1 /* 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public Licens 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 16 * 17 */ 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/bio.h> 21 #include <linux/blkdev.h> 22 #include <linux/uio.h> 23 #include <linux/iocontext.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/kernel.h> 27 #include <linux/export.h> 28 #include <linux/mempool.h> 29 #include <linux/workqueue.h> 30 #include <linux/cgroup.h> 31 #include <scsi/sg.h> /* for struct sg_iovec */ 32 33 #include <trace/events/block.h> 34 35 /* 36 * Test patch to inline a certain number of bi_io_vec's inside the bio 37 * itself, to shrink a bio data allocation from two mempool calls to one 38 */ 39 #define BIO_INLINE_VECS 4 40 41 /* 42 * if you change this list, also change bvec_alloc or things will 43 * break badly! cannot be bigger than what you can fit into an 44 * unsigned short 45 */ 46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } 47 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = { 48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), 49 }; 50 #undef BV 51 52 /* 53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 54 * IO code that does not need private memory pools. 55 */ 56 struct bio_set *fs_bio_set; 57 EXPORT_SYMBOL(fs_bio_set); 58 59 /* 60 * Our slab pool management 61 */ 62 struct bio_slab { 63 struct kmem_cache *slab; 64 unsigned int slab_ref; 65 unsigned int slab_size; 66 char name[8]; 67 }; 68 static DEFINE_MUTEX(bio_slab_lock); 69 static struct bio_slab *bio_slabs; 70 static unsigned int bio_slab_nr, bio_slab_max; 71 72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 73 { 74 unsigned int sz = sizeof(struct bio) + extra_size; 75 struct kmem_cache *slab = NULL; 76 struct bio_slab *bslab, *new_bio_slabs; 77 unsigned int new_bio_slab_max; 78 unsigned int i, entry = -1; 79 80 mutex_lock(&bio_slab_lock); 81 82 i = 0; 83 while (i < bio_slab_nr) { 84 bslab = &bio_slabs[i]; 85 86 if (!bslab->slab && entry == -1) 87 entry = i; 88 else if (bslab->slab_size == sz) { 89 slab = bslab->slab; 90 bslab->slab_ref++; 91 break; 92 } 93 i++; 94 } 95 96 if (slab) 97 goto out_unlock; 98 99 if (bio_slab_nr == bio_slab_max && entry == -1) { 100 new_bio_slab_max = bio_slab_max << 1; 101 new_bio_slabs = krealloc(bio_slabs, 102 new_bio_slab_max * sizeof(struct bio_slab), 103 GFP_KERNEL); 104 if (!new_bio_slabs) 105 goto out_unlock; 106 bio_slab_max = new_bio_slab_max; 107 bio_slabs = new_bio_slabs; 108 } 109 if (entry == -1) 110 entry = bio_slab_nr++; 111 112 bslab = &bio_slabs[entry]; 113 114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 115 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL); 116 if (!slab) 117 goto out_unlock; 118 119 bslab->slab = slab; 120 bslab->slab_ref = 1; 121 bslab->slab_size = sz; 122 out_unlock: 123 mutex_unlock(&bio_slab_lock); 124 return slab; 125 } 126 127 static void bio_put_slab(struct bio_set *bs) 128 { 129 struct bio_slab *bslab = NULL; 130 unsigned int i; 131 132 mutex_lock(&bio_slab_lock); 133 134 for (i = 0; i < bio_slab_nr; i++) { 135 if (bs->bio_slab == bio_slabs[i].slab) { 136 bslab = &bio_slabs[i]; 137 break; 138 } 139 } 140 141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 142 goto out; 143 144 WARN_ON(!bslab->slab_ref); 145 146 if (--bslab->slab_ref) 147 goto out; 148 149 kmem_cache_destroy(bslab->slab); 150 bslab->slab = NULL; 151 152 out: 153 mutex_unlock(&bio_slab_lock); 154 } 155 156 unsigned int bvec_nr_vecs(unsigned short idx) 157 { 158 return bvec_slabs[idx].nr_vecs; 159 } 160 161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 162 { 163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS); 164 165 if (idx == BIOVEC_MAX_IDX) 166 mempool_free(bv, pool); 167 else { 168 struct biovec_slab *bvs = bvec_slabs + idx; 169 170 kmem_cache_free(bvs->slab, bv); 171 } 172 } 173 174 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 175 mempool_t *pool) 176 { 177 struct bio_vec *bvl; 178 179 /* 180 * see comment near bvec_array define! 181 */ 182 switch (nr) { 183 case 1: 184 *idx = 0; 185 break; 186 case 2 ... 4: 187 *idx = 1; 188 break; 189 case 5 ... 16: 190 *idx = 2; 191 break; 192 case 17 ... 64: 193 *idx = 3; 194 break; 195 case 65 ... 128: 196 *idx = 4; 197 break; 198 case 129 ... BIO_MAX_PAGES: 199 *idx = 5; 200 break; 201 default: 202 return NULL; 203 } 204 205 /* 206 * idx now points to the pool we want to allocate from. only the 207 * 1-vec entry pool is mempool backed. 208 */ 209 if (*idx == BIOVEC_MAX_IDX) { 210 fallback: 211 bvl = mempool_alloc(pool, gfp_mask); 212 } else { 213 struct biovec_slab *bvs = bvec_slabs + *idx; 214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO); 215 216 /* 217 * Make this allocation restricted and don't dump info on 218 * allocation failures, since we'll fallback to the mempool 219 * in case of failure. 220 */ 221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 222 223 /* 224 * Try a slab allocation. If this fails and __GFP_WAIT 225 * is set, retry with the 1-entry mempool 226 */ 227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 228 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) { 229 *idx = BIOVEC_MAX_IDX; 230 goto fallback; 231 } 232 } 233 234 return bvl; 235 } 236 237 static void __bio_free(struct bio *bio) 238 { 239 bio_disassociate_task(bio); 240 241 if (bio_integrity(bio)) 242 bio_integrity_free(bio); 243 } 244 245 static void bio_free(struct bio *bio) 246 { 247 struct bio_set *bs = bio->bi_pool; 248 void *p; 249 250 __bio_free(bio); 251 252 if (bs) { 253 if (bio_flagged(bio, BIO_OWNS_VEC)) 254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio)); 255 256 /* 257 * If we have front padding, adjust the bio pointer before freeing 258 */ 259 p = bio; 260 p -= bs->front_pad; 261 262 mempool_free(p, bs->bio_pool); 263 } else { 264 /* Bio was allocated by bio_kmalloc() */ 265 kfree(bio); 266 } 267 } 268 269 void bio_init(struct bio *bio) 270 { 271 memset(bio, 0, sizeof(*bio)); 272 bio->bi_flags = 1 << BIO_UPTODATE; 273 atomic_set(&bio->bi_remaining, 1); 274 atomic_set(&bio->bi_cnt, 1); 275 } 276 EXPORT_SYMBOL(bio_init); 277 278 /** 279 * bio_reset - reinitialize a bio 280 * @bio: bio to reset 281 * 282 * Description: 283 * After calling bio_reset(), @bio will be in the same state as a freshly 284 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 285 * preserved are the ones that are initialized by bio_alloc_bioset(). See 286 * comment in struct bio. 287 */ 288 void bio_reset(struct bio *bio) 289 { 290 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 291 292 __bio_free(bio); 293 294 memset(bio, 0, BIO_RESET_BYTES); 295 bio->bi_flags = flags|(1 << BIO_UPTODATE); 296 atomic_set(&bio->bi_remaining, 1); 297 } 298 EXPORT_SYMBOL(bio_reset); 299 300 static void bio_chain_endio(struct bio *bio, int error) 301 { 302 bio_endio(bio->bi_private, error); 303 bio_put(bio); 304 } 305 306 /** 307 * bio_chain - chain bio completions 308 * @bio: the target bio 309 * @parent: the @bio's parent bio 310 * 311 * The caller won't have a bi_end_io called when @bio completes - instead, 312 * @parent's bi_end_io won't be called until both @parent and @bio have 313 * completed; the chained bio will also be freed when it completes. 314 * 315 * The caller must not set bi_private or bi_end_io in @bio. 316 */ 317 void bio_chain(struct bio *bio, struct bio *parent) 318 { 319 BUG_ON(bio->bi_private || bio->bi_end_io); 320 321 bio->bi_private = parent; 322 bio->bi_end_io = bio_chain_endio; 323 atomic_inc(&parent->bi_remaining); 324 } 325 EXPORT_SYMBOL(bio_chain); 326 327 static void bio_alloc_rescue(struct work_struct *work) 328 { 329 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 330 struct bio *bio; 331 332 while (1) { 333 spin_lock(&bs->rescue_lock); 334 bio = bio_list_pop(&bs->rescue_list); 335 spin_unlock(&bs->rescue_lock); 336 337 if (!bio) 338 break; 339 340 generic_make_request(bio); 341 } 342 } 343 344 static void punt_bios_to_rescuer(struct bio_set *bs) 345 { 346 struct bio_list punt, nopunt; 347 struct bio *bio; 348 349 /* 350 * In order to guarantee forward progress we must punt only bios that 351 * were allocated from this bio_set; otherwise, if there was a bio on 352 * there for a stacking driver higher up in the stack, processing it 353 * could require allocating bios from this bio_set, and doing that from 354 * our own rescuer would be bad. 355 * 356 * Since bio lists are singly linked, pop them all instead of trying to 357 * remove from the middle of the list: 358 */ 359 360 bio_list_init(&punt); 361 bio_list_init(&nopunt); 362 363 while ((bio = bio_list_pop(current->bio_list))) 364 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 365 366 *current->bio_list = nopunt; 367 368 spin_lock(&bs->rescue_lock); 369 bio_list_merge(&bs->rescue_list, &punt); 370 spin_unlock(&bs->rescue_lock); 371 372 queue_work(bs->rescue_workqueue, &bs->rescue_work); 373 } 374 375 /** 376 * bio_alloc_bioset - allocate a bio for I/O 377 * @gfp_mask: the GFP_ mask given to the slab allocator 378 * @nr_iovecs: number of iovecs to pre-allocate 379 * @bs: the bio_set to allocate from. 380 * 381 * Description: 382 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 383 * backed by the @bs's mempool. 384 * 385 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be 386 * able to allocate a bio. This is due to the mempool guarantees. To make this 387 * work, callers must never allocate more than 1 bio at a time from this pool. 388 * Callers that need to allocate more than 1 bio must always submit the 389 * previously allocated bio for IO before attempting to allocate a new one. 390 * Failure to do so can cause deadlocks under memory pressure. 391 * 392 * Note that when running under generic_make_request() (i.e. any block 393 * driver), bios are not submitted until after you return - see the code in 394 * generic_make_request() that converts recursion into iteration, to prevent 395 * stack overflows. 396 * 397 * This would normally mean allocating multiple bios under 398 * generic_make_request() would be susceptible to deadlocks, but we have 399 * deadlock avoidance code that resubmits any blocked bios from a rescuer 400 * thread. 401 * 402 * However, we do not guarantee forward progress for allocations from other 403 * mempools. Doing multiple allocations from the same mempool under 404 * generic_make_request() should be avoided - instead, use bio_set's front_pad 405 * for per bio allocations. 406 * 407 * RETURNS: 408 * Pointer to new bio on success, NULL on failure. 409 */ 410 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) 411 { 412 gfp_t saved_gfp = gfp_mask; 413 unsigned front_pad; 414 unsigned inline_vecs; 415 unsigned long idx = BIO_POOL_NONE; 416 struct bio_vec *bvl = NULL; 417 struct bio *bio; 418 void *p; 419 420 if (!bs) { 421 if (nr_iovecs > UIO_MAXIOV) 422 return NULL; 423 424 p = kmalloc(sizeof(struct bio) + 425 nr_iovecs * sizeof(struct bio_vec), 426 gfp_mask); 427 front_pad = 0; 428 inline_vecs = nr_iovecs; 429 } else { 430 /* 431 * generic_make_request() converts recursion to iteration; this 432 * means if we're running beneath it, any bios we allocate and 433 * submit will not be submitted (and thus freed) until after we 434 * return. 435 * 436 * This exposes us to a potential deadlock if we allocate 437 * multiple bios from the same bio_set() while running 438 * underneath generic_make_request(). If we were to allocate 439 * multiple bios (say a stacking block driver that was splitting 440 * bios), we would deadlock if we exhausted the mempool's 441 * reserve. 442 * 443 * We solve this, and guarantee forward progress, with a rescuer 444 * workqueue per bio_set. If we go to allocate and there are 445 * bios on current->bio_list, we first try the allocation 446 * without __GFP_WAIT; if that fails, we punt those bios we 447 * would be blocking to the rescuer workqueue before we retry 448 * with the original gfp_flags. 449 */ 450 451 if (current->bio_list && !bio_list_empty(current->bio_list)) 452 gfp_mask &= ~__GFP_WAIT; 453 454 p = mempool_alloc(bs->bio_pool, gfp_mask); 455 if (!p && gfp_mask != saved_gfp) { 456 punt_bios_to_rescuer(bs); 457 gfp_mask = saved_gfp; 458 p = mempool_alloc(bs->bio_pool, gfp_mask); 459 } 460 461 front_pad = bs->front_pad; 462 inline_vecs = BIO_INLINE_VECS; 463 } 464 465 if (unlikely(!p)) 466 return NULL; 467 468 bio = p + front_pad; 469 bio_init(bio); 470 471 if (nr_iovecs > inline_vecs) { 472 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 473 if (!bvl && gfp_mask != saved_gfp) { 474 punt_bios_to_rescuer(bs); 475 gfp_mask = saved_gfp; 476 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 477 } 478 479 if (unlikely(!bvl)) 480 goto err_free; 481 482 bio->bi_flags |= 1 << BIO_OWNS_VEC; 483 } else if (nr_iovecs) { 484 bvl = bio->bi_inline_vecs; 485 } 486 487 bio->bi_pool = bs; 488 bio->bi_flags |= idx << BIO_POOL_OFFSET; 489 bio->bi_max_vecs = nr_iovecs; 490 bio->bi_io_vec = bvl; 491 return bio; 492 493 err_free: 494 mempool_free(p, bs->bio_pool); 495 return NULL; 496 } 497 EXPORT_SYMBOL(bio_alloc_bioset); 498 499 void zero_fill_bio(struct bio *bio) 500 { 501 unsigned long flags; 502 struct bio_vec bv; 503 struct bvec_iter iter; 504 505 bio_for_each_segment(bv, bio, iter) { 506 char *data = bvec_kmap_irq(&bv, &flags); 507 memset(data, 0, bv.bv_len); 508 flush_dcache_page(bv.bv_page); 509 bvec_kunmap_irq(data, &flags); 510 } 511 } 512 EXPORT_SYMBOL(zero_fill_bio); 513 514 /** 515 * bio_put - release a reference to a bio 516 * @bio: bio to release reference to 517 * 518 * Description: 519 * Put a reference to a &struct bio, either one you have gotten with 520 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it. 521 **/ 522 void bio_put(struct bio *bio) 523 { 524 BIO_BUG_ON(!atomic_read(&bio->bi_cnt)); 525 526 /* 527 * last put frees it 528 */ 529 if (atomic_dec_and_test(&bio->bi_cnt)) 530 bio_free(bio); 531 } 532 EXPORT_SYMBOL(bio_put); 533 534 inline int bio_phys_segments(struct request_queue *q, struct bio *bio) 535 { 536 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) 537 blk_recount_segments(q, bio); 538 539 return bio->bi_phys_segments; 540 } 541 EXPORT_SYMBOL(bio_phys_segments); 542 543 /** 544 * __bio_clone_fast - clone a bio that shares the original bio's biovec 545 * @bio: destination bio 546 * @bio_src: bio to clone 547 * 548 * Clone a &bio. Caller will own the returned bio, but not 549 * the actual data it points to. Reference count of returned 550 * bio will be one. 551 * 552 * Caller must ensure that @bio_src is not freed before @bio. 553 */ 554 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 555 { 556 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE); 557 558 /* 559 * most users will be overriding ->bi_bdev with a new target, 560 * so we don't set nor calculate new physical/hw segment counts here 561 */ 562 bio->bi_bdev = bio_src->bi_bdev; 563 bio->bi_flags |= 1 << BIO_CLONED; 564 bio->bi_rw = bio_src->bi_rw; 565 bio->bi_iter = bio_src->bi_iter; 566 bio->bi_io_vec = bio_src->bi_io_vec; 567 } 568 EXPORT_SYMBOL(__bio_clone_fast); 569 570 /** 571 * bio_clone_fast - clone a bio that shares the original bio's biovec 572 * @bio: bio to clone 573 * @gfp_mask: allocation priority 574 * @bs: bio_set to allocate from 575 * 576 * Like __bio_clone_fast, only also allocates the returned bio 577 */ 578 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 579 { 580 struct bio *b; 581 582 b = bio_alloc_bioset(gfp_mask, 0, bs); 583 if (!b) 584 return NULL; 585 586 __bio_clone_fast(b, bio); 587 588 if (bio_integrity(bio)) { 589 int ret; 590 591 ret = bio_integrity_clone(b, bio, gfp_mask); 592 593 if (ret < 0) { 594 bio_put(b); 595 return NULL; 596 } 597 } 598 599 return b; 600 } 601 EXPORT_SYMBOL(bio_clone_fast); 602 603 /** 604 * bio_clone_bioset - clone a bio 605 * @bio_src: bio to clone 606 * @gfp_mask: allocation priority 607 * @bs: bio_set to allocate from 608 * 609 * Clone bio. Caller will own the returned bio, but not the actual data it 610 * points to. Reference count of returned bio will be one. 611 */ 612 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, 613 struct bio_set *bs) 614 { 615 struct bvec_iter iter; 616 struct bio_vec bv; 617 struct bio *bio; 618 619 /* 620 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from 621 * bio_src->bi_io_vec to bio->bi_io_vec. 622 * 623 * We can't do that anymore, because: 624 * 625 * - The point of cloning the biovec is to produce a bio with a biovec 626 * the caller can modify: bi_idx and bi_bvec_done should be 0. 627 * 628 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if 629 * we tried to clone the whole thing bio_alloc_bioset() would fail. 630 * But the clone should succeed as long as the number of biovecs we 631 * actually need to allocate is fewer than BIO_MAX_PAGES. 632 * 633 * - Lastly, bi_vcnt should not be looked at or relied upon by code 634 * that does not own the bio - reason being drivers don't use it for 635 * iterating over the biovec anymore, so expecting it to be kept up 636 * to date (i.e. for clones that share the parent biovec) is just 637 * asking for trouble and would force extra work on 638 * __bio_clone_fast() anyways. 639 */ 640 641 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs); 642 if (!bio) 643 return NULL; 644 645 bio->bi_bdev = bio_src->bi_bdev; 646 bio->bi_rw = bio_src->bi_rw; 647 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; 648 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; 649 650 if (bio->bi_rw & REQ_DISCARD) 651 goto integrity_clone; 652 653 if (bio->bi_rw & REQ_WRITE_SAME) { 654 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0]; 655 goto integrity_clone; 656 } 657 658 bio_for_each_segment(bv, bio_src, iter) 659 bio->bi_io_vec[bio->bi_vcnt++] = bv; 660 661 integrity_clone: 662 if (bio_integrity(bio_src)) { 663 int ret; 664 665 ret = bio_integrity_clone(bio, bio_src, gfp_mask); 666 if (ret < 0) { 667 bio_put(bio); 668 return NULL; 669 } 670 } 671 672 return bio; 673 } 674 EXPORT_SYMBOL(bio_clone_bioset); 675 676 /** 677 * bio_get_nr_vecs - return approx number of vecs 678 * @bdev: I/O target 679 * 680 * Return the approximate number of pages we can send to this target. 681 * There's no guarantee that you will be able to fit this number of pages 682 * into a bio, it does not account for dynamic restrictions that vary 683 * on offset. 684 */ 685 int bio_get_nr_vecs(struct block_device *bdev) 686 { 687 struct request_queue *q = bdev_get_queue(bdev); 688 int nr_pages; 689 690 nr_pages = min_t(unsigned, 691 queue_max_segments(q), 692 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1); 693 694 return min_t(unsigned, nr_pages, BIO_MAX_PAGES); 695 696 } 697 EXPORT_SYMBOL(bio_get_nr_vecs); 698 699 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page 700 *page, unsigned int len, unsigned int offset, 701 unsigned int max_sectors) 702 { 703 int retried_segments = 0; 704 struct bio_vec *bvec; 705 706 /* 707 * cloned bio must not modify vec list 708 */ 709 if (unlikely(bio_flagged(bio, BIO_CLONED))) 710 return 0; 711 712 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors) 713 return 0; 714 715 /* 716 * For filesystems with a blocksize smaller than the pagesize 717 * we will often be called with the same page as last time and 718 * a consecutive offset. Optimize this special case. 719 */ 720 if (bio->bi_vcnt > 0) { 721 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 722 723 if (page == prev->bv_page && 724 offset == prev->bv_offset + prev->bv_len) { 725 unsigned int prev_bv_len = prev->bv_len; 726 prev->bv_len += len; 727 728 if (q->merge_bvec_fn) { 729 struct bvec_merge_data bvm = { 730 /* prev_bvec is already charged in 731 bi_size, discharge it in order to 732 simulate merging updated prev_bvec 733 as new bvec. */ 734 .bi_bdev = bio->bi_bdev, 735 .bi_sector = bio->bi_iter.bi_sector, 736 .bi_size = bio->bi_iter.bi_size - 737 prev_bv_len, 738 .bi_rw = bio->bi_rw, 739 }; 740 741 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) { 742 prev->bv_len -= len; 743 return 0; 744 } 745 } 746 747 goto done; 748 } 749 750 /* 751 * If the queue doesn't support SG gaps and adding this 752 * offset would create a gap, disallow it. 753 */ 754 if (q->queue_flags & (1 << QUEUE_FLAG_SG_GAPS) && 755 bvec_gap_to_prev(prev, offset)) 756 return 0; 757 } 758 759 if (bio->bi_vcnt >= bio->bi_max_vecs) 760 return 0; 761 762 /* 763 * we might lose a segment or two here, but rather that than 764 * make this too complex. 765 */ 766 767 while (bio->bi_phys_segments >= queue_max_segments(q)) { 768 769 if (retried_segments) 770 return 0; 771 772 retried_segments = 1; 773 blk_recount_segments(q, bio); 774 } 775 776 /* 777 * setup the new entry, we might clear it again later if we 778 * cannot add the page 779 */ 780 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 781 bvec->bv_page = page; 782 bvec->bv_len = len; 783 bvec->bv_offset = offset; 784 785 /* 786 * if queue has other restrictions (eg varying max sector size 787 * depending on offset), it can specify a merge_bvec_fn in the 788 * queue to get further control 789 */ 790 if (q->merge_bvec_fn) { 791 struct bvec_merge_data bvm = { 792 .bi_bdev = bio->bi_bdev, 793 .bi_sector = bio->bi_iter.bi_sector, 794 .bi_size = bio->bi_iter.bi_size, 795 .bi_rw = bio->bi_rw, 796 }; 797 798 /* 799 * merge_bvec_fn() returns number of bytes it can accept 800 * at this offset 801 */ 802 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) { 803 bvec->bv_page = NULL; 804 bvec->bv_len = 0; 805 bvec->bv_offset = 0; 806 return 0; 807 } 808 } 809 810 /* If we may be able to merge these biovecs, force a recount */ 811 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) 812 bio->bi_flags &= ~(1 << BIO_SEG_VALID); 813 814 bio->bi_vcnt++; 815 bio->bi_phys_segments++; 816 done: 817 bio->bi_iter.bi_size += len; 818 return len; 819 } 820 821 /** 822 * bio_add_pc_page - attempt to add page to bio 823 * @q: the target queue 824 * @bio: destination bio 825 * @page: page to add 826 * @len: vec entry length 827 * @offset: vec entry offset 828 * 829 * Attempt to add a page to the bio_vec maplist. This can fail for a 830 * number of reasons, such as the bio being full or target block device 831 * limitations. The target block device must allow bio's up to PAGE_SIZE, 832 * so it is always possible to add a single page to an empty bio. 833 * 834 * This should only be used by REQ_PC bios. 835 */ 836 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page, 837 unsigned int len, unsigned int offset) 838 { 839 return __bio_add_page(q, bio, page, len, offset, 840 queue_max_hw_sectors(q)); 841 } 842 EXPORT_SYMBOL(bio_add_pc_page); 843 844 /** 845 * bio_add_page - attempt to add page to bio 846 * @bio: destination bio 847 * @page: page to add 848 * @len: vec entry length 849 * @offset: vec entry offset 850 * 851 * Attempt to add a page to the bio_vec maplist. This can fail for a 852 * number of reasons, such as the bio being full or target block device 853 * limitations. The target block device must allow bio's up to PAGE_SIZE, 854 * so it is always possible to add a single page to an empty bio. 855 */ 856 int bio_add_page(struct bio *bio, struct page *page, unsigned int len, 857 unsigned int offset) 858 { 859 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 860 unsigned int max_sectors; 861 862 max_sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector); 863 if ((max_sectors < (len >> 9)) && !bio->bi_iter.bi_size) 864 max_sectors = len >> 9; 865 866 return __bio_add_page(q, bio, page, len, offset, max_sectors); 867 } 868 EXPORT_SYMBOL(bio_add_page); 869 870 struct submit_bio_ret { 871 struct completion event; 872 int error; 873 }; 874 875 static void submit_bio_wait_endio(struct bio *bio, int error) 876 { 877 struct submit_bio_ret *ret = bio->bi_private; 878 879 ret->error = error; 880 complete(&ret->event); 881 } 882 883 /** 884 * submit_bio_wait - submit a bio, and wait until it completes 885 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 886 * @bio: The &struct bio which describes the I/O 887 * 888 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 889 * bio_endio() on failure. 890 */ 891 int submit_bio_wait(int rw, struct bio *bio) 892 { 893 struct submit_bio_ret ret; 894 895 rw |= REQ_SYNC; 896 init_completion(&ret.event); 897 bio->bi_private = &ret; 898 bio->bi_end_io = submit_bio_wait_endio; 899 submit_bio(rw, bio); 900 wait_for_completion(&ret.event); 901 902 return ret.error; 903 } 904 EXPORT_SYMBOL(submit_bio_wait); 905 906 /** 907 * bio_advance - increment/complete a bio by some number of bytes 908 * @bio: bio to advance 909 * @bytes: number of bytes to complete 910 * 911 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 912 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 913 * be updated on the last bvec as well. 914 * 915 * @bio will then represent the remaining, uncompleted portion of the io. 916 */ 917 void bio_advance(struct bio *bio, unsigned bytes) 918 { 919 if (bio_integrity(bio)) 920 bio_integrity_advance(bio, bytes); 921 922 bio_advance_iter(bio, &bio->bi_iter, bytes); 923 } 924 EXPORT_SYMBOL(bio_advance); 925 926 /** 927 * bio_alloc_pages - allocates a single page for each bvec in a bio 928 * @bio: bio to allocate pages for 929 * @gfp_mask: flags for allocation 930 * 931 * Allocates pages up to @bio->bi_vcnt. 932 * 933 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are 934 * freed. 935 */ 936 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask) 937 { 938 int i; 939 struct bio_vec *bv; 940 941 bio_for_each_segment_all(bv, bio, i) { 942 bv->bv_page = alloc_page(gfp_mask); 943 if (!bv->bv_page) { 944 while (--bv >= bio->bi_io_vec) 945 __free_page(bv->bv_page); 946 return -ENOMEM; 947 } 948 } 949 950 return 0; 951 } 952 EXPORT_SYMBOL(bio_alloc_pages); 953 954 /** 955 * bio_copy_data - copy contents of data buffers from one chain of bios to 956 * another 957 * @src: source bio list 958 * @dst: destination bio list 959 * 960 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats 961 * @src and @dst as linked lists of bios. 962 * 963 * Stops when it reaches the end of either @src or @dst - that is, copies 964 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 965 */ 966 void bio_copy_data(struct bio *dst, struct bio *src) 967 { 968 struct bvec_iter src_iter, dst_iter; 969 struct bio_vec src_bv, dst_bv; 970 void *src_p, *dst_p; 971 unsigned bytes; 972 973 src_iter = src->bi_iter; 974 dst_iter = dst->bi_iter; 975 976 while (1) { 977 if (!src_iter.bi_size) { 978 src = src->bi_next; 979 if (!src) 980 break; 981 982 src_iter = src->bi_iter; 983 } 984 985 if (!dst_iter.bi_size) { 986 dst = dst->bi_next; 987 if (!dst) 988 break; 989 990 dst_iter = dst->bi_iter; 991 } 992 993 src_bv = bio_iter_iovec(src, src_iter); 994 dst_bv = bio_iter_iovec(dst, dst_iter); 995 996 bytes = min(src_bv.bv_len, dst_bv.bv_len); 997 998 src_p = kmap_atomic(src_bv.bv_page); 999 dst_p = kmap_atomic(dst_bv.bv_page); 1000 1001 memcpy(dst_p + dst_bv.bv_offset, 1002 src_p + src_bv.bv_offset, 1003 bytes); 1004 1005 kunmap_atomic(dst_p); 1006 kunmap_atomic(src_p); 1007 1008 bio_advance_iter(src, &src_iter, bytes); 1009 bio_advance_iter(dst, &dst_iter, bytes); 1010 } 1011 } 1012 EXPORT_SYMBOL(bio_copy_data); 1013 1014 struct bio_map_data { 1015 int nr_sgvecs; 1016 int is_our_pages; 1017 struct sg_iovec sgvecs[]; 1018 }; 1019 1020 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio, 1021 const struct sg_iovec *iov, int iov_count, 1022 int is_our_pages) 1023 { 1024 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count); 1025 bmd->nr_sgvecs = iov_count; 1026 bmd->is_our_pages = is_our_pages; 1027 bio->bi_private = bmd; 1028 } 1029 1030 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count, 1031 gfp_t gfp_mask) 1032 { 1033 if (iov_count > UIO_MAXIOV) 1034 return NULL; 1035 1036 return kmalloc(sizeof(struct bio_map_data) + 1037 sizeof(struct sg_iovec) * iov_count, gfp_mask); 1038 } 1039 1040 static int __bio_copy_iov(struct bio *bio, const struct sg_iovec *iov, int iov_count, 1041 int to_user, int from_user, int do_free_page) 1042 { 1043 int ret = 0, i; 1044 struct bio_vec *bvec; 1045 int iov_idx = 0; 1046 unsigned int iov_off = 0; 1047 1048 bio_for_each_segment_all(bvec, bio, i) { 1049 char *bv_addr = page_address(bvec->bv_page); 1050 unsigned int bv_len = bvec->bv_len; 1051 1052 while (bv_len && iov_idx < iov_count) { 1053 unsigned int bytes; 1054 char __user *iov_addr; 1055 1056 bytes = min_t(unsigned int, 1057 iov[iov_idx].iov_len - iov_off, bv_len); 1058 iov_addr = iov[iov_idx].iov_base + iov_off; 1059 1060 if (!ret) { 1061 if (to_user) 1062 ret = copy_to_user(iov_addr, bv_addr, 1063 bytes); 1064 1065 if (from_user) 1066 ret = copy_from_user(bv_addr, iov_addr, 1067 bytes); 1068 1069 if (ret) 1070 ret = -EFAULT; 1071 } 1072 1073 bv_len -= bytes; 1074 bv_addr += bytes; 1075 iov_addr += bytes; 1076 iov_off += bytes; 1077 1078 if (iov[iov_idx].iov_len == iov_off) { 1079 iov_idx++; 1080 iov_off = 0; 1081 } 1082 } 1083 1084 if (do_free_page) 1085 __free_page(bvec->bv_page); 1086 } 1087 1088 return ret; 1089 } 1090 1091 /** 1092 * bio_uncopy_user - finish previously mapped bio 1093 * @bio: bio being terminated 1094 * 1095 * Free pages allocated from bio_copy_user() and write back data 1096 * to user space in case of a read. 1097 */ 1098 int bio_uncopy_user(struct bio *bio) 1099 { 1100 struct bio_map_data *bmd = bio->bi_private; 1101 struct bio_vec *bvec; 1102 int ret = 0, i; 1103 1104 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1105 /* 1106 * if we're in a workqueue, the request is orphaned, so 1107 * don't copy into a random user address space, just free. 1108 */ 1109 if (current->mm) 1110 ret = __bio_copy_iov(bio, bmd->sgvecs, bmd->nr_sgvecs, 1111 bio_data_dir(bio) == READ, 1112 0, bmd->is_our_pages); 1113 else if (bmd->is_our_pages) 1114 bio_for_each_segment_all(bvec, bio, i) 1115 __free_page(bvec->bv_page); 1116 } 1117 kfree(bmd); 1118 bio_put(bio); 1119 return ret; 1120 } 1121 EXPORT_SYMBOL(bio_uncopy_user); 1122 1123 /** 1124 * bio_copy_user_iov - copy user data to bio 1125 * @q: destination block queue 1126 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1127 * @iov: the iovec. 1128 * @iov_count: number of elements in the iovec 1129 * @write_to_vm: bool indicating writing to pages or not 1130 * @gfp_mask: memory allocation flags 1131 * 1132 * Prepares and returns a bio for indirect user io, bouncing data 1133 * to/from kernel pages as necessary. Must be paired with 1134 * call bio_uncopy_user() on io completion. 1135 */ 1136 struct bio *bio_copy_user_iov(struct request_queue *q, 1137 struct rq_map_data *map_data, 1138 const struct sg_iovec *iov, int iov_count, 1139 int write_to_vm, gfp_t gfp_mask) 1140 { 1141 struct bio_map_data *bmd; 1142 struct bio_vec *bvec; 1143 struct page *page; 1144 struct bio *bio; 1145 int i, ret; 1146 int nr_pages = 0; 1147 unsigned int len = 0; 1148 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0; 1149 1150 for (i = 0; i < iov_count; i++) { 1151 unsigned long uaddr; 1152 unsigned long end; 1153 unsigned long start; 1154 1155 uaddr = (unsigned long)iov[i].iov_base; 1156 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1157 start = uaddr >> PAGE_SHIFT; 1158 1159 /* 1160 * Overflow, abort 1161 */ 1162 if (end < start) 1163 return ERR_PTR(-EINVAL); 1164 1165 nr_pages += end - start; 1166 len += iov[i].iov_len; 1167 } 1168 1169 if (offset) 1170 nr_pages++; 1171 1172 bmd = bio_alloc_map_data(iov_count, gfp_mask); 1173 if (!bmd) 1174 return ERR_PTR(-ENOMEM); 1175 1176 ret = -ENOMEM; 1177 bio = bio_kmalloc(gfp_mask, nr_pages); 1178 if (!bio) 1179 goto out_bmd; 1180 1181 if (!write_to_vm) 1182 bio->bi_rw |= REQ_WRITE; 1183 1184 ret = 0; 1185 1186 if (map_data) { 1187 nr_pages = 1 << map_data->page_order; 1188 i = map_data->offset / PAGE_SIZE; 1189 } 1190 while (len) { 1191 unsigned int bytes = PAGE_SIZE; 1192 1193 bytes -= offset; 1194 1195 if (bytes > len) 1196 bytes = len; 1197 1198 if (map_data) { 1199 if (i == map_data->nr_entries * nr_pages) { 1200 ret = -ENOMEM; 1201 break; 1202 } 1203 1204 page = map_data->pages[i / nr_pages]; 1205 page += (i % nr_pages); 1206 1207 i++; 1208 } else { 1209 page = alloc_page(q->bounce_gfp | gfp_mask); 1210 if (!page) { 1211 ret = -ENOMEM; 1212 break; 1213 } 1214 } 1215 1216 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) 1217 break; 1218 1219 len -= bytes; 1220 offset = 0; 1221 } 1222 1223 if (ret) 1224 goto cleanup; 1225 1226 /* 1227 * success 1228 */ 1229 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) || 1230 (map_data && map_data->from_user)) { 1231 ret = __bio_copy_iov(bio, iov, iov_count, 0, 1, 0); 1232 if (ret) 1233 goto cleanup; 1234 } 1235 1236 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1); 1237 return bio; 1238 cleanup: 1239 if (!map_data) 1240 bio_for_each_segment_all(bvec, bio, i) 1241 __free_page(bvec->bv_page); 1242 1243 bio_put(bio); 1244 out_bmd: 1245 kfree(bmd); 1246 return ERR_PTR(ret); 1247 } 1248 1249 /** 1250 * bio_copy_user - copy user data to bio 1251 * @q: destination block queue 1252 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1253 * @uaddr: start of user address 1254 * @len: length in bytes 1255 * @write_to_vm: bool indicating writing to pages or not 1256 * @gfp_mask: memory allocation flags 1257 * 1258 * Prepares and returns a bio for indirect user io, bouncing data 1259 * to/from kernel pages as necessary. Must be paired with 1260 * call bio_uncopy_user() on io completion. 1261 */ 1262 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data, 1263 unsigned long uaddr, unsigned int len, 1264 int write_to_vm, gfp_t gfp_mask) 1265 { 1266 struct sg_iovec iov; 1267 1268 iov.iov_base = (void __user *)uaddr; 1269 iov.iov_len = len; 1270 1271 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask); 1272 } 1273 EXPORT_SYMBOL(bio_copy_user); 1274 1275 static struct bio *__bio_map_user_iov(struct request_queue *q, 1276 struct block_device *bdev, 1277 const struct sg_iovec *iov, int iov_count, 1278 int write_to_vm, gfp_t gfp_mask) 1279 { 1280 int i, j; 1281 int nr_pages = 0; 1282 struct page **pages; 1283 struct bio *bio; 1284 int cur_page = 0; 1285 int ret, offset; 1286 1287 for (i = 0; i < iov_count; i++) { 1288 unsigned long uaddr = (unsigned long)iov[i].iov_base; 1289 unsigned long len = iov[i].iov_len; 1290 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1291 unsigned long start = uaddr >> PAGE_SHIFT; 1292 1293 /* 1294 * Overflow, abort 1295 */ 1296 if (end < start) 1297 return ERR_PTR(-EINVAL); 1298 1299 nr_pages += end - start; 1300 /* 1301 * buffer must be aligned to at least hardsector size for now 1302 */ 1303 if (uaddr & queue_dma_alignment(q)) 1304 return ERR_PTR(-EINVAL); 1305 } 1306 1307 if (!nr_pages) 1308 return ERR_PTR(-EINVAL); 1309 1310 bio = bio_kmalloc(gfp_mask, nr_pages); 1311 if (!bio) 1312 return ERR_PTR(-ENOMEM); 1313 1314 ret = -ENOMEM; 1315 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); 1316 if (!pages) 1317 goto out; 1318 1319 for (i = 0; i < iov_count; i++) { 1320 unsigned long uaddr = (unsigned long)iov[i].iov_base; 1321 unsigned long len = iov[i].iov_len; 1322 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1323 unsigned long start = uaddr >> PAGE_SHIFT; 1324 const int local_nr_pages = end - start; 1325 const int page_limit = cur_page + local_nr_pages; 1326 1327 ret = get_user_pages_fast(uaddr, local_nr_pages, 1328 write_to_vm, &pages[cur_page]); 1329 if (ret < local_nr_pages) { 1330 ret = -EFAULT; 1331 goto out_unmap; 1332 } 1333 1334 offset = uaddr & ~PAGE_MASK; 1335 for (j = cur_page; j < page_limit; j++) { 1336 unsigned int bytes = PAGE_SIZE - offset; 1337 1338 if (len <= 0) 1339 break; 1340 1341 if (bytes > len) 1342 bytes = len; 1343 1344 /* 1345 * sorry... 1346 */ 1347 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < 1348 bytes) 1349 break; 1350 1351 len -= bytes; 1352 offset = 0; 1353 } 1354 1355 cur_page = j; 1356 /* 1357 * release the pages we didn't map into the bio, if any 1358 */ 1359 while (j < page_limit) 1360 page_cache_release(pages[j++]); 1361 } 1362 1363 kfree(pages); 1364 1365 /* 1366 * set data direction, and check if mapped pages need bouncing 1367 */ 1368 if (!write_to_vm) 1369 bio->bi_rw |= REQ_WRITE; 1370 1371 bio->bi_bdev = bdev; 1372 bio->bi_flags |= (1 << BIO_USER_MAPPED); 1373 return bio; 1374 1375 out_unmap: 1376 for (i = 0; i < nr_pages; i++) { 1377 if(!pages[i]) 1378 break; 1379 page_cache_release(pages[i]); 1380 } 1381 out: 1382 kfree(pages); 1383 bio_put(bio); 1384 return ERR_PTR(ret); 1385 } 1386 1387 /** 1388 * bio_map_user - map user address into bio 1389 * @q: the struct request_queue for the bio 1390 * @bdev: destination block device 1391 * @uaddr: start of user address 1392 * @len: length in bytes 1393 * @write_to_vm: bool indicating writing to pages or not 1394 * @gfp_mask: memory allocation flags 1395 * 1396 * Map the user space address into a bio suitable for io to a block 1397 * device. Returns an error pointer in case of error. 1398 */ 1399 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev, 1400 unsigned long uaddr, unsigned int len, int write_to_vm, 1401 gfp_t gfp_mask) 1402 { 1403 struct sg_iovec iov; 1404 1405 iov.iov_base = (void __user *)uaddr; 1406 iov.iov_len = len; 1407 1408 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask); 1409 } 1410 EXPORT_SYMBOL(bio_map_user); 1411 1412 /** 1413 * bio_map_user_iov - map user sg_iovec table into bio 1414 * @q: the struct request_queue for the bio 1415 * @bdev: destination block device 1416 * @iov: the iovec. 1417 * @iov_count: number of elements in the iovec 1418 * @write_to_vm: bool indicating writing to pages or not 1419 * @gfp_mask: memory allocation flags 1420 * 1421 * Map the user space address into a bio suitable for io to a block 1422 * device. Returns an error pointer in case of error. 1423 */ 1424 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev, 1425 const struct sg_iovec *iov, int iov_count, 1426 int write_to_vm, gfp_t gfp_mask) 1427 { 1428 struct bio *bio; 1429 1430 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm, 1431 gfp_mask); 1432 if (IS_ERR(bio)) 1433 return bio; 1434 1435 /* 1436 * subtle -- if __bio_map_user() ended up bouncing a bio, 1437 * it would normally disappear when its bi_end_io is run. 1438 * however, we need it for the unmap, so grab an extra 1439 * reference to it 1440 */ 1441 bio_get(bio); 1442 1443 return bio; 1444 } 1445 1446 static void __bio_unmap_user(struct bio *bio) 1447 { 1448 struct bio_vec *bvec; 1449 int i; 1450 1451 /* 1452 * make sure we dirty pages we wrote to 1453 */ 1454 bio_for_each_segment_all(bvec, bio, i) { 1455 if (bio_data_dir(bio) == READ) 1456 set_page_dirty_lock(bvec->bv_page); 1457 1458 page_cache_release(bvec->bv_page); 1459 } 1460 1461 bio_put(bio); 1462 } 1463 1464 /** 1465 * bio_unmap_user - unmap a bio 1466 * @bio: the bio being unmapped 1467 * 1468 * Unmap a bio previously mapped by bio_map_user(). Must be called with 1469 * a process context. 1470 * 1471 * bio_unmap_user() may sleep. 1472 */ 1473 void bio_unmap_user(struct bio *bio) 1474 { 1475 __bio_unmap_user(bio); 1476 bio_put(bio); 1477 } 1478 EXPORT_SYMBOL(bio_unmap_user); 1479 1480 static void bio_map_kern_endio(struct bio *bio, int err) 1481 { 1482 bio_put(bio); 1483 } 1484 1485 static struct bio *__bio_map_kern(struct request_queue *q, void *data, 1486 unsigned int len, gfp_t gfp_mask) 1487 { 1488 unsigned long kaddr = (unsigned long)data; 1489 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1490 unsigned long start = kaddr >> PAGE_SHIFT; 1491 const int nr_pages = end - start; 1492 int offset, i; 1493 struct bio *bio; 1494 1495 bio = bio_kmalloc(gfp_mask, nr_pages); 1496 if (!bio) 1497 return ERR_PTR(-ENOMEM); 1498 1499 offset = offset_in_page(kaddr); 1500 for (i = 0; i < nr_pages; i++) { 1501 unsigned int bytes = PAGE_SIZE - offset; 1502 1503 if (len <= 0) 1504 break; 1505 1506 if (bytes > len) 1507 bytes = len; 1508 1509 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, 1510 offset) < bytes) 1511 break; 1512 1513 data += bytes; 1514 len -= bytes; 1515 offset = 0; 1516 } 1517 1518 bio->bi_end_io = bio_map_kern_endio; 1519 return bio; 1520 } 1521 1522 /** 1523 * bio_map_kern - map kernel address into bio 1524 * @q: the struct request_queue for the bio 1525 * @data: pointer to buffer to map 1526 * @len: length in bytes 1527 * @gfp_mask: allocation flags for bio allocation 1528 * 1529 * Map the kernel address into a bio suitable for io to a block 1530 * device. Returns an error pointer in case of error. 1531 */ 1532 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1533 gfp_t gfp_mask) 1534 { 1535 struct bio *bio; 1536 1537 bio = __bio_map_kern(q, data, len, gfp_mask); 1538 if (IS_ERR(bio)) 1539 return bio; 1540 1541 if (bio->bi_iter.bi_size == len) 1542 return bio; 1543 1544 /* 1545 * Don't support partial mappings. 1546 */ 1547 bio_put(bio); 1548 return ERR_PTR(-EINVAL); 1549 } 1550 EXPORT_SYMBOL(bio_map_kern); 1551 1552 static void bio_copy_kern_endio(struct bio *bio, int err) 1553 { 1554 struct bio_vec *bvec; 1555 const int read = bio_data_dir(bio) == READ; 1556 struct bio_map_data *bmd = bio->bi_private; 1557 int i; 1558 char *p = bmd->sgvecs[0].iov_base; 1559 1560 bio_for_each_segment_all(bvec, bio, i) { 1561 char *addr = page_address(bvec->bv_page); 1562 1563 if (read) 1564 memcpy(p, addr, bvec->bv_len); 1565 1566 __free_page(bvec->bv_page); 1567 p += bvec->bv_len; 1568 } 1569 1570 kfree(bmd); 1571 bio_put(bio); 1572 } 1573 1574 /** 1575 * bio_copy_kern - copy kernel address into bio 1576 * @q: the struct request_queue for the bio 1577 * @data: pointer to buffer to copy 1578 * @len: length in bytes 1579 * @gfp_mask: allocation flags for bio and page allocation 1580 * @reading: data direction is READ 1581 * 1582 * copy the kernel address into a bio suitable for io to a block 1583 * device. Returns an error pointer in case of error. 1584 */ 1585 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1586 gfp_t gfp_mask, int reading) 1587 { 1588 struct bio *bio; 1589 struct bio_vec *bvec; 1590 int i; 1591 1592 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask); 1593 if (IS_ERR(bio)) 1594 return bio; 1595 1596 if (!reading) { 1597 void *p = data; 1598 1599 bio_for_each_segment_all(bvec, bio, i) { 1600 char *addr = page_address(bvec->bv_page); 1601 1602 memcpy(addr, p, bvec->bv_len); 1603 p += bvec->bv_len; 1604 } 1605 } 1606 1607 bio->bi_end_io = bio_copy_kern_endio; 1608 1609 return bio; 1610 } 1611 EXPORT_SYMBOL(bio_copy_kern); 1612 1613 /* 1614 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1615 * for performing direct-IO in BIOs. 1616 * 1617 * The problem is that we cannot run set_page_dirty() from interrupt context 1618 * because the required locks are not interrupt-safe. So what we can do is to 1619 * mark the pages dirty _before_ performing IO. And in interrupt context, 1620 * check that the pages are still dirty. If so, fine. If not, redirty them 1621 * in process context. 1622 * 1623 * We special-case compound pages here: normally this means reads into hugetlb 1624 * pages. The logic in here doesn't really work right for compound pages 1625 * because the VM does not uniformly chase down the head page in all cases. 1626 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1627 * handle them at all. So we skip compound pages here at an early stage. 1628 * 1629 * Note that this code is very hard to test under normal circumstances because 1630 * direct-io pins the pages with get_user_pages(). This makes 1631 * is_page_cache_freeable return false, and the VM will not clean the pages. 1632 * But other code (eg, flusher threads) could clean the pages if they are mapped 1633 * pagecache. 1634 * 1635 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1636 * deferred bio dirtying paths. 1637 */ 1638 1639 /* 1640 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1641 */ 1642 void bio_set_pages_dirty(struct bio *bio) 1643 { 1644 struct bio_vec *bvec; 1645 int i; 1646 1647 bio_for_each_segment_all(bvec, bio, i) { 1648 struct page *page = bvec->bv_page; 1649 1650 if (page && !PageCompound(page)) 1651 set_page_dirty_lock(page); 1652 } 1653 } 1654 1655 static void bio_release_pages(struct bio *bio) 1656 { 1657 struct bio_vec *bvec; 1658 int i; 1659 1660 bio_for_each_segment_all(bvec, bio, i) { 1661 struct page *page = bvec->bv_page; 1662 1663 if (page) 1664 put_page(page); 1665 } 1666 } 1667 1668 /* 1669 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1670 * If they are, then fine. If, however, some pages are clean then they must 1671 * have been written out during the direct-IO read. So we take another ref on 1672 * the BIO and the offending pages and re-dirty the pages in process context. 1673 * 1674 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1675 * here on. It will run one page_cache_release() against each page and will 1676 * run one bio_put() against the BIO. 1677 */ 1678 1679 static void bio_dirty_fn(struct work_struct *work); 1680 1681 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1682 static DEFINE_SPINLOCK(bio_dirty_lock); 1683 static struct bio *bio_dirty_list; 1684 1685 /* 1686 * This runs in process context 1687 */ 1688 static void bio_dirty_fn(struct work_struct *work) 1689 { 1690 unsigned long flags; 1691 struct bio *bio; 1692 1693 spin_lock_irqsave(&bio_dirty_lock, flags); 1694 bio = bio_dirty_list; 1695 bio_dirty_list = NULL; 1696 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1697 1698 while (bio) { 1699 struct bio *next = bio->bi_private; 1700 1701 bio_set_pages_dirty(bio); 1702 bio_release_pages(bio); 1703 bio_put(bio); 1704 bio = next; 1705 } 1706 } 1707 1708 void bio_check_pages_dirty(struct bio *bio) 1709 { 1710 struct bio_vec *bvec; 1711 int nr_clean_pages = 0; 1712 int i; 1713 1714 bio_for_each_segment_all(bvec, bio, i) { 1715 struct page *page = bvec->bv_page; 1716 1717 if (PageDirty(page) || PageCompound(page)) { 1718 page_cache_release(page); 1719 bvec->bv_page = NULL; 1720 } else { 1721 nr_clean_pages++; 1722 } 1723 } 1724 1725 if (nr_clean_pages) { 1726 unsigned long flags; 1727 1728 spin_lock_irqsave(&bio_dirty_lock, flags); 1729 bio->bi_private = bio_dirty_list; 1730 bio_dirty_list = bio; 1731 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1732 schedule_work(&bio_dirty_work); 1733 } else { 1734 bio_put(bio); 1735 } 1736 } 1737 1738 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1739 void bio_flush_dcache_pages(struct bio *bi) 1740 { 1741 struct bio_vec bvec; 1742 struct bvec_iter iter; 1743 1744 bio_for_each_segment(bvec, bi, iter) 1745 flush_dcache_page(bvec.bv_page); 1746 } 1747 EXPORT_SYMBOL(bio_flush_dcache_pages); 1748 #endif 1749 1750 /** 1751 * bio_endio - end I/O on a bio 1752 * @bio: bio 1753 * @error: error, if any 1754 * 1755 * Description: 1756 * bio_endio() will end I/O on the whole bio. bio_endio() is the 1757 * preferred way to end I/O on a bio, it takes care of clearing 1758 * BIO_UPTODATE on error. @error is 0 on success, and and one of the 1759 * established -Exxxx (-EIO, for instance) error values in case 1760 * something went wrong. No one should call bi_end_io() directly on a 1761 * bio unless they own it and thus know that it has an end_io 1762 * function. 1763 **/ 1764 void bio_endio(struct bio *bio, int error) 1765 { 1766 while (bio) { 1767 BUG_ON(atomic_read(&bio->bi_remaining) <= 0); 1768 1769 if (error) 1770 clear_bit(BIO_UPTODATE, &bio->bi_flags); 1771 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 1772 error = -EIO; 1773 1774 if (!atomic_dec_and_test(&bio->bi_remaining)) 1775 return; 1776 1777 /* 1778 * Need to have a real endio function for chained bios, 1779 * otherwise various corner cases will break (like stacking 1780 * block devices that save/restore bi_end_io) - however, we want 1781 * to avoid unbounded recursion and blowing the stack. Tail call 1782 * optimization would handle this, but compiling with frame 1783 * pointers also disables gcc's sibling call optimization. 1784 */ 1785 if (bio->bi_end_io == bio_chain_endio) { 1786 struct bio *parent = bio->bi_private; 1787 bio_put(bio); 1788 bio = parent; 1789 } else { 1790 if (bio->bi_end_io) 1791 bio->bi_end_io(bio, error); 1792 bio = NULL; 1793 } 1794 } 1795 } 1796 EXPORT_SYMBOL(bio_endio); 1797 1798 /** 1799 * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining 1800 * @bio: bio 1801 * @error: error, if any 1802 * 1803 * For code that has saved and restored bi_end_io; thing hard before using this 1804 * function, probably you should've cloned the entire bio. 1805 **/ 1806 void bio_endio_nodec(struct bio *bio, int error) 1807 { 1808 atomic_inc(&bio->bi_remaining); 1809 bio_endio(bio, error); 1810 } 1811 EXPORT_SYMBOL(bio_endio_nodec); 1812 1813 /** 1814 * bio_split - split a bio 1815 * @bio: bio to split 1816 * @sectors: number of sectors to split from the front of @bio 1817 * @gfp: gfp mask 1818 * @bs: bio set to allocate from 1819 * 1820 * Allocates and returns a new bio which represents @sectors from the start of 1821 * @bio, and updates @bio to represent the remaining sectors. 1822 * 1823 * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's 1824 * responsibility to ensure that @bio is not freed before the split. 1825 */ 1826 struct bio *bio_split(struct bio *bio, int sectors, 1827 gfp_t gfp, struct bio_set *bs) 1828 { 1829 struct bio *split = NULL; 1830 1831 BUG_ON(sectors <= 0); 1832 BUG_ON(sectors >= bio_sectors(bio)); 1833 1834 split = bio_clone_fast(bio, gfp, bs); 1835 if (!split) 1836 return NULL; 1837 1838 split->bi_iter.bi_size = sectors << 9; 1839 1840 if (bio_integrity(split)) 1841 bio_integrity_trim(split, 0, sectors); 1842 1843 bio_advance(bio, split->bi_iter.bi_size); 1844 1845 return split; 1846 } 1847 EXPORT_SYMBOL(bio_split); 1848 1849 /** 1850 * bio_trim - trim a bio 1851 * @bio: bio to trim 1852 * @offset: number of sectors to trim from the front of @bio 1853 * @size: size we want to trim @bio to, in sectors 1854 */ 1855 void bio_trim(struct bio *bio, int offset, int size) 1856 { 1857 /* 'bio' is a cloned bio which we need to trim to match 1858 * the given offset and size. 1859 */ 1860 1861 size <<= 9; 1862 if (offset == 0 && size == bio->bi_iter.bi_size) 1863 return; 1864 1865 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1866 1867 bio_advance(bio, offset << 9); 1868 1869 bio->bi_iter.bi_size = size; 1870 } 1871 EXPORT_SYMBOL_GPL(bio_trim); 1872 1873 /* 1874 * create memory pools for biovec's in a bio_set. 1875 * use the global biovec slabs created for general use. 1876 */ 1877 mempool_t *biovec_create_pool(int pool_entries) 1878 { 1879 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX; 1880 1881 return mempool_create_slab_pool(pool_entries, bp->slab); 1882 } 1883 1884 void bioset_free(struct bio_set *bs) 1885 { 1886 if (bs->rescue_workqueue) 1887 destroy_workqueue(bs->rescue_workqueue); 1888 1889 if (bs->bio_pool) 1890 mempool_destroy(bs->bio_pool); 1891 1892 if (bs->bvec_pool) 1893 mempool_destroy(bs->bvec_pool); 1894 1895 bioset_integrity_free(bs); 1896 bio_put_slab(bs); 1897 1898 kfree(bs); 1899 } 1900 EXPORT_SYMBOL(bioset_free); 1901 1902 /** 1903 * bioset_create - Create a bio_set 1904 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1905 * @front_pad: Number of bytes to allocate in front of the returned bio 1906 * 1907 * Description: 1908 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1909 * to ask for a number of bytes to be allocated in front of the bio. 1910 * Front pad allocation is useful for embedding the bio inside 1911 * another structure, to avoid allocating extra data to go with the bio. 1912 * Note that the bio must be embedded at the END of that structure always, 1913 * or things will break badly. 1914 */ 1915 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) 1916 { 1917 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1918 struct bio_set *bs; 1919 1920 bs = kzalloc(sizeof(*bs), GFP_KERNEL); 1921 if (!bs) 1922 return NULL; 1923 1924 bs->front_pad = front_pad; 1925 1926 spin_lock_init(&bs->rescue_lock); 1927 bio_list_init(&bs->rescue_list); 1928 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1929 1930 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1931 if (!bs->bio_slab) { 1932 kfree(bs); 1933 return NULL; 1934 } 1935 1936 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); 1937 if (!bs->bio_pool) 1938 goto bad; 1939 1940 bs->bvec_pool = biovec_create_pool(pool_size); 1941 if (!bs->bvec_pool) 1942 goto bad; 1943 1944 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1945 if (!bs->rescue_workqueue) 1946 goto bad; 1947 1948 return bs; 1949 bad: 1950 bioset_free(bs); 1951 return NULL; 1952 } 1953 EXPORT_SYMBOL(bioset_create); 1954 1955 #ifdef CONFIG_BLK_CGROUP 1956 /** 1957 * bio_associate_current - associate a bio with %current 1958 * @bio: target bio 1959 * 1960 * Associate @bio with %current if it hasn't been associated yet. Block 1961 * layer will treat @bio as if it were issued by %current no matter which 1962 * task actually issues it. 1963 * 1964 * This function takes an extra reference of @task's io_context and blkcg 1965 * which will be put when @bio is released. The caller must own @bio, 1966 * ensure %current->io_context exists, and is responsible for synchronizing 1967 * calls to this function. 1968 */ 1969 int bio_associate_current(struct bio *bio) 1970 { 1971 struct io_context *ioc; 1972 struct cgroup_subsys_state *css; 1973 1974 if (bio->bi_ioc) 1975 return -EBUSY; 1976 1977 ioc = current->io_context; 1978 if (!ioc) 1979 return -ENOENT; 1980 1981 /* acquire active ref on @ioc and associate */ 1982 get_io_context_active(ioc); 1983 bio->bi_ioc = ioc; 1984 1985 /* associate blkcg if exists */ 1986 rcu_read_lock(); 1987 css = task_css(current, blkio_cgrp_id); 1988 if (css && css_tryget_online(css)) 1989 bio->bi_css = css; 1990 rcu_read_unlock(); 1991 1992 return 0; 1993 } 1994 1995 /** 1996 * bio_disassociate_task - undo bio_associate_current() 1997 * @bio: target bio 1998 */ 1999 void bio_disassociate_task(struct bio *bio) 2000 { 2001 if (bio->bi_ioc) { 2002 put_io_context(bio->bi_ioc); 2003 bio->bi_ioc = NULL; 2004 } 2005 if (bio->bi_css) { 2006 css_put(bio->bi_css); 2007 bio->bi_css = NULL; 2008 } 2009 } 2010 2011 #endif /* CONFIG_BLK_CGROUP */ 2012 2013 static void __init biovec_init_slabs(void) 2014 { 2015 int i; 2016 2017 for (i = 0; i < BIOVEC_NR_POOLS; i++) { 2018 int size; 2019 struct biovec_slab *bvs = bvec_slabs + i; 2020 2021 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2022 bvs->slab = NULL; 2023 continue; 2024 } 2025 2026 size = bvs->nr_vecs * sizeof(struct bio_vec); 2027 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2028 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2029 } 2030 } 2031 2032 static int __init init_bio(void) 2033 { 2034 bio_slab_max = 2; 2035 bio_slab_nr = 0; 2036 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); 2037 if (!bio_slabs) 2038 panic("bio: can't allocate bios\n"); 2039 2040 bio_integrity_init(); 2041 biovec_init_slabs(); 2042 2043 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); 2044 if (!fs_bio_set) 2045 panic("bio: can't allocate bios\n"); 2046 2047 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) 2048 panic("bio: can't create integrity pool\n"); 2049 2050 return 0; 2051 } 2052 subsys_initcall(init_bio); 2053