xref: /openbmc/linux/block/bio.c (revision ba64beb1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
22 #include <linux/xarray.h>
23 
24 #include <trace/events/block.h>
25 #include "blk.h"
26 #include "blk-rq-qos.h"
27 
28 static struct biovec_slab {
29 	int nr_vecs;
30 	char *name;
31 	struct kmem_cache *slab;
32 } bvec_slabs[] __read_mostly = {
33 	{ .nr_vecs = 16, .name = "biovec-16" },
34 	{ .nr_vecs = 64, .name = "biovec-64" },
35 	{ .nr_vecs = 128, .name = "biovec-128" },
36 	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
37 };
38 
39 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
40 {
41 	switch (nr_vecs) {
42 	/* smaller bios use inline vecs */
43 	case 5 ... 16:
44 		return &bvec_slabs[0];
45 	case 17 ... 64:
46 		return &bvec_slabs[1];
47 	case 65 ... 128:
48 		return &bvec_slabs[2];
49 	case 129 ... BIO_MAX_VECS:
50 		return &bvec_slabs[3];
51 	default:
52 		BUG();
53 		return NULL;
54 	}
55 }
56 
57 /*
58  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
59  * IO code that does not need private memory pools.
60  */
61 struct bio_set fs_bio_set;
62 EXPORT_SYMBOL(fs_bio_set);
63 
64 /*
65  * Our slab pool management
66  */
67 struct bio_slab {
68 	struct kmem_cache *slab;
69 	unsigned int slab_ref;
70 	unsigned int slab_size;
71 	char name[8];
72 };
73 static DEFINE_MUTEX(bio_slab_lock);
74 static DEFINE_XARRAY(bio_slabs);
75 
76 static struct bio_slab *create_bio_slab(unsigned int size)
77 {
78 	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
79 
80 	if (!bslab)
81 		return NULL;
82 
83 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
84 	bslab->slab = kmem_cache_create(bslab->name, size,
85 			ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
86 	if (!bslab->slab)
87 		goto fail_alloc_slab;
88 
89 	bslab->slab_ref = 1;
90 	bslab->slab_size = size;
91 
92 	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
93 		return bslab;
94 
95 	kmem_cache_destroy(bslab->slab);
96 
97 fail_alloc_slab:
98 	kfree(bslab);
99 	return NULL;
100 }
101 
102 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
103 {
104 	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
105 }
106 
107 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
108 {
109 	unsigned int size = bs_bio_slab_size(bs);
110 	struct bio_slab *bslab;
111 
112 	mutex_lock(&bio_slab_lock);
113 	bslab = xa_load(&bio_slabs, size);
114 	if (bslab)
115 		bslab->slab_ref++;
116 	else
117 		bslab = create_bio_slab(size);
118 	mutex_unlock(&bio_slab_lock);
119 
120 	if (bslab)
121 		return bslab->slab;
122 	return NULL;
123 }
124 
125 static void bio_put_slab(struct bio_set *bs)
126 {
127 	struct bio_slab *bslab = NULL;
128 	unsigned int slab_size = bs_bio_slab_size(bs);
129 
130 	mutex_lock(&bio_slab_lock);
131 
132 	bslab = xa_load(&bio_slabs, slab_size);
133 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
134 		goto out;
135 
136 	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
137 
138 	WARN_ON(!bslab->slab_ref);
139 
140 	if (--bslab->slab_ref)
141 		goto out;
142 
143 	xa_erase(&bio_slabs, slab_size);
144 
145 	kmem_cache_destroy(bslab->slab);
146 	kfree(bslab);
147 
148 out:
149 	mutex_unlock(&bio_slab_lock);
150 }
151 
152 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
153 {
154 	BIO_BUG_ON(nr_vecs > BIO_MAX_VECS);
155 
156 	if (nr_vecs == BIO_MAX_VECS)
157 		mempool_free(bv, pool);
158 	else if (nr_vecs > BIO_INLINE_VECS)
159 		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
160 }
161 
162 /*
163  * Make the first allocation restricted and don't dump info on allocation
164  * failures, since we'll fall back to the mempool in case of failure.
165  */
166 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
167 {
168 	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
169 		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
170 }
171 
172 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
173 		gfp_t gfp_mask)
174 {
175 	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
176 
177 	if (WARN_ON_ONCE(!bvs))
178 		return NULL;
179 
180 	/*
181 	 * Upgrade the nr_vecs request to take full advantage of the allocation.
182 	 * We also rely on this in the bvec_free path.
183 	 */
184 	*nr_vecs = bvs->nr_vecs;
185 
186 	/*
187 	 * Try a slab allocation first for all smaller allocations.  If that
188 	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
189 	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
190 	 */
191 	if (*nr_vecs < BIO_MAX_VECS) {
192 		struct bio_vec *bvl;
193 
194 		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
195 		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
196 			return bvl;
197 		*nr_vecs = BIO_MAX_VECS;
198 	}
199 
200 	return mempool_alloc(pool, gfp_mask);
201 }
202 
203 void bio_uninit(struct bio *bio)
204 {
205 #ifdef CONFIG_BLK_CGROUP
206 	if (bio->bi_blkg) {
207 		blkg_put(bio->bi_blkg);
208 		bio->bi_blkg = NULL;
209 	}
210 #endif
211 	if (bio_integrity(bio))
212 		bio_integrity_free(bio);
213 
214 	bio_crypt_free_ctx(bio);
215 }
216 EXPORT_SYMBOL(bio_uninit);
217 
218 static void bio_free(struct bio *bio)
219 {
220 	struct bio_set *bs = bio->bi_pool;
221 	void *p;
222 
223 	bio_uninit(bio);
224 
225 	if (bs) {
226 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
227 
228 		/*
229 		 * If we have front padding, adjust the bio pointer before freeing
230 		 */
231 		p = bio;
232 		p -= bs->front_pad;
233 
234 		mempool_free(p, &bs->bio_pool);
235 	} else {
236 		/* Bio was allocated by bio_kmalloc() */
237 		kfree(bio);
238 	}
239 }
240 
241 /*
242  * Users of this function have their own bio allocation. Subsequently,
243  * they must remember to pair any call to bio_init() with bio_uninit()
244  * when IO has completed, or when the bio is released.
245  */
246 void bio_init(struct bio *bio, struct bio_vec *table,
247 	      unsigned short max_vecs)
248 {
249 	memset(bio, 0, sizeof(*bio));
250 	atomic_set(&bio->__bi_remaining, 1);
251 	atomic_set(&bio->__bi_cnt, 1);
252 
253 	bio->bi_io_vec = table;
254 	bio->bi_max_vecs = max_vecs;
255 }
256 EXPORT_SYMBOL(bio_init);
257 
258 /**
259  * bio_reset - reinitialize a bio
260  * @bio:	bio to reset
261  *
262  * Description:
263  *   After calling bio_reset(), @bio will be in the same state as a freshly
264  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
265  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
266  *   comment in struct bio.
267  */
268 void bio_reset(struct bio *bio)
269 {
270 	bio_uninit(bio);
271 	memset(bio, 0, BIO_RESET_BYTES);
272 	atomic_set(&bio->__bi_remaining, 1);
273 }
274 EXPORT_SYMBOL(bio_reset);
275 
276 static struct bio *__bio_chain_endio(struct bio *bio)
277 {
278 	struct bio *parent = bio->bi_private;
279 
280 	if (!parent->bi_status)
281 		parent->bi_status = bio->bi_status;
282 	bio_put(bio);
283 	return parent;
284 }
285 
286 static void bio_chain_endio(struct bio *bio)
287 {
288 	bio_endio(__bio_chain_endio(bio));
289 }
290 
291 /**
292  * bio_chain - chain bio completions
293  * @bio: the target bio
294  * @parent: the parent bio of @bio
295  *
296  * The caller won't have a bi_end_io called when @bio completes - instead,
297  * @parent's bi_end_io won't be called until both @parent and @bio have
298  * completed; the chained bio will also be freed when it completes.
299  *
300  * The caller must not set bi_private or bi_end_io in @bio.
301  */
302 void bio_chain(struct bio *bio, struct bio *parent)
303 {
304 	BUG_ON(bio->bi_private || bio->bi_end_io);
305 
306 	bio->bi_private = parent;
307 	bio->bi_end_io	= bio_chain_endio;
308 	bio_inc_remaining(parent);
309 }
310 EXPORT_SYMBOL(bio_chain);
311 
312 static void bio_alloc_rescue(struct work_struct *work)
313 {
314 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
315 	struct bio *bio;
316 
317 	while (1) {
318 		spin_lock(&bs->rescue_lock);
319 		bio = bio_list_pop(&bs->rescue_list);
320 		spin_unlock(&bs->rescue_lock);
321 
322 		if (!bio)
323 			break;
324 
325 		submit_bio_noacct(bio);
326 	}
327 }
328 
329 static void punt_bios_to_rescuer(struct bio_set *bs)
330 {
331 	struct bio_list punt, nopunt;
332 	struct bio *bio;
333 
334 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
335 		return;
336 	/*
337 	 * In order to guarantee forward progress we must punt only bios that
338 	 * were allocated from this bio_set; otherwise, if there was a bio on
339 	 * there for a stacking driver higher up in the stack, processing it
340 	 * could require allocating bios from this bio_set, and doing that from
341 	 * our own rescuer would be bad.
342 	 *
343 	 * Since bio lists are singly linked, pop them all instead of trying to
344 	 * remove from the middle of the list:
345 	 */
346 
347 	bio_list_init(&punt);
348 	bio_list_init(&nopunt);
349 
350 	while ((bio = bio_list_pop(&current->bio_list[0])))
351 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
352 	current->bio_list[0] = nopunt;
353 
354 	bio_list_init(&nopunt);
355 	while ((bio = bio_list_pop(&current->bio_list[1])))
356 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
357 	current->bio_list[1] = nopunt;
358 
359 	spin_lock(&bs->rescue_lock);
360 	bio_list_merge(&bs->rescue_list, &punt);
361 	spin_unlock(&bs->rescue_lock);
362 
363 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
364 }
365 
366 /**
367  * bio_alloc_bioset - allocate a bio for I/O
368  * @gfp_mask:   the GFP_* mask given to the slab allocator
369  * @nr_iovecs:	number of iovecs to pre-allocate
370  * @bs:		the bio_set to allocate from.
371  *
372  * Allocate a bio from the mempools in @bs.
373  *
374  * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
375  * allocate a bio.  This is due to the mempool guarantees.  To make this work,
376  * callers must never allocate more than 1 bio at a time from the general pool.
377  * Callers that need to allocate more than 1 bio must always submit the
378  * previously allocated bio for IO before attempting to allocate a new one.
379  * Failure to do so can cause deadlocks under memory pressure.
380  *
381  * Note that when running under submit_bio_noacct() (i.e. any block driver),
382  * bios are not submitted until after you return - see the code in
383  * submit_bio_noacct() that converts recursion into iteration, to prevent
384  * stack overflows.
385  *
386  * This would normally mean allocating multiple bios under submit_bio_noacct()
387  * would be susceptible to deadlocks, but we have
388  * deadlock avoidance code that resubmits any blocked bios from a rescuer
389  * thread.
390  *
391  * However, we do not guarantee forward progress for allocations from other
392  * mempools. Doing multiple allocations from the same mempool under
393  * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
394  * for per bio allocations.
395  *
396  * Returns: Pointer to new bio on success, NULL on failure.
397  */
398 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
399 			     struct bio_set *bs)
400 {
401 	gfp_t saved_gfp = gfp_mask;
402 	struct bio *bio;
403 	void *p;
404 
405 	/* should not use nobvec bioset for nr_iovecs > 0 */
406 	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
407 		return NULL;
408 
409 	/*
410 	 * submit_bio_noacct() converts recursion to iteration; this means if
411 	 * we're running beneath it, any bios we allocate and submit will not be
412 	 * submitted (and thus freed) until after we return.
413 	 *
414 	 * This exposes us to a potential deadlock if we allocate multiple bios
415 	 * from the same bio_set() while running underneath submit_bio_noacct().
416 	 * If we were to allocate multiple bios (say a stacking block driver
417 	 * that was splitting bios), we would deadlock if we exhausted the
418 	 * mempool's reserve.
419 	 *
420 	 * We solve this, and guarantee forward progress, with a rescuer
421 	 * workqueue per bio_set. If we go to allocate and there are bios on
422 	 * current->bio_list, we first try the allocation without
423 	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
424 	 * blocking to the rescuer workqueue before we retry with the original
425 	 * gfp_flags.
426 	 */
427 	if (current->bio_list &&
428 	    (!bio_list_empty(&current->bio_list[0]) ||
429 	     !bio_list_empty(&current->bio_list[1])) &&
430 	    bs->rescue_workqueue)
431 		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
432 
433 	p = mempool_alloc(&bs->bio_pool, gfp_mask);
434 	if (!p && gfp_mask != saved_gfp) {
435 		punt_bios_to_rescuer(bs);
436 		gfp_mask = saved_gfp;
437 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
438 	}
439 	if (unlikely(!p))
440 		return NULL;
441 
442 	bio = p + bs->front_pad;
443 	if (nr_iovecs > BIO_INLINE_VECS) {
444 		struct bio_vec *bvl = NULL;
445 
446 		bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
447 		if (!bvl && gfp_mask != saved_gfp) {
448 			punt_bios_to_rescuer(bs);
449 			gfp_mask = saved_gfp;
450 			bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
451 		}
452 		if (unlikely(!bvl))
453 			goto err_free;
454 
455 		bio_init(bio, bvl, nr_iovecs);
456 	} else if (nr_iovecs) {
457 		bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
458 	} else {
459 		bio_init(bio, NULL, 0);
460 	}
461 
462 	bio->bi_pool = bs;
463 	return bio;
464 
465 err_free:
466 	mempool_free(p, &bs->bio_pool);
467 	return NULL;
468 }
469 EXPORT_SYMBOL(bio_alloc_bioset);
470 
471 /**
472  * bio_kmalloc - kmalloc a bio for I/O
473  * @gfp_mask:   the GFP_* mask given to the slab allocator
474  * @nr_iovecs:	number of iovecs to pre-allocate
475  *
476  * Use kmalloc to allocate and initialize a bio.
477  *
478  * Returns: Pointer to new bio on success, NULL on failure.
479  */
480 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
481 {
482 	struct bio *bio;
483 
484 	if (nr_iovecs > UIO_MAXIOV)
485 		return NULL;
486 
487 	bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
488 	if (unlikely(!bio))
489 		return NULL;
490 	bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
491 	bio->bi_pool = NULL;
492 	return bio;
493 }
494 EXPORT_SYMBOL(bio_kmalloc);
495 
496 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
497 {
498 	unsigned long flags;
499 	struct bio_vec bv;
500 	struct bvec_iter iter;
501 
502 	__bio_for_each_segment(bv, bio, iter, start) {
503 		char *data = bvec_kmap_irq(&bv, &flags);
504 		memset(data, 0, bv.bv_len);
505 		flush_dcache_page(bv.bv_page);
506 		bvec_kunmap_irq(data, &flags);
507 	}
508 }
509 EXPORT_SYMBOL(zero_fill_bio_iter);
510 
511 /**
512  * bio_truncate - truncate the bio to small size of @new_size
513  * @bio:	the bio to be truncated
514  * @new_size:	new size for truncating the bio
515  *
516  * Description:
517  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
518  *   REQ_OP_READ, zero the truncated part. This function should only
519  *   be used for handling corner cases, such as bio eod.
520  */
521 void bio_truncate(struct bio *bio, unsigned new_size)
522 {
523 	struct bio_vec bv;
524 	struct bvec_iter iter;
525 	unsigned int done = 0;
526 	bool truncated = false;
527 
528 	if (new_size >= bio->bi_iter.bi_size)
529 		return;
530 
531 	if (bio_op(bio) != REQ_OP_READ)
532 		goto exit;
533 
534 	bio_for_each_segment(bv, bio, iter) {
535 		if (done + bv.bv_len > new_size) {
536 			unsigned offset;
537 
538 			if (!truncated)
539 				offset = new_size - done;
540 			else
541 				offset = 0;
542 			zero_user(bv.bv_page, offset, bv.bv_len - offset);
543 			truncated = true;
544 		}
545 		done += bv.bv_len;
546 	}
547 
548  exit:
549 	/*
550 	 * Don't touch bvec table here and make it really immutable, since
551 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
552 	 * in its .end_bio() callback.
553 	 *
554 	 * It is enough to truncate bio by updating .bi_size since we can make
555 	 * correct bvec with the updated .bi_size for drivers.
556 	 */
557 	bio->bi_iter.bi_size = new_size;
558 }
559 
560 /**
561  * guard_bio_eod - truncate a BIO to fit the block device
562  * @bio:	bio to truncate
563  *
564  * This allows us to do IO even on the odd last sectors of a device, even if the
565  * block size is some multiple of the physical sector size.
566  *
567  * We'll just truncate the bio to the size of the device, and clear the end of
568  * the buffer head manually.  Truly out-of-range accesses will turn into actual
569  * I/O errors, this only handles the "we need to be able to do I/O at the final
570  * sector" case.
571  */
572 void guard_bio_eod(struct bio *bio)
573 {
574 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
575 
576 	if (!maxsector)
577 		return;
578 
579 	/*
580 	 * If the *whole* IO is past the end of the device,
581 	 * let it through, and the IO layer will turn it into
582 	 * an EIO.
583 	 */
584 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
585 		return;
586 
587 	maxsector -= bio->bi_iter.bi_sector;
588 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
589 		return;
590 
591 	bio_truncate(bio, maxsector << 9);
592 }
593 
594 /**
595  * bio_put - release a reference to a bio
596  * @bio:   bio to release reference to
597  *
598  * Description:
599  *   Put a reference to a &struct bio, either one you have gotten with
600  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
601  **/
602 void bio_put(struct bio *bio)
603 {
604 	if (!bio_flagged(bio, BIO_REFFED))
605 		bio_free(bio);
606 	else {
607 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
608 
609 		/*
610 		 * last put frees it
611 		 */
612 		if (atomic_dec_and_test(&bio->__bi_cnt))
613 			bio_free(bio);
614 	}
615 }
616 EXPORT_SYMBOL(bio_put);
617 
618 /**
619  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
620  * 	@bio: destination bio
621  * 	@bio_src: bio to clone
622  *
623  *	Clone a &bio. Caller will own the returned bio, but not
624  *	the actual data it points to. Reference count of returned
625  * 	bio will be one.
626  *
627  * 	Caller must ensure that @bio_src is not freed before @bio.
628  */
629 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
630 {
631 	WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
632 
633 	/*
634 	 * most users will be overriding ->bi_bdev with a new target,
635 	 * so we don't set nor calculate new physical/hw segment counts here
636 	 */
637 	bio->bi_bdev = bio_src->bi_bdev;
638 	bio_set_flag(bio, BIO_CLONED);
639 	if (bio_flagged(bio_src, BIO_THROTTLED))
640 		bio_set_flag(bio, BIO_THROTTLED);
641 	if (bio_flagged(bio_src, BIO_REMAPPED))
642 		bio_set_flag(bio, BIO_REMAPPED);
643 	bio->bi_opf = bio_src->bi_opf;
644 	bio->bi_ioprio = bio_src->bi_ioprio;
645 	bio->bi_write_hint = bio_src->bi_write_hint;
646 	bio->bi_iter = bio_src->bi_iter;
647 	bio->bi_io_vec = bio_src->bi_io_vec;
648 
649 	bio_clone_blkg_association(bio, bio_src);
650 	blkcg_bio_issue_init(bio);
651 }
652 EXPORT_SYMBOL(__bio_clone_fast);
653 
654 /**
655  *	bio_clone_fast - clone a bio that shares the original bio's biovec
656  *	@bio: bio to clone
657  *	@gfp_mask: allocation priority
658  *	@bs: bio_set to allocate from
659  *
660  * 	Like __bio_clone_fast, only also allocates the returned bio
661  */
662 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
663 {
664 	struct bio *b;
665 
666 	b = bio_alloc_bioset(gfp_mask, 0, bs);
667 	if (!b)
668 		return NULL;
669 
670 	__bio_clone_fast(b, bio);
671 
672 	if (bio_crypt_clone(b, bio, gfp_mask) < 0)
673 		goto err_put;
674 
675 	if (bio_integrity(bio) &&
676 	    bio_integrity_clone(b, bio, gfp_mask) < 0)
677 		goto err_put;
678 
679 	return b;
680 
681 err_put:
682 	bio_put(b);
683 	return NULL;
684 }
685 EXPORT_SYMBOL(bio_clone_fast);
686 
687 const char *bio_devname(struct bio *bio, char *buf)
688 {
689 	return bdevname(bio->bi_bdev, buf);
690 }
691 EXPORT_SYMBOL(bio_devname);
692 
693 static inline bool page_is_mergeable(const struct bio_vec *bv,
694 		struct page *page, unsigned int len, unsigned int off,
695 		bool *same_page)
696 {
697 	size_t bv_end = bv->bv_offset + bv->bv_len;
698 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
699 	phys_addr_t page_addr = page_to_phys(page);
700 
701 	if (vec_end_addr + 1 != page_addr + off)
702 		return false;
703 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
704 		return false;
705 
706 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
707 	if (*same_page)
708 		return true;
709 	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
710 }
711 
712 /*
713  * Try to merge a page into a segment, while obeying the hardware segment
714  * size limit.  This is not for normal read/write bios, but for passthrough
715  * or Zone Append operations that we can't split.
716  */
717 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
718 				 struct page *page, unsigned len,
719 				 unsigned offset, bool *same_page)
720 {
721 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
722 	unsigned long mask = queue_segment_boundary(q);
723 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
724 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
725 
726 	if ((addr1 | mask) != (addr2 | mask))
727 		return false;
728 	if (bv->bv_len + len > queue_max_segment_size(q))
729 		return false;
730 	return __bio_try_merge_page(bio, page, len, offset, same_page);
731 }
732 
733 /**
734  * bio_add_hw_page - attempt to add a page to a bio with hw constraints
735  * @q: the target queue
736  * @bio: destination bio
737  * @page: page to add
738  * @len: vec entry length
739  * @offset: vec entry offset
740  * @max_sectors: maximum number of sectors that can be added
741  * @same_page: return if the segment has been merged inside the same page
742  *
743  * Add a page to a bio while respecting the hardware max_sectors, max_segment
744  * and gap limitations.
745  */
746 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
747 		struct page *page, unsigned int len, unsigned int offset,
748 		unsigned int max_sectors, bool *same_page)
749 {
750 	struct bio_vec *bvec;
751 
752 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
753 		return 0;
754 
755 	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
756 		return 0;
757 
758 	if (bio->bi_vcnt > 0) {
759 		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
760 			return len;
761 
762 		/*
763 		 * If the queue doesn't support SG gaps and adding this segment
764 		 * would create a gap, disallow it.
765 		 */
766 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
767 		if (bvec_gap_to_prev(q, bvec, offset))
768 			return 0;
769 	}
770 
771 	if (bio_full(bio, len))
772 		return 0;
773 
774 	if (bio->bi_vcnt >= queue_max_segments(q))
775 		return 0;
776 
777 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
778 	bvec->bv_page = page;
779 	bvec->bv_len = len;
780 	bvec->bv_offset = offset;
781 	bio->bi_vcnt++;
782 	bio->bi_iter.bi_size += len;
783 	return len;
784 }
785 
786 /**
787  * bio_add_pc_page	- attempt to add page to passthrough bio
788  * @q: the target queue
789  * @bio: destination bio
790  * @page: page to add
791  * @len: vec entry length
792  * @offset: vec entry offset
793  *
794  * Attempt to add a page to the bio_vec maplist. This can fail for a
795  * number of reasons, such as the bio being full or target block device
796  * limitations. The target block device must allow bio's up to PAGE_SIZE,
797  * so it is always possible to add a single page to an empty bio.
798  *
799  * This should only be used by passthrough bios.
800  */
801 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
802 		struct page *page, unsigned int len, unsigned int offset)
803 {
804 	bool same_page = false;
805 	return bio_add_hw_page(q, bio, page, len, offset,
806 			queue_max_hw_sectors(q), &same_page);
807 }
808 EXPORT_SYMBOL(bio_add_pc_page);
809 
810 /**
811  * bio_add_zone_append_page - attempt to add page to zone-append bio
812  * @bio: destination bio
813  * @page: page to add
814  * @len: vec entry length
815  * @offset: vec entry offset
816  *
817  * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
818  * for a zone-append request. This can fail for a number of reasons, such as the
819  * bio being full or the target block device is not a zoned block device or
820  * other limitations of the target block device. The target block device must
821  * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
822  * to an empty bio.
823  *
824  * Returns: number of bytes added to the bio, or 0 in case of a failure.
825  */
826 int bio_add_zone_append_page(struct bio *bio, struct page *page,
827 			     unsigned int len, unsigned int offset)
828 {
829 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
830 	bool same_page = false;
831 
832 	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
833 		return 0;
834 
835 	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
836 		return 0;
837 
838 	return bio_add_hw_page(q, bio, page, len, offset,
839 			       queue_max_zone_append_sectors(q), &same_page);
840 }
841 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
842 
843 /**
844  * __bio_try_merge_page - try appending data to an existing bvec.
845  * @bio: destination bio
846  * @page: start page to add
847  * @len: length of the data to add
848  * @off: offset of the data relative to @page
849  * @same_page: return if the segment has been merged inside the same page
850  *
851  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
852  * useful optimisation for file systems with a block size smaller than the
853  * page size.
854  *
855  * Warn if (@len, @off) crosses pages in case that @same_page is true.
856  *
857  * Return %true on success or %false on failure.
858  */
859 bool __bio_try_merge_page(struct bio *bio, struct page *page,
860 		unsigned int len, unsigned int off, bool *same_page)
861 {
862 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
863 		return false;
864 
865 	if (bio->bi_vcnt > 0) {
866 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
867 
868 		if (page_is_mergeable(bv, page, len, off, same_page)) {
869 			if (bio->bi_iter.bi_size > UINT_MAX - len) {
870 				*same_page = false;
871 				return false;
872 			}
873 			bv->bv_len += len;
874 			bio->bi_iter.bi_size += len;
875 			return true;
876 		}
877 	}
878 	return false;
879 }
880 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
881 
882 /**
883  * __bio_add_page - add page(s) to a bio in a new segment
884  * @bio: destination bio
885  * @page: start page to add
886  * @len: length of the data to add, may cross pages
887  * @off: offset of the data relative to @page, may cross pages
888  *
889  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
890  * that @bio has space for another bvec.
891  */
892 void __bio_add_page(struct bio *bio, struct page *page,
893 		unsigned int len, unsigned int off)
894 {
895 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
896 
897 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
898 	WARN_ON_ONCE(bio_full(bio, len));
899 
900 	bv->bv_page = page;
901 	bv->bv_offset = off;
902 	bv->bv_len = len;
903 
904 	bio->bi_iter.bi_size += len;
905 	bio->bi_vcnt++;
906 
907 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
908 		bio_set_flag(bio, BIO_WORKINGSET);
909 }
910 EXPORT_SYMBOL_GPL(__bio_add_page);
911 
912 /**
913  *	bio_add_page	-	attempt to add page(s) to bio
914  *	@bio: destination bio
915  *	@page: start page to add
916  *	@len: vec entry length, may cross pages
917  *	@offset: vec entry offset relative to @page, may cross pages
918  *
919  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
920  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
921  */
922 int bio_add_page(struct bio *bio, struct page *page,
923 		 unsigned int len, unsigned int offset)
924 {
925 	bool same_page = false;
926 
927 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
928 		if (bio_full(bio, len))
929 			return 0;
930 		__bio_add_page(bio, page, len, offset);
931 	}
932 	return len;
933 }
934 EXPORT_SYMBOL(bio_add_page);
935 
936 void bio_release_pages(struct bio *bio, bool mark_dirty)
937 {
938 	struct bvec_iter_all iter_all;
939 	struct bio_vec *bvec;
940 
941 	if (bio_flagged(bio, BIO_NO_PAGE_REF))
942 		return;
943 
944 	bio_for_each_segment_all(bvec, bio, iter_all) {
945 		if (mark_dirty && !PageCompound(bvec->bv_page))
946 			set_page_dirty_lock(bvec->bv_page);
947 		put_page(bvec->bv_page);
948 	}
949 }
950 EXPORT_SYMBOL_GPL(bio_release_pages);
951 
952 static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
953 {
954 	WARN_ON_ONCE(bio->bi_max_vecs);
955 
956 	bio->bi_vcnt = iter->nr_segs;
957 	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
958 	bio->bi_iter.bi_bvec_done = iter->iov_offset;
959 	bio->bi_iter.bi_size = iter->count;
960 	bio_set_flag(bio, BIO_NO_PAGE_REF);
961 	bio_set_flag(bio, BIO_CLONED);
962 
963 	iov_iter_advance(iter, iter->count);
964 	return 0;
965 }
966 
967 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
968 
969 /**
970  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
971  * @bio: bio to add pages to
972  * @iter: iov iterator describing the region to be mapped
973  *
974  * Pins pages from *iter and appends them to @bio's bvec array. The
975  * pages will have to be released using put_page() when done.
976  * For multi-segment *iter, this function only adds pages from the
977  * next non-empty segment of the iov iterator.
978  */
979 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
980 {
981 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
982 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
983 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
984 	struct page **pages = (struct page **)bv;
985 	bool same_page = false;
986 	ssize_t size, left;
987 	unsigned len, i;
988 	size_t offset;
989 
990 	/*
991 	 * Move page array up in the allocated memory for the bio vecs as far as
992 	 * possible so that we can start filling biovecs from the beginning
993 	 * without overwriting the temporary page array.
994 	*/
995 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
996 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
997 
998 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
999 	if (unlikely(size <= 0))
1000 		return size ? size : -EFAULT;
1001 
1002 	for (left = size, i = 0; left > 0; left -= len, i++) {
1003 		struct page *page = pages[i];
1004 
1005 		len = min_t(size_t, PAGE_SIZE - offset, left);
1006 
1007 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1008 			if (same_page)
1009 				put_page(page);
1010 		} else {
1011 			if (WARN_ON_ONCE(bio_full(bio, len)))
1012                                 return -EINVAL;
1013 			__bio_add_page(bio, page, len, offset);
1014 		}
1015 		offset = 0;
1016 	}
1017 
1018 	iov_iter_advance(iter, size);
1019 	return 0;
1020 }
1021 
1022 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1023 {
1024 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1025 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1026 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1027 	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1028 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1029 	struct page **pages = (struct page **)bv;
1030 	ssize_t size, left;
1031 	unsigned len, i;
1032 	size_t offset;
1033 	int ret = 0;
1034 
1035 	if (WARN_ON_ONCE(!max_append_sectors))
1036 		return 0;
1037 
1038 	/*
1039 	 * Move page array up in the allocated memory for the bio vecs as far as
1040 	 * possible so that we can start filling biovecs from the beginning
1041 	 * without overwriting the temporary page array.
1042 	 */
1043 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1044 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1045 
1046 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1047 	if (unlikely(size <= 0))
1048 		return size ? size : -EFAULT;
1049 
1050 	for (left = size, i = 0; left > 0; left -= len, i++) {
1051 		struct page *page = pages[i];
1052 		bool same_page = false;
1053 
1054 		len = min_t(size_t, PAGE_SIZE - offset, left);
1055 		if (bio_add_hw_page(q, bio, page, len, offset,
1056 				max_append_sectors, &same_page) != len) {
1057 			ret = -EINVAL;
1058 			break;
1059 		}
1060 		if (same_page)
1061 			put_page(page);
1062 		offset = 0;
1063 	}
1064 
1065 	iov_iter_advance(iter, size - left);
1066 	return ret;
1067 }
1068 
1069 /**
1070  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1071  * @bio: bio to add pages to
1072  * @iter: iov iterator describing the region to be added
1073  *
1074  * This takes either an iterator pointing to user memory, or one pointing to
1075  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1076  * map them into the kernel. On IO completion, the caller should put those
1077  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1078  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1079  * to ensure the bvecs and pages stay referenced until the submitted I/O is
1080  * completed by a call to ->ki_complete() or returns with an error other than
1081  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1082  * on IO completion. If it isn't, then pages should be released.
1083  *
1084  * The function tries, but does not guarantee, to pin as many pages as
1085  * fit into the bio, or are requested in @iter, whatever is smaller. If
1086  * MM encounters an error pinning the requested pages, it stops. Error
1087  * is returned only if 0 pages could be pinned.
1088  *
1089  * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1090  * responsible for setting BIO_WORKINGSET if necessary.
1091  */
1092 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1093 {
1094 	int ret = 0;
1095 
1096 	if (iov_iter_is_bvec(iter)) {
1097 		if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1098 			return -EINVAL;
1099 		return bio_iov_bvec_set(bio, iter);
1100 	}
1101 
1102 	do {
1103 		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1104 			ret = __bio_iov_append_get_pages(bio, iter);
1105 		else
1106 			ret = __bio_iov_iter_get_pages(bio, iter);
1107 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1108 
1109 	/* don't account direct I/O as memory stall */
1110 	bio_clear_flag(bio, BIO_WORKINGSET);
1111 	return bio->bi_vcnt ? 0 : ret;
1112 }
1113 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1114 
1115 static void submit_bio_wait_endio(struct bio *bio)
1116 {
1117 	complete(bio->bi_private);
1118 }
1119 
1120 /**
1121  * submit_bio_wait - submit a bio, and wait until it completes
1122  * @bio: The &struct bio which describes the I/O
1123  *
1124  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1125  * bio_endio() on failure.
1126  *
1127  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1128  * result in bio reference to be consumed. The caller must drop the reference
1129  * on his own.
1130  */
1131 int submit_bio_wait(struct bio *bio)
1132 {
1133 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1134 			bio->bi_bdev->bd_disk->lockdep_map);
1135 	unsigned long hang_check;
1136 
1137 	bio->bi_private = &done;
1138 	bio->bi_end_io = submit_bio_wait_endio;
1139 	bio->bi_opf |= REQ_SYNC;
1140 	submit_bio(bio);
1141 
1142 	/* Prevent hang_check timer from firing at us during very long I/O */
1143 	hang_check = sysctl_hung_task_timeout_secs;
1144 	if (hang_check)
1145 		while (!wait_for_completion_io_timeout(&done,
1146 					hang_check * (HZ/2)))
1147 			;
1148 	else
1149 		wait_for_completion_io(&done);
1150 
1151 	return blk_status_to_errno(bio->bi_status);
1152 }
1153 EXPORT_SYMBOL(submit_bio_wait);
1154 
1155 /**
1156  * bio_advance - increment/complete a bio by some number of bytes
1157  * @bio:	bio to advance
1158  * @bytes:	number of bytes to complete
1159  *
1160  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1161  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1162  * be updated on the last bvec as well.
1163  *
1164  * @bio will then represent the remaining, uncompleted portion of the io.
1165  */
1166 void bio_advance(struct bio *bio, unsigned bytes)
1167 {
1168 	if (bio_integrity(bio))
1169 		bio_integrity_advance(bio, bytes);
1170 
1171 	bio_crypt_advance(bio, bytes);
1172 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1173 }
1174 EXPORT_SYMBOL(bio_advance);
1175 
1176 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1177 			struct bio *src, struct bvec_iter *src_iter)
1178 {
1179 	struct bio_vec src_bv, dst_bv;
1180 	void *src_p, *dst_p;
1181 	unsigned bytes;
1182 
1183 	while (src_iter->bi_size && dst_iter->bi_size) {
1184 		src_bv = bio_iter_iovec(src, *src_iter);
1185 		dst_bv = bio_iter_iovec(dst, *dst_iter);
1186 
1187 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1188 
1189 		src_p = kmap_atomic(src_bv.bv_page);
1190 		dst_p = kmap_atomic(dst_bv.bv_page);
1191 
1192 		memcpy(dst_p + dst_bv.bv_offset,
1193 		       src_p + src_bv.bv_offset,
1194 		       bytes);
1195 
1196 		kunmap_atomic(dst_p);
1197 		kunmap_atomic(src_p);
1198 
1199 		flush_dcache_page(dst_bv.bv_page);
1200 
1201 		bio_advance_iter_single(src, src_iter, bytes);
1202 		bio_advance_iter_single(dst, dst_iter, bytes);
1203 	}
1204 }
1205 EXPORT_SYMBOL(bio_copy_data_iter);
1206 
1207 /**
1208  * bio_copy_data - copy contents of data buffers from one bio to another
1209  * @src: source bio
1210  * @dst: destination bio
1211  *
1212  * Stops when it reaches the end of either @src or @dst - that is, copies
1213  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1214  */
1215 void bio_copy_data(struct bio *dst, struct bio *src)
1216 {
1217 	struct bvec_iter src_iter = src->bi_iter;
1218 	struct bvec_iter dst_iter = dst->bi_iter;
1219 
1220 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1221 }
1222 EXPORT_SYMBOL(bio_copy_data);
1223 
1224 /**
1225  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1226  * another
1227  * @src: source bio list
1228  * @dst: destination bio list
1229  *
1230  * Stops when it reaches the end of either the @src list or @dst list - that is,
1231  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1232  * bios).
1233  */
1234 void bio_list_copy_data(struct bio *dst, struct bio *src)
1235 {
1236 	struct bvec_iter src_iter = src->bi_iter;
1237 	struct bvec_iter dst_iter = dst->bi_iter;
1238 
1239 	while (1) {
1240 		if (!src_iter.bi_size) {
1241 			src = src->bi_next;
1242 			if (!src)
1243 				break;
1244 
1245 			src_iter = src->bi_iter;
1246 		}
1247 
1248 		if (!dst_iter.bi_size) {
1249 			dst = dst->bi_next;
1250 			if (!dst)
1251 				break;
1252 
1253 			dst_iter = dst->bi_iter;
1254 		}
1255 
1256 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1257 	}
1258 }
1259 EXPORT_SYMBOL(bio_list_copy_data);
1260 
1261 void bio_free_pages(struct bio *bio)
1262 {
1263 	struct bio_vec *bvec;
1264 	struct bvec_iter_all iter_all;
1265 
1266 	bio_for_each_segment_all(bvec, bio, iter_all)
1267 		__free_page(bvec->bv_page);
1268 }
1269 EXPORT_SYMBOL(bio_free_pages);
1270 
1271 /*
1272  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1273  * for performing direct-IO in BIOs.
1274  *
1275  * The problem is that we cannot run set_page_dirty() from interrupt context
1276  * because the required locks are not interrupt-safe.  So what we can do is to
1277  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1278  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1279  * in process context.
1280  *
1281  * We special-case compound pages here: normally this means reads into hugetlb
1282  * pages.  The logic in here doesn't really work right for compound pages
1283  * because the VM does not uniformly chase down the head page in all cases.
1284  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1285  * handle them at all.  So we skip compound pages here at an early stage.
1286  *
1287  * Note that this code is very hard to test under normal circumstances because
1288  * direct-io pins the pages with get_user_pages().  This makes
1289  * is_page_cache_freeable return false, and the VM will not clean the pages.
1290  * But other code (eg, flusher threads) could clean the pages if they are mapped
1291  * pagecache.
1292  *
1293  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1294  * deferred bio dirtying paths.
1295  */
1296 
1297 /*
1298  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1299  */
1300 void bio_set_pages_dirty(struct bio *bio)
1301 {
1302 	struct bio_vec *bvec;
1303 	struct bvec_iter_all iter_all;
1304 
1305 	bio_for_each_segment_all(bvec, bio, iter_all) {
1306 		if (!PageCompound(bvec->bv_page))
1307 			set_page_dirty_lock(bvec->bv_page);
1308 	}
1309 }
1310 
1311 /*
1312  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1313  * If they are, then fine.  If, however, some pages are clean then they must
1314  * have been written out during the direct-IO read.  So we take another ref on
1315  * the BIO and re-dirty the pages in process context.
1316  *
1317  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1318  * here on.  It will run one put_page() against each page and will run one
1319  * bio_put() against the BIO.
1320  */
1321 
1322 static void bio_dirty_fn(struct work_struct *work);
1323 
1324 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1325 static DEFINE_SPINLOCK(bio_dirty_lock);
1326 static struct bio *bio_dirty_list;
1327 
1328 /*
1329  * This runs in process context
1330  */
1331 static void bio_dirty_fn(struct work_struct *work)
1332 {
1333 	struct bio *bio, *next;
1334 
1335 	spin_lock_irq(&bio_dirty_lock);
1336 	next = bio_dirty_list;
1337 	bio_dirty_list = NULL;
1338 	spin_unlock_irq(&bio_dirty_lock);
1339 
1340 	while ((bio = next) != NULL) {
1341 		next = bio->bi_private;
1342 
1343 		bio_release_pages(bio, true);
1344 		bio_put(bio);
1345 	}
1346 }
1347 
1348 void bio_check_pages_dirty(struct bio *bio)
1349 {
1350 	struct bio_vec *bvec;
1351 	unsigned long flags;
1352 	struct bvec_iter_all iter_all;
1353 
1354 	bio_for_each_segment_all(bvec, bio, iter_all) {
1355 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1356 			goto defer;
1357 	}
1358 
1359 	bio_release_pages(bio, false);
1360 	bio_put(bio);
1361 	return;
1362 defer:
1363 	spin_lock_irqsave(&bio_dirty_lock, flags);
1364 	bio->bi_private = bio_dirty_list;
1365 	bio_dirty_list = bio;
1366 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1367 	schedule_work(&bio_dirty_work);
1368 }
1369 
1370 static inline bool bio_remaining_done(struct bio *bio)
1371 {
1372 	/*
1373 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1374 	 * we always end io on the first invocation.
1375 	 */
1376 	if (!bio_flagged(bio, BIO_CHAIN))
1377 		return true;
1378 
1379 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1380 
1381 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1382 		bio_clear_flag(bio, BIO_CHAIN);
1383 		return true;
1384 	}
1385 
1386 	return false;
1387 }
1388 
1389 /**
1390  * bio_endio - end I/O on a bio
1391  * @bio:	bio
1392  *
1393  * Description:
1394  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1395  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1396  *   bio unless they own it and thus know that it has an end_io function.
1397  *
1398  *   bio_endio() can be called several times on a bio that has been chained
1399  *   using bio_chain().  The ->bi_end_io() function will only be called the
1400  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1401  *   generated if BIO_TRACE_COMPLETION is set.
1402  **/
1403 void bio_endio(struct bio *bio)
1404 {
1405 again:
1406 	if (!bio_remaining_done(bio))
1407 		return;
1408 	if (!bio_integrity_endio(bio))
1409 		return;
1410 
1411 	if (bio->bi_bdev)
1412 		rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
1413 
1414 	/*
1415 	 * Need to have a real endio function for chained bios, otherwise
1416 	 * various corner cases will break (like stacking block devices that
1417 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1418 	 * recursion and blowing the stack. Tail call optimization would
1419 	 * handle this, but compiling with frame pointers also disables
1420 	 * gcc's sibling call optimization.
1421 	 */
1422 	if (bio->bi_end_io == bio_chain_endio) {
1423 		bio = __bio_chain_endio(bio);
1424 		goto again;
1425 	}
1426 
1427 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1428 		trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
1429 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1430 	}
1431 
1432 	blk_throtl_bio_endio(bio);
1433 	/* release cgroup info */
1434 	bio_uninit(bio);
1435 	if (bio->bi_end_io)
1436 		bio->bi_end_io(bio);
1437 }
1438 EXPORT_SYMBOL(bio_endio);
1439 
1440 /**
1441  * bio_split - split a bio
1442  * @bio:	bio to split
1443  * @sectors:	number of sectors to split from the front of @bio
1444  * @gfp:	gfp mask
1445  * @bs:		bio set to allocate from
1446  *
1447  * Allocates and returns a new bio which represents @sectors from the start of
1448  * @bio, and updates @bio to represent the remaining sectors.
1449  *
1450  * Unless this is a discard request the newly allocated bio will point
1451  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1452  * neither @bio nor @bs are freed before the split bio.
1453  */
1454 struct bio *bio_split(struct bio *bio, int sectors,
1455 		      gfp_t gfp, struct bio_set *bs)
1456 {
1457 	struct bio *split;
1458 
1459 	BUG_ON(sectors <= 0);
1460 	BUG_ON(sectors >= bio_sectors(bio));
1461 
1462 	/* Zone append commands cannot be split */
1463 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1464 		return NULL;
1465 
1466 	split = bio_clone_fast(bio, gfp, bs);
1467 	if (!split)
1468 		return NULL;
1469 
1470 	split->bi_iter.bi_size = sectors << 9;
1471 
1472 	if (bio_integrity(split))
1473 		bio_integrity_trim(split);
1474 
1475 	bio_advance(bio, split->bi_iter.bi_size);
1476 
1477 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1478 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1479 
1480 	return split;
1481 }
1482 EXPORT_SYMBOL(bio_split);
1483 
1484 /**
1485  * bio_trim - trim a bio
1486  * @bio:	bio to trim
1487  * @offset:	number of sectors to trim from the front of @bio
1488  * @size:	size we want to trim @bio to, in sectors
1489  */
1490 void bio_trim(struct bio *bio, int offset, int size)
1491 {
1492 	/* 'bio' is a cloned bio which we need to trim to match
1493 	 * the given offset and size.
1494 	 */
1495 
1496 	size <<= 9;
1497 	if (offset == 0 && size == bio->bi_iter.bi_size)
1498 		return;
1499 
1500 	bio_advance(bio, offset << 9);
1501 	bio->bi_iter.bi_size = size;
1502 
1503 	if (bio_integrity(bio))
1504 		bio_integrity_trim(bio);
1505 
1506 }
1507 EXPORT_SYMBOL_GPL(bio_trim);
1508 
1509 /*
1510  * create memory pools for biovec's in a bio_set.
1511  * use the global biovec slabs created for general use.
1512  */
1513 int biovec_init_pool(mempool_t *pool, int pool_entries)
1514 {
1515 	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1516 
1517 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1518 }
1519 
1520 /*
1521  * bioset_exit - exit a bioset initialized with bioset_init()
1522  *
1523  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1524  * kzalloc()).
1525  */
1526 void bioset_exit(struct bio_set *bs)
1527 {
1528 	if (bs->rescue_workqueue)
1529 		destroy_workqueue(bs->rescue_workqueue);
1530 	bs->rescue_workqueue = NULL;
1531 
1532 	mempool_exit(&bs->bio_pool);
1533 	mempool_exit(&bs->bvec_pool);
1534 
1535 	bioset_integrity_free(bs);
1536 	if (bs->bio_slab)
1537 		bio_put_slab(bs);
1538 	bs->bio_slab = NULL;
1539 }
1540 EXPORT_SYMBOL(bioset_exit);
1541 
1542 /**
1543  * bioset_init - Initialize a bio_set
1544  * @bs:		pool to initialize
1545  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1546  * @front_pad:	Number of bytes to allocate in front of the returned bio
1547  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1548  *              and %BIOSET_NEED_RESCUER
1549  *
1550  * Description:
1551  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1552  *    to ask for a number of bytes to be allocated in front of the bio.
1553  *    Front pad allocation is useful for embedding the bio inside
1554  *    another structure, to avoid allocating extra data to go with the bio.
1555  *    Note that the bio must be embedded at the END of that structure always,
1556  *    or things will break badly.
1557  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1558  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1559  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1560  *    dispatch queued requests when the mempool runs out of space.
1561  *
1562  */
1563 int bioset_init(struct bio_set *bs,
1564 		unsigned int pool_size,
1565 		unsigned int front_pad,
1566 		int flags)
1567 {
1568 	bs->front_pad = front_pad;
1569 	if (flags & BIOSET_NEED_BVECS)
1570 		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1571 	else
1572 		bs->back_pad = 0;
1573 
1574 	spin_lock_init(&bs->rescue_lock);
1575 	bio_list_init(&bs->rescue_list);
1576 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1577 
1578 	bs->bio_slab = bio_find_or_create_slab(bs);
1579 	if (!bs->bio_slab)
1580 		return -ENOMEM;
1581 
1582 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1583 		goto bad;
1584 
1585 	if ((flags & BIOSET_NEED_BVECS) &&
1586 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1587 		goto bad;
1588 
1589 	if (!(flags & BIOSET_NEED_RESCUER))
1590 		return 0;
1591 
1592 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1593 	if (!bs->rescue_workqueue)
1594 		goto bad;
1595 
1596 	return 0;
1597 bad:
1598 	bioset_exit(bs);
1599 	return -ENOMEM;
1600 }
1601 EXPORT_SYMBOL(bioset_init);
1602 
1603 /*
1604  * Initialize and setup a new bio_set, based on the settings from
1605  * another bio_set.
1606  */
1607 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1608 {
1609 	int flags;
1610 
1611 	flags = 0;
1612 	if (src->bvec_pool.min_nr)
1613 		flags |= BIOSET_NEED_BVECS;
1614 	if (src->rescue_workqueue)
1615 		flags |= BIOSET_NEED_RESCUER;
1616 
1617 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1618 }
1619 EXPORT_SYMBOL(bioset_init_from_src);
1620 
1621 static int __init init_bio(void)
1622 {
1623 	int i;
1624 
1625 	bio_integrity_init();
1626 
1627 	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1628 		struct biovec_slab *bvs = bvec_slabs + i;
1629 
1630 		bvs->slab = kmem_cache_create(bvs->name,
1631 				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1632 				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1633 	}
1634 
1635 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1636 		panic("bio: can't allocate bios\n");
1637 
1638 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1639 		panic("bio: can't create integrity pool\n");
1640 
1641 	return 0;
1642 }
1643 subsys_initcall(init_bio);
1644