @bio: The &struct bio which describes the I/O as source
1146  * @iter: iov_iter as destination
1147  *
1148  * Copy all pages from bio to iov_iter.
1149  * Returns 0 on success, or error on failure.
1150  */
1151 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1152 {
1153 	int i;
1154 	struct bio_vec *bvec;
1155 
1156 	bio_for_each_segment_all(bvec, bio, i) {
1157 		ssize_t ret;
1158 
1159 		ret = copy_page_to_iter(bvec->bv_page,
1160 					bvec->bv_offset,
1161 					bvec->bv_len,
1162 					&iter);
1163 
1164 		if (!iov_iter_count(&iter))
1165 			break;
1166 
1167 		if (ret < bvec->bv_len)
1168 			return -EFAULT;
1169 	}
1170 
1171 	return 0;
1172 }
1173 
1174 void bio_free_pages(struct bio *bio)
1175 {
1176 	struct bio_vec *bvec;
1177 	int i;
1178 
1179 	bio_for_each_segment_all(bvec, bio, i)
1180 		__free_page(bvec->bv_page);
1181 }
1182 EXPORT_SYMBOL(bio_free_pages);
1183 
1184 /**
1185  *	bio_uncopy_user	-	finish previously mapped bio
1186  *	@bio: bio being terminated
1187  *
1188  *	Free pages allocated from bio_copy_user_iov() and write back data
1189  *	to user space in case of a read.
1190  */
1191 int bio_uncopy_user(struct bio *bio)
1192 {
1193 	struct bio_map_data *bmd = bio->bi_private;
1194 	int ret = 0;
1195 
1196 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1197 		/*
1198 		 * if we're in a workqueue, the request is orphaned, so
1199 		 * don't copy into a random user address space, just free
1200 		 * and return -EINTR so user space doesn't expect any data.
1201 		 */
1202 		if (!current->mm)
1203 			ret = -EINTR;
1204 		else if (bio_data_dir(bio) == READ)
1205 			ret = bio_copy_to_iter(bio, bmd->iter);
1206 		if (bmd->is_our_pages)
1207 			bio_free_pages(bio);
1208 	}
1209 	kfree(bmd);
1210 	bio_put(bio);
1211 	return ret;
1212 }
1213 
1214 /**
1215  *	bio_copy_user_iov	-	copy user data to bio
1216  *	@q:		destination block queue
1217  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1218  *	@iter:		iovec iterator
1219  *	@gfp_mask:	memory allocation flags
1220  *
1221  *	Prepares and returns a bio for indirect user io, bouncing data
1222  *	to/from kernel pages as necessary. Must be paired with
1223  *	call bio_uncopy_user() on io completion.
1224  */
1225 struct bio *bio_copy_user_iov(struct request_queue *q,
1226 			      struct rq_map_data *map_data,
1227 			      struct iov_iter *iter,
1228 			      gfp_t gfp_mask)
1229 {
1230 	struct bio_map_data *bmd;
1231 	struct page *page;
1232 	struct bio *bio;
1233 	int i = 0, ret;
1234 	int nr_pages;
1235 	unsigned int len = iter->count;
1236 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1237 
1238 	bmd = bio_alloc_map_data(iter, gfp_mask);
1239 	if (!bmd)
1240 		return ERR_PTR(-ENOMEM);
1241 
1242 	/*
1243 	 * We need to do a deep copy of the iov_iter including the iovecs.
1244 	 * The caller provided iov might point to an on-stack or otherwise
1245 	 * shortlived one.
1246 	 */
1247 	bmd->is_our_pages = map_data ? 0 : 1;
1248 
1249 	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1250 	if (nr_pages > BIO_MAX_PAGES)
1251 		nr_pages = BIO_MAX_PAGES;
1252 
1253 	ret = -ENOMEM;
1254 	bio = bio_kmalloc(gfp_mask, nr_pages);
1255 	if (!bio)
1256 		goto out_bmd;
1257 
1258 	ret = 0;
1259 
1260 	if (map_data) {
1261 		nr_pages = 1 << map_data->page_order;
1262 		i = map_data->offset / PAGE_SIZE;
1263 	}
1264 	while (len) {
1265 		unsigned int bytes = PAGE_SIZE;
1266 
1267 		bytes -= offset;
1268 
1269 		if (bytes > len)
1270 			bytes = len;
1271 
1272 		if (map_data) {
1273 			if (i == map_data->nr_entries * nr_pages) {
1274 				ret = -ENOMEM;
1275 				break;
1276 			}
1277 
1278 			page = map_data->pages[i / nr_pages];
1279 			page += (i % nr_pages);
1280 
1281 			i++;
1282 		} else {
1283 			page = alloc_page(q->bounce_gfp | gfp_mask);
1284 			if (!page) {
1285 				ret = -ENOMEM;
1286 				break;
1287 			}
1288 		}
1289 
1290 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1291 			break;
1292 
1293 		len -= bytes;
1294 		offset = 0;
1295 	}
1296 
1297 	if (ret)
1298 		goto cleanup;
1299 
1300 	if (map_data)
1301 		map_data->offset += bio->bi_iter.bi_size;
1302 
1303 	/*
1304 	 * success
1305 	 */
1306 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1307 	    (map_data && map_data->from_user)) {
1308 		ret = bio_copy_from_iter(bio, iter);
1309 		if (ret)
1310 			goto cleanup;
1311 	} else {
1312 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1313 	}
1314 
1315 	bio->bi_private = bmd;
1316 	if (map_data && map_data->null_mapped)
1317 		bio_set_flag(bio, BIO_NULL_MAPPED);
1318 	return bio;
1319 cleanup:
1320 	if (!map_data)
1321 		bio_free_pages(bio);
1322 	bio_put(bio);
1323 out_bmd:
1324 	kfree(bmd);
1325 	return ERR_PTR(ret);
1326 }
1327 
1328 /**
1329  *	bio_map_user_iov - map user iovec into bio
1330  *	@q:		the struct request_queue for the bio
1331  *	@iter:		iovec iterator
1332  *	@gfp_mask:	memory allocation flags
1333  *
1334  *	Map the user space address into a bio suitable for io to a block
1335  *	device. Returns an error pointer in case of error.
1336  */
1337 struct bio *bio_map_user_iov(struct request_queue *q,
1338 			     struct iov_iter *iter,
1339 			     gfp_t gfp_mask)
1340 {
1341 	int j;
1342 	struct bio *bio;
1343 	int ret;
1344 	struct bio_vec *bvec;
1345 
1346 	if (!iov_iter_count(iter))
1347 		return ERR_PTR(-EINVAL);
1348 
1349 	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1350 	if (!bio)
1351 		return ERR_PTR(-ENOMEM);
1352 
1353 	while (iov_iter_count(iter)) {
1354 		struct page **pages;
1355 		ssize_t bytes;
1356 		size_t offs, added = 0;
1357 		int npages;
1358 
1359 		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1360 		if (unlikely(bytes <= 0)) {
1361 			ret = bytes ? bytes : -EFAULT;
1362 			goto out_unmap;
1363 		}
1364 
1365 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1366 
1367 		if (unlikely(offs & queue_dma_alignment(q))) {
1368 			ret = -EINVAL;
1369 			j = 0;
1370 		} else {
1371 			for (j = 0; j < npages; j++) {
1372 				struct page *page = pages[j];
1373 				unsigned int n = PAGE_SIZE - offs;
1374 				unsigned short prev_bi_vcnt = bio->bi_vcnt;
1375 
1376 				if (n > bytes)
1377 					n = bytes;
1378 
1379 				if (!bio_add_pc_page(q, bio, page, n, offs))
1380 					break;
1381 
1382 				/*
1383 				 * check if vector was merged with previous
1384 				 * drop page reference if needed
1385 				 */
1386 				if (bio->bi_vcnt == prev_bi_vcnt)
1387 					put_page(page);
1388 
1389 				added += n;
1390 				bytes -= n;
1391 				offs = 0;
1392 			}
1393 			iov_iter_advance(iter, added);
1394 		}
1395 		/*
1396 		 * release the pages we didn't map into the bio, if any
1397 		 */
1398 		while (j < npages)
1399 			put_page(pages[j++]);
1400 		kvfree(pages);
1401 		/* couldn't stuff something into bio? */
1402 		if (bytes)
1403 			break;
1404 	}
1405 
1406 	bio_set_flag(bio, BIO_USER_MAPPED);
1407 
1408 	/*
1409 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1410 	 * it would normally disappear when its bi_end_io is run.
1411 	 * however, we need it for the unmap, so grab an extra
1412 	 * reference to it
1413 	 */
1414 	bio_get(bio);
1415 	return bio;
1416 
1417  out_unmap:
1418 	bio_for_each_segment_all(bvec, bio, j) {
1419 		put_page(bvec->bv_page);
1420 	}
1421 	bio_put(bio);
1422 	return ERR_PTR(ret);
1423 }
1424 
1425 static void __bio_unmap_user(struct bio *bio)
1426 {
1427 	struct bio_vec *bvec;
1428 	int i;
1429 
1430 	/*
1431 	 * make sure we dirty pages we wrote to
1432 	 */
1433 	bio_for_each_segment_all(bvec, bio, i) {
1434 		if (bio_data_dir(bio) == READ)
1435 			set_page_dirty_lock(bvec->bv_page);
1436 
1437 		put_page(bvec->bv_page);
1438 	}
1439 
1440 	bio_put(bio);
1441 }
1442 
1443 /**
1444  *	bio_unmap_user	-	unmap a bio
1445  *	@bio:		the bio being unmapped
1446  *
1447  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1448  *	process context.
1449  *
1450  *	bio_unmap_user() may sleep.
1451  */
1452 void bio_unmap_user(struct bio *bio)
1453 {
1454 	__bio_unmap_user(bio);
1455 	bio_put(bio);
1456 }
1457 
1458 static void bio_map_kern_endio(struct bio *bio)
1459 {
1460 	bio_put(bio);
1461 }
1462 
1463 /**
1464  *	bio_map_kern	-	map kernel address into bio
1465  *	@q: the struct request_queue for the bio
1466  *	@data: pointer to buffer to map
1467  *	@len: length in bytes
1468  *	@gfp_mask: allocation flags for bio allocation
1469  *
1470  *	Map the kernel address into a bio suitable for io to a block
1471  *	device. Returns an error pointer in case of error.
1472  */
1473 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1474 			 gfp_t gfp_mask)
1475 {
1476 	unsigned long kaddr = (unsigned long)data;
1477 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1478 	unsigned long start = kaddr >> PAGE_SHIFT;
1479 	const int nr_pages = end - start;
1480 	int offset, i;
1481 	struct bio *bio;
1482 
1483 	bio = bio_kmalloc(gfp_mask, nr_pages);
1484 	if (!bio)
1485 		return ERR_PTR(-ENOMEM);
1486 
1487 	offset = offset_in_page(kaddr);
1488 	for (i = 0; i < nr_pages; i++) {
1489 		unsigned int bytes = PAGE_SIZE - offset;
1490 
1491 		if (len <= 0)
1492 			break;
1493 
1494 		if (bytes > len)
1495 			bytes = len;
1496 
1497 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1498 				    offset) < bytes) {
1499 			/* we don't support partial mappings */
1500 			bio_put(bio);
1501 			return ERR_PTR(-EINVAL);
1502 		}
1503 
1504 		data += bytes;
1505 		len -= bytes;
1506 		offset = 0;
1507 	}
1508 
1509 	bio->bi_end_io = bio_map_kern_endio;
1510 	return bio;
1511 }
1512 EXPORT_SYMBOL(bio_map_kern);
1513 
1514 static void bio_copy_kern_endio(struct bio *bio)
1515 {
1516 	bio_free_pages(bio);
1517 	bio_put(bio);
1518 }
1519 
1520 static void bio_copy_kern_endio_read(struct bio *bio)
1521 {
1522 	char *p = bio->bi_private;
1523 	struct bio_vec *bvec;
1524 	int i;
1525 
1526 	bio_for_each_segment_all(bvec, bio, i) {
1527 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1528 		p += bvec->bv_len;
1529 	}
1530 
1531 	bio_copy_kern_endio(bio);
1532 }
1533 
1534 /**
1535  *	bio_copy_kern	-	copy kernel address into bio
1536  *	@q: the struct request_queue for the bio
1537  *	@data: pointer to buffer to copy
1538  *	@len: length in bytes
1539  *	@gfp_mask: allocation flags for bio and page allocation
1540  *	@reading: data direction is READ
1541  *
1542  *	copy the kernel address into a bio suitable for io to a block
1543  *	device. Returns an error pointer in case of error.
1544  */
1545 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1546 			  gfp_t gfp_mask, int reading)
1547 {
1548 	unsigned long kaddr = (unsigned long)data;
1549 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1550 	unsigned long start = kaddr >> PAGE_SHIFT;
1551 	struct bio *bio;
1552 	void *p = data;
1553 	int nr_pages = 0;
1554 
1555 	/*
1556 	 * Overflow, abort
1557 	 */
1558 	if (end < start)
1559 		return ERR_PTR(-EINVAL);
1560 
1561 	nr_pages = end - start;
1562 	bio = bio_kmalloc(gfp_mask, nr_pages);
1563 	if (!bio)
1564 		return ERR_PTR(-ENOMEM);
1565 
1566 	while (len) {
1567 		struct page *page;
1568 		unsigned int bytes = PAGE_SIZE;
1569 
1570 		if (bytes > len)
1571 			bytes = len;
1572 
1573 		page = alloc_page(q->bounce_gfp | gfp_mask);
1574 		if (!page)
1575 			goto cleanup;
1576 
1577 		if (!reading)
1578 			memcpy(page_address(page), p, bytes);
1579 
1580 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1581 			break;
1582 
1583 		len -= bytes;
1584 		p += bytes;
1585 	}
1586 
1587 	if (reading) {
1588 		bio->bi_end_io = bio_copy_kern_endio_read;
1589 		bio->bi_private = data;
1590 	} else {
1591 		bio->bi_end_io = bio_copy_kern_endio;
1592 	}
1593 
1594 	return bio;
1595 
1596 cleanup:
1597 	bio_free_pages(bio);
1598 	bio_put(bio);
1599 	return ERR_PTR(-ENOMEM);
1600 }
1601 
1602 /*
1603  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1604  * for performing direct-IO in BIOs.
1605  *
1606  * The problem is that we cannot run set_page_dirty() from interrupt context
1607  * because the required locks are not interrupt-safe.  So what we can do is to
1608  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1609  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1610  * in process context.
1611  *
1612  * We special-case compound pages here: normally this means reads into hugetlb
1613  * pages.  The logic in here doesn't really work right for compound pages
1614  * because the VM does not uniformly chase down the head page in all cases.
1615  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1616  * handle them at all.  So we skip compound pages here at an early stage.
1617  *
1618  * Note that this code is very hard to test under normal circumstances because
1619  * direct-io pins the pages with get_user_pages().  This makes
1620  * is_page_cache_freeable return false, and the VM will not clean the pages.
1621  * But other code (eg, flusher threads) could clean the pages if they are mapped
1622  * pagecache.
1623  *
1624  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1625  * deferred bio dirtying paths.
1626  */
1627 
1628 /*
1629  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1630  */
1631 void bio_set_pages_dirty(struct bio *bio)
1632 {
1633 	struct bio_vec *bvec;
1634 	int i;
1635 
1636 	bio_for_each_segment_all(bvec, bio, i) {
1637 		struct page *page = bvec->bv_page;
1638 
1639 		if (page && !PageCompound(page))
1640 			set_page_dirty_lock(page);
1641 	}
1642 }
1643 EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1644 
1645 static void bio_release_pages(struct bio *bio)
1646 {
1647 	struct bio_vec *bvec;
1648 	int i;
1649 
1650 	bio_for_each_segment_all(bvec, bio, i) {
1651 		struct page *page = bvec->bv_page;
1652 
1653 		if (page)
1654 			put_page(page);
1655 	}
1656 }
1657 
1658 /*
1659  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1660  * If they are, then fine.  If, however, some pages are clean then they must
1661  * have been written out during the direct-IO read.  So we take another ref on
1662  * the BIO and the offending pages and re-dirty the pages in process context.
1663  *
1664  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1665  * here on.  It will run one put_page() against each page and will run one
1666  * bio_put() against the BIO.
1667  */
1668 
1669 static void bio_dirty_fn(struct work_struct *work);
1670 
1671 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1672 static DEFINE_SPINLOCK(bio_dirty_lock);
1673 static struct bio *bio_dirty_list;
1674 
1675 /*
1676  * This runs in process context
1677  */
1678 static void bio_dirty_fn(struct work_struct *work)
1679 {
1680 	unsigned long flags;
1681 	struct bio *bio;
1682 
1683 	spin_lock_irqsave(&bio_dirty_lock, flags);
1684 	bio = bio_dirty_list;
1685 	bio_dirty_list = NULL;
1686 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1687 
1688 	while (bio) {
1689 		struct bio *next = bio->bi_private;
1690 
1691 		bio_set_pages_dirty(bio);
1692 		bio_release_pages(bio);
1693 		bio_put(bio);
1694 		bio = next;
1695 	}
1696 }
1697 
1698 void bio_check_pages_dirty(struct bio *bio)
1699 {
1700 	struct bio_vec *bvec;
1701 	int nr_clean_pages = 0;
1702 	int i;
1703 
1704 	bio_for_each_segment_all(bvec, bio, i) {
1705 		struct page *page = bvec->bv_page;
1706 
1707 		if (PageDirty(page) || PageCompound(page)) {
1708 			put_page(page);
1709 			bvec->bv_page = NULL;
1710 		} else {
1711 			nr_clean_pages++;
1712 		}
1713 	}
1714 
1715 	if (nr_clean_pages) {
1716 		unsigned long flags;
1717 
1718 		spin_lock_irqsave(&bio_dirty_lock, flags);
1719 		bio->bi_private = bio_dirty_list;
1720 		bio_dirty_list = bio;
1721 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1722 		schedule_work(&bio_dirty_work);
1723 	} else {
1724 		bio_put(bio);
1725 	}
1726 }
1727 EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1728 
1729 void generic_start_io_acct(struct request_queue *q, int rw,
1730 			   unsigned long sectors, struct hd_struct *part)
1731 {
1732 	int cpu = part_stat_lock();
1733 
1734 	part_round_stats(q, cpu, part);
1735 	part_stat_inc(cpu, part, ios[rw]);
1736 	part_stat_add(cpu, part, sectors[rw], sectors);
1737 	part_inc_in_flight(q, part, rw);
1738 
1739 	part_stat_unlock();
1740 }
1741 EXPORT_SYMBOL(generic_start_io_acct);
1742 
1743 void generic_end_io_acct(struct request_queue *q, int rw,
1744 			 struct hd_struct *part, unsigned long start_time)
1745 {
1746 	unsigned long duration = jiffies - start_time;
1747 	int cpu = part_stat_lock();
1748 
1749 	part_stat_add(cpu, part, ticks[rw], duration);
1750 	part_round_stats(q, cpu, part);
1751 	part_dec_in_flight(q, part, rw);
1752 
1753 	part_stat_unlock();
1754 }
1755 EXPORT_SYMBOL(generic_end_io_acct);
1756 
1757 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1758 void bio_flush_dcache_pages(struct bio *bi)
1759 {
1760 	struct bio_vec bvec;
1761 	struct bvec_iter iter;
1762 
1763 	bio_for_each_segment(bvec, bi, iter)
1764 		flush_dcache_page(bvec.bv_page);
1765 }
1766 EXPORT_SYMBOL(bio_flush_dcache_pages);
1767 #endif
1768 
1769 static inline bool bio_remaining_done(struct bio *bio)
1770 {
1771 	/*
1772 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1773 	 * we always end io on the first invocation.
1774 	 */
1775 	if (!bio_flagged(bio, BIO_CHAIN))
1776 		return true;
1777 
1778 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1779 
1780 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1781 		bio_clear_flag(bio, BIO_CHAIN);
1782 		return true;
1783 	}
1784 
1785 	return false;
1786 }
1787 
1788 /**
1789  * bio_endio - end I/O on a bio
1790  * @bio:	bio
1791  *
1792  * Description:
1793  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1794  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1795  *   bio unless they own it and thus know that it has an end_io function.
1796  *
1797  *   bio_endio() can be called several times on a bio that has been chained
1798  *   using bio_chain().  The ->bi_end_io() function will only be called the
1799  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1800  *   generated if BIO_TRACE_COMPLETION is set.
1801  **/
1802 void bio_endio(struct bio *bio)
1803 {
1804 again:
1805 	if (!bio_remaining_done(bio))
1806 		return;
1807 	if (!bio_integrity_endio(bio))
1808 		return;
1809 
1810 	/*
1811 	 * Need to have a real endio function for chained bios, otherwise
1812 	 * various corner cases will break (like stacking block devices that
1813 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1814 	 * recursion and blowing the stack. Tail call optimization would
1815 	 * handle this, but compiling with frame pointers also disables
1816 	 * gcc's sibling call optimization.
1817 	 */
1818 	if (bio->bi_end_io == bio_chain_endio) {
1819 		bio = __bio_chain_endio(bio);
1820 		goto again;
1821 	}
1822 
1823 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1824 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1825 					 blk_status_to_errno(bio->bi_status));
1826 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1827 	}
1828 
1829 	blk_throtl_bio_endio(bio);
1830 	/* release cgroup info */
1831 	bio_uninit(bio);
1832 	if (bio->bi_end_io)
1833 		bio->bi_end_io(bio);
1834 }
1835 EXPORT_SYMBOL(bio_endio);
1836 
1837 /**
1838  * bio_split - split a bio
1839  * @bio:	bio to split
1840  * @sectors:	number of sectors to split from the front of @bio
1841  * @gfp:	gfp mask
1842  * @bs:		bio set to allocate from
1843  *
1844  * Allocates and returns a new bio which represents @sectors from the start of
1845  * @bio, and updates @bio to represent the remaining sectors.
1846  *
1847  * Unless this is a discard request the newly allocated bio will point
1848  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1849  * @bio is not freed before the split.
1850  */
1851 struct bio *bio_split(struct bio *bio, int sectors,
1852 		      gfp_t gfp, struct bio_set *bs)
1853 {
1854 	struct bio *split;
1855 
1856 	BUG_ON(sectors <= 0);
1857 	BUG_ON(sectors >= bio_sectors(bio));
1858 
1859 	split = bio_clone_fast(bio, gfp, bs);
1860 	if (!split)
1861 		return NULL;
1862 
1863 	split->bi_iter.bi_size = sectors << 9;
1864 
1865 	if (bio_integrity(split))
1866 		bio_integrity_trim(split);
1867 
1868 	bio_advance(bio, split->bi_iter.bi_size);
1869 
1870 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1871 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1872 
1873 	return split;
1874 }
1875 EXPORT_SYMBOL(bio_split);
1876 
1877 /**
1878  * bio_trim - trim a bio
1879  * @bio:	bio to trim
1880  * @offset:	number of sectors to trim from the front of @bio
1881  * @size:	size we want to trim @bio to, in sectors
1882  */
1883 void bio_trim(struct bio *bio, int offset, int size)
1884 {
1885 	/* 'bio' is a cloned bio which we need to trim to match
1886 	 * the given offset and size.
1887 	 */
1888 
1889 	size <<= 9;
1890 	if (offset == 0 && size == bio->bi_iter.bi_size)
1891 		return;
1892 
1893 	bio_clear_flag(bio, BIO_SEG_VALID);
1894 
1895 	bio_advance(bio, offset << 9);
1896 
1897 	bio->bi_iter.bi_size = size;
1898 
1899 	if (bio_integrity(bio))
1900 		bio_integrity_trim(bio);
1901 
1902 }
1903 EXPORT_SYMBOL_GPL(bio_trim);
1904 
1905 /*
1906  * create memory pools for biovec's in a bio_set.
1907  * use the global biovec slabs created for general use.
1908  */
1909 int biovec_init_pool(mempool_t *pool, int pool_entries)
1910 {
1911 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1912 
1913 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1914 }
1915 
1916 /*
1917  * bioset_exit - exit a bioset initialized with bioset_init()
1918  *
1919  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1920  * kzalloc()).
1921  */
1922 void bioset_exit(struct bio_set *bs)
1923 {
1924 	if (bs->rescue_workqueue)
1925 		destroy_workqueue(bs->rescue_workqueue);
1926 	bs->rescue_workqueue = NULL;
1927 
1928 	mempool_exit(&bs->bio_pool);
1929 	mempool_exit(&bs->bvec_pool);
1930 
1931 	bioset_integrity_free(bs);
1932 	if (bs->bio_slab)
1933 		bio_put_slab(bs);
1934 	bs->bio_slab = NULL;
1935 }
1936 EXPORT_SYMBOL(bioset_exit);
1937 
1938 /**
1939  * bioset_init - Initialize a bio_set
1940  * @bs:		pool to initialize
1941  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1942  * @front_pad:	Number of bytes to allocate in front of the returned bio
1943  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1944  *              and %BIOSET_NEED_RESCUER
1945  *
1946  * Description:
1947  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1948  *    to ask for a number of bytes to be allocated in front of the bio.
1949  *    Front pad allocation is useful for embedding the bio inside
1950  *    another structure, to avoid allocating extra data to go with the bio.
1951  *    Note that the bio must be embedded at the END of that structure always,
1952  *    or things will break badly.
1953  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1954  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1955  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1956  *    dispatch queued requests when the mempool runs out of space.
1957  *
1958  */
1959 int bioset_init(struct bio_set *bs,
1960 		unsigned int pool_size,
1961 		unsigned int front_pad,
1962 		int flags)
1963 {
1964 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1965 
1966 	bs->front_pad = front_pad;
1967 
1968 	spin_lock_init(&bs->rescue_lock);
1969 	bio_list_init(&bs->rescue_list);
1970 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1971 
1972 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1973 	if (!bs->bio_slab)
1974 		return -ENOMEM;
1975 
1976 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1977 		goto bad;
1978 
1979 	if ((flags & BIOSET_NEED_BVECS) &&
1980 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1981 		goto bad;
1982 
1983 	if (!(flags & BIOSET_NEED_RESCUER))
1984 		return 0;
1985 
1986 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1987 	if (!bs->rescue_workqueue)
1988 		goto bad;
1989 
1990 	return 0;
1991 bad:
1992 	bioset_exit(bs);
1993 	return -ENOMEM;
1994 }
1995 EXPORT_SYMBOL(bioset_init);
1996 
1997 /*
1998  * Initialize and setup a new bio_set, based on the settings from
1999  * another bio_set.
2000  */
2001 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2002 {
2003 	int flags;
2004 
2005 	flags = 0;
2006 	if (src->bvec_pool.min_nr)
2007 		flags |= BIOSET_NEED_BVECS;
2008 	if (src->rescue_workqueue)
2009 		flags |= BIOSET_NEED_RESCUER;
2010 
2011 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2012 }
2013 EXPORT_SYMBOL(bioset_init_from_src);
2014 
2015 #ifdef CONFIG_BLK_CGROUP
2016 
2017 /**
2018  * bio_associate_blkcg - associate a bio with the specified blkcg
2019  * @bio: target bio
2020  * @blkcg_css: css of the blkcg to associate
2021  *
2022  * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
2023  * treat @bio as if it were issued by a task which belongs to the blkcg.
2024  *
2025  * This function takes an extra reference of @blkcg_css which will be put
2026  * when @bio is released.  The caller must own @bio and is responsible for
2027  * synchronizing calls to this function.
2028  */
2029 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2030 {
2031 	if (unlikely(bio->bi_css))
2032 		return -EBUSY;
2033 	css_get(blkcg_css);
2034 	bio->bi_css = blkcg_css;
2035 	return 0;
2036 }
2037 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2038 
2039 /**
2040  * bio_disassociate_task - undo bio_associate_current()
2041  * @bio: target bio
2042  */
2043 void bio_disassociate_task(struct bio *bio)
2044 {
2045 	if (bio->bi_ioc) {
2046 		put_io_context(bio->bi_ioc);
2047 		bio->bi_ioc = NULL;
2048 	}
2049 	if (bio->bi_css) {
2050 		css_put(bio->bi_css);
2051 		bio->bi_css = NULL;
2052 	}
2053 }
2054 
2055 /**
2056  * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2057  * @dst: destination bio
2058  * @src: source bio
2059  */
2060 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2061 {
2062 	if (src->bi_css)
2063 		WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2064 }
2065 EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
2066 #endif /* CONFIG_BLK_CGROUP */
2067 
2068 static void __init biovec_init_slabs(void)
2069 {
2070 	int i;
2071 
2072 	for (i = 0; i < BVEC_POOL_NR; i++) {
2073 		int size;
2074 		struct biovec_slab *bvs = bvec_slabs + i;
2075 
2076 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2077 			bvs->slab = NULL;
2078 			continue;
2079 		}
2080 
2081 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2082 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2083                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2084 	}
2085 }
2086 
2087 static int __init init_bio(void)
2088 {
2089 	bio_slab_max = 2;
2090 	bio_slab_nr = 0;
2091 	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2092 			    GFP_KERNEL);
2093 	if (!bio_slabs)
2094 		panic("bio: can't allocate bios\n");
2095 
2096 	bio_integrity_init();
2097 	biovec_init_slabs();
2098 
2099 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2100 		panic("bio: can't allocate bios\n");
2101 
2102 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2103 		panic("bio: can't create integrity pool\n");
2104 
2105 	return 0;
2106 }
2107 subsys_initcall(init_bio);
2108