xref: /openbmc/linux/block/bio.c (revision cbabf03c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/highmem.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/blk-crypto.h>
21 #include <linux/xarray.h>
22 
23 #include <trace/events/block.h>
24 #include "blk.h"
25 #include "blk-rq-qos.h"
26 #include "blk-cgroup.h"
27 
28 struct bio_alloc_cache {
29 	struct bio		*free_list;
30 	unsigned int		nr;
31 };
32 
33 static struct biovec_slab {
34 	int nr_vecs;
35 	char *name;
36 	struct kmem_cache *slab;
37 } bvec_slabs[] __read_mostly = {
38 	{ .nr_vecs = 16, .name = "biovec-16" },
39 	{ .nr_vecs = 64, .name = "biovec-64" },
40 	{ .nr_vecs = 128, .name = "biovec-128" },
41 	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
42 };
43 
44 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45 {
46 	switch (nr_vecs) {
47 	/* smaller bios use inline vecs */
48 	case 5 ... 16:
49 		return &bvec_slabs[0];
50 	case 17 ... 64:
51 		return &bvec_slabs[1];
52 	case 65 ... 128:
53 		return &bvec_slabs[2];
54 	case 129 ... BIO_MAX_VECS:
55 		return &bvec_slabs[3];
56 	default:
57 		BUG();
58 		return NULL;
59 	}
60 }
61 
62 /*
63  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64  * IO code that does not need private memory pools.
65  */
66 struct bio_set fs_bio_set;
67 EXPORT_SYMBOL(fs_bio_set);
68 
69 /*
70  * Our slab pool management
71  */
72 struct bio_slab {
73 	struct kmem_cache *slab;
74 	unsigned int slab_ref;
75 	unsigned int slab_size;
76 	char name[8];
77 };
78 static DEFINE_MUTEX(bio_slab_lock);
79 static DEFINE_XARRAY(bio_slabs);
80 
81 static struct bio_slab *create_bio_slab(unsigned int size)
82 {
83 	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
84 
85 	if (!bslab)
86 		return NULL;
87 
88 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 	bslab->slab = kmem_cache_create(bslab->name, size,
90 			ARCH_KMALLOC_MINALIGN,
91 			SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
92 	if (!bslab->slab)
93 		goto fail_alloc_slab;
94 
95 	bslab->slab_ref = 1;
96 	bslab->slab_size = size;
97 
98 	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
99 		return bslab;
100 
101 	kmem_cache_destroy(bslab->slab);
102 
103 fail_alloc_slab:
104 	kfree(bslab);
105 	return NULL;
106 }
107 
108 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
109 {
110 	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
111 }
112 
113 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
114 {
115 	unsigned int size = bs_bio_slab_size(bs);
116 	struct bio_slab *bslab;
117 
118 	mutex_lock(&bio_slab_lock);
119 	bslab = xa_load(&bio_slabs, size);
120 	if (bslab)
121 		bslab->slab_ref++;
122 	else
123 		bslab = create_bio_slab(size);
124 	mutex_unlock(&bio_slab_lock);
125 
126 	if (bslab)
127 		return bslab->slab;
128 	return NULL;
129 }
130 
131 static void bio_put_slab(struct bio_set *bs)
132 {
133 	struct bio_slab *bslab = NULL;
134 	unsigned int slab_size = bs_bio_slab_size(bs);
135 
136 	mutex_lock(&bio_slab_lock);
137 
138 	bslab = xa_load(&bio_slabs, slab_size);
139 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
140 		goto out;
141 
142 	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
143 
144 	WARN_ON(!bslab->slab_ref);
145 
146 	if (--bslab->slab_ref)
147 		goto out;
148 
149 	xa_erase(&bio_slabs, slab_size);
150 
151 	kmem_cache_destroy(bslab->slab);
152 	kfree(bslab);
153 
154 out:
155 	mutex_unlock(&bio_slab_lock);
156 }
157 
158 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
159 {
160 	BUG_ON(nr_vecs > BIO_MAX_VECS);
161 
162 	if (nr_vecs == BIO_MAX_VECS)
163 		mempool_free(bv, pool);
164 	else if (nr_vecs > BIO_INLINE_VECS)
165 		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
166 }
167 
168 /*
169  * Make the first allocation restricted and don't dump info on allocation
170  * failures, since we'll fall back to the mempool in case of failure.
171  */
172 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
173 {
174 	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
175 		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
176 }
177 
178 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
179 		gfp_t gfp_mask)
180 {
181 	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
182 
183 	if (WARN_ON_ONCE(!bvs))
184 		return NULL;
185 
186 	/*
187 	 * Upgrade the nr_vecs request to take full advantage of the allocation.
188 	 * We also rely on this in the bvec_free path.
189 	 */
190 	*nr_vecs = bvs->nr_vecs;
191 
192 	/*
193 	 * Try a slab allocation first for all smaller allocations.  If that
194 	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
195 	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
196 	 */
197 	if (*nr_vecs < BIO_MAX_VECS) {
198 		struct bio_vec *bvl;
199 
200 		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
201 		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
202 			return bvl;
203 		*nr_vecs = BIO_MAX_VECS;
204 	}
205 
206 	return mempool_alloc(pool, gfp_mask);
207 }
208 
209 void bio_uninit(struct bio *bio)
210 {
211 #ifdef CONFIG_BLK_CGROUP
212 	if (bio->bi_blkg) {
213 		blkg_put(bio->bi_blkg);
214 		bio->bi_blkg = NULL;
215 	}
216 #endif
217 	if (bio_integrity(bio))
218 		bio_integrity_free(bio);
219 
220 	bio_crypt_free_ctx(bio);
221 }
222 EXPORT_SYMBOL(bio_uninit);
223 
224 static void bio_free(struct bio *bio)
225 {
226 	struct bio_set *bs = bio->bi_pool;
227 	void *p;
228 
229 	bio_uninit(bio);
230 
231 	if (bs) {
232 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
233 
234 		/*
235 		 * If we have front padding, adjust the bio pointer before freeing
236 		 */
237 		p = bio;
238 		p -= bs->front_pad;
239 
240 		mempool_free(p, &bs->bio_pool);
241 	} else {
242 		/* Bio was allocated by bio_kmalloc() */
243 		kfree(bio);
244 	}
245 }
246 
247 /*
248  * Users of this function have their own bio allocation. Subsequently,
249  * they must remember to pair any call to bio_init() with bio_uninit()
250  * when IO has completed, or when the bio is released.
251  */
252 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
253 	      unsigned short max_vecs, unsigned int opf)
254 {
255 	bio->bi_next = NULL;
256 	bio->bi_bdev = bdev;
257 	bio->bi_opf = opf;
258 	bio->bi_flags = 0;
259 	bio->bi_ioprio = 0;
260 	bio->bi_status = 0;
261 	bio->bi_iter.bi_sector = 0;
262 	bio->bi_iter.bi_size = 0;
263 	bio->bi_iter.bi_idx = 0;
264 	bio->bi_iter.bi_bvec_done = 0;
265 	bio->bi_end_io = NULL;
266 	bio->bi_private = NULL;
267 #ifdef CONFIG_BLK_CGROUP
268 	bio->bi_blkg = NULL;
269 	bio->bi_issue.value = 0;
270 	if (bdev)
271 		bio_associate_blkg(bio);
272 #ifdef CONFIG_BLK_CGROUP_IOCOST
273 	bio->bi_iocost_cost = 0;
274 #endif
275 #endif
276 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
277 	bio->bi_crypt_context = NULL;
278 #endif
279 #ifdef CONFIG_BLK_DEV_INTEGRITY
280 	bio->bi_integrity = NULL;
281 #endif
282 	bio->bi_vcnt = 0;
283 
284 	atomic_set(&bio->__bi_remaining, 1);
285 	atomic_set(&bio->__bi_cnt, 1);
286 	bio->bi_cookie = BLK_QC_T_NONE;
287 
288 	bio->bi_max_vecs = max_vecs;
289 	bio->bi_io_vec = table;
290 	bio->bi_pool = NULL;
291 }
292 EXPORT_SYMBOL(bio_init);
293 
294 /**
295  * bio_reset - reinitialize a bio
296  * @bio:	bio to reset
297  * @bdev:	block device to use the bio for
298  * @opf:	operation and flags for bio
299  *
300  * Description:
301  *   After calling bio_reset(), @bio will be in the same state as a freshly
302  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
303  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
304  *   comment in struct bio.
305  */
306 void bio_reset(struct bio *bio, struct block_device *bdev, unsigned int opf)
307 {
308 	bio_uninit(bio);
309 	memset(bio, 0, BIO_RESET_BYTES);
310 	atomic_set(&bio->__bi_remaining, 1);
311 	bio->bi_bdev = bdev;
312 	if (bio->bi_bdev)
313 		bio_associate_blkg(bio);
314 	bio->bi_opf = opf;
315 }
316 EXPORT_SYMBOL(bio_reset);
317 
318 static struct bio *__bio_chain_endio(struct bio *bio)
319 {
320 	struct bio *parent = bio->bi_private;
321 
322 	if (bio->bi_status && !parent->bi_status)
323 		parent->bi_status = bio->bi_status;
324 	bio_put(bio);
325 	return parent;
326 }
327 
328 static void bio_chain_endio(struct bio *bio)
329 {
330 	bio_endio(__bio_chain_endio(bio));
331 }
332 
333 /**
334  * bio_chain - chain bio completions
335  * @bio: the target bio
336  * @parent: the parent bio of @bio
337  *
338  * The caller won't have a bi_end_io called when @bio completes - instead,
339  * @parent's bi_end_io won't be called until both @parent and @bio have
340  * completed; the chained bio will also be freed when it completes.
341  *
342  * The caller must not set bi_private or bi_end_io in @bio.
343  */
344 void bio_chain(struct bio *bio, struct bio *parent)
345 {
346 	BUG_ON(bio->bi_private || bio->bi_end_io);
347 
348 	bio->bi_private = parent;
349 	bio->bi_end_io	= bio_chain_endio;
350 	bio_inc_remaining(parent);
351 }
352 EXPORT_SYMBOL(bio_chain);
353 
354 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
355 		unsigned int nr_pages, unsigned int opf, gfp_t gfp)
356 {
357 	struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
358 
359 	if (bio) {
360 		bio_chain(bio, new);
361 		submit_bio(bio);
362 	}
363 
364 	return new;
365 }
366 EXPORT_SYMBOL_GPL(blk_next_bio);
367 
368 static void bio_alloc_rescue(struct work_struct *work)
369 {
370 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
371 	struct bio *bio;
372 
373 	while (1) {
374 		spin_lock(&bs->rescue_lock);
375 		bio = bio_list_pop(&bs->rescue_list);
376 		spin_unlock(&bs->rescue_lock);
377 
378 		if (!bio)
379 			break;
380 
381 		submit_bio_noacct(bio);
382 	}
383 }
384 
385 static void punt_bios_to_rescuer(struct bio_set *bs)
386 {
387 	struct bio_list punt, nopunt;
388 	struct bio *bio;
389 
390 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
391 		return;
392 	/*
393 	 * In order to guarantee forward progress we must punt only bios that
394 	 * were allocated from this bio_set; otherwise, if there was a bio on
395 	 * there for a stacking driver higher up in the stack, processing it
396 	 * could require allocating bios from this bio_set, and doing that from
397 	 * our own rescuer would be bad.
398 	 *
399 	 * Since bio lists are singly linked, pop them all instead of trying to
400 	 * remove from the middle of the list:
401 	 */
402 
403 	bio_list_init(&punt);
404 	bio_list_init(&nopunt);
405 
406 	while ((bio = bio_list_pop(&current->bio_list[0])))
407 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
408 	current->bio_list[0] = nopunt;
409 
410 	bio_list_init(&nopunt);
411 	while ((bio = bio_list_pop(&current->bio_list[1])))
412 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
413 	current->bio_list[1] = nopunt;
414 
415 	spin_lock(&bs->rescue_lock);
416 	bio_list_merge(&bs->rescue_list, &punt);
417 	spin_unlock(&bs->rescue_lock);
418 
419 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
420 }
421 
422 /**
423  * bio_alloc_bioset - allocate a bio for I/O
424  * @bdev:	block device to allocate the bio for (can be %NULL)
425  * @nr_vecs:	number of bvecs to pre-allocate
426  * @opf:	operation and flags for bio
427  * @gfp_mask:   the GFP_* mask given to the slab allocator
428  * @bs:		the bio_set to allocate from.
429  *
430  * Allocate a bio from the mempools in @bs.
431  *
432  * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
433  * allocate a bio.  This is due to the mempool guarantees.  To make this work,
434  * callers must never allocate more than 1 bio at a time from the general pool.
435  * Callers that need to allocate more than 1 bio must always submit the
436  * previously allocated bio for IO before attempting to allocate a new one.
437  * Failure to do so can cause deadlocks under memory pressure.
438  *
439  * Note that when running under submit_bio_noacct() (i.e. any block driver),
440  * bios are not submitted until after you return - see the code in
441  * submit_bio_noacct() that converts recursion into iteration, to prevent
442  * stack overflows.
443  *
444  * This would normally mean allocating multiple bios under submit_bio_noacct()
445  * would be susceptible to deadlocks, but we have
446  * deadlock avoidance code that resubmits any blocked bios from a rescuer
447  * thread.
448  *
449  * However, we do not guarantee forward progress for allocations from other
450  * mempools. Doing multiple allocations from the same mempool under
451  * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
452  * for per bio allocations.
453  *
454  * Returns: Pointer to new bio on success, NULL on failure.
455  */
456 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
457 			     unsigned int opf, gfp_t gfp_mask,
458 			     struct bio_set *bs)
459 {
460 	gfp_t saved_gfp = gfp_mask;
461 	struct bio *bio;
462 	void *p;
463 
464 	/* should not use nobvec bioset for nr_vecs > 0 */
465 	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
466 		return NULL;
467 
468 	/*
469 	 * submit_bio_noacct() converts recursion to iteration; this means if
470 	 * we're running beneath it, any bios we allocate and submit will not be
471 	 * submitted (and thus freed) until after we return.
472 	 *
473 	 * This exposes us to a potential deadlock if we allocate multiple bios
474 	 * from the same bio_set() while running underneath submit_bio_noacct().
475 	 * If we were to allocate multiple bios (say a stacking block driver
476 	 * that was splitting bios), we would deadlock if we exhausted the
477 	 * mempool's reserve.
478 	 *
479 	 * We solve this, and guarantee forward progress, with a rescuer
480 	 * workqueue per bio_set. If we go to allocate and there are bios on
481 	 * current->bio_list, we first try the allocation without
482 	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
483 	 * blocking to the rescuer workqueue before we retry with the original
484 	 * gfp_flags.
485 	 */
486 	if (current->bio_list &&
487 	    (!bio_list_empty(&current->bio_list[0]) ||
488 	     !bio_list_empty(&current->bio_list[1])) &&
489 	    bs->rescue_workqueue)
490 		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
491 
492 	p = mempool_alloc(&bs->bio_pool, gfp_mask);
493 	if (!p && gfp_mask != saved_gfp) {
494 		punt_bios_to_rescuer(bs);
495 		gfp_mask = saved_gfp;
496 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
497 	}
498 	if (unlikely(!p))
499 		return NULL;
500 
501 	bio = p + bs->front_pad;
502 	if (nr_vecs > BIO_INLINE_VECS) {
503 		struct bio_vec *bvl = NULL;
504 
505 		bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
506 		if (!bvl && gfp_mask != saved_gfp) {
507 			punt_bios_to_rescuer(bs);
508 			gfp_mask = saved_gfp;
509 			bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
510 		}
511 		if (unlikely(!bvl))
512 			goto err_free;
513 
514 		bio_init(bio, bdev, bvl, nr_vecs, opf);
515 	} else if (nr_vecs) {
516 		bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
517 	} else {
518 		bio_init(bio, bdev, NULL, 0, opf);
519 	}
520 
521 	bio->bi_pool = bs;
522 	return bio;
523 
524 err_free:
525 	mempool_free(p, &bs->bio_pool);
526 	return NULL;
527 }
528 EXPORT_SYMBOL(bio_alloc_bioset);
529 
530 /**
531  * bio_kmalloc - kmalloc a bio for I/O
532  * @gfp_mask:   the GFP_* mask given to the slab allocator
533  * @nr_iovecs:	number of iovecs to pre-allocate
534  *
535  * Use kmalloc to allocate and initialize a bio.
536  *
537  * Returns: Pointer to new bio on success, NULL on failure.
538  */
539 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
540 {
541 	struct bio *bio;
542 
543 	if (nr_iovecs > UIO_MAXIOV)
544 		return NULL;
545 
546 	bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
547 	if (unlikely(!bio))
548 		return NULL;
549 	bio_init(bio, NULL, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs,
550 		 0);
551 	bio->bi_pool = NULL;
552 	return bio;
553 }
554 EXPORT_SYMBOL(bio_kmalloc);
555 
556 void zero_fill_bio(struct bio *bio)
557 {
558 	struct bio_vec bv;
559 	struct bvec_iter iter;
560 
561 	bio_for_each_segment(bv, bio, iter)
562 		memzero_bvec(&bv);
563 }
564 EXPORT_SYMBOL(zero_fill_bio);
565 
566 /**
567  * bio_truncate - truncate the bio to small size of @new_size
568  * @bio:	the bio to be truncated
569  * @new_size:	new size for truncating the bio
570  *
571  * Description:
572  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
573  *   REQ_OP_READ, zero the truncated part. This function should only
574  *   be used for handling corner cases, such as bio eod.
575  */
576 static void bio_truncate(struct bio *bio, unsigned new_size)
577 {
578 	struct bio_vec bv;
579 	struct bvec_iter iter;
580 	unsigned int done = 0;
581 	bool truncated = false;
582 
583 	if (new_size >= bio->bi_iter.bi_size)
584 		return;
585 
586 	if (bio_op(bio) != REQ_OP_READ)
587 		goto exit;
588 
589 	bio_for_each_segment(bv, bio, iter) {
590 		if (done + bv.bv_len > new_size) {
591 			unsigned offset;
592 
593 			if (!truncated)
594 				offset = new_size - done;
595 			else
596 				offset = 0;
597 			zero_user(bv.bv_page, bv.bv_offset + offset,
598 				  bv.bv_len - offset);
599 			truncated = true;
600 		}
601 		done += bv.bv_len;
602 	}
603 
604  exit:
605 	/*
606 	 * Don't touch bvec table here and make it really immutable, since
607 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
608 	 * in its .end_bio() callback.
609 	 *
610 	 * It is enough to truncate bio by updating .bi_size since we can make
611 	 * correct bvec with the updated .bi_size for drivers.
612 	 */
613 	bio->bi_iter.bi_size = new_size;
614 }
615 
616 /**
617  * guard_bio_eod - truncate a BIO to fit the block device
618  * @bio:	bio to truncate
619  *
620  * This allows us to do IO even on the odd last sectors of a device, even if the
621  * block size is some multiple of the physical sector size.
622  *
623  * We'll just truncate the bio to the size of the device, and clear the end of
624  * the buffer head manually.  Truly out-of-range accesses will turn into actual
625  * I/O errors, this only handles the "we need to be able to do I/O at the final
626  * sector" case.
627  */
628 void guard_bio_eod(struct bio *bio)
629 {
630 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
631 
632 	if (!maxsector)
633 		return;
634 
635 	/*
636 	 * If the *whole* IO is past the end of the device,
637 	 * let it through, and the IO layer will turn it into
638 	 * an EIO.
639 	 */
640 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
641 		return;
642 
643 	maxsector -= bio->bi_iter.bi_sector;
644 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
645 		return;
646 
647 	bio_truncate(bio, maxsector << 9);
648 }
649 
650 #define ALLOC_CACHE_MAX		512
651 #define ALLOC_CACHE_SLACK	 64
652 
653 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
654 				  unsigned int nr)
655 {
656 	unsigned int i = 0;
657 	struct bio *bio;
658 
659 	while ((bio = cache->free_list) != NULL) {
660 		cache->free_list = bio->bi_next;
661 		cache->nr--;
662 		bio_free(bio);
663 		if (++i == nr)
664 			break;
665 	}
666 }
667 
668 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
669 {
670 	struct bio_set *bs;
671 
672 	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
673 	if (bs->cache) {
674 		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
675 
676 		bio_alloc_cache_prune(cache, -1U);
677 	}
678 	return 0;
679 }
680 
681 static void bio_alloc_cache_destroy(struct bio_set *bs)
682 {
683 	int cpu;
684 
685 	if (!bs->cache)
686 		return;
687 
688 	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
689 	for_each_possible_cpu(cpu) {
690 		struct bio_alloc_cache *cache;
691 
692 		cache = per_cpu_ptr(bs->cache, cpu);
693 		bio_alloc_cache_prune(cache, -1U);
694 	}
695 	free_percpu(bs->cache);
696 }
697 
698 /**
699  * bio_put - release a reference to a bio
700  * @bio:   bio to release reference to
701  *
702  * Description:
703  *   Put a reference to a &struct bio, either one you have gotten with
704  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
705  **/
706 void bio_put(struct bio *bio)
707 {
708 	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
709 		BUG_ON(!atomic_read(&bio->__bi_cnt));
710 		if (!atomic_dec_and_test(&bio->__bi_cnt))
711 			return;
712 	}
713 
714 	if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
715 		struct bio_alloc_cache *cache;
716 
717 		bio_uninit(bio);
718 		cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
719 		bio->bi_next = cache->free_list;
720 		cache->free_list = bio;
721 		if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
722 			bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
723 		put_cpu();
724 	} else {
725 		bio_free(bio);
726 	}
727 }
728 EXPORT_SYMBOL(bio_put);
729 
730 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
731 {
732 	bio_set_flag(bio, BIO_CLONED);
733 	if (bio_flagged(bio_src, BIO_THROTTLED))
734 		bio_set_flag(bio, BIO_THROTTLED);
735 	if (bio->bi_bdev == bio_src->bi_bdev &&
736 	    bio_flagged(bio_src, BIO_REMAPPED))
737 		bio_set_flag(bio, BIO_REMAPPED);
738 	bio->bi_ioprio = bio_src->bi_ioprio;
739 	bio->bi_iter = bio_src->bi_iter;
740 
741 	bio_clone_blkg_association(bio, bio_src);
742 	blkcg_bio_issue_init(bio);
743 
744 	if (bio_crypt_clone(bio, bio_src, gfp) < 0)
745 		return -ENOMEM;
746 	if (bio_integrity(bio_src) &&
747 	    bio_integrity_clone(bio, bio_src, gfp) < 0)
748 		return -ENOMEM;
749 	return 0;
750 }
751 
752 /**
753  * bio_alloc_clone - clone a bio that shares the original bio's biovec
754  * @bdev: block_device to clone onto
755  * @bio_src: bio to clone from
756  * @gfp: allocation priority
757  * @bs: bio_set to allocate from
758  *
759  * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
760  * bio, but not the actual data it points to.
761  *
762  * The caller must ensure that the return bio is not freed before @bio_src.
763  */
764 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
765 		gfp_t gfp, struct bio_set *bs)
766 {
767 	struct bio *bio;
768 
769 	bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
770 	if (!bio)
771 		return NULL;
772 
773 	if (__bio_clone(bio, bio_src, gfp) < 0) {
774 		bio_put(bio);
775 		return NULL;
776 	}
777 	bio->bi_io_vec = bio_src->bi_io_vec;
778 
779 	return bio;
780 }
781 EXPORT_SYMBOL(bio_alloc_clone);
782 
783 /**
784  * bio_init_clone - clone a bio that shares the original bio's biovec
785  * @bdev: block_device to clone onto
786  * @bio: bio to clone into
787  * @bio_src: bio to clone from
788  * @gfp: allocation priority
789  *
790  * Initialize a new bio in caller provided memory that is a clone of @bio_src.
791  * The caller owns the returned bio, but not the actual data it points to.
792  *
793  * The caller must ensure that @bio_src is not freed before @bio.
794  */
795 int bio_init_clone(struct block_device *bdev, struct bio *bio,
796 		struct bio *bio_src, gfp_t gfp)
797 {
798 	int ret;
799 
800 	bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
801 	ret = __bio_clone(bio, bio_src, gfp);
802 	if (ret)
803 		bio_uninit(bio);
804 	return ret;
805 }
806 EXPORT_SYMBOL(bio_init_clone);
807 
808 /**
809  * bio_full - check if the bio is full
810  * @bio:	bio to check
811  * @len:	length of one segment to be added
812  *
813  * Return true if @bio is full and one segment with @len bytes can't be
814  * added to the bio, otherwise return false
815  */
816 static inline bool bio_full(struct bio *bio, unsigned len)
817 {
818 	if (bio->bi_vcnt >= bio->bi_max_vecs)
819 		return true;
820 	if (bio->bi_iter.bi_size > UINT_MAX - len)
821 		return true;
822 	return false;
823 }
824 
825 static inline bool page_is_mergeable(const struct bio_vec *bv,
826 		struct page *page, unsigned int len, unsigned int off,
827 		bool *same_page)
828 {
829 	size_t bv_end = bv->bv_offset + bv->bv_len;
830 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
831 	phys_addr_t page_addr = page_to_phys(page);
832 
833 	if (vec_end_addr + 1 != page_addr + off)
834 		return false;
835 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
836 		return false;
837 
838 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
839 	if (*same_page)
840 		return true;
841 	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
842 }
843 
844 /**
845  * __bio_try_merge_page - try appending data to an existing bvec.
846  * @bio: destination bio
847  * @page: start page to add
848  * @len: length of the data to add
849  * @off: offset of the data relative to @page
850  * @same_page: return if the segment has been merged inside the same page
851  *
852  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
853  * useful optimisation for file systems with a block size smaller than the
854  * page size.
855  *
856  * Warn if (@len, @off) crosses pages in case that @same_page is true.
857  *
858  * Return %true on success or %false on failure.
859  */
860 static bool __bio_try_merge_page(struct bio *bio, struct page *page,
861 		unsigned int len, unsigned int off, bool *same_page)
862 {
863 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
864 		return false;
865 
866 	if (bio->bi_vcnt > 0) {
867 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
868 
869 		if (page_is_mergeable(bv, page, len, off, same_page)) {
870 			if (bio->bi_iter.bi_size > UINT_MAX - len) {
871 				*same_page = false;
872 				return false;
873 			}
874 			bv->bv_len += len;
875 			bio->bi_iter.bi_size += len;
876 			return true;
877 		}
878 	}
879 	return false;
880 }
881 
882 /*
883  * Try to merge a page into a segment, while obeying the hardware segment
884  * size limit.  This is not for normal read/write bios, but for passthrough
885  * or Zone Append operations that we can't split.
886  */
887 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
888 				 struct page *page, unsigned len,
889 				 unsigned offset, bool *same_page)
890 {
891 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
892 	unsigned long mask = queue_segment_boundary(q);
893 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
894 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
895 
896 	if ((addr1 | mask) != (addr2 | mask))
897 		return false;
898 	if (bv->bv_len + len > queue_max_segment_size(q))
899 		return false;
900 	return __bio_try_merge_page(bio, page, len, offset, same_page);
901 }
902 
903 /**
904  * bio_add_hw_page - attempt to add a page to a bio with hw constraints
905  * @q: the target queue
906  * @bio: destination bio
907  * @page: page to add
908  * @len: vec entry length
909  * @offset: vec entry offset
910  * @max_sectors: maximum number of sectors that can be added
911  * @same_page: return if the segment has been merged inside the same page
912  *
913  * Add a page to a bio while respecting the hardware max_sectors, max_segment
914  * and gap limitations.
915  */
916 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
917 		struct page *page, unsigned int len, unsigned int offset,
918 		unsigned int max_sectors, bool *same_page)
919 {
920 	struct bio_vec *bvec;
921 
922 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
923 		return 0;
924 
925 	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
926 		return 0;
927 
928 	if (bio->bi_vcnt > 0) {
929 		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
930 			return len;
931 
932 		/*
933 		 * If the queue doesn't support SG gaps and adding this segment
934 		 * would create a gap, disallow it.
935 		 */
936 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
937 		if (bvec_gap_to_prev(q, bvec, offset))
938 			return 0;
939 	}
940 
941 	if (bio_full(bio, len))
942 		return 0;
943 
944 	if (bio->bi_vcnt >= queue_max_segments(q))
945 		return 0;
946 
947 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
948 	bvec->bv_page = page;
949 	bvec->bv_len = len;
950 	bvec->bv_offset = offset;
951 	bio->bi_vcnt++;
952 	bio->bi_iter.bi_size += len;
953 	return len;
954 }
955 
956 /**
957  * bio_add_pc_page	- attempt to add page to passthrough bio
958  * @q: the target queue
959  * @bio: destination bio
960  * @page: page to add
961  * @len: vec entry length
962  * @offset: vec entry offset
963  *
964  * Attempt to add a page to the bio_vec maplist. This can fail for a
965  * number of reasons, such as the bio being full or target block device
966  * limitations. The target block device must allow bio's up to PAGE_SIZE,
967  * so it is always possible to add a single page to an empty bio.
968  *
969  * This should only be used by passthrough bios.
970  */
971 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
972 		struct page *page, unsigned int len, unsigned int offset)
973 {
974 	bool same_page = false;
975 	return bio_add_hw_page(q, bio, page, len, offset,
976 			queue_max_hw_sectors(q), &same_page);
977 }
978 EXPORT_SYMBOL(bio_add_pc_page);
979 
980 /**
981  * bio_add_zone_append_page - attempt to add page to zone-append bio
982  * @bio: destination bio
983  * @page: page to add
984  * @len: vec entry length
985  * @offset: vec entry offset
986  *
987  * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
988  * for a zone-append request. This can fail for a number of reasons, such as the
989  * bio being full or the target block device is not a zoned block device or
990  * other limitations of the target block device. The target block device must
991  * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
992  * to an empty bio.
993  *
994  * Returns: number of bytes added to the bio, or 0 in case of a failure.
995  */
996 int bio_add_zone_append_page(struct bio *bio, struct page *page,
997 			     unsigned int len, unsigned int offset)
998 {
999 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1000 	bool same_page = false;
1001 
1002 	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
1003 		return 0;
1004 
1005 	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
1006 		return 0;
1007 
1008 	return bio_add_hw_page(q, bio, page, len, offset,
1009 			       queue_max_zone_append_sectors(q), &same_page);
1010 }
1011 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1012 
1013 /**
1014  * __bio_add_page - add page(s) to a bio in a new segment
1015  * @bio: destination bio
1016  * @page: start page to add
1017  * @len: length of the data to add, may cross pages
1018  * @off: offset of the data relative to @page, may cross pages
1019  *
1020  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
1021  * that @bio has space for another bvec.
1022  */
1023 void __bio_add_page(struct bio *bio, struct page *page,
1024 		unsigned int len, unsigned int off)
1025 {
1026 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
1027 
1028 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
1029 	WARN_ON_ONCE(bio_full(bio, len));
1030 
1031 	bv->bv_page = page;
1032 	bv->bv_offset = off;
1033 	bv->bv_len = len;
1034 
1035 	bio->bi_iter.bi_size += len;
1036 	bio->bi_vcnt++;
1037 
1038 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
1039 		bio_set_flag(bio, BIO_WORKINGSET);
1040 }
1041 EXPORT_SYMBOL_GPL(__bio_add_page);
1042 
1043 /**
1044  *	bio_add_page	-	attempt to add page(s) to bio
1045  *	@bio: destination bio
1046  *	@page: start page to add
1047  *	@len: vec entry length, may cross pages
1048  *	@offset: vec entry offset relative to @page, may cross pages
1049  *
1050  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1051  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1052  */
1053 int bio_add_page(struct bio *bio, struct page *page,
1054 		 unsigned int len, unsigned int offset)
1055 {
1056 	bool same_page = false;
1057 
1058 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1059 		if (bio_full(bio, len))
1060 			return 0;
1061 		__bio_add_page(bio, page, len, offset);
1062 	}
1063 	return len;
1064 }
1065 EXPORT_SYMBOL(bio_add_page);
1066 
1067 /**
1068  * bio_add_folio - Attempt to add part of a folio to a bio.
1069  * @bio: BIO to add to.
1070  * @folio: Folio to add.
1071  * @len: How many bytes from the folio to add.
1072  * @off: First byte in this folio to add.
1073  *
1074  * Filesystems that use folios can call this function instead of calling
1075  * bio_add_page() for each page in the folio.  If @off is bigger than
1076  * PAGE_SIZE, this function can create a bio_vec that starts in a page
1077  * after the bv_page.  BIOs do not support folios that are 4GiB or larger.
1078  *
1079  * Return: Whether the addition was successful.
1080  */
1081 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1082 		   size_t off)
1083 {
1084 	if (len > UINT_MAX || off > UINT_MAX)
1085 		return false;
1086 	return bio_add_page(bio, &folio->page, len, off) > 0;
1087 }
1088 
1089 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1090 {
1091 	struct bvec_iter_all iter_all;
1092 	struct bio_vec *bvec;
1093 
1094 	bio_for_each_segment_all(bvec, bio, iter_all) {
1095 		if (mark_dirty && !PageCompound(bvec->bv_page))
1096 			set_page_dirty_lock(bvec->bv_page);
1097 		put_page(bvec->bv_page);
1098 	}
1099 }
1100 EXPORT_SYMBOL_GPL(__bio_release_pages);
1101 
1102 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1103 {
1104 	size_t size = iov_iter_count(iter);
1105 
1106 	WARN_ON_ONCE(bio->bi_max_vecs);
1107 
1108 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1109 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1110 		size_t max_sectors = queue_max_zone_append_sectors(q);
1111 
1112 		size = min(size, max_sectors << SECTOR_SHIFT);
1113 	}
1114 
1115 	bio->bi_vcnt = iter->nr_segs;
1116 	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1117 	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1118 	bio->bi_iter.bi_size = size;
1119 	bio_set_flag(bio, BIO_NO_PAGE_REF);
1120 	bio_set_flag(bio, BIO_CLONED);
1121 }
1122 
1123 static void bio_put_pages(struct page **pages, size_t size, size_t off)
1124 {
1125 	size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1126 
1127 	for (i = 0; i < nr; i++)
1128 		put_page(pages[i]);
1129 }
1130 
1131 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
1132 
1133 /**
1134  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1135  * @bio: bio to add pages to
1136  * @iter: iov iterator describing the region to be mapped
1137  *
1138  * Pins pages from *iter and appends them to @bio's bvec array. The
1139  * pages will have to be released using put_page() when done.
1140  * For multi-segment *iter, this function only adds pages from the
1141  * next non-empty segment of the iov iterator.
1142  */
1143 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1144 {
1145 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1146 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1147 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1148 	struct page **pages = (struct page **)bv;
1149 	bool same_page = false;
1150 	ssize_t size, left;
1151 	unsigned len, i;
1152 	size_t offset;
1153 
1154 	/*
1155 	 * Move page array up in the allocated memory for the bio vecs as far as
1156 	 * possible so that we can start filling biovecs from the beginning
1157 	 * without overwriting the temporary page array.
1158 	*/
1159 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1160 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1161 
1162 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1163 	if (unlikely(size <= 0))
1164 		return size ? size : -EFAULT;
1165 
1166 	for (left = size, i = 0; left > 0; left -= len, i++) {
1167 		struct page *page = pages[i];
1168 
1169 		len = min_t(size_t, PAGE_SIZE - offset, left);
1170 
1171 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1172 			if (same_page)
1173 				put_page(page);
1174 		} else {
1175 			if (WARN_ON_ONCE(bio_full(bio, len))) {
1176 				bio_put_pages(pages + i, left, offset);
1177 				return -EINVAL;
1178 			}
1179 			__bio_add_page(bio, page, len, offset);
1180 		}
1181 		offset = 0;
1182 	}
1183 
1184 	iov_iter_advance(iter, size);
1185 	return 0;
1186 }
1187 
1188 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1189 {
1190 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1191 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1192 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1193 	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1194 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1195 	struct page **pages = (struct page **)bv;
1196 	ssize_t size, left;
1197 	unsigned len, i;
1198 	size_t offset;
1199 	int ret = 0;
1200 
1201 	if (WARN_ON_ONCE(!max_append_sectors))
1202 		return 0;
1203 
1204 	/*
1205 	 * Move page array up in the allocated memory for the bio vecs as far as
1206 	 * possible so that we can start filling biovecs from the beginning
1207 	 * without overwriting the temporary page array.
1208 	 */
1209 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1210 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1211 
1212 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1213 	if (unlikely(size <= 0))
1214 		return size ? size : -EFAULT;
1215 
1216 	for (left = size, i = 0; left > 0; left -= len, i++) {
1217 		struct page *page = pages[i];
1218 		bool same_page = false;
1219 
1220 		len = min_t(size_t, PAGE_SIZE - offset, left);
1221 		if (bio_add_hw_page(q, bio, page, len, offset,
1222 				max_append_sectors, &same_page) != len) {
1223 			bio_put_pages(pages + i, left, offset);
1224 			ret = -EINVAL;
1225 			break;
1226 		}
1227 		if (same_page)
1228 			put_page(page);
1229 		offset = 0;
1230 	}
1231 
1232 	iov_iter_advance(iter, size - left);
1233 	return ret;
1234 }
1235 
1236 /**
1237  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1238  * @bio: bio to add pages to
1239  * @iter: iov iterator describing the region to be added
1240  *
1241  * This takes either an iterator pointing to user memory, or one pointing to
1242  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1243  * map them into the kernel. On IO completion, the caller should put those
1244  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1245  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1246  * to ensure the bvecs and pages stay referenced until the submitted I/O is
1247  * completed by a call to ->ki_complete() or returns with an error other than
1248  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1249  * on IO completion. If it isn't, then pages should be released.
1250  *
1251  * The function tries, but does not guarantee, to pin as many pages as
1252  * fit into the bio, or are requested in @iter, whatever is smaller. If
1253  * MM encounters an error pinning the requested pages, it stops. Error
1254  * is returned only if 0 pages could be pinned.
1255  *
1256  * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1257  * responsible for setting BIO_WORKINGSET if necessary.
1258  */
1259 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1260 {
1261 	int ret = 0;
1262 
1263 	if (iov_iter_is_bvec(iter)) {
1264 		bio_iov_bvec_set(bio, iter);
1265 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1266 		return 0;
1267 	}
1268 
1269 	do {
1270 		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1271 			ret = __bio_iov_append_get_pages(bio, iter);
1272 		else
1273 			ret = __bio_iov_iter_get_pages(bio, iter);
1274 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1275 
1276 	/* don't account direct I/O as memory stall */
1277 	bio_clear_flag(bio, BIO_WORKINGSET);
1278 	return bio->bi_vcnt ? 0 : ret;
1279 }
1280 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1281 
1282 static void submit_bio_wait_endio(struct bio *bio)
1283 {
1284 	complete(bio->bi_private);
1285 }
1286 
1287 /**
1288  * submit_bio_wait - submit a bio, and wait until it completes
1289  * @bio: The &struct bio which describes the I/O
1290  *
1291  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1292  * bio_endio() on failure.
1293  *
1294  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1295  * result in bio reference to be consumed. The caller must drop the reference
1296  * on his own.
1297  */
1298 int submit_bio_wait(struct bio *bio)
1299 {
1300 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1301 			bio->bi_bdev->bd_disk->lockdep_map);
1302 	unsigned long hang_check;
1303 
1304 	bio->bi_private = &done;
1305 	bio->bi_end_io = submit_bio_wait_endio;
1306 	bio->bi_opf |= REQ_SYNC;
1307 	submit_bio(bio);
1308 
1309 	/* Prevent hang_check timer from firing at us during very long I/O */
1310 	hang_check = sysctl_hung_task_timeout_secs;
1311 	if (hang_check)
1312 		while (!wait_for_completion_io_timeout(&done,
1313 					hang_check * (HZ/2)))
1314 			;
1315 	else
1316 		wait_for_completion_io(&done);
1317 
1318 	return blk_status_to_errno(bio->bi_status);
1319 }
1320 EXPORT_SYMBOL(submit_bio_wait);
1321 
1322 void __bio_advance(struct bio *bio, unsigned bytes)
1323 {
1324 	if (bio_integrity(bio))
1325 		bio_integrity_advance(bio, bytes);
1326 
1327 	bio_crypt_advance(bio, bytes);
1328 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1329 }
1330 EXPORT_SYMBOL(__bio_advance);
1331 
1332 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1333 			struct bio *src, struct bvec_iter *src_iter)
1334 {
1335 	while (src_iter->bi_size && dst_iter->bi_size) {
1336 		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1337 		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1338 		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1339 		void *src_buf;
1340 
1341 		src_buf = bvec_kmap_local(&src_bv);
1342 		memcpy_to_bvec(&dst_bv, src_buf);
1343 		kunmap_local(src_buf);
1344 
1345 		bio_advance_iter_single(src, src_iter, bytes);
1346 		bio_advance_iter_single(dst, dst_iter, bytes);
1347 	}
1348 }
1349 EXPORT_SYMBOL(bio_copy_data_iter);
1350 
1351 /**
1352  * bio_copy_data - copy contents of data buffers from one bio to another
1353  * @src: source bio
1354  * @dst: destination bio
1355  *
1356  * Stops when it reaches the end of either @src or @dst - that is, copies
1357  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1358  */
1359 void bio_copy_data(struct bio *dst, struct bio *src)
1360 {
1361 	struct bvec_iter src_iter = src->bi_iter;
1362 	struct bvec_iter dst_iter = dst->bi_iter;
1363 
1364 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1365 }
1366 EXPORT_SYMBOL(bio_copy_data);
1367 
1368 void bio_free_pages(struct bio *bio)
1369 {
1370 	struct bio_vec *bvec;
1371 	struct bvec_iter_all iter_all;
1372 
1373 	bio_for_each_segment_all(bvec, bio, iter_all)
1374 		__free_page(bvec->bv_page);
1375 }
1376 EXPORT_SYMBOL(bio_free_pages);
1377 
1378 /*
1379  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1380  * for performing direct-IO in BIOs.
1381  *
1382  * The problem is that we cannot run set_page_dirty() from interrupt context
1383  * because the required locks are not interrupt-safe.  So what we can do is to
1384  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1385  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1386  * in process context.
1387  *
1388  * We special-case compound pages here: normally this means reads into hugetlb
1389  * pages.  The logic in here doesn't really work right for compound pages
1390  * because the VM does not uniformly chase down the head page in all cases.
1391  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1392  * handle them at all.  So we skip compound pages here at an early stage.
1393  *
1394  * Note that this code is very hard to test under normal circumstances because
1395  * direct-io pins the pages with get_user_pages().  This makes
1396  * is_page_cache_freeable return false, and the VM will not clean the pages.
1397  * But other code (eg, flusher threads) could clean the pages if they are mapped
1398  * pagecache.
1399  *
1400  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1401  * deferred bio dirtying paths.
1402  */
1403 
1404 /*
1405  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1406  */
1407 void bio_set_pages_dirty(struct bio *bio)
1408 {
1409 	struct bio_vec *bvec;
1410 	struct bvec_iter_all iter_all;
1411 
1412 	bio_for_each_segment_all(bvec, bio, iter_all) {
1413 		if (!PageCompound(bvec->bv_page))
1414 			set_page_dirty_lock(bvec->bv_page);
1415 	}
1416 }
1417 
1418 /*
1419  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1420  * If they are, then fine.  If, however, some pages are clean then they must
1421  * have been written out during the direct-IO read.  So we take another ref on
1422  * the BIO and re-dirty the pages in process context.
1423  *
1424  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1425  * here on.  It will run one put_page() against each page and will run one
1426  * bio_put() against the BIO.
1427  */
1428 
1429 static void bio_dirty_fn(struct work_struct *work);
1430 
1431 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1432 static DEFINE_SPINLOCK(bio_dirty_lock);
1433 static struct bio *bio_dirty_list;
1434 
1435 /*
1436  * This runs in process context
1437  */
1438 static void bio_dirty_fn(struct work_struct *work)
1439 {
1440 	struct bio *bio, *next;
1441 
1442 	spin_lock_irq(&bio_dirty_lock);
1443 	next = bio_dirty_list;
1444 	bio_dirty_list = NULL;
1445 	spin_unlock_irq(&bio_dirty_lock);
1446 
1447 	while ((bio = next) != NULL) {
1448 		next = bio->bi_private;
1449 
1450 		bio_release_pages(bio, true);
1451 		bio_put(bio);
1452 	}
1453 }
1454 
1455 void bio_check_pages_dirty(struct bio *bio)
1456 {
1457 	struct bio_vec *bvec;
1458 	unsigned long flags;
1459 	struct bvec_iter_all iter_all;
1460 
1461 	bio_for_each_segment_all(bvec, bio, iter_all) {
1462 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1463 			goto defer;
1464 	}
1465 
1466 	bio_release_pages(bio, false);
1467 	bio_put(bio);
1468 	return;
1469 defer:
1470 	spin_lock_irqsave(&bio_dirty_lock, flags);
1471 	bio->bi_private = bio_dirty_list;
1472 	bio_dirty_list = bio;
1473 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1474 	schedule_work(&bio_dirty_work);
1475 }
1476 
1477 static inline bool bio_remaining_done(struct bio *bio)
1478 {
1479 	/*
1480 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1481 	 * we always end io on the first invocation.
1482 	 */
1483 	if (!bio_flagged(bio, BIO_CHAIN))
1484 		return true;
1485 
1486 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1487 
1488 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1489 		bio_clear_flag(bio, BIO_CHAIN);
1490 		return true;
1491 	}
1492 
1493 	return false;
1494 }
1495 
1496 /**
1497  * bio_endio - end I/O on a bio
1498  * @bio:	bio
1499  *
1500  * Description:
1501  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1502  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1503  *   bio unless they own it and thus know that it has an end_io function.
1504  *
1505  *   bio_endio() can be called several times on a bio that has been chained
1506  *   using bio_chain().  The ->bi_end_io() function will only be called the
1507  *   last time.
1508  **/
1509 void bio_endio(struct bio *bio)
1510 {
1511 again:
1512 	if (!bio_remaining_done(bio))
1513 		return;
1514 	if (!bio_integrity_endio(bio))
1515 		return;
1516 
1517 	rq_qos_done_bio(bio);
1518 
1519 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1520 		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1521 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1522 	}
1523 
1524 	/*
1525 	 * Need to have a real endio function for chained bios, otherwise
1526 	 * various corner cases will break (like stacking block devices that
1527 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1528 	 * recursion and blowing the stack. Tail call optimization would
1529 	 * handle this, but compiling with frame pointers also disables
1530 	 * gcc's sibling call optimization.
1531 	 */
1532 	if (bio->bi_end_io == bio_chain_endio) {
1533 		bio = __bio_chain_endio(bio);
1534 		goto again;
1535 	}
1536 
1537 	blk_throtl_bio_endio(bio);
1538 	/* release cgroup info */
1539 	bio_uninit(bio);
1540 	if (bio->bi_end_io)
1541 		bio->bi_end_io(bio);
1542 }
1543 EXPORT_SYMBOL(bio_endio);
1544 
1545 /**
1546  * bio_split - split a bio
1547  * @bio:	bio to split
1548  * @sectors:	number of sectors to split from the front of @bio
1549  * @gfp:	gfp mask
1550  * @bs:		bio set to allocate from
1551  *
1552  * Allocates and returns a new bio which represents @sectors from the start of
1553  * @bio, and updates @bio to represent the remaining sectors.
1554  *
1555  * Unless this is a discard request the newly allocated bio will point
1556  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1557  * neither @bio nor @bs are freed before the split bio.
1558  */
1559 struct bio *bio_split(struct bio *bio, int sectors,
1560 		      gfp_t gfp, struct bio_set *bs)
1561 {
1562 	struct bio *split;
1563 
1564 	BUG_ON(sectors <= 0);
1565 	BUG_ON(sectors >= bio_sectors(bio));
1566 
1567 	/* Zone append commands cannot be split */
1568 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1569 		return NULL;
1570 
1571 	split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1572 	if (!split)
1573 		return NULL;
1574 
1575 	split->bi_iter.bi_size = sectors << 9;
1576 
1577 	if (bio_integrity(split))
1578 		bio_integrity_trim(split);
1579 
1580 	bio_advance(bio, split->bi_iter.bi_size);
1581 
1582 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1583 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1584 
1585 	return split;
1586 }
1587 EXPORT_SYMBOL(bio_split);
1588 
1589 /**
1590  * bio_trim - trim a bio
1591  * @bio:	bio to trim
1592  * @offset:	number of sectors to trim from the front of @bio
1593  * @size:	size we want to trim @bio to, in sectors
1594  *
1595  * This function is typically used for bios that are cloned and submitted
1596  * to the underlying device in parts.
1597  */
1598 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1599 {
1600 	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1601 			 offset + size > bio->bi_iter.bi_size))
1602 		return;
1603 
1604 	size <<= 9;
1605 	if (offset == 0 && size == bio->bi_iter.bi_size)
1606 		return;
1607 
1608 	bio_advance(bio, offset << 9);
1609 	bio->bi_iter.bi_size = size;
1610 
1611 	if (bio_integrity(bio))
1612 		bio_integrity_trim(bio);
1613 }
1614 EXPORT_SYMBOL_GPL(bio_trim);
1615 
1616 /*
1617  * create memory pools for biovec's in a bio_set.
1618  * use the global biovec slabs created for general use.
1619  */
1620 int biovec_init_pool(mempool_t *pool, int pool_entries)
1621 {
1622 	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1623 
1624 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1625 }
1626 
1627 /*
1628  * bioset_exit - exit a bioset initialized with bioset_init()
1629  *
1630  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1631  * kzalloc()).
1632  */
1633 void bioset_exit(struct bio_set *bs)
1634 {
1635 	bio_alloc_cache_destroy(bs);
1636 	if (bs->rescue_workqueue)
1637 		destroy_workqueue(bs->rescue_workqueue);
1638 	bs->rescue_workqueue = NULL;
1639 
1640 	mempool_exit(&bs->bio_pool);
1641 	mempool_exit(&bs->bvec_pool);
1642 
1643 	bioset_integrity_free(bs);
1644 	if (bs->bio_slab)
1645 		bio_put_slab(bs);
1646 	bs->bio_slab = NULL;
1647 }
1648 EXPORT_SYMBOL(bioset_exit);
1649 
1650 /**
1651  * bioset_init - Initialize a bio_set
1652  * @bs:		pool to initialize
1653  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1654  * @front_pad:	Number of bytes to allocate in front of the returned bio
1655  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1656  *              and %BIOSET_NEED_RESCUER
1657  *
1658  * Description:
1659  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1660  *    to ask for a number of bytes to be allocated in front of the bio.
1661  *    Front pad allocation is useful for embedding the bio inside
1662  *    another structure, to avoid allocating extra data to go with the bio.
1663  *    Note that the bio must be embedded at the END of that structure always,
1664  *    or things will break badly.
1665  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1666  *    for allocating iovecs.  This pool is not needed e.g. for bio_init_clone().
1667  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1668  *    to dispatch queued requests when the mempool runs out of space.
1669  *
1670  */
1671 int bioset_init(struct bio_set *bs,
1672 		unsigned int pool_size,
1673 		unsigned int front_pad,
1674 		int flags)
1675 {
1676 	bs->front_pad = front_pad;
1677 	if (flags & BIOSET_NEED_BVECS)
1678 		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1679 	else
1680 		bs->back_pad = 0;
1681 
1682 	spin_lock_init(&bs->rescue_lock);
1683 	bio_list_init(&bs->rescue_list);
1684 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1685 
1686 	bs->bio_slab = bio_find_or_create_slab(bs);
1687 	if (!bs->bio_slab)
1688 		return -ENOMEM;
1689 
1690 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1691 		goto bad;
1692 
1693 	if ((flags & BIOSET_NEED_BVECS) &&
1694 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1695 		goto bad;
1696 
1697 	if (flags & BIOSET_NEED_RESCUER) {
1698 		bs->rescue_workqueue = alloc_workqueue("bioset",
1699 							WQ_MEM_RECLAIM, 0);
1700 		if (!bs->rescue_workqueue)
1701 			goto bad;
1702 	}
1703 	if (flags & BIOSET_PERCPU_CACHE) {
1704 		bs->cache = alloc_percpu(struct bio_alloc_cache);
1705 		if (!bs->cache)
1706 			goto bad;
1707 		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1708 	}
1709 
1710 	return 0;
1711 bad:
1712 	bioset_exit(bs);
1713 	return -ENOMEM;
1714 }
1715 EXPORT_SYMBOL(bioset_init);
1716 
1717 /*
1718  * Initialize and setup a new bio_set, based on the settings from
1719  * another bio_set.
1720  */
1721 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1722 {
1723 	int flags;
1724 
1725 	flags = 0;
1726 	if (src->bvec_pool.min_nr)
1727 		flags |= BIOSET_NEED_BVECS;
1728 	if (src->rescue_workqueue)
1729 		flags |= BIOSET_NEED_RESCUER;
1730 
1731 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1732 }
1733 EXPORT_SYMBOL(bioset_init_from_src);
1734 
1735 /**
1736  * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
1737  * @kiocb:	kiocb describing the IO
1738  * @bdev:	block device to allocate the bio for (can be %NULL)
1739  * @nr_vecs:	number of iovecs to pre-allocate
1740  * @opf:	operation and flags for bio
1741  * @bs:		bio_set to allocate from
1742  *
1743  * Description:
1744  *    Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
1745  *    used to check if we should dip into the per-cpu bio_set allocation
1746  *    cache. The allocation uses GFP_KERNEL internally. On return, the
1747  *    bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
1748  *    MUST be done from process context, not hard/soft IRQ.
1749  *
1750  */
1751 struct bio *bio_alloc_kiocb(struct kiocb *kiocb, struct block_device *bdev,
1752 		unsigned short nr_vecs, unsigned int opf, struct bio_set *bs)
1753 {
1754 	struct bio_alloc_cache *cache;
1755 	struct bio *bio;
1756 
1757 	if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
1758 		return bio_alloc_bioset(bdev, nr_vecs, opf, GFP_KERNEL, bs);
1759 
1760 	cache = per_cpu_ptr(bs->cache, get_cpu());
1761 	if (cache->free_list) {
1762 		bio = cache->free_list;
1763 		cache->free_list = bio->bi_next;
1764 		cache->nr--;
1765 		put_cpu();
1766 		bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL,
1767 			 nr_vecs, opf);
1768 		bio->bi_pool = bs;
1769 		bio_set_flag(bio, BIO_PERCPU_CACHE);
1770 		return bio;
1771 	}
1772 	put_cpu();
1773 	bio = bio_alloc_bioset(bdev, nr_vecs, opf, GFP_KERNEL, bs);
1774 	bio_set_flag(bio, BIO_PERCPU_CACHE);
1775 	return bio;
1776 }
1777 EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
1778 
1779 static int __init init_bio(void)
1780 {
1781 	int i;
1782 
1783 	bio_integrity_init();
1784 
1785 	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1786 		struct biovec_slab *bvs = bvec_slabs + i;
1787 
1788 		bvs->slab = kmem_cache_create(bvs->name,
1789 				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1790 				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1791 	}
1792 
1793 	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1794 					bio_cpu_dead);
1795 
1796 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1797 		panic("bio: can't allocate bios\n");
1798 
1799 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1800 		panic("bio: can't create integrity pool\n");
1801 
1802 	return 0;
1803 }
1804 subsys_initcall(init_bio);
1805