xref: /openbmc/linux/block/bio.c (revision b7019ac5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 
20 #include <trace/events/block.h>
21 #include "blk.h"
22 #include "blk-rq-qos.h"
23 
24 /*
25  * Test patch to inline a certain number of bi_io_vec's inside the bio
26  * itself, to shrink a bio data allocation from two mempool calls to one
27  */
28 #define BIO_INLINE_VECS		4
29 
30 /*
31  * if you change this list, also change bvec_alloc or things will
32  * break badly! cannot be bigger than what you can fit into an
33  * unsigned short
34  */
35 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
36 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
37 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
38 };
39 #undef BV
40 
41 /*
42  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
43  * IO code that does not need private memory pools.
44  */
45 struct bio_set fs_bio_set;
46 EXPORT_SYMBOL(fs_bio_set);
47 
48 /*
49  * Our slab pool management
50  */
51 struct bio_slab {
52 	struct kmem_cache *slab;
53 	unsigned int slab_ref;
54 	unsigned int slab_size;
55 	char name[8];
56 };
57 static DEFINE_MUTEX(bio_slab_lock);
58 static struct bio_slab *bio_slabs;
59 static unsigned int bio_slab_nr, bio_slab_max;
60 
61 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
62 {
63 	unsigned int sz = sizeof(struct bio) + extra_size;
64 	struct kmem_cache *slab = NULL;
65 	struct bio_slab *bslab, *new_bio_slabs;
66 	unsigned int new_bio_slab_max;
67 	unsigned int i, entry = -1;
68 
69 	mutex_lock(&bio_slab_lock);
70 
71 	i = 0;
72 	while (i < bio_slab_nr) {
73 		bslab = &bio_slabs[i];
74 
75 		if (!bslab->slab && entry == -1)
76 			entry = i;
77 		else if (bslab->slab_size == sz) {
78 			slab = bslab->slab;
79 			bslab->slab_ref++;
80 			break;
81 		}
82 		i++;
83 	}
84 
85 	if (slab)
86 		goto out_unlock;
87 
88 	if (bio_slab_nr == bio_slab_max && entry == -1) {
89 		new_bio_slab_max = bio_slab_max << 1;
90 		new_bio_slabs = krealloc(bio_slabs,
91 					 new_bio_slab_max * sizeof(struct bio_slab),
92 					 GFP_KERNEL);
93 		if (!new_bio_slabs)
94 			goto out_unlock;
95 		bio_slab_max = new_bio_slab_max;
96 		bio_slabs = new_bio_slabs;
97 	}
98 	if (entry == -1)
99 		entry = bio_slab_nr++;
100 
101 	bslab = &bio_slabs[entry];
102 
103 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
104 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
105 				 SLAB_HWCACHE_ALIGN, NULL);
106 	if (!slab)
107 		goto out_unlock;
108 
109 	bslab->slab = slab;
110 	bslab->slab_ref = 1;
111 	bslab->slab_size = sz;
112 out_unlock:
113 	mutex_unlock(&bio_slab_lock);
114 	return slab;
115 }
116 
117 static void bio_put_slab(struct bio_set *bs)
118 {
119 	struct bio_slab *bslab = NULL;
120 	unsigned int i;
121 
122 	mutex_lock(&bio_slab_lock);
123 
124 	for (i = 0; i < bio_slab_nr; i++) {
125 		if (bs->bio_slab == bio_slabs[i].slab) {
126 			bslab = &bio_slabs[i];
127 			break;
128 		}
129 	}
130 
131 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
132 		goto out;
133 
134 	WARN_ON(!bslab->slab_ref);
135 
136 	if (--bslab->slab_ref)
137 		goto out;
138 
139 	kmem_cache_destroy(bslab->slab);
140 	bslab->slab = NULL;
141 
142 out:
143 	mutex_unlock(&bio_slab_lock);
144 }
145 
146 unsigned int bvec_nr_vecs(unsigned short idx)
147 {
148 	return bvec_slabs[--idx].nr_vecs;
149 }
150 
151 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
152 {
153 	if (!idx)
154 		return;
155 	idx--;
156 
157 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
158 
159 	if (idx == BVEC_POOL_MAX) {
160 		mempool_free(bv, pool);
161 	} else {
162 		struct biovec_slab *bvs = bvec_slabs + idx;
163 
164 		kmem_cache_free(bvs->slab, bv);
165 	}
166 }
167 
168 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
169 			   mempool_t *pool)
170 {
171 	struct bio_vec *bvl;
172 
173 	/*
174 	 * see comment near bvec_array define!
175 	 */
176 	switch (nr) {
177 	case 1:
178 		*idx = 0;
179 		break;
180 	case 2 ... 4:
181 		*idx = 1;
182 		break;
183 	case 5 ... 16:
184 		*idx = 2;
185 		break;
186 	case 17 ... 64:
187 		*idx = 3;
188 		break;
189 	case 65 ... 128:
190 		*idx = 4;
191 		break;
192 	case 129 ... BIO_MAX_PAGES:
193 		*idx = 5;
194 		break;
195 	default:
196 		return NULL;
197 	}
198 
199 	/*
200 	 * idx now points to the pool we want to allocate from. only the
201 	 * 1-vec entry pool is mempool backed.
202 	 */
203 	if (*idx == BVEC_POOL_MAX) {
204 fallback:
205 		bvl = mempool_alloc(pool, gfp_mask);
206 	} else {
207 		struct biovec_slab *bvs = bvec_slabs + *idx;
208 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
209 
210 		/*
211 		 * Make this allocation restricted and don't dump info on
212 		 * allocation failures, since we'll fallback to the mempool
213 		 * in case of failure.
214 		 */
215 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
216 
217 		/*
218 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
219 		 * is set, retry with the 1-entry mempool
220 		 */
221 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
222 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
223 			*idx = BVEC_POOL_MAX;
224 			goto fallback;
225 		}
226 	}
227 
228 	(*idx)++;
229 	return bvl;
230 }
231 
232 void bio_uninit(struct bio *bio)
233 {
234 	bio_disassociate_blkg(bio);
235 }
236 EXPORT_SYMBOL(bio_uninit);
237 
238 static void bio_free(struct bio *bio)
239 {
240 	struct bio_set *bs = bio->bi_pool;
241 	void *p;
242 
243 	bio_uninit(bio);
244 
245 	if (bs) {
246 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
247 
248 		/*
249 		 * If we have front padding, adjust the bio pointer before freeing
250 		 */
251 		p = bio;
252 		p -= bs->front_pad;
253 
254 		mempool_free(p, &bs->bio_pool);
255 	} else {
256 		/* Bio was allocated by bio_kmalloc() */
257 		kfree(bio);
258 	}
259 }
260 
261 /*
262  * Users of this function have their own bio allocation. Subsequently,
263  * they must remember to pair any call to bio_init() with bio_uninit()
264  * when IO has completed, or when the bio is released.
265  */
266 void bio_init(struct bio *bio, struct bio_vec *table,
267 	      unsigned short max_vecs)
268 {
269 	memset(bio, 0, sizeof(*bio));
270 	atomic_set(&bio->__bi_remaining, 1);
271 	atomic_set(&bio->__bi_cnt, 1);
272 
273 	bio->bi_io_vec = table;
274 	bio->bi_max_vecs = max_vecs;
275 }
276 EXPORT_SYMBOL(bio_init);
277 
278 /**
279  * bio_reset - reinitialize a bio
280  * @bio:	bio to reset
281  *
282  * Description:
283  *   After calling bio_reset(), @bio will be in the same state as a freshly
284  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
285  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
286  *   comment in struct bio.
287  */
288 void bio_reset(struct bio *bio)
289 {
290 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
291 
292 	bio_uninit(bio);
293 
294 	memset(bio, 0, BIO_RESET_BYTES);
295 	bio->bi_flags = flags;
296 	atomic_set(&bio->__bi_remaining, 1);
297 }
298 EXPORT_SYMBOL(bio_reset);
299 
300 static struct bio *__bio_chain_endio(struct bio *bio)
301 {
302 	struct bio *parent = bio->bi_private;
303 
304 	if (!parent->bi_status)
305 		parent->bi_status = bio->bi_status;
306 	bio_put(bio);
307 	return parent;
308 }
309 
310 static void bio_chain_endio(struct bio *bio)
311 {
312 	bio_endio(__bio_chain_endio(bio));
313 }
314 
315 /**
316  * bio_chain - chain bio completions
317  * @bio: the target bio
318  * @parent: the @bio's parent bio
319  *
320  * The caller won't have a bi_end_io called when @bio completes - instead,
321  * @parent's bi_end_io won't be called until both @parent and @bio have
322  * completed; the chained bio will also be freed when it completes.
323  *
324  * The caller must not set bi_private or bi_end_io in @bio.
325  */
326 void bio_chain(struct bio *bio, struct bio *parent)
327 {
328 	BUG_ON(bio->bi_private || bio->bi_end_io);
329 
330 	bio->bi_private = parent;
331 	bio->bi_end_io	= bio_chain_endio;
332 	bio_inc_remaining(parent);
333 }
334 EXPORT_SYMBOL(bio_chain);
335 
336 static void bio_alloc_rescue(struct work_struct *work)
337 {
338 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
339 	struct bio *bio;
340 
341 	while (1) {
342 		spin_lock(&bs->rescue_lock);
343 		bio = bio_list_pop(&bs->rescue_list);
344 		spin_unlock(&bs->rescue_lock);
345 
346 		if (!bio)
347 			break;
348 
349 		generic_make_request(bio);
350 	}
351 }
352 
353 static void punt_bios_to_rescuer(struct bio_set *bs)
354 {
355 	struct bio_list punt, nopunt;
356 	struct bio *bio;
357 
358 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
359 		return;
360 	/*
361 	 * In order to guarantee forward progress we must punt only bios that
362 	 * were allocated from this bio_set; otherwise, if there was a bio on
363 	 * there for a stacking driver higher up in the stack, processing it
364 	 * could require allocating bios from this bio_set, and doing that from
365 	 * our own rescuer would be bad.
366 	 *
367 	 * Since bio lists are singly linked, pop them all instead of trying to
368 	 * remove from the middle of the list:
369 	 */
370 
371 	bio_list_init(&punt);
372 	bio_list_init(&nopunt);
373 
374 	while ((bio = bio_list_pop(&current->bio_list[0])))
375 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
376 	current->bio_list[0] = nopunt;
377 
378 	bio_list_init(&nopunt);
379 	while ((bio = bio_list_pop(&current->bio_list[1])))
380 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
381 	current->bio_list[1] = nopunt;
382 
383 	spin_lock(&bs->rescue_lock);
384 	bio_list_merge(&bs->rescue_list, &punt);
385 	spin_unlock(&bs->rescue_lock);
386 
387 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
388 }
389 
390 /**
391  * bio_alloc_bioset - allocate a bio for I/O
392  * @gfp_mask:   the GFP_* mask given to the slab allocator
393  * @nr_iovecs:	number of iovecs to pre-allocate
394  * @bs:		the bio_set to allocate from.
395  *
396  * Description:
397  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
398  *   backed by the @bs's mempool.
399  *
400  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
401  *   always be able to allocate a bio. This is due to the mempool guarantees.
402  *   To make this work, callers must never allocate more than 1 bio at a time
403  *   from this pool. Callers that need to allocate more than 1 bio must always
404  *   submit the previously allocated bio for IO before attempting to allocate
405  *   a new one. Failure to do so can cause deadlocks under memory pressure.
406  *
407  *   Note that when running under generic_make_request() (i.e. any block
408  *   driver), bios are not submitted until after you return - see the code in
409  *   generic_make_request() that converts recursion into iteration, to prevent
410  *   stack overflows.
411  *
412  *   This would normally mean allocating multiple bios under
413  *   generic_make_request() would be susceptible to deadlocks, but we have
414  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
415  *   thread.
416  *
417  *   However, we do not guarantee forward progress for allocations from other
418  *   mempools. Doing multiple allocations from the same mempool under
419  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
420  *   for per bio allocations.
421  *
422  *   RETURNS:
423  *   Pointer to new bio on success, NULL on failure.
424  */
425 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
426 			     struct bio_set *bs)
427 {
428 	gfp_t saved_gfp = gfp_mask;
429 	unsigned front_pad;
430 	unsigned inline_vecs;
431 	struct bio_vec *bvl = NULL;
432 	struct bio *bio;
433 	void *p;
434 
435 	if (!bs) {
436 		if (nr_iovecs > UIO_MAXIOV)
437 			return NULL;
438 
439 		p = kmalloc(sizeof(struct bio) +
440 			    nr_iovecs * sizeof(struct bio_vec),
441 			    gfp_mask);
442 		front_pad = 0;
443 		inline_vecs = nr_iovecs;
444 	} else {
445 		/* should not use nobvec bioset for nr_iovecs > 0 */
446 		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
447 				 nr_iovecs > 0))
448 			return NULL;
449 		/*
450 		 * generic_make_request() converts recursion to iteration; this
451 		 * means if we're running beneath it, any bios we allocate and
452 		 * submit will not be submitted (and thus freed) until after we
453 		 * return.
454 		 *
455 		 * This exposes us to a potential deadlock if we allocate
456 		 * multiple bios from the same bio_set() while running
457 		 * underneath generic_make_request(). If we were to allocate
458 		 * multiple bios (say a stacking block driver that was splitting
459 		 * bios), we would deadlock if we exhausted the mempool's
460 		 * reserve.
461 		 *
462 		 * We solve this, and guarantee forward progress, with a rescuer
463 		 * workqueue per bio_set. If we go to allocate and there are
464 		 * bios on current->bio_list, we first try the allocation
465 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
466 		 * bios we would be blocking to the rescuer workqueue before
467 		 * we retry with the original gfp_flags.
468 		 */
469 
470 		if (current->bio_list &&
471 		    (!bio_list_empty(&current->bio_list[0]) ||
472 		     !bio_list_empty(&current->bio_list[1])) &&
473 		    bs->rescue_workqueue)
474 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
475 
476 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
477 		if (!p && gfp_mask != saved_gfp) {
478 			punt_bios_to_rescuer(bs);
479 			gfp_mask = saved_gfp;
480 			p = mempool_alloc(&bs->bio_pool, gfp_mask);
481 		}
482 
483 		front_pad = bs->front_pad;
484 		inline_vecs = BIO_INLINE_VECS;
485 	}
486 
487 	if (unlikely(!p))
488 		return NULL;
489 
490 	bio = p + front_pad;
491 	bio_init(bio, NULL, 0);
492 
493 	if (nr_iovecs > inline_vecs) {
494 		unsigned long idx = 0;
495 
496 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
497 		if (!bvl && gfp_mask != saved_gfp) {
498 			punt_bios_to_rescuer(bs);
499 			gfp_mask = saved_gfp;
500 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
501 		}
502 
503 		if (unlikely(!bvl))
504 			goto err_free;
505 
506 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
507 	} else if (nr_iovecs) {
508 		bvl = bio->bi_inline_vecs;
509 	}
510 
511 	bio->bi_pool = bs;
512 	bio->bi_max_vecs = nr_iovecs;
513 	bio->bi_io_vec = bvl;
514 	return bio;
515 
516 err_free:
517 	mempool_free(p, &bs->bio_pool);
518 	return NULL;
519 }
520 EXPORT_SYMBOL(bio_alloc_bioset);
521 
522 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
523 {
524 	unsigned long flags;
525 	struct bio_vec bv;
526 	struct bvec_iter iter;
527 
528 	__bio_for_each_segment(bv, bio, iter, start) {
529 		char *data = bvec_kmap_irq(&bv, &flags);
530 		memset(data, 0, bv.bv_len);
531 		flush_dcache_page(bv.bv_page);
532 		bvec_kunmap_irq(data, &flags);
533 	}
534 }
535 EXPORT_SYMBOL(zero_fill_bio_iter);
536 
537 /**
538  * bio_put - release a reference to a bio
539  * @bio:   bio to release reference to
540  *
541  * Description:
542  *   Put a reference to a &struct bio, either one you have gotten with
543  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
544  **/
545 void bio_put(struct bio *bio)
546 {
547 	if (!bio_flagged(bio, BIO_REFFED))
548 		bio_free(bio);
549 	else {
550 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
551 
552 		/*
553 		 * last put frees it
554 		 */
555 		if (atomic_dec_and_test(&bio->__bi_cnt))
556 			bio_free(bio);
557 	}
558 }
559 EXPORT_SYMBOL(bio_put);
560 
561 int bio_phys_segments(struct request_queue *q, struct bio *bio)
562 {
563 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
564 		blk_recount_segments(q, bio);
565 
566 	return bio->bi_phys_segments;
567 }
568 
569 /**
570  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
571  * 	@bio: destination bio
572  * 	@bio_src: bio to clone
573  *
574  *	Clone a &bio. Caller will own the returned bio, but not
575  *	the actual data it points to. Reference count of returned
576  * 	bio will be one.
577  *
578  * 	Caller must ensure that @bio_src is not freed before @bio.
579  */
580 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
581 {
582 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
583 
584 	/*
585 	 * most users will be overriding ->bi_disk with a new target,
586 	 * so we don't set nor calculate new physical/hw segment counts here
587 	 */
588 	bio->bi_disk = bio_src->bi_disk;
589 	bio->bi_partno = bio_src->bi_partno;
590 	bio_set_flag(bio, BIO_CLONED);
591 	if (bio_flagged(bio_src, BIO_THROTTLED))
592 		bio_set_flag(bio, BIO_THROTTLED);
593 	bio->bi_opf = bio_src->bi_opf;
594 	bio->bi_ioprio = bio_src->bi_ioprio;
595 	bio->bi_write_hint = bio_src->bi_write_hint;
596 	bio->bi_iter = bio_src->bi_iter;
597 	bio->bi_io_vec = bio_src->bi_io_vec;
598 
599 	bio_clone_blkg_association(bio, bio_src);
600 	blkcg_bio_issue_init(bio);
601 }
602 EXPORT_SYMBOL(__bio_clone_fast);
603 
604 /**
605  *	bio_clone_fast - clone a bio that shares the original bio's biovec
606  *	@bio: bio to clone
607  *	@gfp_mask: allocation priority
608  *	@bs: bio_set to allocate from
609  *
610  * 	Like __bio_clone_fast, only also allocates the returned bio
611  */
612 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
613 {
614 	struct bio *b;
615 
616 	b = bio_alloc_bioset(gfp_mask, 0, bs);
617 	if (!b)
618 		return NULL;
619 
620 	__bio_clone_fast(b, bio);
621 
622 	if (bio_integrity(bio)) {
623 		int ret;
624 
625 		ret = bio_integrity_clone(b, bio, gfp_mask);
626 
627 		if (ret < 0) {
628 			bio_put(b);
629 			return NULL;
630 		}
631 	}
632 
633 	return b;
634 }
635 EXPORT_SYMBOL(bio_clone_fast);
636 
637 static inline bool page_is_mergeable(const struct bio_vec *bv,
638 		struct page *page, unsigned int len, unsigned int off,
639 		bool same_page)
640 {
641 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
642 		bv->bv_offset + bv->bv_len - 1;
643 	phys_addr_t page_addr = page_to_phys(page);
644 
645 	if (vec_end_addr + 1 != page_addr + off)
646 		return false;
647 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
648 		return false;
649 
650 	if ((vec_end_addr & PAGE_MASK) != page_addr) {
651 		if (same_page)
652 			return false;
653 		if (pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
654 			return false;
655 	}
656 
657 	WARN_ON_ONCE(same_page && (len + off) > PAGE_SIZE);
658 
659 	return true;
660 }
661 
662 /*
663  * Check if the @page can be added to the current segment(@bv), and make
664  * sure to call it only if page_is_mergeable(@bv, @page) is true
665  */
666 static bool can_add_page_to_seg(struct request_queue *q,
667 		struct bio_vec *bv, struct page *page, unsigned len,
668 		unsigned offset)
669 {
670 	unsigned long mask = queue_segment_boundary(q);
671 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
672 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
673 
674 	if ((addr1 | mask) != (addr2 | mask))
675 		return false;
676 
677 	if (bv->bv_len + len > queue_max_segment_size(q))
678 		return false;
679 
680 	return true;
681 }
682 
683 /**
684  *	__bio_add_pc_page	- attempt to add page to passthrough bio
685  *	@q: the target queue
686  *	@bio: destination bio
687  *	@page: page to add
688  *	@len: vec entry length
689  *	@offset: vec entry offset
690  *	@put_same_page: put the page if it is same with last added page
691  *
692  *	Attempt to add a page to the bio_vec maplist. This can fail for a
693  *	number of reasons, such as the bio being full or target block device
694  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
695  *	so it is always possible to add a single page to an empty bio.
696  *
697  *	This should only be used by passthrough bios.
698  */
699 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
700 		struct page *page, unsigned int len, unsigned int offset,
701 		bool put_same_page)
702 {
703 	struct bio_vec *bvec;
704 
705 	/*
706 	 * cloned bio must not modify vec list
707 	 */
708 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
709 		return 0;
710 
711 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
712 		return 0;
713 
714 	if (bio->bi_vcnt > 0) {
715 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
716 
717 		if (page == bvec->bv_page &&
718 		    offset == bvec->bv_offset + bvec->bv_len) {
719 			if (put_same_page)
720 				put_page(page);
721 			bvec->bv_len += len;
722 			goto done;
723 		}
724 
725 		/*
726 		 * If the queue doesn't support SG gaps and adding this
727 		 * offset would create a gap, disallow it.
728 		 */
729 		if (bvec_gap_to_prev(q, bvec, offset))
730 			return 0;
731 
732 		if (page_is_mergeable(bvec, page, len, offset, false) &&
733 		    can_add_page_to_seg(q, bvec, page, len, offset)) {
734 			bvec->bv_len += len;
735 			goto done;
736 		}
737 	}
738 
739 	if (bio_full(bio))
740 		return 0;
741 
742 	if (bio->bi_phys_segments >= queue_max_segments(q))
743 		return 0;
744 
745 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
746 	bvec->bv_page = page;
747 	bvec->bv_len = len;
748 	bvec->bv_offset = offset;
749 	bio->bi_vcnt++;
750  done:
751 	bio->bi_iter.bi_size += len;
752 	bio->bi_phys_segments = bio->bi_vcnt;
753 	bio_set_flag(bio, BIO_SEG_VALID);
754 	return len;
755 }
756 
757 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
758 		struct page *page, unsigned int len, unsigned int offset)
759 {
760 	return __bio_add_pc_page(q, bio, page, len, offset, false);
761 }
762 EXPORT_SYMBOL(bio_add_pc_page);
763 
764 /**
765  * __bio_try_merge_page - try appending data to an existing bvec.
766  * @bio: destination bio
767  * @page: start page to add
768  * @len: length of the data to add
769  * @off: offset of the data relative to @page
770  * @same_page: if %true only merge if the new data is in the same physical
771  *		page as the last segment of the bio.
772  *
773  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
774  * a useful optimisation for file systems with a block size smaller than the
775  * page size.
776  *
777  * Warn if (@len, @off) crosses pages in case that @same_page is true.
778  *
779  * Return %true on success or %false on failure.
780  */
781 bool __bio_try_merge_page(struct bio *bio, struct page *page,
782 		unsigned int len, unsigned int off, bool same_page)
783 {
784 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
785 		return false;
786 
787 	if (bio->bi_vcnt > 0) {
788 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
789 
790 		if (page_is_mergeable(bv, page, len, off, same_page)) {
791 			bv->bv_len += len;
792 			bio->bi_iter.bi_size += len;
793 			return true;
794 		}
795 	}
796 	return false;
797 }
798 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
799 
800 /**
801  * __bio_add_page - add page(s) to a bio in a new segment
802  * @bio: destination bio
803  * @page: start page to add
804  * @len: length of the data to add, may cross pages
805  * @off: offset of the data relative to @page, may cross pages
806  *
807  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
808  * that @bio has space for another bvec.
809  */
810 void __bio_add_page(struct bio *bio, struct page *page,
811 		unsigned int len, unsigned int off)
812 {
813 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
814 
815 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
816 	WARN_ON_ONCE(bio_full(bio));
817 
818 	bv->bv_page = page;
819 	bv->bv_offset = off;
820 	bv->bv_len = len;
821 
822 	bio->bi_iter.bi_size += len;
823 	bio->bi_vcnt++;
824 }
825 EXPORT_SYMBOL_GPL(__bio_add_page);
826 
827 /**
828  *	bio_add_page	-	attempt to add page(s) to bio
829  *	@bio: destination bio
830  *	@page: start page to add
831  *	@len: vec entry length, may cross pages
832  *	@offset: vec entry offset relative to @page, may cross pages
833  *
834  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
835  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
836  */
837 int bio_add_page(struct bio *bio, struct page *page,
838 		 unsigned int len, unsigned int offset)
839 {
840 	if (!__bio_try_merge_page(bio, page, len, offset, false)) {
841 		if (bio_full(bio))
842 			return 0;
843 		__bio_add_page(bio, page, len, offset);
844 	}
845 	return len;
846 }
847 EXPORT_SYMBOL(bio_add_page);
848 
849 static void bio_get_pages(struct bio *bio)
850 {
851 	struct bvec_iter_all iter_all;
852 	struct bio_vec *bvec;
853 
854 	bio_for_each_segment_all(bvec, bio, iter_all)
855 		get_page(bvec->bv_page);
856 }
857 
858 static void bio_release_pages(struct bio *bio)
859 {
860 	struct bvec_iter_all iter_all;
861 	struct bio_vec *bvec;
862 
863 	bio_for_each_segment_all(bvec, bio, iter_all)
864 		put_page(bvec->bv_page);
865 }
866 
867 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
868 {
869 	const struct bio_vec *bv = iter->bvec;
870 	unsigned int len;
871 	size_t size;
872 
873 	if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
874 		return -EINVAL;
875 
876 	len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
877 	size = bio_add_page(bio, bv->bv_page, len,
878 				bv->bv_offset + iter->iov_offset);
879 	if (unlikely(size != len))
880 		return -EINVAL;
881 	iov_iter_advance(iter, size);
882 	return 0;
883 }
884 
885 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
886 
887 /**
888  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
889  * @bio: bio to add pages to
890  * @iter: iov iterator describing the region to be mapped
891  *
892  * Pins pages from *iter and appends them to @bio's bvec array. The
893  * pages will have to be released using put_page() when done.
894  * For multi-segment *iter, this function only adds pages from the
895  * the next non-empty segment of the iov iterator.
896  */
897 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
898 {
899 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
900 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
901 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
902 	struct page **pages = (struct page **)bv;
903 	ssize_t size, left;
904 	unsigned len, i;
905 	size_t offset;
906 
907 	/*
908 	 * Move page array up in the allocated memory for the bio vecs as far as
909 	 * possible so that we can start filling biovecs from the beginning
910 	 * without overwriting the temporary page array.
911 	*/
912 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
913 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
914 
915 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
916 	if (unlikely(size <= 0))
917 		return size ? size : -EFAULT;
918 
919 	for (left = size, i = 0; left > 0; left -= len, i++) {
920 		struct page *page = pages[i];
921 
922 		len = min_t(size_t, PAGE_SIZE - offset, left);
923 		if (WARN_ON_ONCE(bio_add_page(bio, page, len, offset) != len))
924 			return -EINVAL;
925 		offset = 0;
926 	}
927 
928 	iov_iter_advance(iter, size);
929 	return 0;
930 }
931 
932 /**
933  * bio_iov_iter_get_pages - add user or kernel pages to a bio
934  * @bio: bio to add pages to
935  * @iter: iov iterator describing the region to be added
936  *
937  * This takes either an iterator pointing to user memory, or one pointing to
938  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
939  * map them into the kernel. On IO completion, the caller should put those
940  * pages. If we're adding kernel pages, and the caller told us it's safe to
941  * do so, we just have to add the pages to the bio directly. We don't grab an
942  * extra reference to those pages (the user should already have that), and we
943  * don't put the page on IO completion. The caller needs to check if the bio is
944  * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
945  * released.
946  *
947  * The function tries, but does not guarantee, to pin as many pages as
948  * fit into the bio, or are requested in *iter, whatever is smaller. If
949  * MM encounters an error pinning the requested pages, it stops. Error
950  * is returned only if 0 pages could be pinned.
951  */
952 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
953 {
954 	const bool is_bvec = iov_iter_is_bvec(iter);
955 	int ret;
956 
957 	if (WARN_ON_ONCE(bio->bi_vcnt))
958 		return -EINVAL;
959 
960 	do {
961 		if (is_bvec)
962 			ret = __bio_iov_bvec_add_pages(bio, iter);
963 		else
964 			ret = __bio_iov_iter_get_pages(bio, iter);
965 	} while (!ret && iov_iter_count(iter) && !bio_full(bio));
966 
967 	if (iov_iter_bvec_no_ref(iter))
968 		bio_set_flag(bio, BIO_NO_PAGE_REF);
969 	else if (is_bvec)
970 		bio_get_pages(bio);
971 
972 	return bio->bi_vcnt ? 0 : ret;
973 }
974 
975 static void submit_bio_wait_endio(struct bio *bio)
976 {
977 	complete(bio->bi_private);
978 }
979 
980 /**
981  * submit_bio_wait - submit a bio, and wait until it completes
982  * @bio: The &struct bio which describes the I/O
983  *
984  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
985  * bio_endio() on failure.
986  *
987  * WARNING: Unlike to how submit_bio() is usually used, this function does not
988  * result in bio reference to be consumed. The caller must drop the reference
989  * on his own.
990  */
991 int submit_bio_wait(struct bio *bio)
992 {
993 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
994 
995 	bio->bi_private = &done;
996 	bio->bi_end_io = submit_bio_wait_endio;
997 	bio->bi_opf |= REQ_SYNC;
998 	submit_bio(bio);
999 	wait_for_completion_io(&done);
1000 
1001 	return blk_status_to_errno(bio->bi_status);
1002 }
1003 EXPORT_SYMBOL(submit_bio_wait);
1004 
1005 /**
1006  * bio_advance - increment/complete a bio by some number of bytes
1007  * @bio:	bio to advance
1008  * @bytes:	number of bytes to complete
1009  *
1010  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1011  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1012  * be updated on the last bvec as well.
1013  *
1014  * @bio will then represent the remaining, uncompleted portion of the io.
1015  */
1016 void bio_advance(struct bio *bio, unsigned bytes)
1017 {
1018 	if (bio_integrity(bio))
1019 		bio_integrity_advance(bio, bytes);
1020 
1021 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1022 }
1023 EXPORT_SYMBOL(bio_advance);
1024 
1025 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1026 			struct bio *src, struct bvec_iter *src_iter)
1027 {
1028 	struct bio_vec src_bv, dst_bv;
1029 	void *src_p, *dst_p;
1030 	unsigned bytes;
1031 
1032 	while (src_iter->bi_size && dst_iter->bi_size) {
1033 		src_bv = bio_iter_iovec(src, *src_iter);
1034 		dst_bv = bio_iter_iovec(dst, *dst_iter);
1035 
1036 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1037 
1038 		src_p = kmap_atomic(src_bv.bv_page);
1039 		dst_p = kmap_atomic(dst_bv.bv_page);
1040 
1041 		memcpy(dst_p + dst_bv.bv_offset,
1042 		       src_p + src_bv.bv_offset,
1043 		       bytes);
1044 
1045 		kunmap_atomic(dst_p);
1046 		kunmap_atomic(src_p);
1047 
1048 		flush_dcache_page(dst_bv.bv_page);
1049 
1050 		bio_advance_iter(src, src_iter, bytes);
1051 		bio_advance_iter(dst, dst_iter, bytes);
1052 	}
1053 }
1054 EXPORT_SYMBOL(bio_copy_data_iter);
1055 
1056 /**
1057  * bio_copy_data - copy contents of data buffers from one bio to another
1058  * @src: source bio
1059  * @dst: destination bio
1060  *
1061  * Stops when it reaches the end of either @src or @dst - that is, copies
1062  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1063  */
1064 void bio_copy_data(struct bio *dst, struct bio *src)
1065 {
1066 	struct bvec_iter src_iter = src->bi_iter;
1067 	struct bvec_iter dst_iter = dst->bi_iter;
1068 
1069 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1070 }
1071 EXPORT_SYMBOL(bio_copy_data);
1072 
1073 /**
1074  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1075  * another
1076  * @src: source bio list
1077  * @dst: destination bio list
1078  *
1079  * Stops when it reaches the end of either the @src list or @dst list - that is,
1080  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1081  * bios).
1082  */
1083 void bio_list_copy_data(struct bio *dst, struct bio *src)
1084 {
1085 	struct bvec_iter src_iter = src->bi_iter;
1086 	struct bvec_iter dst_iter = dst->bi_iter;
1087 
1088 	while (1) {
1089 		if (!src_iter.bi_size) {
1090 			src = src->bi_next;
1091 			if (!src)
1092 				break;
1093 
1094 			src_iter = src->bi_iter;
1095 		}
1096 
1097 		if (!dst_iter.bi_size) {
1098 			dst = dst->bi_next;
1099 			if (!dst)
1100 				break;
1101 
1102 			dst_iter = dst->bi_iter;
1103 		}
1104 
1105 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1106 	}
1107 }
1108 EXPORT_SYMBOL(bio_list_copy_data);
1109 
1110 struct bio_map_data {
1111 	int is_our_pages;
1112 	struct iov_iter iter;
1113 	struct iovec iov[];
1114 };
1115 
1116 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1117 					       gfp_t gfp_mask)
1118 {
1119 	struct bio_map_data *bmd;
1120 	if (data->nr_segs > UIO_MAXIOV)
1121 		return NULL;
1122 
1123 	bmd = kmalloc(sizeof(struct bio_map_data) +
1124 		       sizeof(struct iovec) * data->nr_segs, gfp_mask);
1125 	if (!bmd)
1126 		return NULL;
1127 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1128 	bmd->iter = *data;
1129 	bmd->iter.iov = bmd->iov;
1130 	return bmd;
1131 }
1132 
1133 /**
1134  * bio_copy_from_iter - copy all pages from iov_iter to bio
1135  * @bio: The &struct bio which describes the I/O as destination
1136  * @iter: iov_iter as source
1137  *
1138  * Copy all pages from iov_iter to bio.
1139  * Returns 0 on success, or error on failure.
1140  */
1141 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1142 {
1143 	struct bio_vec *bvec;
1144 	struct bvec_iter_all iter_all;
1145 
1146 	bio_for_each_segment_all(bvec, bio, iter_all) {
1147 		ssize_t ret;
1148 
1149 		ret = copy_page_from_iter(bvec->bv_page,
1150 					  bvec->bv_offset,
1151 					  bvec->bv_len,
1152 					  iter);
1153 
1154 		if (!iov_iter_count(iter))
1155 			break;
1156 
1157 		if (ret < bvec->bv_len)
1158 			return -EFAULT;
1159 	}
1160 
1161 	return 0;
1162 }
1163 
1164 /**
1165  * bio_copy_to_iter - copy all pages from bio to iov_iter
1166  * @bio: The &struct bio which describes the I/O as source
1167  * @iter: iov_iter as destination
1168  *
1169  * Copy all pages from bio to iov_iter.
1170  * Returns 0 on success, or error on failure.
1171  */
1172 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1173 {
1174 	struct bio_vec *bvec;
1175 	struct bvec_iter_all iter_all;
1176 
1177 	bio_for_each_segment_all(bvec, bio, iter_all) {
1178 		ssize_t ret;
1179 
1180 		ret = copy_page_to_iter(bvec->bv_page,
1181 					bvec->bv_offset,
1182 					bvec->bv_len,
1183 					&iter);
1184 
1185 		if (!iov_iter_count(&iter))
1186 			break;
1187 
1188 		if (ret < bvec->bv_len)
1189 			return -EFAULT;
1190 	}
1191 
1192 	return 0;
1193 }
1194 
1195 void bio_free_pages(struct bio *bio)
1196 {
1197 	struct bio_vec *bvec;
1198 	struct bvec_iter_all iter_all;
1199 
1200 	bio_for_each_segment_all(bvec, bio, iter_all)
1201 		__free_page(bvec->bv_page);
1202 }
1203 EXPORT_SYMBOL(bio_free_pages);
1204 
1205 /**
1206  *	bio_uncopy_user	-	finish previously mapped bio
1207  *	@bio: bio being terminated
1208  *
1209  *	Free pages allocated from bio_copy_user_iov() and write back data
1210  *	to user space in case of a read.
1211  */
1212 int bio_uncopy_user(struct bio *bio)
1213 {
1214 	struct bio_map_data *bmd = bio->bi_private;
1215 	int ret = 0;
1216 
1217 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1218 		/*
1219 		 * if we're in a workqueue, the request is orphaned, so
1220 		 * don't copy into a random user address space, just free
1221 		 * and return -EINTR so user space doesn't expect any data.
1222 		 */
1223 		if (!current->mm)
1224 			ret = -EINTR;
1225 		else if (bio_data_dir(bio) == READ)
1226 			ret = bio_copy_to_iter(bio, bmd->iter);
1227 		if (bmd->is_our_pages)
1228 			bio_free_pages(bio);
1229 	}
1230 	kfree(bmd);
1231 	bio_put(bio);
1232 	return ret;
1233 }
1234 
1235 /**
1236  *	bio_copy_user_iov	-	copy user data to bio
1237  *	@q:		destination block queue
1238  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1239  *	@iter:		iovec iterator
1240  *	@gfp_mask:	memory allocation flags
1241  *
1242  *	Prepares and returns a bio for indirect user io, bouncing data
1243  *	to/from kernel pages as necessary. Must be paired with
1244  *	call bio_uncopy_user() on io completion.
1245  */
1246 struct bio *bio_copy_user_iov(struct request_queue *q,
1247 			      struct rq_map_data *map_data,
1248 			      struct iov_iter *iter,
1249 			      gfp_t gfp_mask)
1250 {
1251 	struct bio_map_data *bmd;
1252 	struct page *page;
1253 	struct bio *bio;
1254 	int i = 0, ret;
1255 	int nr_pages;
1256 	unsigned int len = iter->count;
1257 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1258 
1259 	bmd = bio_alloc_map_data(iter, gfp_mask);
1260 	if (!bmd)
1261 		return ERR_PTR(-ENOMEM);
1262 
1263 	/*
1264 	 * We need to do a deep copy of the iov_iter including the iovecs.
1265 	 * The caller provided iov might point to an on-stack or otherwise
1266 	 * shortlived one.
1267 	 */
1268 	bmd->is_our_pages = map_data ? 0 : 1;
1269 
1270 	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1271 	if (nr_pages > BIO_MAX_PAGES)
1272 		nr_pages = BIO_MAX_PAGES;
1273 
1274 	ret = -ENOMEM;
1275 	bio = bio_kmalloc(gfp_mask, nr_pages);
1276 	if (!bio)
1277 		goto out_bmd;
1278 
1279 	ret = 0;
1280 
1281 	if (map_data) {
1282 		nr_pages = 1 << map_data->page_order;
1283 		i = map_data->offset / PAGE_SIZE;
1284 	}
1285 	while (len) {
1286 		unsigned int bytes = PAGE_SIZE;
1287 
1288 		bytes -= offset;
1289 
1290 		if (bytes > len)
1291 			bytes = len;
1292 
1293 		if (map_data) {
1294 			if (i == map_data->nr_entries * nr_pages) {
1295 				ret = -ENOMEM;
1296 				break;
1297 			}
1298 
1299 			page = map_data->pages[i / nr_pages];
1300 			page += (i % nr_pages);
1301 
1302 			i++;
1303 		} else {
1304 			page = alloc_page(q->bounce_gfp | gfp_mask);
1305 			if (!page) {
1306 				ret = -ENOMEM;
1307 				break;
1308 			}
1309 		}
1310 
1311 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1312 			if (!map_data)
1313 				__free_page(page);
1314 			break;
1315 		}
1316 
1317 		len -= bytes;
1318 		offset = 0;
1319 	}
1320 
1321 	if (ret)
1322 		goto cleanup;
1323 
1324 	if (map_data)
1325 		map_data->offset += bio->bi_iter.bi_size;
1326 
1327 	/*
1328 	 * success
1329 	 */
1330 	if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1331 	    (map_data && map_data->from_user)) {
1332 		ret = bio_copy_from_iter(bio, iter);
1333 		if (ret)
1334 			goto cleanup;
1335 	} else {
1336 		if (bmd->is_our_pages)
1337 			zero_fill_bio(bio);
1338 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1339 	}
1340 
1341 	bio->bi_private = bmd;
1342 	if (map_data && map_data->null_mapped)
1343 		bio_set_flag(bio, BIO_NULL_MAPPED);
1344 	return bio;
1345 cleanup:
1346 	if (!map_data)
1347 		bio_free_pages(bio);
1348 	bio_put(bio);
1349 out_bmd:
1350 	kfree(bmd);
1351 	return ERR_PTR(ret);
1352 }
1353 
1354 /**
1355  *	bio_map_user_iov - map user iovec into bio
1356  *	@q:		the struct request_queue for the bio
1357  *	@iter:		iovec iterator
1358  *	@gfp_mask:	memory allocation flags
1359  *
1360  *	Map the user space address into a bio suitable for io to a block
1361  *	device. Returns an error pointer in case of error.
1362  */
1363 struct bio *bio_map_user_iov(struct request_queue *q,
1364 			     struct iov_iter *iter,
1365 			     gfp_t gfp_mask)
1366 {
1367 	int j;
1368 	struct bio *bio;
1369 	int ret;
1370 	struct bio_vec *bvec;
1371 	struct bvec_iter_all iter_all;
1372 
1373 	if (!iov_iter_count(iter))
1374 		return ERR_PTR(-EINVAL);
1375 
1376 	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1377 	if (!bio)
1378 		return ERR_PTR(-ENOMEM);
1379 
1380 	while (iov_iter_count(iter)) {
1381 		struct page **pages;
1382 		ssize_t bytes;
1383 		size_t offs, added = 0;
1384 		int npages;
1385 
1386 		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1387 		if (unlikely(bytes <= 0)) {
1388 			ret = bytes ? bytes : -EFAULT;
1389 			goto out_unmap;
1390 		}
1391 
1392 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1393 
1394 		if (unlikely(offs & queue_dma_alignment(q))) {
1395 			ret = -EINVAL;
1396 			j = 0;
1397 		} else {
1398 			for (j = 0; j < npages; j++) {
1399 				struct page *page = pages[j];
1400 				unsigned int n = PAGE_SIZE - offs;
1401 
1402 				if (n > bytes)
1403 					n = bytes;
1404 
1405 				if (!__bio_add_pc_page(q, bio, page, n, offs,
1406 							true))
1407 					break;
1408 
1409 				added += n;
1410 				bytes -= n;
1411 				offs = 0;
1412 			}
1413 			iov_iter_advance(iter, added);
1414 		}
1415 		/*
1416 		 * release the pages we didn't map into the bio, if any
1417 		 */
1418 		while (j < npages)
1419 			put_page(pages[j++]);
1420 		kvfree(pages);
1421 		/* couldn't stuff something into bio? */
1422 		if (bytes)
1423 			break;
1424 	}
1425 
1426 	bio_set_flag(bio, BIO_USER_MAPPED);
1427 
1428 	/*
1429 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1430 	 * it would normally disappear when its bi_end_io is run.
1431 	 * however, we need it for the unmap, so grab an extra
1432 	 * reference to it
1433 	 */
1434 	bio_get(bio);
1435 	return bio;
1436 
1437  out_unmap:
1438 	bio_for_each_segment_all(bvec, bio, iter_all) {
1439 		put_page(bvec->bv_page);
1440 	}
1441 	bio_put(bio);
1442 	return ERR_PTR(ret);
1443 }
1444 
1445 static void __bio_unmap_user(struct bio *bio)
1446 {
1447 	struct bio_vec *bvec;
1448 	struct bvec_iter_all iter_all;
1449 
1450 	/*
1451 	 * make sure we dirty pages we wrote to
1452 	 */
1453 	bio_for_each_segment_all(bvec, bio, iter_all) {
1454 		if (bio_data_dir(bio) == READ)
1455 			set_page_dirty_lock(bvec->bv_page);
1456 
1457 		put_page(bvec->bv_page);
1458 	}
1459 
1460 	bio_put(bio);
1461 }
1462 
1463 /**
1464  *	bio_unmap_user	-	unmap a bio
1465  *	@bio:		the bio being unmapped
1466  *
1467  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1468  *	process context.
1469  *
1470  *	bio_unmap_user() may sleep.
1471  */
1472 void bio_unmap_user(struct bio *bio)
1473 {
1474 	__bio_unmap_user(bio);
1475 	bio_put(bio);
1476 }
1477 
1478 static void bio_map_kern_endio(struct bio *bio)
1479 {
1480 	bio_put(bio);
1481 }
1482 
1483 /**
1484  *	bio_map_kern	-	map kernel address into bio
1485  *	@q: the struct request_queue for the bio
1486  *	@data: pointer to buffer to map
1487  *	@len: length in bytes
1488  *	@gfp_mask: allocation flags for bio allocation
1489  *
1490  *	Map the kernel address into a bio suitable for io to a block
1491  *	device. Returns an error pointer in case of error.
1492  */
1493 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1494 			 gfp_t gfp_mask)
1495 {
1496 	unsigned long kaddr = (unsigned long)data;
1497 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1498 	unsigned long start = kaddr >> PAGE_SHIFT;
1499 	const int nr_pages = end - start;
1500 	int offset, i;
1501 	struct bio *bio;
1502 
1503 	bio = bio_kmalloc(gfp_mask, nr_pages);
1504 	if (!bio)
1505 		return ERR_PTR(-ENOMEM);
1506 
1507 	offset = offset_in_page(kaddr);
1508 	for (i = 0; i < nr_pages; i++) {
1509 		unsigned int bytes = PAGE_SIZE - offset;
1510 
1511 		if (len <= 0)
1512 			break;
1513 
1514 		if (bytes > len)
1515 			bytes = len;
1516 
1517 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1518 				    offset) < bytes) {
1519 			/* we don't support partial mappings */
1520 			bio_put(bio);
1521 			return ERR_PTR(-EINVAL);
1522 		}
1523 
1524 		data += bytes;
1525 		len -= bytes;
1526 		offset = 0;
1527 	}
1528 
1529 	bio->bi_end_io = bio_map_kern_endio;
1530 	return bio;
1531 }
1532 EXPORT_SYMBOL(bio_map_kern);
1533 
1534 static void bio_copy_kern_endio(struct bio *bio)
1535 {
1536 	bio_free_pages(bio);
1537 	bio_put(bio);
1538 }
1539 
1540 static void bio_copy_kern_endio_read(struct bio *bio)
1541 {
1542 	char *p = bio->bi_private;
1543 	struct bio_vec *bvec;
1544 	struct bvec_iter_all iter_all;
1545 
1546 	bio_for_each_segment_all(bvec, bio, iter_all) {
1547 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1548 		p += bvec->bv_len;
1549 	}
1550 
1551 	bio_copy_kern_endio(bio);
1552 }
1553 
1554 /**
1555  *	bio_copy_kern	-	copy kernel address into bio
1556  *	@q: the struct request_queue for the bio
1557  *	@data: pointer to buffer to copy
1558  *	@len: length in bytes
1559  *	@gfp_mask: allocation flags for bio and page allocation
1560  *	@reading: data direction is READ
1561  *
1562  *	copy the kernel address into a bio suitable for io to a block
1563  *	device. Returns an error pointer in case of error.
1564  */
1565 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1566 			  gfp_t gfp_mask, int reading)
1567 {
1568 	unsigned long kaddr = (unsigned long)data;
1569 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1570 	unsigned long start = kaddr >> PAGE_SHIFT;
1571 	struct bio *bio;
1572 	void *p = data;
1573 	int nr_pages = 0;
1574 
1575 	/*
1576 	 * Overflow, abort
1577 	 */
1578 	if (end < start)
1579 		return ERR_PTR(-EINVAL);
1580 
1581 	nr_pages = end - start;
1582 	bio = bio_kmalloc(gfp_mask, nr_pages);
1583 	if (!bio)
1584 		return ERR_PTR(-ENOMEM);
1585 
1586 	while (len) {
1587 		struct page *page;
1588 		unsigned int bytes = PAGE_SIZE;
1589 
1590 		if (bytes > len)
1591 			bytes = len;
1592 
1593 		page = alloc_page(q->bounce_gfp | gfp_mask);
1594 		if (!page)
1595 			goto cleanup;
1596 
1597 		if (!reading)
1598 			memcpy(page_address(page), p, bytes);
1599 
1600 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1601 			break;
1602 
1603 		len -= bytes;
1604 		p += bytes;
1605 	}
1606 
1607 	if (reading) {
1608 		bio->bi_end_io = bio_copy_kern_endio_read;
1609 		bio->bi_private = data;
1610 	} else {
1611 		bio->bi_end_io = bio_copy_kern_endio;
1612 	}
1613 
1614 	return bio;
1615 
1616 cleanup:
1617 	bio_free_pages(bio);
1618 	bio_put(bio);
1619 	return ERR_PTR(-ENOMEM);
1620 }
1621 
1622 /*
1623  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1624  * for performing direct-IO in BIOs.
1625  *
1626  * The problem is that we cannot run set_page_dirty() from interrupt context
1627  * because the required locks are not interrupt-safe.  So what we can do is to
1628  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1629  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1630  * in process context.
1631  *
1632  * We special-case compound pages here: normally this means reads into hugetlb
1633  * pages.  The logic in here doesn't really work right for compound pages
1634  * because the VM does not uniformly chase down the head page in all cases.
1635  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1636  * handle them at all.  So we skip compound pages here at an early stage.
1637  *
1638  * Note that this code is very hard to test under normal circumstances because
1639  * direct-io pins the pages with get_user_pages().  This makes
1640  * is_page_cache_freeable return false, and the VM will not clean the pages.
1641  * But other code (eg, flusher threads) could clean the pages if they are mapped
1642  * pagecache.
1643  *
1644  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1645  * deferred bio dirtying paths.
1646  */
1647 
1648 /*
1649  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1650  */
1651 void bio_set_pages_dirty(struct bio *bio)
1652 {
1653 	struct bio_vec *bvec;
1654 	struct bvec_iter_all iter_all;
1655 
1656 	bio_for_each_segment_all(bvec, bio, iter_all) {
1657 		if (!PageCompound(bvec->bv_page))
1658 			set_page_dirty_lock(bvec->bv_page);
1659 	}
1660 }
1661 
1662 /*
1663  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1664  * If they are, then fine.  If, however, some pages are clean then they must
1665  * have been written out during the direct-IO read.  So we take another ref on
1666  * the BIO and re-dirty the pages in process context.
1667  *
1668  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1669  * here on.  It will run one put_page() against each page and will run one
1670  * bio_put() against the BIO.
1671  */
1672 
1673 static void bio_dirty_fn(struct work_struct *work);
1674 
1675 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1676 static DEFINE_SPINLOCK(bio_dirty_lock);
1677 static struct bio *bio_dirty_list;
1678 
1679 /*
1680  * This runs in process context
1681  */
1682 static void bio_dirty_fn(struct work_struct *work)
1683 {
1684 	struct bio *bio, *next;
1685 
1686 	spin_lock_irq(&bio_dirty_lock);
1687 	next = bio_dirty_list;
1688 	bio_dirty_list = NULL;
1689 	spin_unlock_irq(&bio_dirty_lock);
1690 
1691 	while ((bio = next) != NULL) {
1692 		next = bio->bi_private;
1693 
1694 		bio_set_pages_dirty(bio);
1695 		if (!bio_flagged(bio, BIO_NO_PAGE_REF))
1696 			bio_release_pages(bio);
1697 		bio_put(bio);
1698 	}
1699 }
1700 
1701 void bio_check_pages_dirty(struct bio *bio)
1702 {
1703 	struct bio_vec *bvec;
1704 	unsigned long flags;
1705 	struct bvec_iter_all iter_all;
1706 
1707 	bio_for_each_segment_all(bvec, bio, iter_all) {
1708 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1709 			goto defer;
1710 	}
1711 
1712 	if (!bio_flagged(bio, BIO_NO_PAGE_REF))
1713 		bio_release_pages(bio);
1714 	bio_put(bio);
1715 	return;
1716 defer:
1717 	spin_lock_irqsave(&bio_dirty_lock, flags);
1718 	bio->bi_private = bio_dirty_list;
1719 	bio_dirty_list = bio;
1720 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1721 	schedule_work(&bio_dirty_work);
1722 }
1723 
1724 void update_io_ticks(struct hd_struct *part, unsigned long now)
1725 {
1726 	unsigned long stamp;
1727 again:
1728 	stamp = READ_ONCE(part->stamp);
1729 	if (unlikely(stamp != now)) {
1730 		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1731 			__part_stat_add(part, io_ticks, 1);
1732 		}
1733 	}
1734 	if (part->partno) {
1735 		part = &part_to_disk(part)->part0;
1736 		goto again;
1737 	}
1738 }
1739 
1740 void generic_start_io_acct(struct request_queue *q, int op,
1741 			   unsigned long sectors, struct hd_struct *part)
1742 {
1743 	const int sgrp = op_stat_group(op);
1744 
1745 	part_stat_lock();
1746 
1747 	update_io_ticks(part, jiffies);
1748 	part_stat_inc(part, ios[sgrp]);
1749 	part_stat_add(part, sectors[sgrp], sectors);
1750 	part_inc_in_flight(q, part, op_is_write(op));
1751 
1752 	part_stat_unlock();
1753 }
1754 EXPORT_SYMBOL(generic_start_io_acct);
1755 
1756 void generic_end_io_acct(struct request_queue *q, int req_op,
1757 			 struct hd_struct *part, unsigned long start_time)
1758 {
1759 	unsigned long now = jiffies;
1760 	unsigned long duration = now - start_time;
1761 	const int sgrp = op_stat_group(req_op);
1762 
1763 	part_stat_lock();
1764 
1765 	update_io_ticks(part, now);
1766 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1767 	part_stat_add(part, time_in_queue, duration);
1768 	part_dec_in_flight(q, part, op_is_write(req_op));
1769 
1770 	part_stat_unlock();
1771 }
1772 EXPORT_SYMBOL(generic_end_io_acct);
1773 
1774 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1775 void bio_flush_dcache_pages(struct bio *bi)
1776 {
1777 	struct bio_vec bvec;
1778 	struct bvec_iter iter;
1779 
1780 	bio_for_each_segment(bvec, bi, iter)
1781 		flush_dcache_page(bvec.bv_page);
1782 }
1783 EXPORT_SYMBOL(bio_flush_dcache_pages);
1784 #endif
1785 
1786 static inline bool bio_remaining_done(struct bio *bio)
1787 {
1788 	/*
1789 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1790 	 * we always end io on the first invocation.
1791 	 */
1792 	if (!bio_flagged(bio, BIO_CHAIN))
1793 		return true;
1794 
1795 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1796 
1797 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1798 		bio_clear_flag(bio, BIO_CHAIN);
1799 		return true;
1800 	}
1801 
1802 	return false;
1803 }
1804 
1805 /**
1806  * bio_endio - end I/O on a bio
1807  * @bio:	bio
1808  *
1809  * Description:
1810  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1811  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1812  *   bio unless they own it and thus know that it has an end_io function.
1813  *
1814  *   bio_endio() can be called several times on a bio that has been chained
1815  *   using bio_chain().  The ->bi_end_io() function will only be called the
1816  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1817  *   generated if BIO_TRACE_COMPLETION is set.
1818  **/
1819 void bio_endio(struct bio *bio)
1820 {
1821 again:
1822 	if (!bio_remaining_done(bio))
1823 		return;
1824 	if (!bio_integrity_endio(bio))
1825 		return;
1826 
1827 	if (bio->bi_disk)
1828 		rq_qos_done_bio(bio->bi_disk->queue, bio);
1829 
1830 	/*
1831 	 * Need to have a real endio function for chained bios, otherwise
1832 	 * various corner cases will break (like stacking block devices that
1833 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1834 	 * recursion and blowing the stack. Tail call optimization would
1835 	 * handle this, but compiling with frame pointers also disables
1836 	 * gcc's sibling call optimization.
1837 	 */
1838 	if (bio->bi_end_io == bio_chain_endio) {
1839 		bio = __bio_chain_endio(bio);
1840 		goto again;
1841 	}
1842 
1843 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1844 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1845 					 blk_status_to_errno(bio->bi_status));
1846 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1847 	}
1848 
1849 	blk_throtl_bio_endio(bio);
1850 	/* release cgroup info */
1851 	bio_uninit(bio);
1852 	if (bio->bi_end_io)
1853 		bio->bi_end_io(bio);
1854 }
1855 EXPORT_SYMBOL(bio_endio);
1856 
1857 /**
1858  * bio_split - split a bio
1859  * @bio:	bio to split
1860  * @sectors:	number of sectors to split from the front of @bio
1861  * @gfp:	gfp mask
1862  * @bs:		bio set to allocate from
1863  *
1864  * Allocates and returns a new bio which represents @sectors from the start of
1865  * @bio, and updates @bio to represent the remaining sectors.
1866  *
1867  * Unless this is a discard request the newly allocated bio will point
1868  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1869  * @bio is not freed before the split.
1870  */
1871 struct bio *bio_split(struct bio *bio, int sectors,
1872 		      gfp_t gfp, struct bio_set *bs)
1873 {
1874 	struct bio *split;
1875 
1876 	BUG_ON(sectors <= 0);
1877 	BUG_ON(sectors >= bio_sectors(bio));
1878 
1879 	split = bio_clone_fast(bio, gfp, bs);
1880 	if (!split)
1881 		return NULL;
1882 
1883 	split->bi_iter.bi_size = sectors << 9;
1884 
1885 	if (bio_integrity(split))
1886 		bio_integrity_trim(split);
1887 
1888 	bio_advance(bio, split->bi_iter.bi_size);
1889 
1890 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1891 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1892 
1893 	return split;
1894 }
1895 EXPORT_SYMBOL(bio_split);
1896 
1897 /**
1898  * bio_trim - trim a bio
1899  * @bio:	bio to trim
1900  * @offset:	number of sectors to trim from the front of @bio
1901  * @size:	size we want to trim @bio to, in sectors
1902  */
1903 void bio_trim(struct bio *bio, int offset, int size)
1904 {
1905 	/* 'bio' is a cloned bio which we need to trim to match
1906 	 * the given offset and size.
1907 	 */
1908 
1909 	size <<= 9;
1910 	if (offset == 0 && size == bio->bi_iter.bi_size)
1911 		return;
1912 
1913 	bio_clear_flag(bio, BIO_SEG_VALID);
1914 
1915 	bio_advance(bio, offset << 9);
1916 
1917 	bio->bi_iter.bi_size = size;
1918 
1919 	if (bio_integrity(bio))
1920 		bio_integrity_trim(bio);
1921 
1922 }
1923 EXPORT_SYMBOL_GPL(bio_trim);
1924 
1925 /*
1926  * create memory pools for biovec's in a bio_set.
1927  * use the global biovec slabs created for general use.
1928  */
1929 int biovec_init_pool(mempool_t *pool, int pool_entries)
1930 {
1931 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1932 
1933 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1934 }
1935 
1936 /*
1937  * bioset_exit - exit a bioset initialized with bioset_init()
1938  *
1939  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1940  * kzalloc()).
1941  */
1942 void bioset_exit(struct bio_set *bs)
1943 {
1944 	if (bs->rescue_workqueue)
1945 		destroy_workqueue(bs->rescue_workqueue);
1946 	bs->rescue_workqueue = NULL;
1947 
1948 	mempool_exit(&bs->bio_pool);
1949 	mempool_exit(&bs->bvec_pool);
1950 
1951 	bioset_integrity_free(bs);
1952 	if (bs->bio_slab)
1953 		bio_put_slab(bs);
1954 	bs->bio_slab = NULL;
1955 }
1956 EXPORT_SYMBOL(bioset_exit);
1957 
1958 /**
1959  * bioset_init - Initialize a bio_set
1960  * @bs:		pool to initialize
1961  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1962  * @front_pad:	Number of bytes to allocate in front of the returned bio
1963  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1964  *              and %BIOSET_NEED_RESCUER
1965  *
1966  * Description:
1967  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1968  *    to ask for a number of bytes to be allocated in front of the bio.
1969  *    Front pad allocation is useful for embedding the bio inside
1970  *    another structure, to avoid allocating extra data to go with the bio.
1971  *    Note that the bio must be embedded at the END of that structure always,
1972  *    or things will break badly.
1973  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1974  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1975  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1976  *    dispatch queued requests when the mempool runs out of space.
1977  *
1978  */
1979 int bioset_init(struct bio_set *bs,
1980 		unsigned int pool_size,
1981 		unsigned int front_pad,
1982 		int flags)
1983 {
1984 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1985 
1986 	bs->front_pad = front_pad;
1987 
1988 	spin_lock_init(&bs->rescue_lock);
1989 	bio_list_init(&bs->rescue_list);
1990 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1991 
1992 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1993 	if (!bs->bio_slab)
1994 		return -ENOMEM;
1995 
1996 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1997 		goto bad;
1998 
1999 	if ((flags & BIOSET_NEED_BVECS) &&
2000 	    biovec_init_pool(&bs->bvec_pool, pool_size))
2001 		goto bad;
2002 
2003 	if (!(flags & BIOSET_NEED_RESCUER))
2004 		return 0;
2005 
2006 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2007 	if (!bs->rescue_workqueue)
2008 		goto bad;
2009 
2010 	return 0;
2011 bad:
2012 	bioset_exit(bs);
2013 	return -ENOMEM;
2014 }
2015 EXPORT_SYMBOL(bioset_init);
2016 
2017 /*
2018  * Initialize and setup a new bio_set, based on the settings from
2019  * another bio_set.
2020  */
2021 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2022 {
2023 	int flags;
2024 
2025 	flags = 0;
2026 	if (src->bvec_pool.min_nr)
2027 		flags |= BIOSET_NEED_BVECS;
2028 	if (src->rescue_workqueue)
2029 		flags |= BIOSET_NEED_RESCUER;
2030 
2031 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2032 }
2033 EXPORT_SYMBOL(bioset_init_from_src);
2034 
2035 #ifdef CONFIG_BLK_CGROUP
2036 
2037 /**
2038  * bio_disassociate_blkg - puts back the blkg reference if associated
2039  * @bio: target bio
2040  *
2041  * Helper to disassociate the blkg from @bio if a blkg is associated.
2042  */
2043 void bio_disassociate_blkg(struct bio *bio)
2044 {
2045 	if (bio->bi_blkg) {
2046 		blkg_put(bio->bi_blkg);
2047 		bio->bi_blkg = NULL;
2048 	}
2049 }
2050 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2051 
2052 /**
2053  * __bio_associate_blkg - associate a bio with the a blkg
2054  * @bio: target bio
2055  * @blkg: the blkg to associate
2056  *
2057  * This tries to associate @bio with the specified @blkg.  Association failure
2058  * is handled by walking up the blkg tree.  Therefore, the blkg associated can
2059  * be anything between @blkg and the root_blkg.  This situation only happens
2060  * when a cgroup is dying and then the remaining bios will spill to the closest
2061  * alive blkg.
2062  *
2063  * A reference will be taken on the @blkg and will be released when @bio is
2064  * freed.
2065  */
2066 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2067 {
2068 	bio_disassociate_blkg(bio);
2069 
2070 	bio->bi_blkg = blkg_tryget_closest(blkg);
2071 }
2072 
2073 /**
2074  * bio_associate_blkg_from_css - associate a bio with a specified css
2075  * @bio: target bio
2076  * @css: target css
2077  *
2078  * Associate @bio with the blkg found by combining the css's blkg and the
2079  * request_queue of the @bio.  This falls back to the queue's root_blkg if
2080  * the association fails with the css.
2081  */
2082 void bio_associate_blkg_from_css(struct bio *bio,
2083 				 struct cgroup_subsys_state *css)
2084 {
2085 	struct request_queue *q = bio->bi_disk->queue;
2086 	struct blkcg_gq *blkg;
2087 
2088 	rcu_read_lock();
2089 
2090 	if (!css || !css->parent)
2091 		blkg = q->root_blkg;
2092 	else
2093 		blkg = blkg_lookup_create(css_to_blkcg(css), q);
2094 
2095 	__bio_associate_blkg(bio, blkg);
2096 
2097 	rcu_read_unlock();
2098 }
2099 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2100 
2101 #ifdef CONFIG_MEMCG
2102 /**
2103  * bio_associate_blkg_from_page - associate a bio with the page's blkg
2104  * @bio: target bio
2105  * @page: the page to lookup the blkcg from
2106  *
2107  * Associate @bio with the blkg from @page's owning memcg and the respective
2108  * request_queue.  If cgroup_e_css returns %NULL, fall back to the queue's
2109  * root_blkg.
2110  */
2111 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2112 {
2113 	struct cgroup_subsys_state *css;
2114 
2115 	if (!page->mem_cgroup)
2116 		return;
2117 
2118 	rcu_read_lock();
2119 
2120 	css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2121 	bio_associate_blkg_from_css(bio, css);
2122 
2123 	rcu_read_unlock();
2124 }
2125 #endif /* CONFIG_MEMCG */
2126 
2127 /**
2128  * bio_associate_blkg - associate a bio with a blkg
2129  * @bio: target bio
2130  *
2131  * Associate @bio with the blkg found from the bio's css and request_queue.
2132  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2133  * already associated, the css is reused and association redone as the
2134  * request_queue may have changed.
2135  */
2136 void bio_associate_blkg(struct bio *bio)
2137 {
2138 	struct cgroup_subsys_state *css;
2139 
2140 	rcu_read_lock();
2141 
2142 	if (bio->bi_blkg)
2143 		css = &bio_blkcg(bio)->css;
2144 	else
2145 		css = blkcg_css();
2146 
2147 	bio_associate_blkg_from_css(bio, css);
2148 
2149 	rcu_read_unlock();
2150 }
2151 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2152 
2153 /**
2154  * bio_clone_blkg_association - clone blkg association from src to dst bio
2155  * @dst: destination bio
2156  * @src: source bio
2157  */
2158 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2159 {
2160 	rcu_read_lock();
2161 
2162 	if (src->bi_blkg)
2163 		__bio_associate_blkg(dst, src->bi_blkg);
2164 
2165 	rcu_read_unlock();
2166 }
2167 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2168 #endif /* CONFIG_BLK_CGROUP */
2169 
2170 static void __init biovec_init_slabs(void)
2171 {
2172 	int i;
2173 
2174 	for (i = 0; i < BVEC_POOL_NR; i++) {
2175 		int size;
2176 		struct biovec_slab *bvs = bvec_slabs + i;
2177 
2178 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2179 			bvs->slab = NULL;
2180 			continue;
2181 		}
2182 
2183 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2184 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2185                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2186 	}
2187 }
2188 
2189 static int __init init_bio(void)
2190 {
2191 	bio_slab_max = 2;
2192 	bio_slab_nr = 0;
2193 	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2194 			    GFP_KERNEL);
2195 
2196 	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2197 
2198 	if (!bio_slabs)
2199 		panic("bio: can't allocate bios\n");
2200 
2201 	bio_integrity_init();
2202 	biovec_init_slabs();
2203 
2204 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2205 		panic("bio: can't allocate bios\n");
2206 
2207 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2208 		panic("bio: can't create integrity pool\n");
2209 
2210 	return 0;
2211 }
2212 subsys_initcall(init_bio);
2213