xref: /openbmc/linux/block/bio.c (revision bf070bb0)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 
32 #include <trace/events/block.h>
33 #include "blk.h"
34 
35 /*
36  * Test patch to inline a certain number of bi_io_vec's inside the bio
37  * itself, to shrink a bio data allocation from two mempool calls to one
38  */
39 #define BIO_INLINE_VECS		4
40 
41 /*
42  * if you change this list, also change bvec_alloc or things will
43  * break badly! cannot be bigger than what you can fit into an
44  * unsigned short
45  */
46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
48 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 };
50 #undef BV
51 
52 /*
53  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54  * IO code that does not need private memory pools.
55  */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58 
59 /*
60  * Our slab pool management
61  */
62 struct bio_slab {
63 	struct kmem_cache *slab;
64 	unsigned int slab_ref;
65 	unsigned int slab_size;
66 	char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71 
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 	unsigned int sz = sizeof(struct bio) + extra_size;
75 	struct kmem_cache *slab = NULL;
76 	struct bio_slab *bslab, *new_bio_slabs;
77 	unsigned int new_bio_slab_max;
78 	unsigned int i, entry = -1;
79 
80 	mutex_lock(&bio_slab_lock);
81 
82 	i = 0;
83 	while (i < bio_slab_nr) {
84 		bslab = &bio_slabs[i];
85 
86 		if (!bslab->slab && entry == -1)
87 			entry = i;
88 		else if (bslab->slab_size == sz) {
89 			slab = bslab->slab;
90 			bslab->slab_ref++;
91 			break;
92 		}
93 		i++;
94 	}
95 
96 	if (slab)
97 		goto out_unlock;
98 
99 	if (bio_slab_nr == bio_slab_max && entry == -1) {
100 		new_bio_slab_max = bio_slab_max << 1;
101 		new_bio_slabs = krealloc(bio_slabs,
102 					 new_bio_slab_max * sizeof(struct bio_slab),
103 					 GFP_KERNEL);
104 		if (!new_bio_slabs)
105 			goto out_unlock;
106 		bio_slab_max = new_bio_slab_max;
107 		bio_slabs = new_bio_slabs;
108 	}
109 	if (entry == -1)
110 		entry = bio_slab_nr++;
111 
112 	bslab = &bio_slabs[entry];
113 
114 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 				 SLAB_HWCACHE_ALIGN, NULL);
117 	if (!slab)
118 		goto out_unlock;
119 
120 	bslab->slab = slab;
121 	bslab->slab_ref = 1;
122 	bslab->slab_size = sz;
123 out_unlock:
124 	mutex_unlock(&bio_slab_lock);
125 	return slab;
126 }
127 
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 	struct bio_slab *bslab = NULL;
131 	unsigned int i;
132 
133 	mutex_lock(&bio_slab_lock);
134 
135 	for (i = 0; i < bio_slab_nr; i++) {
136 		if (bs->bio_slab == bio_slabs[i].slab) {
137 			bslab = &bio_slabs[i];
138 			break;
139 		}
140 	}
141 
142 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 		goto out;
144 
145 	WARN_ON(!bslab->slab_ref);
146 
147 	if (--bslab->slab_ref)
148 		goto out;
149 
150 	kmem_cache_destroy(bslab->slab);
151 	bslab->slab = NULL;
152 
153 out:
154 	mutex_unlock(&bio_slab_lock);
155 }
156 
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 	return bvec_slabs[idx].nr_vecs;
160 }
161 
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 	if (!idx)
165 		return;
166 	idx--;
167 
168 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
169 
170 	if (idx == BVEC_POOL_MAX) {
171 		mempool_free(bv, pool);
172 	} else {
173 		struct biovec_slab *bvs = bvec_slabs + idx;
174 
175 		kmem_cache_free(bvs->slab, bv);
176 	}
177 }
178 
179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 			   mempool_t *pool)
181 {
182 	struct bio_vec *bvl;
183 
184 	/*
185 	 * see comment near bvec_array define!
186 	 */
187 	switch (nr) {
188 	case 1:
189 		*idx = 0;
190 		break;
191 	case 2 ... 4:
192 		*idx = 1;
193 		break;
194 	case 5 ... 16:
195 		*idx = 2;
196 		break;
197 	case 17 ... 64:
198 		*idx = 3;
199 		break;
200 	case 65 ... 128:
201 		*idx = 4;
202 		break;
203 	case 129 ... BIO_MAX_PAGES:
204 		*idx = 5;
205 		break;
206 	default:
207 		return NULL;
208 	}
209 
210 	/*
211 	 * idx now points to the pool we want to allocate from. only the
212 	 * 1-vec entry pool is mempool backed.
213 	 */
214 	if (*idx == BVEC_POOL_MAX) {
215 fallback:
216 		bvl = mempool_alloc(pool, gfp_mask);
217 	} else {
218 		struct biovec_slab *bvs = bvec_slabs + *idx;
219 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
220 
221 		/*
222 		 * Make this allocation restricted and don't dump info on
223 		 * allocation failures, since we'll fallback to the mempool
224 		 * in case of failure.
225 		 */
226 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
227 
228 		/*
229 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
230 		 * is set, retry with the 1-entry mempool
231 		 */
232 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
233 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
234 			*idx = BVEC_POOL_MAX;
235 			goto fallback;
236 		}
237 	}
238 
239 	(*idx)++;
240 	return bvl;
241 }
242 
243 void bio_uninit(struct bio *bio)
244 {
245 	bio_disassociate_task(bio);
246 }
247 EXPORT_SYMBOL(bio_uninit);
248 
249 static void bio_free(struct bio *bio)
250 {
251 	struct bio_set *bs = bio->bi_pool;
252 	void *p;
253 
254 	bio_uninit(bio);
255 
256 	if (bs) {
257 		bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
258 
259 		/*
260 		 * If we have front padding, adjust the bio pointer before freeing
261 		 */
262 		p = bio;
263 		p -= bs->front_pad;
264 
265 		mempool_free(p, bs->bio_pool);
266 	} else {
267 		/* Bio was allocated by bio_kmalloc() */
268 		kfree(bio);
269 	}
270 }
271 
272 /*
273  * Users of this function have their own bio allocation. Subsequently,
274  * they must remember to pair any call to bio_init() with bio_uninit()
275  * when IO has completed, or when the bio is released.
276  */
277 void bio_init(struct bio *bio, struct bio_vec *table,
278 	      unsigned short max_vecs)
279 {
280 	memset(bio, 0, sizeof(*bio));
281 	atomic_set(&bio->__bi_remaining, 1);
282 	atomic_set(&bio->__bi_cnt, 1);
283 
284 	bio->bi_io_vec = table;
285 	bio->bi_max_vecs = max_vecs;
286 }
287 EXPORT_SYMBOL(bio_init);
288 
289 /**
290  * bio_reset - reinitialize a bio
291  * @bio:	bio to reset
292  *
293  * Description:
294  *   After calling bio_reset(), @bio will be in the same state as a freshly
295  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
296  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
297  *   comment in struct bio.
298  */
299 void bio_reset(struct bio *bio)
300 {
301 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
302 
303 	bio_uninit(bio);
304 
305 	memset(bio, 0, BIO_RESET_BYTES);
306 	bio->bi_flags = flags;
307 	atomic_set(&bio->__bi_remaining, 1);
308 }
309 EXPORT_SYMBOL(bio_reset);
310 
311 static struct bio *__bio_chain_endio(struct bio *bio)
312 {
313 	struct bio *parent = bio->bi_private;
314 
315 	if (!parent->bi_status)
316 		parent->bi_status = bio->bi_status;
317 	bio_put(bio);
318 	return parent;
319 }
320 
321 static void bio_chain_endio(struct bio *bio)
322 {
323 	bio_endio(__bio_chain_endio(bio));
324 }
325 
326 /**
327  * bio_chain - chain bio completions
328  * @bio: the target bio
329  * @parent: the @bio's parent bio
330  *
331  * The caller won't have a bi_end_io called when @bio completes - instead,
332  * @parent's bi_end_io won't be called until both @parent and @bio have
333  * completed; the chained bio will also be freed when it completes.
334  *
335  * The caller must not set bi_private or bi_end_io in @bio.
336  */
337 void bio_chain(struct bio *bio, struct bio *parent)
338 {
339 	BUG_ON(bio->bi_private || bio->bi_end_io);
340 
341 	bio->bi_private = parent;
342 	bio->bi_end_io	= bio_chain_endio;
343 	bio_inc_remaining(parent);
344 }
345 EXPORT_SYMBOL(bio_chain);
346 
347 static void bio_alloc_rescue(struct work_struct *work)
348 {
349 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
350 	struct bio *bio;
351 
352 	while (1) {
353 		spin_lock(&bs->rescue_lock);
354 		bio = bio_list_pop(&bs->rescue_list);
355 		spin_unlock(&bs->rescue_lock);
356 
357 		if (!bio)
358 			break;
359 
360 		generic_make_request(bio);
361 	}
362 }
363 
364 static void punt_bios_to_rescuer(struct bio_set *bs)
365 {
366 	struct bio_list punt, nopunt;
367 	struct bio *bio;
368 
369 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
370 		return;
371 	/*
372 	 * In order to guarantee forward progress we must punt only bios that
373 	 * were allocated from this bio_set; otherwise, if there was a bio on
374 	 * there for a stacking driver higher up in the stack, processing it
375 	 * could require allocating bios from this bio_set, and doing that from
376 	 * our own rescuer would be bad.
377 	 *
378 	 * Since bio lists are singly linked, pop them all instead of trying to
379 	 * remove from the middle of the list:
380 	 */
381 
382 	bio_list_init(&punt);
383 	bio_list_init(&nopunt);
384 
385 	while ((bio = bio_list_pop(&current->bio_list[0])))
386 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
387 	current->bio_list[0] = nopunt;
388 
389 	bio_list_init(&nopunt);
390 	while ((bio = bio_list_pop(&current->bio_list[1])))
391 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 	current->bio_list[1] = nopunt;
393 
394 	spin_lock(&bs->rescue_lock);
395 	bio_list_merge(&bs->rescue_list, &punt);
396 	spin_unlock(&bs->rescue_lock);
397 
398 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
399 }
400 
401 /**
402  * bio_alloc_bioset - allocate a bio for I/O
403  * @gfp_mask:   the GFP_* mask given to the slab allocator
404  * @nr_iovecs:	number of iovecs to pre-allocate
405  * @bs:		the bio_set to allocate from.
406  *
407  * Description:
408  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
409  *   backed by the @bs's mempool.
410  *
411  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
412  *   always be able to allocate a bio. This is due to the mempool guarantees.
413  *   To make this work, callers must never allocate more than 1 bio at a time
414  *   from this pool. Callers that need to allocate more than 1 bio must always
415  *   submit the previously allocated bio for IO before attempting to allocate
416  *   a new one. Failure to do so can cause deadlocks under memory pressure.
417  *
418  *   Note that when running under generic_make_request() (i.e. any block
419  *   driver), bios are not submitted until after you return - see the code in
420  *   generic_make_request() that converts recursion into iteration, to prevent
421  *   stack overflows.
422  *
423  *   This would normally mean allocating multiple bios under
424  *   generic_make_request() would be susceptible to deadlocks, but we have
425  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
426  *   thread.
427  *
428  *   However, we do not guarantee forward progress for allocations from other
429  *   mempools. Doing multiple allocations from the same mempool under
430  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
431  *   for per bio allocations.
432  *
433  *   RETURNS:
434  *   Pointer to new bio on success, NULL on failure.
435  */
436 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
437 			     struct bio_set *bs)
438 {
439 	gfp_t saved_gfp = gfp_mask;
440 	unsigned front_pad;
441 	unsigned inline_vecs;
442 	struct bio_vec *bvl = NULL;
443 	struct bio *bio;
444 	void *p;
445 
446 	if (!bs) {
447 		if (nr_iovecs > UIO_MAXIOV)
448 			return NULL;
449 
450 		p = kmalloc(sizeof(struct bio) +
451 			    nr_iovecs * sizeof(struct bio_vec),
452 			    gfp_mask);
453 		front_pad = 0;
454 		inline_vecs = nr_iovecs;
455 	} else {
456 		/* should not use nobvec bioset for nr_iovecs > 0 */
457 		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
458 			return NULL;
459 		/*
460 		 * generic_make_request() converts recursion to iteration; this
461 		 * means if we're running beneath it, any bios we allocate and
462 		 * submit will not be submitted (and thus freed) until after we
463 		 * return.
464 		 *
465 		 * This exposes us to a potential deadlock if we allocate
466 		 * multiple bios from the same bio_set() while running
467 		 * underneath generic_make_request(). If we were to allocate
468 		 * multiple bios (say a stacking block driver that was splitting
469 		 * bios), we would deadlock if we exhausted the mempool's
470 		 * reserve.
471 		 *
472 		 * We solve this, and guarantee forward progress, with a rescuer
473 		 * workqueue per bio_set. If we go to allocate and there are
474 		 * bios on current->bio_list, we first try the allocation
475 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 		 * bios we would be blocking to the rescuer workqueue before
477 		 * we retry with the original gfp_flags.
478 		 */
479 
480 		if (current->bio_list &&
481 		    (!bio_list_empty(&current->bio_list[0]) ||
482 		     !bio_list_empty(&current->bio_list[1])) &&
483 		    bs->rescue_workqueue)
484 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
485 
486 		p = mempool_alloc(bs->bio_pool, gfp_mask);
487 		if (!p && gfp_mask != saved_gfp) {
488 			punt_bios_to_rescuer(bs);
489 			gfp_mask = saved_gfp;
490 			p = mempool_alloc(bs->bio_pool, gfp_mask);
491 		}
492 
493 		front_pad = bs->front_pad;
494 		inline_vecs = BIO_INLINE_VECS;
495 	}
496 
497 	if (unlikely(!p))
498 		return NULL;
499 
500 	bio = p + front_pad;
501 	bio_init(bio, NULL, 0);
502 
503 	if (nr_iovecs > inline_vecs) {
504 		unsigned long idx = 0;
505 
506 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
507 		if (!bvl && gfp_mask != saved_gfp) {
508 			punt_bios_to_rescuer(bs);
509 			gfp_mask = saved_gfp;
510 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
511 		}
512 
513 		if (unlikely(!bvl))
514 			goto err_free;
515 
516 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
517 	} else if (nr_iovecs) {
518 		bvl = bio->bi_inline_vecs;
519 	}
520 
521 	bio->bi_pool = bs;
522 	bio->bi_max_vecs = nr_iovecs;
523 	bio->bi_io_vec = bvl;
524 	return bio;
525 
526 err_free:
527 	mempool_free(p, bs->bio_pool);
528 	return NULL;
529 }
530 EXPORT_SYMBOL(bio_alloc_bioset);
531 
532 void zero_fill_bio(struct bio *bio)
533 {
534 	unsigned long flags;
535 	struct bio_vec bv;
536 	struct bvec_iter iter;
537 
538 	bio_for_each_segment(bv, bio, iter) {
539 		char *data = bvec_kmap_irq(&bv, &flags);
540 		memset(data, 0, bv.bv_len);
541 		flush_dcache_page(bv.bv_page);
542 		bvec_kunmap_irq(data, &flags);
543 	}
544 }
545 EXPORT_SYMBOL(zero_fill_bio);
546 
547 /**
548  * bio_put - release a reference to a bio
549  * @bio:   bio to release reference to
550  *
551  * Description:
552  *   Put a reference to a &struct bio, either one you have gotten with
553  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
554  **/
555 void bio_put(struct bio *bio)
556 {
557 	if (!bio_flagged(bio, BIO_REFFED))
558 		bio_free(bio);
559 	else {
560 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
561 
562 		/*
563 		 * last put frees it
564 		 */
565 		if (atomic_dec_and_test(&bio->__bi_cnt))
566 			bio_free(bio);
567 	}
568 }
569 EXPORT_SYMBOL(bio_put);
570 
571 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
572 {
573 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
574 		blk_recount_segments(q, bio);
575 
576 	return bio->bi_phys_segments;
577 }
578 EXPORT_SYMBOL(bio_phys_segments);
579 
580 /**
581  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
582  * 	@bio: destination bio
583  * 	@bio_src: bio to clone
584  *
585  *	Clone a &bio. Caller will own the returned bio, but not
586  *	the actual data it points to. Reference count of returned
587  * 	bio will be one.
588  *
589  * 	Caller must ensure that @bio_src is not freed before @bio.
590  */
591 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
592 {
593 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
594 
595 	/*
596 	 * most users will be overriding ->bi_disk with a new target,
597 	 * so we don't set nor calculate new physical/hw segment counts here
598 	 */
599 	bio->bi_disk = bio_src->bi_disk;
600 	bio->bi_partno = bio_src->bi_partno;
601 	bio_set_flag(bio, BIO_CLONED);
602 	bio->bi_opf = bio_src->bi_opf;
603 	bio->bi_write_hint = bio_src->bi_write_hint;
604 	bio->bi_iter = bio_src->bi_iter;
605 	bio->bi_io_vec = bio_src->bi_io_vec;
606 
607 	bio_clone_blkcg_association(bio, bio_src);
608 }
609 EXPORT_SYMBOL(__bio_clone_fast);
610 
611 /**
612  *	bio_clone_fast - clone a bio that shares the original bio's biovec
613  *	@bio: bio to clone
614  *	@gfp_mask: allocation priority
615  *	@bs: bio_set to allocate from
616  *
617  * 	Like __bio_clone_fast, only also allocates the returned bio
618  */
619 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
620 {
621 	struct bio *b;
622 
623 	b = bio_alloc_bioset(gfp_mask, 0, bs);
624 	if (!b)
625 		return NULL;
626 
627 	__bio_clone_fast(b, bio);
628 
629 	if (bio_integrity(bio)) {
630 		int ret;
631 
632 		ret = bio_integrity_clone(b, bio, gfp_mask);
633 
634 		if (ret < 0) {
635 			bio_put(b);
636 			return NULL;
637 		}
638 	}
639 
640 	return b;
641 }
642 EXPORT_SYMBOL(bio_clone_fast);
643 
644 /**
645  * 	bio_clone_bioset - clone a bio
646  * 	@bio_src: bio to clone
647  *	@gfp_mask: allocation priority
648  *	@bs: bio_set to allocate from
649  *
650  *	Clone bio. Caller will own the returned bio, but not the actual data it
651  *	points to. Reference count of returned bio will be one.
652  */
653 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
654 			     struct bio_set *bs)
655 {
656 	struct bvec_iter iter;
657 	struct bio_vec bv;
658 	struct bio *bio;
659 
660 	/*
661 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
662 	 * bio_src->bi_io_vec to bio->bi_io_vec.
663 	 *
664 	 * We can't do that anymore, because:
665 	 *
666 	 *  - The point of cloning the biovec is to produce a bio with a biovec
667 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
668 	 *
669 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
670 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
671 	 *    But the clone should succeed as long as the number of biovecs we
672 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
673 	 *
674 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
675 	 *    that does not own the bio - reason being drivers don't use it for
676 	 *    iterating over the biovec anymore, so expecting it to be kept up
677 	 *    to date (i.e. for clones that share the parent biovec) is just
678 	 *    asking for trouble and would force extra work on
679 	 *    __bio_clone_fast() anyways.
680 	 */
681 
682 	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
683 	if (!bio)
684 		return NULL;
685 	bio->bi_disk		= bio_src->bi_disk;
686 	bio->bi_opf		= bio_src->bi_opf;
687 	bio->bi_write_hint	= bio_src->bi_write_hint;
688 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
689 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
690 
691 	switch (bio_op(bio)) {
692 	case REQ_OP_DISCARD:
693 	case REQ_OP_SECURE_ERASE:
694 	case REQ_OP_WRITE_ZEROES:
695 		break;
696 	case REQ_OP_WRITE_SAME:
697 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
698 		break;
699 	default:
700 		bio_for_each_segment(bv, bio_src, iter)
701 			bio->bi_io_vec[bio->bi_vcnt++] = bv;
702 		break;
703 	}
704 
705 	if (bio_integrity(bio_src)) {
706 		int ret;
707 
708 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
709 		if (ret < 0) {
710 			bio_put(bio);
711 			return NULL;
712 		}
713 	}
714 
715 	bio_clone_blkcg_association(bio, bio_src);
716 
717 	return bio;
718 }
719 EXPORT_SYMBOL(bio_clone_bioset);
720 
721 /**
722  *	bio_add_pc_page	-	attempt to add page to bio
723  *	@q: the target queue
724  *	@bio: destination bio
725  *	@page: page to add
726  *	@len: vec entry length
727  *	@offset: vec entry offset
728  *
729  *	Attempt to add a page to the bio_vec maplist. This can fail for a
730  *	number of reasons, such as the bio being full or target block device
731  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
732  *	so it is always possible to add a single page to an empty bio.
733  *
734  *	This should only be used by REQ_PC bios.
735  */
736 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
737 		    *page, unsigned int len, unsigned int offset)
738 {
739 	int retried_segments = 0;
740 	struct bio_vec *bvec;
741 
742 	/*
743 	 * cloned bio must not modify vec list
744 	 */
745 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
746 		return 0;
747 
748 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
749 		return 0;
750 
751 	/*
752 	 * For filesystems with a blocksize smaller than the pagesize
753 	 * we will often be called with the same page as last time and
754 	 * a consecutive offset.  Optimize this special case.
755 	 */
756 	if (bio->bi_vcnt > 0) {
757 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
758 
759 		if (page == prev->bv_page &&
760 		    offset == prev->bv_offset + prev->bv_len) {
761 			prev->bv_len += len;
762 			bio->bi_iter.bi_size += len;
763 			goto done;
764 		}
765 
766 		/*
767 		 * If the queue doesn't support SG gaps and adding this
768 		 * offset would create a gap, disallow it.
769 		 */
770 		if (bvec_gap_to_prev(q, prev, offset))
771 			return 0;
772 	}
773 
774 	if (bio->bi_vcnt >= bio->bi_max_vecs)
775 		return 0;
776 
777 	/*
778 	 * setup the new entry, we might clear it again later if we
779 	 * cannot add the page
780 	 */
781 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
782 	bvec->bv_page = page;
783 	bvec->bv_len = len;
784 	bvec->bv_offset = offset;
785 	bio->bi_vcnt++;
786 	bio->bi_phys_segments++;
787 	bio->bi_iter.bi_size += len;
788 
789 	/*
790 	 * Perform a recount if the number of segments is greater
791 	 * than queue_max_segments(q).
792 	 */
793 
794 	while (bio->bi_phys_segments > queue_max_segments(q)) {
795 
796 		if (retried_segments)
797 			goto failed;
798 
799 		retried_segments = 1;
800 		blk_recount_segments(q, bio);
801 	}
802 
803 	/* If we may be able to merge these biovecs, force a recount */
804 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
805 		bio_clear_flag(bio, BIO_SEG_VALID);
806 
807  done:
808 	return len;
809 
810  failed:
811 	bvec->bv_page = NULL;
812 	bvec->bv_len = 0;
813 	bvec->bv_offset = 0;
814 	bio->bi_vcnt--;
815 	bio->bi_iter.bi_size -= len;
816 	blk_recount_segments(q, bio);
817 	return 0;
818 }
819 EXPORT_SYMBOL(bio_add_pc_page);
820 
821 /**
822  *	bio_add_page	-	attempt to add page to bio
823  *	@bio: destination bio
824  *	@page: page to add
825  *	@len: vec entry length
826  *	@offset: vec entry offset
827  *
828  *	Attempt to add a page to the bio_vec maplist. This will only fail
829  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
830  */
831 int bio_add_page(struct bio *bio, struct page *page,
832 		 unsigned int len, unsigned int offset)
833 {
834 	struct bio_vec *bv;
835 
836 	/*
837 	 * cloned bio must not modify vec list
838 	 */
839 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
840 		return 0;
841 
842 	/*
843 	 * For filesystems with a blocksize smaller than the pagesize
844 	 * we will often be called with the same page as last time and
845 	 * a consecutive offset.  Optimize this special case.
846 	 */
847 	if (bio->bi_vcnt > 0) {
848 		bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
849 
850 		if (page == bv->bv_page &&
851 		    offset == bv->bv_offset + bv->bv_len) {
852 			bv->bv_len += len;
853 			goto done;
854 		}
855 	}
856 
857 	if (bio->bi_vcnt >= bio->bi_max_vecs)
858 		return 0;
859 
860 	bv		= &bio->bi_io_vec[bio->bi_vcnt];
861 	bv->bv_page	= page;
862 	bv->bv_len	= len;
863 	bv->bv_offset	= offset;
864 
865 	bio->bi_vcnt++;
866 done:
867 	bio->bi_iter.bi_size += len;
868 	return len;
869 }
870 EXPORT_SYMBOL(bio_add_page);
871 
872 /**
873  * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
874  * @bio: bio to add pages to
875  * @iter: iov iterator describing the region to be mapped
876  *
877  * Pins as many pages from *iter and appends them to @bio's bvec array. The
878  * pages will have to be released using put_page() when done.
879  */
880 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
881 {
882 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
883 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
884 	struct page **pages = (struct page **)bv;
885 	size_t offset, diff;
886 	ssize_t size;
887 
888 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
889 	if (unlikely(size <= 0))
890 		return size ? size : -EFAULT;
891 	nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
892 
893 	/*
894 	 * Deep magic below:  We need to walk the pinned pages backwards
895 	 * because we are abusing the space allocated for the bio_vecs
896 	 * for the page array.  Because the bio_vecs are larger than the
897 	 * page pointers by definition this will always work.  But it also
898 	 * means we can't use bio_add_page, so any changes to it's semantics
899 	 * need to be reflected here as well.
900 	 */
901 	bio->bi_iter.bi_size += size;
902 	bio->bi_vcnt += nr_pages;
903 
904 	diff = (nr_pages * PAGE_SIZE - offset) - size;
905 	while (nr_pages--) {
906 		bv[nr_pages].bv_page = pages[nr_pages];
907 		bv[nr_pages].bv_len = PAGE_SIZE;
908 		bv[nr_pages].bv_offset = 0;
909 	}
910 
911 	bv[0].bv_offset += offset;
912 	bv[0].bv_len -= offset;
913 	if (diff)
914 		bv[bio->bi_vcnt - 1].bv_len -= diff;
915 
916 	iov_iter_advance(iter, size);
917 	return 0;
918 }
919 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
920 
921 static void submit_bio_wait_endio(struct bio *bio)
922 {
923 	complete(bio->bi_private);
924 }
925 
926 /**
927  * submit_bio_wait - submit a bio, and wait until it completes
928  * @bio: The &struct bio which describes the I/O
929  *
930  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
931  * bio_endio() on failure.
932  *
933  * WARNING: Unlike to how submit_bio() is usually used, this function does not
934  * result in bio reference to be consumed. The caller must drop the reference
935  * on his own.
936  */
937 int submit_bio_wait(struct bio *bio)
938 {
939 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
940 
941 	bio->bi_private = &done;
942 	bio->bi_end_io = submit_bio_wait_endio;
943 	bio->bi_opf |= REQ_SYNC;
944 	submit_bio(bio);
945 	wait_for_completion_io(&done);
946 
947 	return blk_status_to_errno(bio->bi_status);
948 }
949 EXPORT_SYMBOL(submit_bio_wait);
950 
951 /**
952  * bio_advance - increment/complete a bio by some number of bytes
953  * @bio:	bio to advance
954  * @bytes:	number of bytes to complete
955  *
956  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
957  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
958  * be updated on the last bvec as well.
959  *
960  * @bio will then represent the remaining, uncompleted portion of the io.
961  */
962 void bio_advance(struct bio *bio, unsigned bytes)
963 {
964 	if (bio_integrity(bio))
965 		bio_integrity_advance(bio, bytes);
966 
967 	bio_advance_iter(bio, &bio->bi_iter, bytes);
968 }
969 EXPORT_SYMBOL(bio_advance);
970 
971 /**
972  * bio_alloc_pages - allocates a single page for each bvec in a bio
973  * @bio: bio to allocate pages for
974  * @gfp_mask: flags for allocation
975  *
976  * Allocates pages up to @bio->bi_vcnt.
977  *
978  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
979  * freed.
980  */
981 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
982 {
983 	int i;
984 	struct bio_vec *bv;
985 
986 	bio_for_each_segment_all(bv, bio, i) {
987 		bv->bv_page = alloc_page(gfp_mask);
988 		if (!bv->bv_page) {
989 			while (--bv >= bio->bi_io_vec)
990 				__free_page(bv->bv_page);
991 			return -ENOMEM;
992 		}
993 	}
994 
995 	return 0;
996 }
997 EXPORT_SYMBOL(bio_alloc_pages);
998 
999 /**
1000  * bio_copy_data - copy contents of data buffers from one chain of bios to
1001  * another
1002  * @src: source bio list
1003  * @dst: destination bio list
1004  *
1005  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1006  * @src and @dst as linked lists of bios.
1007  *
1008  * Stops when it reaches the end of either @src or @dst - that is, copies
1009  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1010  */
1011 void bio_copy_data(struct bio *dst, struct bio *src)
1012 {
1013 	struct bvec_iter src_iter, dst_iter;
1014 	struct bio_vec src_bv, dst_bv;
1015 	void *src_p, *dst_p;
1016 	unsigned bytes;
1017 
1018 	src_iter = src->bi_iter;
1019 	dst_iter = dst->bi_iter;
1020 
1021 	while (1) {
1022 		if (!src_iter.bi_size) {
1023 			src = src->bi_next;
1024 			if (!src)
1025 				break;
1026 
1027 			src_iter = src->bi_iter;
1028 		}
1029 
1030 		if (!dst_iter.bi_size) {
1031 			dst = dst->bi_next;
1032 			if (!dst)
1033 				break;
1034 
1035 			dst_iter = dst->bi_iter;
1036 		}
1037 
1038 		src_bv = bio_iter_iovec(src, src_iter);
1039 		dst_bv = bio_iter_iovec(dst, dst_iter);
1040 
1041 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1042 
1043 		src_p = kmap_atomic(src_bv.bv_page);
1044 		dst_p = kmap_atomic(dst_bv.bv_page);
1045 
1046 		memcpy(dst_p + dst_bv.bv_offset,
1047 		       src_p + src_bv.bv_offset,
1048 		       bytes);
1049 
1050 		kunmap_atomic(dst_p);
1051 		kunmap_atomic(src_p);
1052 
1053 		bio_advance_iter(src, &src_iter, bytes);
1054 		bio_advance_iter(dst, &dst_iter, bytes);
1055 	}
1056 }
1057 EXPORT_SYMBOL(bio_copy_data);
1058 
1059 struct bio_map_data {
1060 	int is_our_pages;
1061 	struct iov_iter iter;
1062 	struct iovec iov[];
1063 };
1064 
1065 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1066 					       gfp_t gfp_mask)
1067 {
1068 	struct bio_map_data *bmd;
1069 	if (data->nr_segs > UIO_MAXIOV)
1070 		return NULL;
1071 
1072 	bmd = kmalloc(sizeof(struct bio_map_data) +
1073 		       sizeof(struct iovec) * data->nr_segs, gfp_mask);
1074 	if (!bmd)
1075 		return NULL;
1076 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1077 	bmd->iter = *data;
1078 	bmd->iter.iov = bmd->iov;
1079 	return bmd;
1080 }
1081 
1082 /**
1083  * bio_copy_from_iter - copy all pages from iov_iter to bio
1084  * @bio: The &struct bio which describes the I/O as destination
1085  * @iter: iov_iter as source
1086  *
1087  * Copy all pages from iov_iter to bio.
1088  * Returns 0 on success, or error on failure.
1089  */
1090 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1091 {
1092 	int i;
1093 	struct bio_vec *bvec;
1094 
1095 	bio_for_each_segment_all(bvec, bio, i) {
1096 		ssize_t ret;
1097 
1098 		ret = copy_page_from_iter(bvec->bv_page,
1099 					  bvec->bv_offset,
1100 					  bvec->bv_len,
1101 					  iter);
1102 
1103 		if (!iov_iter_count(iter))
1104 			break;
1105 
1106 		if (ret < bvec->bv_len)
1107 			return -EFAULT;
1108 	}
1109 
1110 	return 0;
1111 }
1112 
1113 /**
1114  * bio_copy_to_iter - copy all pages from bio to iov_iter
1115  * @bio: The &struct bio which describes the I/O as source
1116  * @iter: iov_iter as destination
1117  *
1118  * Copy all pages from bio to iov_iter.
1119  * Returns 0 on success, or error on failure.
1120  */
1121 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1122 {
1123 	int i;
1124 	struct bio_vec *bvec;
1125 
1126 	bio_for_each_segment_all(bvec, bio, i) {
1127 		ssize_t ret;
1128 
1129 		ret = copy_page_to_iter(bvec->bv_page,
1130 					bvec->bv_offset,
1131 					bvec->bv_len,
1132 					&iter);
1133 
1134 		if (!iov_iter_count(&iter))
1135 			break;
1136 
1137 		if (ret < bvec->bv_len)
1138 			return -EFAULT;
1139 	}
1140 
1141 	return 0;
1142 }
1143 
1144 void bio_free_pages(struct bio *bio)
1145 {
1146 	struct bio_vec *bvec;
1147 	int i;
1148 
1149 	bio_for_each_segment_all(bvec, bio, i)
1150 		__free_page(bvec->bv_page);
1151 }
1152 EXPORT_SYMBOL(bio_free_pages);
1153 
1154 /**
1155  *	bio_uncopy_user	-	finish previously mapped bio
1156  *	@bio: bio being terminated
1157  *
1158  *	Free pages allocated from bio_copy_user_iov() and write back data
1159  *	to user space in case of a read.
1160  */
1161 int bio_uncopy_user(struct bio *bio)
1162 {
1163 	struct bio_map_data *bmd = bio->bi_private;
1164 	int ret = 0;
1165 
1166 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1167 		/*
1168 		 * if we're in a workqueue, the request is orphaned, so
1169 		 * don't copy into a random user address space, just free
1170 		 * and return -EINTR so user space doesn't expect any data.
1171 		 */
1172 		if (!current->mm)
1173 			ret = -EINTR;
1174 		else if (bio_data_dir(bio) == READ)
1175 			ret = bio_copy_to_iter(bio, bmd->iter);
1176 		if (bmd->is_our_pages)
1177 			bio_free_pages(bio);
1178 	}
1179 	kfree(bmd);
1180 	bio_put(bio);
1181 	return ret;
1182 }
1183 
1184 /**
1185  *	bio_copy_user_iov	-	copy user data to bio
1186  *	@q:		destination block queue
1187  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1188  *	@iter:		iovec iterator
1189  *	@gfp_mask:	memory allocation flags
1190  *
1191  *	Prepares and returns a bio for indirect user io, bouncing data
1192  *	to/from kernel pages as necessary. Must be paired with
1193  *	call bio_uncopy_user() on io completion.
1194  */
1195 struct bio *bio_copy_user_iov(struct request_queue *q,
1196 			      struct rq_map_data *map_data,
1197 			      struct iov_iter *iter,
1198 			      gfp_t gfp_mask)
1199 {
1200 	struct bio_map_data *bmd;
1201 	struct page *page;
1202 	struct bio *bio;
1203 	int i = 0, ret;
1204 	int nr_pages;
1205 	unsigned int len = iter->count;
1206 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1207 
1208 	bmd = bio_alloc_map_data(iter, gfp_mask);
1209 	if (!bmd)
1210 		return ERR_PTR(-ENOMEM);
1211 
1212 	/*
1213 	 * We need to do a deep copy of the iov_iter including the iovecs.
1214 	 * The caller provided iov might point to an on-stack or otherwise
1215 	 * shortlived one.
1216 	 */
1217 	bmd->is_our_pages = map_data ? 0 : 1;
1218 
1219 	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1220 	if (nr_pages > BIO_MAX_PAGES)
1221 		nr_pages = BIO_MAX_PAGES;
1222 
1223 	ret = -ENOMEM;
1224 	bio = bio_kmalloc(gfp_mask, nr_pages);
1225 	if (!bio)
1226 		goto out_bmd;
1227 
1228 	ret = 0;
1229 
1230 	if (map_data) {
1231 		nr_pages = 1 << map_data->page_order;
1232 		i = map_data->offset / PAGE_SIZE;
1233 	}
1234 	while (len) {
1235 		unsigned int bytes = PAGE_SIZE;
1236 
1237 		bytes -= offset;
1238 
1239 		if (bytes > len)
1240 			bytes = len;
1241 
1242 		if (map_data) {
1243 			if (i == map_data->nr_entries * nr_pages) {
1244 				ret = -ENOMEM;
1245 				break;
1246 			}
1247 
1248 			page = map_data->pages[i / nr_pages];
1249 			page += (i % nr_pages);
1250 
1251 			i++;
1252 		} else {
1253 			page = alloc_page(q->bounce_gfp | gfp_mask);
1254 			if (!page) {
1255 				ret = -ENOMEM;
1256 				break;
1257 			}
1258 		}
1259 
1260 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1261 			break;
1262 
1263 		len -= bytes;
1264 		offset = 0;
1265 	}
1266 
1267 	if (ret)
1268 		goto cleanup;
1269 
1270 	if (map_data)
1271 		map_data->offset += bio->bi_iter.bi_size;
1272 
1273 	/*
1274 	 * success
1275 	 */
1276 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1277 	    (map_data && map_data->from_user)) {
1278 		ret = bio_copy_from_iter(bio, iter);
1279 		if (ret)
1280 			goto cleanup;
1281 	} else {
1282 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1283 	}
1284 
1285 	bio->bi_private = bmd;
1286 	if (map_data && map_data->null_mapped)
1287 		bio_set_flag(bio, BIO_NULL_MAPPED);
1288 	return bio;
1289 cleanup:
1290 	if (!map_data)
1291 		bio_free_pages(bio);
1292 	bio_put(bio);
1293 out_bmd:
1294 	kfree(bmd);
1295 	return ERR_PTR(ret);
1296 }
1297 
1298 /**
1299  *	bio_map_user_iov - map user iovec into bio
1300  *	@q:		the struct request_queue for the bio
1301  *	@iter:		iovec iterator
1302  *	@gfp_mask:	memory allocation flags
1303  *
1304  *	Map the user space address into a bio suitable for io to a block
1305  *	device. Returns an error pointer in case of error.
1306  */
1307 struct bio *bio_map_user_iov(struct request_queue *q,
1308 			     struct iov_iter *iter,
1309 			     gfp_t gfp_mask)
1310 {
1311 	int j;
1312 	struct bio *bio;
1313 	int ret;
1314 	struct bio_vec *bvec;
1315 
1316 	if (!iov_iter_count(iter))
1317 		return ERR_PTR(-EINVAL);
1318 
1319 	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1320 	if (!bio)
1321 		return ERR_PTR(-ENOMEM);
1322 
1323 	while (iov_iter_count(iter)) {
1324 		struct page **pages;
1325 		ssize_t bytes;
1326 		size_t offs, added = 0;
1327 		int npages;
1328 
1329 		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1330 		if (unlikely(bytes <= 0)) {
1331 			ret = bytes ? bytes : -EFAULT;
1332 			goto out_unmap;
1333 		}
1334 
1335 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1336 
1337 		if (unlikely(offs & queue_dma_alignment(q))) {
1338 			ret = -EINVAL;
1339 			j = 0;
1340 		} else {
1341 			for (j = 0; j < npages; j++) {
1342 				struct page *page = pages[j];
1343 				unsigned int n = PAGE_SIZE - offs;
1344 				unsigned short prev_bi_vcnt = bio->bi_vcnt;
1345 
1346 				if (n > bytes)
1347 					n = bytes;
1348 
1349 				if (!bio_add_pc_page(q, bio, page, n, offs))
1350 					break;
1351 
1352 				/*
1353 				 * check if vector was merged with previous
1354 				 * drop page reference if needed
1355 				 */
1356 				if (bio->bi_vcnt == prev_bi_vcnt)
1357 					put_page(page);
1358 
1359 				added += n;
1360 				bytes -= n;
1361 				offs = 0;
1362 			}
1363 			iov_iter_advance(iter, added);
1364 		}
1365 		/*
1366 		 * release the pages we didn't map into the bio, if any
1367 		 */
1368 		while (j < npages)
1369 			put_page(pages[j++]);
1370 		kvfree(pages);
1371 		/* couldn't stuff something into bio? */
1372 		if (bytes)
1373 			break;
1374 	}
1375 
1376 	bio_set_flag(bio, BIO_USER_MAPPED);
1377 
1378 	/*
1379 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1380 	 * it would normally disappear when its bi_end_io is run.
1381 	 * however, we need it for the unmap, so grab an extra
1382 	 * reference to it
1383 	 */
1384 	bio_get(bio);
1385 	return bio;
1386 
1387  out_unmap:
1388 	bio_for_each_segment_all(bvec, bio, j) {
1389 		put_page(bvec->bv_page);
1390 	}
1391 	bio_put(bio);
1392 	return ERR_PTR(ret);
1393 }
1394 
1395 static void __bio_unmap_user(struct bio *bio)
1396 {
1397 	struct bio_vec *bvec;
1398 	int i;
1399 
1400 	/*
1401 	 * make sure we dirty pages we wrote to
1402 	 */
1403 	bio_for_each_segment_all(bvec, bio, i) {
1404 		if (bio_data_dir(bio) == READ)
1405 			set_page_dirty_lock(bvec->bv_page);
1406 
1407 		put_page(bvec->bv_page);
1408 	}
1409 
1410 	bio_put(bio);
1411 }
1412 
1413 /**
1414  *	bio_unmap_user	-	unmap a bio
1415  *	@bio:		the bio being unmapped
1416  *
1417  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1418  *	process context.
1419  *
1420  *	bio_unmap_user() may sleep.
1421  */
1422 void bio_unmap_user(struct bio *bio)
1423 {
1424 	__bio_unmap_user(bio);
1425 	bio_put(bio);
1426 }
1427 
1428 static void bio_map_kern_endio(struct bio *bio)
1429 {
1430 	bio_put(bio);
1431 }
1432 
1433 /**
1434  *	bio_map_kern	-	map kernel address into bio
1435  *	@q: the struct request_queue for the bio
1436  *	@data: pointer to buffer to map
1437  *	@len: length in bytes
1438  *	@gfp_mask: allocation flags for bio allocation
1439  *
1440  *	Map the kernel address into a bio suitable for io to a block
1441  *	device. Returns an error pointer in case of error.
1442  */
1443 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1444 			 gfp_t gfp_mask)
1445 {
1446 	unsigned long kaddr = (unsigned long)data;
1447 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1448 	unsigned long start = kaddr >> PAGE_SHIFT;
1449 	const int nr_pages = end - start;
1450 	int offset, i;
1451 	struct bio *bio;
1452 
1453 	bio = bio_kmalloc(gfp_mask, nr_pages);
1454 	if (!bio)
1455 		return ERR_PTR(-ENOMEM);
1456 
1457 	offset = offset_in_page(kaddr);
1458 	for (i = 0; i < nr_pages; i++) {
1459 		unsigned int bytes = PAGE_SIZE - offset;
1460 
1461 		if (len <= 0)
1462 			break;
1463 
1464 		if (bytes > len)
1465 			bytes = len;
1466 
1467 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1468 				    offset) < bytes) {
1469 			/* we don't support partial mappings */
1470 			bio_put(bio);
1471 			return ERR_PTR(-EINVAL);
1472 		}
1473 
1474 		data += bytes;
1475 		len -= bytes;
1476 		offset = 0;
1477 	}
1478 
1479 	bio->bi_end_io = bio_map_kern_endio;
1480 	return bio;
1481 }
1482 EXPORT_SYMBOL(bio_map_kern);
1483 
1484 static void bio_copy_kern_endio(struct bio *bio)
1485 {
1486 	bio_free_pages(bio);
1487 	bio_put(bio);
1488 }
1489 
1490 static void bio_copy_kern_endio_read(struct bio *bio)
1491 {
1492 	char *p = bio->bi_private;
1493 	struct bio_vec *bvec;
1494 	int i;
1495 
1496 	bio_for_each_segment_all(bvec, bio, i) {
1497 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1498 		p += bvec->bv_len;
1499 	}
1500 
1501 	bio_copy_kern_endio(bio);
1502 }
1503 
1504 /**
1505  *	bio_copy_kern	-	copy kernel address into bio
1506  *	@q: the struct request_queue for the bio
1507  *	@data: pointer to buffer to copy
1508  *	@len: length in bytes
1509  *	@gfp_mask: allocation flags for bio and page allocation
1510  *	@reading: data direction is READ
1511  *
1512  *	copy the kernel address into a bio suitable for io to a block
1513  *	device. Returns an error pointer in case of error.
1514  */
1515 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1516 			  gfp_t gfp_mask, int reading)
1517 {
1518 	unsigned long kaddr = (unsigned long)data;
1519 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1520 	unsigned long start = kaddr >> PAGE_SHIFT;
1521 	struct bio *bio;
1522 	void *p = data;
1523 	int nr_pages = 0;
1524 
1525 	/*
1526 	 * Overflow, abort
1527 	 */
1528 	if (end < start)
1529 		return ERR_PTR(-EINVAL);
1530 
1531 	nr_pages = end - start;
1532 	bio = bio_kmalloc(gfp_mask, nr_pages);
1533 	if (!bio)
1534 		return ERR_PTR(-ENOMEM);
1535 
1536 	while (len) {
1537 		struct page *page;
1538 		unsigned int bytes = PAGE_SIZE;
1539 
1540 		if (bytes > len)
1541 			bytes = len;
1542 
1543 		page = alloc_page(q->bounce_gfp | gfp_mask);
1544 		if (!page)
1545 			goto cleanup;
1546 
1547 		if (!reading)
1548 			memcpy(page_address(page), p, bytes);
1549 
1550 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1551 			break;
1552 
1553 		len -= bytes;
1554 		p += bytes;
1555 	}
1556 
1557 	if (reading) {
1558 		bio->bi_end_io = bio_copy_kern_endio_read;
1559 		bio->bi_private = data;
1560 	} else {
1561 		bio->bi_end_io = bio_copy_kern_endio;
1562 	}
1563 
1564 	return bio;
1565 
1566 cleanup:
1567 	bio_free_pages(bio);
1568 	bio_put(bio);
1569 	return ERR_PTR(-ENOMEM);
1570 }
1571 
1572 /*
1573  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1574  * for performing direct-IO in BIOs.
1575  *
1576  * The problem is that we cannot run set_page_dirty() from interrupt context
1577  * because the required locks are not interrupt-safe.  So what we can do is to
1578  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1579  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1580  * in process context.
1581  *
1582  * We special-case compound pages here: normally this means reads into hugetlb
1583  * pages.  The logic in here doesn't really work right for compound pages
1584  * because the VM does not uniformly chase down the head page in all cases.
1585  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1586  * handle them at all.  So we skip compound pages here at an early stage.
1587  *
1588  * Note that this code is very hard to test under normal circumstances because
1589  * direct-io pins the pages with get_user_pages().  This makes
1590  * is_page_cache_freeable return false, and the VM will not clean the pages.
1591  * But other code (eg, flusher threads) could clean the pages if they are mapped
1592  * pagecache.
1593  *
1594  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1595  * deferred bio dirtying paths.
1596  */
1597 
1598 /*
1599  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1600  */
1601 void bio_set_pages_dirty(struct bio *bio)
1602 {
1603 	struct bio_vec *bvec;
1604 	int i;
1605 
1606 	bio_for_each_segment_all(bvec, bio, i) {
1607 		struct page *page = bvec->bv_page;
1608 
1609 		if (page && !PageCompound(page))
1610 			set_page_dirty_lock(page);
1611 	}
1612 }
1613 
1614 static void bio_release_pages(struct bio *bio)
1615 {
1616 	struct bio_vec *bvec;
1617 	int i;
1618 
1619 	bio_for_each_segment_all(bvec, bio, i) {
1620 		struct page *page = bvec->bv_page;
1621 
1622 		if (page)
1623 			put_page(page);
1624 	}
1625 }
1626 
1627 /*
1628  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1629  * If they are, then fine.  If, however, some pages are clean then they must
1630  * have been written out during the direct-IO read.  So we take another ref on
1631  * the BIO and the offending pages and re-dirty the pages in process context.
1632  *
1633  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1634  * here on.  It will run one put_page() against each page and will run one
1635  * bio_put() against the BIO.
1636  */
1637 
1638 static void bio_dirty_fn(struct work_struct *work);
1639 
1640 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1641 static DEFINE_SPINLOCK(bio_dirty_lock);
1642 static struct bio *bio_dirty_list;
1643 
1644 /*
1645  * This runs in process context
1646  */
1647 static void bio_dirty_fn(struct work_struct *work)
1648 {
1649 	unsigned long flags;
1650 	struct bio *bio;
1651 
1652 	spin_lock_irqsave(&bio_dirty_lock, flags);
1653 	bio = bio_dirty_list;
1654 	bio_dirty_list = NULL;
1655 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1656 
1657 	while (bio) {
1658 		struct bio *next = bio->bi_private;
1659 
1660 		bio_set_pages_dirty(bio);
1661 		bio_release_pages(bio);
1662 		bio_put(bio);
1663 		bio = next;
1664 	}
1665 }
1666 
1667 void bio_check_pages_dirty(struct bio *bio)
1668 {
1669 	struct bio_vec *bvec;
1670 	int nr_clean_pages = 0;
1671 	int i;
1672 
1673 	bio_for_each_segment_all(bvec, bio, i) {
1674 		struct page *page = bvec->bv_page;
1675 
1676 		if (PageDirty(page) || PageCompound(page)) {
1677 			put_page(page);
1678 			bvec->bv_page = NULL;
1679 		} else {
1680 			nr_clean_pages++;
1681 		}
1682 	}
1683 
1684 	if (nr_clean_pages) {
1685 		unsigned long flags;
1686 
1687 		spin_lock_irqsave(&bio_dirty_lock, flags);
1688 		bio->bi_private = bio_dirty_list;
1689 		bio_dirty_list = bio;
1690 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1691 		schedule_work(&bio_dirty_work);
1692 	} else {
1693 		bio_put(bio);
1694 	}
1695 }
1696 
1697 void generic_start_io_acct(struct request_queue *q, int rw,
1698 			   unsigned long sectors, struct hd_struct *part)
1699 {
1700 	int cpu = part_stat_lock();
1701 
1702 	part_round_stats(q, cpu, part);
1703 	part_stat_inc(cpu, part, ios[rw]);
1704 	part_stat_add(cpu, part, sectors[rw], sectors);
1705 	part_inc_in_flight(q, part, rw);
1706 
1707 	part_stat_unlock();
1708 }
1709 EXPORT_SYMBOL(generic_start_io_acct);
1710 
1711 void generic_end_io_acct(struct request_queue *q, int rw,
1712 			 struct hd_struct *part, unsigned long start_time)
1713 {
1714 	unsigned long duration = jiffies - start_time;
1715 	int cpu = part_stat_lock();
1716 
1717 	part_stat_add(cpu, part, ticks[rw], duration);
1718 	part_round_stats(q, cpu, part);
1719 	part_dec_in_flight(q, part, rw);
1720 
1721 	part_stat_unlock();
1722 }
1723 EXPORT_SYMBOL(generic_end_io_acct);
1724 
1725 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1726 void bio_flush_dcache_pages(struct bio *bi)
1727 {
1728 	struct bio_vec bvec;
1729 	struct bvec_iter iter;
1730 
1731 	bio_for_each_segment(bvec, bi, iter)
1732 		flush_dcache_page(bvec.bv_page);
1733 }
1734 EXPORT_SYMBOL(bio_flush_dcache_pages);
1735 #endif
1736 
1737 static inline bool bio_remaining_done(struct bio *bio)
1738 {
1739 	/*
1740 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1741 	 * we always end io on the first invocation.
1742 	 */
1743 	if (!bio_flagged(bio, BIO_CHAIN))
1744 		return true;
1745 
1746 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1747 
1748 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1749 		bio_clear_flag(bio, BIO_CHAIN);
1750 		return true;
1751 	}
1752 
1753 	return false;
1754 }
1755 
1756 /**
1757  * bio_endio - end I/O on a bio
1758  * @bio:	bio
1759  *
1760  * Description:
1761  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1762  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1763  *   bio unless they own it and thus know that it has an end_io function.
1764  *
1765  *   bio_endio() can be called several times on a bio that has been chained
1766  *   using bio_chain().  The ->bi_end_io() function will only be called the
1767  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1768  *   generated if BIO_TRACE_COMPLETION is set.
1769  **/
1770 void bio_endio(struct bio *bio)
1771 {
1772 again:
1773 	if (!bio_remaining_done(bio))
1774 		return;
1775 	if (!bio_integrity_endio(bio))
1776 		return;
1777 
1778 	/*
1779 	 * Need to have a real endio function for chained bios, otherwise
1780 	 * various corner cases will break (like stacking block devices that
1781 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1782 	 * recursion and blowing the stack. Tail call optimization would
1783 	 * handle this, but compiling with frame pointers also disables
1784 	 * gcc's sibling call optimization.
1785 	 */
1786 	if (bio->bi_end_io == bio_chain_endio) {
1787 		bio = __bio_chain_endio(bio);
1788 		goto again;
1789 	}
1790 
1791 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1792 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1793 					 blk_status_to_errno(bio->bi_status));
1794 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1795 	}
1796 
1797 	blk_throtl_bio_endio(bio);
1798 	/* release cgroup info */
1799 	bio_uninit(bio);
1800 	if (bio->bi_end_io)
1801 		bio->bi_end_io(bio);
1802 }
1803 EXPORT_SYMBOL(bio_endio);
1804 
1805 /**
1806  * bio_split - split a bio
1807  * @bio:	bio to split
1808  * @sectors:	number of sectors to split from the front of @bio
1809  * @gfp:	gfp mask
1810  * @bs:		bio set to allocate from
1811  *
1812  * Allocates and returns a new bio which represents @sectors from the start of
1813  * @bio, and updates @bio to represent the remaining sectors.
1814  *
1815  * Unless this is a discard request the newly allocated bio will point
1816  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1817  * @bio is not freed before the split.
1818  */
1819 struct bio *bio_split(struct bio *bio, int sectors,
1820 		      gfp_t gfp, struct bio_set *bs)
1821 {
1822 	struct bio *split = NULL;
1823 
1824 	BUG_ON(sectors <= 0);
1825 	BUG_ON(sectors >= bio_sectors(bio));
1826 
1827 	split = bio_clone_fast(bio, gfp, bs);
1828 	if (!split)
1829 		return NULL;
1830 
1831 	split->bi_iter.bi_size = sectors << 9;
1832 
1833 	if (bio_integrity(split))
1834 		bio_integrity_trim(split);
1835 
1836 	bio_advance(bio, split->bi_iter.bi_size);
1837 
1838 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1839 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
1840 
1841 	return split;
1842 }
1843 EXPORT_SYMBOL(bio_split);
1844 
1845 /**
1846  * bio_trim - trim a bio
1847  * @bio:	bio to trim
1848  * @offset:	number of sectors to trim from the front of @bio
1849  * @size:	size we want to trim @bio to, in sectors
1850  */
1851 void bio_trim(struct bio *bio, int offset, int size)
1852 {
1853 	/* 'bio' is a cloned bio which we need to trim to match
1854 	 * the given offset and size.
1855 	 */
1856 
1857 	size <<= 9;
1858 	if (offset == 0 && size == bio->bi_iter.bi_size)
1859 		return;
1860 
1861 	bio_clear_flag(bio, BIO_SEG_VALID);
1862 
1863 	bio_advance(bio, offset << 9);
1864 
1865 	bio->bi_iter.bi_size = size;
1866 
1867 	if (bio_integrity(bio))
1868 		bio_integrity_trim(bio);
1869 
1870 }
1871 EXPORT_SYMBOL_GPL(bio_trim);
1872 
1873 /*
1874  * create memory pools for biovec's in a bio_set.
1875  * use the global biovec slabs created for general use.
1876  */
1877 mempool_t *biovec_create_pool(int pool_entries)
1878 {
1879 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1880 
1881 	return mempool_create_slab_pool(pool_entries, bp->slab);
1882 }
1883 
1884 void bioset_free(struct bio_set *bs)
1885 {
1886 	if (bs->rescue_workqueue)
1887 		destroy_workqueue(bs->rescue_workqueue);
1888 
1889 	mempool_destroy(bs->bio_pool);
1890 	mempool_destroy(bs->bvec_pool);
1891 
1892 	bioset_integrity_free(bs);
1893 	bio_put_slab(bs);
1894 
1895 	kfree(bs);
1896 }
1897 EXPORT_SYMBOL(bioset_free);
1898 
1899 /**
1900  * bioset_create  - Create a bio_set
1901  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1902  * @front_pad:	Number of bytes to allocate in front of the returned bio
1903  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1904  *              and %BIOSET_NEED_RESCUER
1905  *
1906  * Description:
1907  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1908  *    to ask for a number of bytes to be allocated in front of the bio.
1909  *    Front pad allocation is useful for embedding the bio inside
1910  *    another structure, to avoid allocating extra data to go with the bio.
1911  *    Note that the bio must be embedded at the END of that structure always,
1912  *    or things will break badly.
1913  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1914  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1915  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1916  *    dispatch queued requests when the mempool runs out of space.
1917  *
1918  */
1919 struct bio_set *bioset_create(unsigned int pool_size,
1920 			      unsigned int front_pad,
1921 			      int flags)
1922 {
1923 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1924 	struct bio_set *bs;
1925 
1926 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1927 	if (!bs)
1928 		return NULL;
1929 
1930 	bs->front_pad = front_pad;
1931 
1932 	spin_lock_init(&bs->rescue_lock);
1933 	bio_list_init(&bs->rescue_list);
1934 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1935 
1936 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1937 	if (!bs->bio_slab) {
1938 		kfree(bs);
1939 		return NULL;
1940 	}
1941 
1942 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1943 	if (!bs->bio_pool)
1944 		goto bad;
1945 
1946 	if (flags & BIOSET_NEED_BVECS) {
1947 		bs->bvec_pool = biovec_create_pool(pool_size);
1948 		if (!bs->bvec_pool)
1949 			goto bad;
1950 	}
1951 
1952 	if (!(flags & BIOSET_NEED_RESCUER))
1953 		return bs;
1954 
1955 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1956 	if (!bs->rescue_workqueue)
1957 		goto bad;
1958 
1959 	return bs;
1960 bad:
1961 	bioset_free(bs);
1962 	return NULL;
1963 }
1964 EXPORT_SYMBOL(bioset_create);
1965 
1966 #ifdef CONFIG_BLK_CGROUP
1967 
1968 /**
1969  * bio_associate_blkcg - associate a bio with the specified blkcg
1970  * @bio: target bio
1971  * @blkcg_css: css of the blkcg to associate
1972  *
1973  * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
1974  * treat @bio as if it were issued by a task which belongs to the blkcg.
1975  *
1976  * This function takes an extra reference of @blkcg_css which will be put
1977  * when @bio is released.  The caller must own @bio and is responsible for
1978  * synchronizing calls to this function.
1979  */
1980 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1981 {
1982 	if (unlikely(bio->bi_css))
1983 		return -EBUSY;
1984 	css_get(blkcg_css);
1985 	bio->bi_css = blkcg_css;
1986 	return 0;
1987 }
1988 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1989 
1990 /**
1991  * bio_disassociate_task - undo bio_associate_current()
1992  * @bio: target bio
1993  */
1994 void bio_disassociate_task(struct bio *bio)
1995 {
1996 	if (bio->bi_ioc) {
1997 		put_io_context(bio->bi_ioc);
1998 		bio->bi_ioc = NULL;
1999 	}
2000 	if (bio->bi_css) {
2001 		css_put(bio->bi_css);
2002 		bio->bi_css = NULL;
2003 	}
2004 }
2005 
2006 /**
2007  * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2008  * @dst: destination bio
2009  * @src: source bio
2010  */
2011 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2012 {
2013 	if (src->bi_css)
2014 		WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2015 }
2016 EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
2017 #endif /* CONFIG_BLK_CGROUP */
2018 
2019 static void __init biovec_init_slabs(void)
2020 {
2021 	int i;
2022 
2023 	for (i = 0; i < BVEC_POOL_NR; i++) {
2024 		int size;
2025 		struct biovec_slab *bvs = bvec_slabs + i;
2026 
2027 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2028 			bvs->slab = NULL;
2029 			continue;
2030 		}
2031 
2032 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2033 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2034                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2035 	}
2036 }
2037 
2038 static int __init init_bio(void)
2039 {
2040 	bio_slab_max = 2;
2041 	bio_slab_nr = 0;
2042 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2043 	if (!bio_slabs)
2044 		panic("bio: can't allocate bios\n");
2045 
2046 	bio_integrity_init();
2047 	biovec_init_slabs();
2048 
2049 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
2050 	if (!fs_bio_set)
2051 		panic("bio: can't allocate bios\n");
2052 
2053 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2054 		panic("bio: can't create integrity pool\n");
2055 
2056 	return 0;
2057 }
2058 subsys_initcall(init_bio);
2059