1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 4 */ 5 #include <linux/mm.h> 6 #include <linux/swap.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/uio.h> 10 #include <linux/iocontext.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/mempool.h> 16 #include <linux/workqueue.h> 17 #include <linux/cgroup.h> 18 #include <linux/blk-cgroup.h> 19 #include <linux/highmem.h> 20 21 #include <trace/events/block.h> 22 #include "blk.h" 23 #include "blk-rq-qos.h" 24 25 /* 26 * Test patch to inline a certain number of bi_io_vec's inside the bio 27 * itself, to shrink a bio data allocation from two mempool calls to one 28 */ 29 #define BIO_INLINE_VECS 4 30 31 /* 32 * if you change this list, also change bvec_alloc or things will 33 * break badly! cannot be bigger than what you can fit into an 34 * unsigned short 35 */ 36 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n } 37 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { 38 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max), 39 }; 40 #undef BV 41 42 /* 43 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 44 * IO code that does not need private memory pools. 45 */ 46 struct bio_set fs_bio_set; 47 EXPORT_SYMBOL(fs_bio_set); 48 49 /* 50 * Our slab pool management 51 */ 52 struct bio_slab { 53 struct kmem_cache *slab; 54 unsigned int slab_ref; 55 unsigned int slab_size; 56 char name[8]; 57 }; 58 static DEFINE_MUTEX(bio_slab_lock); 59 static struct bio_slab *bio_slabs; 60 static unsigned int bio_slab_nr, bio_slab_max; 61 62 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 63 { 64 unsigned int sz = sizeof(struct bio) + extra_size; 65 struct kmem_cache *slab = NULL; 66 struct bio_slab *bslab, *new_bio_slabs; 67 unsigned int new_bio_slab_max; 68 unsigned int i, entry = -1; 69 70 mutex_lock(&bio_slab_lock); 71 72 i = 0; 73 while (i < bio_slab_nr) { 74 bslab = &bio_slabs[i]; 75 76 if (!bslab->slab && entry == -1) 77 entry = i; 78 else if (bslab->slab_size == sz) { 79 slab = bslab->slab; 80 bslab->slab_ref++; 81 break; 82 } 83 i++; 84 } 85 86 if (slab) 87 goto out_unlock; 88 89 if (bio_slab_nr == bio_slab_max && entry == -1) { 90 new_bio_slab_max = bio_slab_max << 1; 91 new_bio_slabs = krealloc(bio_slabs, 92 new_bio_slab_max * sizeof(struct bio_slab), 93 GFP_KERNEL); 94 if (!new_bio_slabs) 95 goto out_unlock; 96 bio_slab_max = new_bio_slab_max; 97 bio_slabs = new_bio_slabs; 98 } 99 if (entry == -1) 100 entry = bio_slab_nr++; 101 102 bslab = &bio_slabs[entry]; 103 104 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 105 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, 106 SLAB_HWCACHE_ALIGN, NULL); 107 if (!slab) 108 goto out_unlock; 109 110 bslab->slab = slab; 111 bslab->slab_ref = 1; 112 bslab->slab_size = sz; 113 out_unlock: 114 mutex_unlock(&bio_slab_lock); 115 return slab; 116 } 117 118 static void bio_put_slab(struct bio_set *bs) 119 { 120 struct bio_slab *bslab = NULL; 121 unsigned int i; 122 123 mutex_lock(&bio_slab_lock); 124 125 for (i = 0; i < bio_slab_nr; i++) { 126 if (bs->bio_slab == bio_slabs[i].slab) { 127 bslab = &bio_slabs[i]; 128 break; 129 } 130 } 131 132 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 133 goto out; 134 135 WARN_ON(!bslab->slab_ref); 136 137 if (--bslab->slab_ref) 138 goto out; 139 140 kmem_cache_destroy(bslab->slab); 141 bslab->slab = NULL; 142 143 out: 144 mutex_unlock(&bio_slab_lock); 145 } 146 147 unsigned int bvec_nr_vecs(unsigned short idx) 148 { 149 return bvec_slabs[--idx].nr_vecs; 150 } 151 152 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 153 { 154 if (!idx) 155 return; 156 idx--; 157 158 BIO_BUG_ON(idx >= BVEC_POOL_NR); 159 160 if (idx == BVEC_POOL_MAX) { 161 mempool_free(bv, pool); 162 } else { 163 struct biovec_slab *bvs = bvec_slabs + idx; 164 165 kmem_cache_free(bvs->slab, bv); 166 } 167 } 168 169 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 170 mempool_t *pool) 171 { 172 struct bio_vec *bvl; 173 174 /* 175 * see comment near bvec_array define! 176 */ 177 switch (nr) { 178 case 1: 179 *idx = 0; 180 break; 181 case 2 ... 4: 182 *idx = 1; 183 break; 184 case 5 ... 16: 185 *idx = 2; 186 break; 187 case 17 ... 64: 188 *idx = 3; 189 break; 190 case 65 ... 128: 191 *idx = 4; 192 break; 193 case 129 ... BIO_MAX_PAGES: 194 *idx = 5; 195 break; 196 default: 197 return NULL; 198 } 199 200 /* 201 * idx now points to the pool we want to allocate from. only the 202 * 1-vec entry pool is mempool backed. 203 */ 204 if (*idx == BVEC_POOL_MAX) { 205 fallback: 206 bvl = mempool_alloc(pool, gfp_mask); 207 } else { 208 struct biovec_slab *bvs = bvec_slabs + *idx; 209 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); 210 211 /* 212 * Make this allocation restricted and don't dump info on 213 * allocation failures, since we'll fallback to the mempool 214 * in case of failure. 215 */ 216 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 217 218 /* 219 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM 220 * is set, retry with the 1-entry mempool 221 */ 222 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 223 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { 224 *idx = BVEC_POOL_MAX; 225 goto fallback; 226 } 227 } 228 229 (*idx)++; 230 return bvl; 231 } 232 233 void bio_uninit(struct bio *bio) 234 { 235 bio_disassociate_blkg(bio); 236 } 237 EXPORT_SYMBOL(bio_uninit); 238 239 static void bio_free(struct bio *bio) 240 { 241 struct bio_set *bs = bio->bi_pool; 242 void *p; 243 244 bio_uninit(bio); 245 246 if (bs) { 247 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); 248 249 /* 250 * If we have front padding, adjust the bio pointer before freeing 251 */ 252 p = bio; 253 p -= bs->front_pad; 254 255 mempool_free(p, &bs->bio_pool); 256 } else { 257 /* Bio was allocated by bio_kmalloc() */ 258 kfree(bio); 259 } 260 } 261 262 /* 263 * Users of this function have their own bio allocation. Subsequently, 264 * they must remember to pair any call to bio_init() with bio_uninit() 265 * when IO has completed, or when the bio is released. 266 */ 267 void bio_init(struct bio *bio, struct bio_vec *table, 268 unsigned short max_vecs) 269 { 270 memset(bio, 0, sizeof(*bio)); 271 atomic_set(&bio->__bi_remaining, 1); 272 atomic_set(&bio->__bi_cnt, 1); 273 274 bio->bi_io_vec = table; 275 bio->bi_max_vecs = max_vecs; 276 } 277 EXPORT_SYMBOL(bio_init); 278 279 /** 280 * bio_reset - reinitialize a bio 281 * @bio: bio to reset 282 * 283 * Description: 284 * After calling bio_reset(), @bio will be in the same state as a freshly 285 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 286 * preserved are the ones that are initialized by bio_alloc_bioset(). See 287 * comment in struct bio. 288 */ 289 void bio_reset(struct bio *bio) 290 { 291 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 292 293 bio_uninit(bio); 294 295 memset(bio, 0, BIO_RESET_BYTES); 296 bio->bi_flags = flags; 297 atomic_set(&bio->__bi_remaining, 1); 298 } 299 EXPORT_SYMBOL(bio_reset); 300 301 static struct bio *__bio_chain_endio(struct bio *bio) 302 { 303 struct bio *parent = bio->bi_private; 304 305 if (!parent->bi_status) 306 parent->bi_status = bio->bi_status; 307 bio_put(bio); 308 return parent; 309 } 310 311 static void bio_chain_endio(struct bio *bio) 312 { 313 bio_endio(__bio_chain_endio(bio)); 314 } 315 316 /** 317 * bio_chain - chain bio completions 318 * @bio: the target bio 319 * @parent: the @bio's parent bio 320 * 321 * The caller won't have a bi_end_io called when @bio completes - instead, 322 * @parent's bi_end_io won't be called until both @parent and @bio have 323 * completed; the chained bio will also be freed when it completes. 324 * 325 * The caller must not set bi_private or bi_end_io in @bio. 326 */ 327 void bio_chain(struct bio *bio, struct bio *parent) 328 { 329 BUG_ON(bio->bi_private || bio->bi_end_io); 330 331 bio->bi_private = parent; 332 bio->bi_end_io = bio_chain_endio; 333 bio_inc_remaining(parent); 334 } 335 EXPORT_SYMBOL(bio_chain); 336 337 static void bio_alloc_rescue(struct work_struct *work) 338 { 339 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 340 struct bio *bio; 341 342 while (1) { 343 spin_lock(&bs->rescue_lock); 344 bio = bio_list_pop(&bs->rescue_list); 345 spin_unlock(&bs->rescue_lock); 346 347 if (!bio) 348 break; 349 350 generic_make_request(bio); 351 } 352 } 353 354 static void punt_bios_to_rescuer(struct bio_set *bs) 355 { 356 struct bio_list punt, nopunt; 357 struct bio *bio; 358 359 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 360 return; 361 /* 362 * In order to guarantee forward progress we must punt only bios that 363 * were allocated from this bio_set; otherwise, if there was a bio on 364 * there for a stacking driver higher up in the stack, processing it 365 * could require allocating bios from this bio_set, and doing that from 366 * our own rescuer would be bad. 367 * 368 * Since bio lists are singly linked, pop them all instead of trying to 369 * remove from the middle of the list: 370 */ 371 372 bio_list_init(&punt); 373 bio_list_init(&nopunt); 374 375 while ((bio = bio_list_pop(¤t->bio_list[0]))) 376 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 377 current->bio_list[0] = nopunt; 378 379 bio_list_init(&nopunt); 380 while ((bio = bio_list_pop(¤t->bio_list[1]))) 381 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 382 current->bio_list[1] = nopunt; 383 384 spin_lock(&bs->rescue_lock); 385 bio_list_merge(&bs->rescue_list, &punt); 386 spin_unlock(&bs->rescue_lock); 387 388 queue_work(bs->rescue_workqueue, &bs->rescue_work); 389 } 390 391 /** 392 * bio_alloc_bioset - allocate a bio for I/O 393 * @gfp_mask: the GFP_* mask given to the slab allocator 394 * @nr_iovecs: number of iovecs to pre-allocate 395 * @bs: the bio_set to allocate from. 396 * 397 * Description: 398 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 399 * backed by the @bs's mempool. 400 * 401 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will 402 * always be able to allocate a bio. This is due to the mempool guarantees. 403 * To make this work, callers must never allocate more than 1 bio at a time 404 * from this pool. Callers that need to allocate more than 1 bio must always 405 * submit the previously allocated bio for IO before attempting to allocate 406 * a new one. Failure to do so can cause deadlocks under memory pressure. 407 * 408 * Note that when running under generic_make_request() (i.e. any block 409 * driver), bios are not submitted until after you return - see the code in 410 * generic_make_request() that converts recursion into iteration, to prevent 411 * stack overflows. 412 * 413 * This would normally mean allocating multiple bios under 414 * generic_make_request() would be susceptible to deadlocks, but we have 415 * deadlock avoidance code that resubmits any blocked bios from a rescuer 416 * thread. 417 * 418 * However, we do not guarantee forward progress for allocations from other 419 * mempools. Doing multiple allocations from the same mempool under 420 * generic_make_request() should be avoided - instead, use bio_set's front_pad 421 * for per bio allocations. 422 * 423 * RETURNS: 424 * Pointer to new bio on success, NULL on failure. 425 */ 426 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs, 427 struct bio_set *bs) 428 { 429 gfp_t saved_gfp = gfp_mask; 430 unsigned front_pad; 431 unsigned inline_vecs; 432 struct bio_vec *bvl = NULL; 433 struct bio *bio; 434 void *p; 435 436 if (!bs) { 437 if (nr_iovecs > UIO_MAXIOV) 438 return NULL; 439 440 p = kmalloc(sizeof(struct bio) + 441 nr_iovecs * sizeof(struct bio_vec), 442 gfp_mask); 443 front_pad = 0; 444 inline_vecs = nr_iovecs; 445 } else { 446 /* should not use nobvec bioset for nr_iovecs > 0 */ 447 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && 448 nr_iovecs > 0)) 449 return NULL; 450 /* 451 * generic_make_request() converts recursion to iteration; this 452 * means if we're running beneath it, any bios we allocate and 453 * submit will not be submitted (and thus freed) until after we 454 * return. 455 * 456 * This exposes us to a potential deadlock if we allocate 457 * multiple bios from the same bio_set() while running 458 * underneath generic_make_request(). If we were to allocate 459 * multiple bios (say a stacking block driver that was splitting 460 * bios), we would deadlock if we exhausted the mempool's 461 * reserve. 462 * 463 * We solve this, and guarantee forward progress, with a rescuer 464 * workqueue per bio_set. If we go to allocate and there are 465 * bios on current->bio_list, we first try the allocation 466 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those 467 * bios we would be blocking to the rescuer workqueue before 468 * we retry with the original gfp_flags. 469 */ 470 471 if (current->bio_list && 472 (!bio_list_empty(¤t->bio_list[0]) || 473 !bio_list_empty(¤t->bio_list[1])) && 474 bs->rescue_workqueue) 475 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 476 477 p = mempool_alloc(&bs->bio_pool, gfp_mask); 478 if (!p && gfp_mask != saved_gfp) { 479 punt_bios_to_rescuer(bs); 480 gfp_mask = saved_gfp; 481 p = mempool_alloc(&bs->bio_pool, gfp_mask); 482 } 483 484 front_pad = bs->front_pad; 485 inline_vecs = BIO_INLINE_VECS; 486 } 487 488 if (unlikely(!p)) 489 return NULL; 490 491 bio = p + front_pad; 492 bio_init(bio, NULL, 0); 493 494 if (nr_iovecs > inline_vecs) { 495 unsigned long idx = 0; 496 497 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); 498 if (!bvl && gfp_mask != saved_gfp) { 499 punt_bios_to_rescuer(bs); 500 gfp_mask = saved_gfp; 501 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); 502 } 503 504 if (unlikely(!bvl)) 505 goto err_free; 506 507 bio->bi_flags |= idx << BVEC_POOL_OFFSET; 508 } else if (nr_iovecs) { 509 bvl = bio->bi_inline_vecs; 510 } 511 512 bio->bi_pool = bs; 513 bio->bi_max_vecs = nr_iovecs; 514 bio->bi_io_vec = bvl; 515 return bio; 516 517 err_free: 518 mempool_free(p, &bs->bio_pool); 519 return NULL; 520 } 521 EXPORT_SYMBOL(bio_alloc_bioset); 522 523 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start) 524 { 525 unsigned long flags; 526 struct bio_vec bv; 527 struct bvec_iter iter; 528 529 __bio_for_each_segment(bv, bio, iter, start) { 530 char *data = bvec_kmap_irq(&bv, &flags); 531 memset(data, 0, bv.bv_len); 532 flush_dcache_page(bv.bv_page); 533 bvec_kunmap_irq(data, &flags); 534 } 535 } 536 EXPORT_SYMBOL(zero_fill_bio_iter); 537 538 /** 539 * bio_put - release a reference to a bio 540 * @bio: bio to release reference to 541 * 542 * Description: 543 * Put a reference to a &struct bio, either one you have gotten with 544 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 545 **/ 546 void bio_put(struct bio *bio) 547 { 548 if (!bio_flagged(bio, BIO_REFFED)) 549 bio_free(bio); 550 else { 551 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 552 553 /* 554 * last put frees it 555 */ 556 if (atomic_dec_and_test(&bio->__bi_cnt)) 557 bio_free(bio); 558 } 559 } 560 EXPORT_SYMBOL(bio_put); 561 562 /** 563 * __bio_clone_fast - clone a bio that shares the original bio's biovec 564 * @bio: destination bio 565 * @bio_src: bio to clone 566 * 567 * Clone a &bio. Caller will own the returned bio, but not 568 * the actual data it points to. Reference count of returned 569 * bio will be one. 570 * 571 * Caller must ensure that @bio_src is not freed before @bio. 572 */ 573 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 574 { 575 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); 576 577 /* 578 * most users will be overriding ->bi_disk with a new target, 579 * so we don't set nor calculate new physical/hw segment counts here 580 */ 581 bio->bi_disk = bio_src->bi_disk; 582 bio->bi_partno = bio_src->bi_partno; 583 bio_set_flag(bio, BIO_CLONED); 584 if (bio_flagged(bio_src, BIO_THROTTLED)) 585 bio_set_flag(bio, BIO_THROTTLED); 586 bio->bi_opf = bio_src->bi_opf; 587 bio->bi_ioprio = bio_src->bi_ioprio; 588 bio->bi_write_hint = bio_src->bi_write_hint; 589 bio->bi_iter = bio_src->bi_iter; 590 bio->bi_io_vec = bio_src->bi_io_vec; 591 592 bio_clone_blkg_association(bio, bio_src); 593 blkcg_bio_issue_init(bio); 594 } 595 EXPORT_SYMBOL(__bio_clone_fast); 596 597 /** 598 * bio_clone_fast - clone a bio that shares the original bio's biovec 599 * @bio: bio to clone 600 * @gfp_mask: allocation priority 601 * @bs: bio_set to allocate from 602 * 603 * Like __bio_clone_fast, only also allocates the returned bio 604 */ 605 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 606 { 607 struct bio *b; 608 609 b = bio_alloc_bioset(gfp_mask, 0, bs); 610 if (!b) 611 return NULL; 612 613 __bio_clone_fast(b, bio); 614 615 if (bio_integrity(bio)) { 616 int ret; 617 618 ret = bio_integrity_clone(b, bio, gfp_mask); 619 620 if (ret < 0) { 621 bio_put(b); 622 return NULL; 623 } 624 } 625 626 return b; 627 } 628 EXPORT_SYMBOL(bio_clone_fast); 629 630 static inline bool page_is_mergeable(const struct bio_vec *bv, 631 struct page *page, unsigned int len, unsigned int off, 632 bool *same_page) 633 { 634 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + 635 bv->bv_offset + bv->bv_len - 1; 636 phys_addr_t page_addr = page_to_phys(page); 637 638 if (vec_end_addr + 1 != page_addr + off) 639 return false; 640 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 641 return false; 642 643 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); 644 if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page) 645 return false; 646 return true; 647 } 648 649 /* 650 * Check if the @page can be added to the current segment(@bv), and make 651 * sure to call it only if page_is_mergeable(@bv, @page) is true 652 */ 653 static bool can_add_page_to_seg(struct request_queue *q, 654 struct bio_vec *bv, struct page *page, unsigned len, 655 unsigned offset) 656 { 657 unsigned long mask = queue_segment_boundary(q); 658 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; 659 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 660 661 if ((addr1 | mask) != (addr2 | mask)) 662 return false; 663 664 if (bv->bv_len + len > queue_max_segment_size(q)) 665 return false; 666 667 return true; 668 } 669 670 /** 671 * __bio_add_pc_page - attempt to add page to passthrough bio 672 * @q: the target queue 673 * @bio: destination bio 674 * @page: page to add 675 * @len: vec entry length 676 * @offset: vec entry offset 677 * @put_same_page: put the page if it is same with last added page 678 * 679 * Attempt to add a page to the bio_vec maplist. This can fail for a 680 * number of reasons, such as the bio being full or target block device 681 * limitations. The target block device must allow bio's up to PAGE_SIZE, 682 * so it is always possible to add a single page to an empty bio. 683 * 684 * This should only be used by passthrough bios. 685 */ 686 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio, 687 struct page *page, unsigned int len, unsigned int offset, 688 bool put_same_page) 689 { 690 struct bio_vec *bvec; 691 bool same_page = false; 692 693 /* 694 * cloned bio must not modify vec list 695 */ 696 if (unlikely(bio_flagged(bio, BIO_CLONED))) 697 return 0; 698 699 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q)) 700 return 0; 701 702 if (bio->bi_vcnt > 0) { 703 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 704 705 if (page == bvec->bv_page && 706 offset == bvec->bv_offset + bvec->bv_len) { 707 if (put_same_page) 708 put_page(page); 709 bvec->bv_len += len; 710 goto done; 711 } 712 713 /* 714 * If the queue doesn't support SG gaps and adding this 715 * offset would create a gap, disallow it. 716 */ 717 if (bvec_gap_to_prev(q, bvec, offset)) 718 return 0; 719 720 if (page_is_mergeable(bvec, page, len, offset, &same_page) && 721 can_add_page_to_seg(q, bvec, page, len, offset)) { 722 bvec->bv_len += len; 723 goto done; 724 } 725 } 726 727 if (bio_full(bio, len)) 728 return 0; 729 730 if (bio->bi_vcnt >= queue_max_segments(q)) 731 return 0; 732 733 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 734 bvec->bv_page = page; 735 bvec->bv_len = len; 736 bvec->bv_offset = offset; 737 bio->bi_vcnt++; 738 done: 739 bio->bi_iter.bi_size += len; 740 return len; 741 } 742 743 int bio_add_pc_page(struct request_queue *q, struct bio *bio, 744 struct page *page, unsigned int len, unsigned int offset) 745 { 746 return __bio_add_pc_page(q, bio, page, len, offset, false); 747 } 748 EXPORT_SYMBOL(bio_add_pc_page); 749 750 /** 751 * __bio_try_merge_page - try appending data to an existing bvec. 752 * @bio: destination bio 753 * @page: start page to add 754 * @len: length of the data to add 755 * @off: offset of the data relative to @page 756 * @same_page: return if the segment has been merged inside the same page 757 * 758 * Try to add the data at @page + @off to the last bvec of @bio. This is a 759 * a useful optimisation for file systems with a block size smaller than the 760 * page size. 761 * 762 * Warn if (@len, @off) crosses pages in case that @same_page is true. 763 * 764 * Return %true on success or %false on failure. 765 */ 766 bool __bio_try_merge_page(struct bio *bio, struct page *page, 767 unsigned int len, unsigned int off, bool *same_page) 768 { 769 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 770 return false; 771 772 if (bio->bi_vcnt > 0) { 773 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 774 775 if (page_is_mergeable(bv, page, len, off, same_page)) { 776 bv->bv_len += len; 777 bio->bi_iter.bi_size += len; 778 return true; 779 } 780 } 781 return false; 782 } 783 EXPORT_SYMBOL_GPL(__bio_try_merge_page); 784 785 /** 786 * __bio_add_page - add page(s) to a bio in a new segment 787 * @bio: destination bio 788 * @page: start page to add 789 * @len: length of the data to add, may cross pages 790 * @off: offset of the data relative to @page, may cross pages 791 * 792 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 793 * that @bio has space for another bvec. 794 */ 795 void __bio_add_page(struct bio *bio, struct page *page, 796 unsigned int len, unsigned int off) 797 { 798 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt]; 799 800 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 801 WARN_ON_ONCE(bio_full(bio, len)); 802 803 bv->bv_page = page; 804 bv->bv_offset = off; 805 bv->bv_len = len; 806 807 bio->bi_iter.bi_size += len; 808 bio->bi_vcnt++; 809 } 810 EXPORT_SYMBOL_GPL(__bio_add_page); 811 812 /** 813 * bio_add_page - attempt to add page(s) to bio 814 * @bio: destination bio 815 * @page: start page to add 816 * @len: vec entry length, may cross pages 817 * @offset: vec entry offset relative to @page, may cross pages 818 * 819 * Attempt to add page(s) to the bio_vec maplist. This will only fail 820 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 821 */ 822 int bio_add_page(struct bio *bio, struct page *page, 823 unsigned int len, unsigned int offset) 824 { 825 bool same_page = false; 826 827 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { 828 if (bio_full(bio, len)) 829 return 0; 830 __bio_add_page(bio, page, len, offset); 831 } 832 return len; 833 } 834 EXPORT_SYMBOL(bio_add_page); 835 836 void bio_release_pages(struct bio *bio, bool mark_dirty) 837 { 838 struct bvec_iter_all iter_all; 839 struct bio_vec *bvec; 840 841 if (bio_flagged(bio, BIO_NO_PAGE_REF)) 842 return; 843 844 bio_for_each_segment_all(bvec, bio, iter_all) { 845 if (mark_dirty && !PageCompound(bvec->bv_page)) 846 set_page_dirty_lock(bvec->bv_page); 847 put_page(bvec->bv_page); 848 } 849 } 850 851 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter) 852 { 853 const struct bio_vec *bv = iter->bvec; 854 unsigned int len; 855 size_t size; 856 857 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len)) 858 return -EINVAL; 859 860 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count); 861 size = bio_add_page(bio, bv->bv_page, len, 862 bv->bv_offset + iter->iov_offset); 863 if (unlikely(size != len)) 864 return -EINVAL; 865 iov_iter_advance(iter, size); 866 return 0; 867 } 868 869 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 870 871 /** 872 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 873 * @bio: bio to add pages to 874 * @iter: iov iterator describing the region to be mapped 875 * 876 * Pins pages from *iter and appends them to @bio's bvec array. The 877 * pages will have to be released using put_page() when done. 878 * For multi-segment *iter, this function only adds pages from the 879 * the next non-empty segment of the iov iterator. 880 */ 881 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 882 { 883 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 884 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 885 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 886 struct page **pages = (struct page **)bv; 887 bool same_page = false; 888 ssize_t size, left; 889 unsigned len, i; 890 size_t offset; 891 892 /* 893 * Move page array up in the allocated memory for the bio vecs as far as 894 * possible so that we can start filling biovecs from the beginning 895 * without overwriting the temporary page array. 896 */ 897 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 898 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 899 900 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 901 if (unlikely(size <= 0)) 902 return size ? size : -EFAULT; 903 904 for (left = size, i = 0; left > 0; left -= len, i++) { 905 struct page *page = pages[i]; 906 907 len = min_t(size_t, PAGE_SIZE - offset, left); 908 909 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) { 910 if (same_page) 911 put_page(page); 912 } else { 913 if (WARN_ON_ONCE(bio_full(bio, len))) 914 return -EINVAL; 915 __bio_add_page(bio, page, len, offset); 916 } 917 offset = 0; 918 } 919 920 iov_iter_advance(iter, size); 921 return 0; 922 } 923 924 /** 925 * bio_iov_iter_get_pages - add user or kernel pages to a bio 926 * @bio: bio to add pages to 927 * @iter: iov iterator describing the region to be added 928 * 929 * This takes either an iterator pointing to user memory, or one pointing to 930 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 931 * map them into the kernel. On IO completion, the caller should put those 932 * pages. If we're adding kernel pages, and the caller told us it's safe to 933 * do so, we just have to add the pages to the bio directly. We don't grab an 934 * extra reference to those pages (the user should already have that), and we 935 * don't put the page on IO completion. The caller needs to check if the bio is 936 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be 937 * released. 938 * 939 * The function tries, but does not guarantee, to pin as many pages as 940 * fit into the bio, or are requested in *iter, whatever is smaller. If 941 * MM encounters an error pinning the requested pages, it stops. Error 942 * is returned only if 0 pages could be pinned. 943 */ 944 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 945 { 946 const bool is_bvec = iov_iter_is_bvec(iter); 947 int ret; 948 949 if (WARN_ON_ONCE(bio->bi_vcnt)) 950 return -EINVAL; 951 952 do { 953 if (is_bvec) 954 ret = __bio_iov_bvec_add_pages(bio, iter); 955 else 956 ret = __bio_iov_iter_get_pages(bio, iter); 957 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); 958 959 if (is_bvec) 960 bio_set_flag(bio, BIO_NO_PAGE_REF); 961 return bio->bi_vcnt ? 0 : ret; 962 } 963 964 static void submit_bio_wait_endio(struct bio *bio) 965 { 966 complete(bio->bi_private); 967 } 968 969 /** 970 * submit_bio_wait - submit a bio, and wait until it completes 971 * @bio: The &struct bio which describes the I/O 972 * 973 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 974 * bio_endio() on failure. 975 * 976 * WARNING: Unlike to how submit_bio() is usually used, this function does not 977 * result in bio reference to be consumed. The caller must drop the reference 978 * on his own. 979 */ 980 int submit_bio_wait(struct bio *bio) 981 { 982 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map); 983 984 bio->bi_private = &done; 985 bio->bi_end_io = submit_bio_wait_endio; 986 bio->bi_opf |= REQ_SYNC; 987 submit_bio(bio); 988 wait_for_completion_io(&done); 989 990 return blk_status_to_errno(bio->bi_status); 991 } 992 EXPORT_SYMBOL(submit_bio_wait); 993 994 /** 995 * bio_advance - increment/complete a bio by some number of bytes 996 * @bio: bio to advance 997 * @bytes: number of bytes to complete 998 * 999 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 1000 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 1001 * be updated on the last bvec as well. 1002 * 1003 * @bio will then represent the remaining, uncompleted portion of the io. 1004 */ 1005 void bio_advance(struct bio *bio, unsigned bytes) 1006 { 1007 if (bio_integrity(bio)) 1008 bio_integrity_advance(bio, bytes); 1009 1010 bio_advance_iter(bio, &bio->bi_iter, bytes); 1011 } 1012 EXPORT_SYMBOL(bio_advance); 1013 1014 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 1015 struct bio *src, struct bvec_iter *src_iter) 1016 { 1017 struct bio_vec src_bv, dst_bv; 1018 void *src_p, *dst_p; 1019 unsigned bytes; 1020 1021 while (src_iter->bi_size && dst_iter->bi_size) { 1022 src_bv = bio_iter_iovec(src, *src_iter); 1023 dst_bv = bio_iter_iovec(dst, *dst_iter); 1024 1025 bytes = min(src_bv.bv_len, dst_bv.bv_len); 1026 1027 src_p = kmap_atomic(src_bv.bv_page); 1028 dst_p = kmap_atomic(dst_bv.bv_page); 1029 1030 memcpy(dst_p + dst_bv.bv_offset, 1031 src_p + src_bv.bv_offset, 1032 bytes); 1033 1034 kunmap_atomic(dst_p); 1035 kunmap_atomic(src_p); 1036 1037 flush_dcache_page(dst_bv.bv_page); 1038 1039 bio_advance_iter(src, src_iter, bytes); 1040 bio_advance_iter(dst, dst_iter, bytes); 1041 } 1042 } 1043 EXPORT_SYMBOL(bio_copy_data_iter); 1044 1045 /** 1046 * bio_copy_data - copy contents of data buffers from one bio to another 1047 * @src: source bio 1048 * @dst: destination bio 1049 * 1050 * Stops when it reaches the end of either @src or @dst - that is, copies 1051 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1052 */ 1053 void bio_copy_data(struct bio *dst, struct bio *src) 1054 { 1055 struct bvec_iter src_iter = src->bi_iter; 1056 struct bvec_iter dst_iter = dst->bi_iter; 1057 1058 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1059 } 1060 EXPORT_SYMBOL(bio_copy_data); 1061 1062 /** 1063 * bio_list_copy_data - copy contents of data buffers from one chain of bios to 1064 * another 1065 * @src: source bio list 1066 * @dst: destination bio list 1067 * 1068 * Stops when it reaches the end of either the @src list or @dst list - that is, 1069 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of 1070 * bios). 1071 */ 1072 void bio_list_copy_data(struct bio *dst, struct bio *src) 1073 { 1074 struct bvec_iter src_iter = src->bi_iter; 1075 struct bvec_iter dst_iter = dst->bi_iter; 1076 1077 while (1) { 1078 if (!src_iter.bi_size) { 1079 src = src->bi_next; 1080 if (!src) 1081 break; 1082 1083 src_iter = src->bi_iter; 1084 } 1085 1086 if (!dst_iter.bi_size) { 1087 dst = dst->bi_next; 1088 if (!dst) 1089 break; 1090 1091 dst_iter = dst->bi_iter; 1092 } 1093 1094 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1095 } 1096 } 1097 EXPORT_SYMBOL(bio_list_copy_data); 1098 1099 struct bio_map_data { 1100 int is_our_pages; 1101 struct iov_iter iter; 1102 struct iovec iov[]; 1103 }; 1104 1105 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data, 1106 gfp_t gfp_mask) 1107 { 1108 struct bio_map_data *bmd; 1109 if (data->nr_segs > UIO_MAXIOV) 1110 return NULL; 1111 1112 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask); 1113 if (!bmd) 1114 return NULL; 1115 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs); 1116 bmd->iter = *data; 1117 bmd->iter.iov = bmd->iov; 1118 return bmd; 1119 } 1120 1121 /** 1122 * bio_copy_from_iter - copy all pages from iov_iter to bio 1123 * @bio: The &struct bio which describes the I/O as destination 1124 * @iter: iov_iter as source 1125 * 1126 * Copy all pages from iov_iter to bio. 1127 * Returns 0 on success, or error on failure. 1128 */ 1129 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter) 1130 { 1131 struct bio_vec *bvec; 1132 struct bvec_iter_all iter_all; 1133 1134 bio_for_each_segment_all(bvec, bio, iter_all) { 1135 ssize_t ret; 1136 1137 ret = copy_page_from_iter(bvec->bv_page, 1138 bvec->bv_offset, 1139 bvec->bv_len, 1140 iter); 1141 1142 if (!iov_iter_count(iter)) 1143 break; 1144 1145 if (ret < bvec->bv_len) 1146 return -EFAULT; 1147 } 1148 1149 return 0; 1150 } 1151 1152 /** 1153 * bio_copy_to_iter - copy all pages from bio to iov_iter 1154 * @bio: The &struct bio which describes the I/O as source 1155 * @iter: iov_iter as destination 1156 * 1157 * Copy all pages from bio to iov_iter. 1158 * Returns 0 on success, or error on failure. 1159 */ 1160 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 1161 { 1162 struct bio_vec *bvec; 1163 struct bvec_iter_all iter_all; 1164 1165 bio_for_each_segment_all(bvec, bio, iter_all) { 1166 ssize_t ret; 1167 1168 ret = copy_page_to_iter(bvec->bv_page, 1169 bvec->bv_offset, 1170 bvec->bv_len, 1171 &iter); 1172 1173 if (!iov_iter_count(&iter)) 1174 break; 1175 1176 if (ret < bvec->bv_len) 1177 return -EFAULT; 1178 } 1179 1180 return 0; 1181 } 1182 1183 void bio_free_pages(struct bio *bio) 1184 { 1185 struct bio_vec *bvec; 1186 struct bvec_iter_all iter_all; 1187 1188 bio_for_each_segment_all(bvec, bio, iter_all) 1189 __free_page(bvec->bv_page); 1190 } 1191 EXPORT_SYMBOL(bio_free_pages); 1192 1193 /** 1194 * bio_uncopy_user - finish previously mapped bio 1195 * @bio: bio being terminated 1196 * 1197 * Free pages allocated from bio_copy_user_iov() and write back data 1198 * to user space in case of a read. 1199 */ 1200 int bio_uncopy_user(struct bio *bio) 1201 { 1202 struct bio_map_data *bmd = bio->bi_private; 1203 int ret = 0; 1204 1205 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1206 /* 1207 * if we're in a workqueue, the request is orphaned, so 1208 * don't copy into a random user address space, just free 1209 * and return -EINTR so user space doesn't expect any data. 1210 */ 1211 if (!current->mm) 1212 ret = -EINTR; 1213 else if (bio_data_dir(bio) == READ) 1214 ret = bio_copy_to_iter(bio, bmd->iter); 1215 if (bmd->is_our_pages) 1216 bio_free_pages(bio); 1217 } 1218 kfree(bmd); 1219 bio_put(bio); 1220 return ret; 1221 } 1222 1223 /** 1224 * bio_copy_user_iov - copy user data to bio 1225 * @q: destination block queue 1226 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1227 * @iter: iovec iterator 1228 * @gfp_mask: memory allocation flags 1229 * 1230 * Prepares and returns a bio for indirect user io, bouncing data 1231 * to/from kernel pages as necessary. Must be paired with 1232 * call bio_uncopy_user() on io completion. 1233 */ 1234 struct bio *bio_copy_user_iov(struct request_queue *q, 1235 struct rq_map_data *map_data, 1236 struct iov_iter *iter, 1237 gfp_t gfp_mask) 1238 { 1239 struct bio_map_data *bmd; 1240 struct page *page; 1241 struct bio *bio; 1242 int i = 0, ret; 1243 int nr_pages; 1244 unsigned int len = iter->count; 1245 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 1246 1247 bmd = bio_alloc_map_data(iter, gfp_mask); 1248 if (!bmd) 1249 return ERR_PTR(-ENOMEM); 1250 1251 /* 1252 * We need to do a deep copy of the iov_iter including the iovecs. 1253 * The caller provided iov might point to an on-stack or otherwise 1254 * shortlived one. 1255 */ 1256 bmd->is_our_pages = map_data ? 0 : 1; 1257 1258 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE); 1259 if (nr_pages > BIO_MAX_PAGES) 1260 nr_pages = BIO_MAX_PAGES; 1261 1262 ret = -ENOMEM; 1263 bio = bio_kmalloc(gfp_mask, nr_pages); 1264 if (!bio) 1265 goto out_bmd; 1266 1267 ret = 0; 1268 1269 if (map_data) { 1270 nr_pages = 1 << map_data->page_order; 1271 i = map_data->offset / PAGE_SIZE; 1272 } 1273 while (len) { 1274 unsigned int bytes = PAGE_SIZE; 1275 1276 bytes -= offset; 1277 1278 if (bytes > len) 1279 bytes = len; 1280 1281 if (map_data) { 1282 if (i == map_data->nr_entries * nr_pages) { 1283 ret = -ENOMEM; 1284 break; 1285 } 1286 1287 page = map_data->pages[i / nr_pages]; 1288 page += (i % nr_pages); 1289 1290 i++; 1291 } else { 1292 page = alloc_page(q->bounce_gfp | gfp_mask); 1293 if (!page) { 1294 ret = -ENOMEM; 1295 break; 1296 } 1297 } 1298 1299 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) { 1300 if (!map_data) 1301 __free_page(page); 1302 break; 1303 } 1304 1305 len -= bytes; 1306 offset = 0; 1307 } 1308 1309 if (ret) 1310 goto cleanup; 1311 1312 if (map_data) 1313 map_data->offset += bio->bi_iter.bi_size; 1314 1315 /* 1316 * success 1317 */ 1318 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) || 1319 (map_data && map_data->from_user)) { 1320 ret = bio_copy_from_iter(bio, iter); 1321 if (ret) 1322 goto cleanup; 1323 } else { 1324 if (bmd->is_our_pages) 1325 zero_fill_bio(bio); 1326 iov_iter_advance(iter, bio->bi_iter.bi_size); 1327 } 1328 1329 bio->bi_private = bmd; 1330 if (map_data && map_data->null_mapped) 1331 bio_set_flag(bio, BIO_NULL_MAPPED); 1332 return bio; 1333 cleanup: 1334 if (!map_data) 1335 bio_free_pages(bio); 1336 bio_put(bio); 1337 out_bmd: 1338 kfree(bmd); 1339 return ERR_PTR(ret); 1340 } 1341 1342 /** 1343 * bio_map_user_iov - map user iovec into bio 1344 * @q: the struct request_queue for the bio 1345 * @iter: iovec iterator 1346 * @gfp_mask: memory allocation flags 1347 * 1348 * Map the user space address into a bio suitable for io to a block 1349 * device. Returns an error pointer in case of error. 1350 */ 1351 struct bio *bio_map_user_iov(struct request_queue *q, 1352 struct iov_iter *iter, 1353 gfp_t gfp_mask) 1354 { 1355 int j; 1356 struct bio *bio; 1357 int ret; 1358 1359 if (!iov_iter_count(iter)) 1360 return ERR_PTR(-EINVAL); 1361 1362 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES)); 1363 if (!bio) 1364 return ERR_PTR(-ENOMEM); 1365 1366 while (iov_iter_count(iter)) { 1367 struct page **pages; 1368 ssize_t bytes; 1369 size_t offs, added = 0; 1370 int npages; 1371 1372 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs); 1373 if (unlikely(bytes <= 0)) { 1374 ret = bytes ? bytes : -EFAULT; 1375 goto out_unmap; 1376 } 1377 1378 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE); 1379 1380 if (unlikely(offs & queue_dma_alignment(q))) { 1381 ret = -EINVAL; 1382 j = 0; 1383 } else { 1384 for (j = 0; j < npages; j++) { 1385 struct page *page = pages[j]; 1386 unsigned int n = PAGE_SIZE - offs; 1387 1388 if (n > bytes) 1389 n = bytes; 1390 1391 if (!__bio_add_pc_page(q, bio, page, n, offs, 1392 true)) 1393 break; 1394 1395 added += n; 1396 bytes -= n; 1397 offs = 0; 1398 } 1399 iov_iter_advance(iter, added); 1400 } 1401 /* 1402 * release the pages we didn't map into the bio, if any 1403 */ 1404 while (j < npages) 1405 put_page(pages[j++]); 1406 kvfree(pages); 1407 /* couldn't stuff something into bio? */ 1408 if (bytes) 1409 break; 1410 } 1411 1412 bio_set_flag(bio, BIO_USER_MAPPED); 1413 1414 /* 1415 * subtle -- if bio_map_user_iov() ended up bouncing a bio, 1416 * it would normally disappear when its bi_end_io is run. 1417 * however, we need it for the unmap, so grab an extra 1418 * reference to it 1419 */ 1420 bio_get(bio); 1421 return bio; 1422 1423 out_unmap: 1424 bio_release_pages(bio, false); 1425 bio_put(bio); 1426 return ERR_PTR(ret); 1427 } 1428 1429 /** 1430 * bio_unmap_user - unmap a bio 1431 * @bio: the bio being unmapped 1432 * 1433 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from 1434 * process context. 1435 * 1436 * bio_unmap_user() may sleep. 1437 */ 1438 void bio_unmap_user(struct bio *bio) 1439 { 1440 bio_release_pages(bio, bio_data_dir(bio) == READ); 1441 bio_put(bio); 1442 bio_put(bio); 1443 } 1444 1445 static void bio_invalidate_vmalloc_pages(struct bio *bio) 1446 { 1447 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE 1448 if (bio->bi_private && !op_is_write(bio_op(bio))) { 1449 unsigned long i, len = 0; 1450 1451 for (i = 0; i < bio->bi_vcnt; i++) 1452 len += bio->bi_io_vec[i].bv_len; 1453 invalidate_kernel_vmap_range(bio->bi_private, len); 1454 } 1455 #endif 1456 } 1457 1458 static void bio_map_kern_endio(struct bio *bio) 1459 { 1460 bio_invalidate_vmalloc_pages(bio); 1461 bio_put(bio); 1462 } 1463 1464 /** 1465 * bio_map_kern - map kernel address into bio 1466 * @q: the struct request_queue for the bio 1467 * @data: pointer to buffer to map 1468 * @len: length in bytes 1469 * @gfp_mask: allocation flags for bio allocation 1470 * 1471 * Map the kernel address into a bio suitable for io to a block 1472 * device. Returns an error pointer in case of error. 1473 */ 1474 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1475 gfp_t gfp_mask) 1476 { 1477 unsigned long kaddr = (unsigned long)data; 1478 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1479 unsigned long start = kaddr >> PAGE_SHIFT; 1480 const int nr_pages = end - start; 1481 bool is_vmalloc = is_vmalloc_addr(data); 1482 struct page *page; 1483 int offset, i; 1484 struct bio *bio; 1485 1486 bio = bio_kmalloc(gfp_mask, nr_pages); 1487 if (!bio) 1488 return ERR_PTR(-ENOMEM); 1489 1490 if (is_vmalloc) { 1491 flush_kernel_vmap_range(data, len); 1492 bio->bi_private = data; 1493 } 1494 1495 offset = offset_in_page(kaddr); 1496 for (i = 0; i < nr_pages; i++) { 1497 unsigned int bytes = PAGE_SIZE - offset; 1498 1499 if (len <= 0) 1500 break; 1501 1502 if (bytes > len) 1503 bytes = len; 1504 1505 if (!is_vmalloc) 1506 page = virt_to_page(data); 1507 else 1508 page = vmalloc_to_page(data); 1509 if (bio_add_pc_page(q, bio, page, bytes, 1510 offset) < bytes) { 1511 /* we don't support partial mappings */ 1512 bio_put(bio); 1513 return ERR_PTR(-EINVAL); 1514 } 1515 1516 data += bytes; 1517 len -= bytes; 1518 offset = 0; 1519 } 1520 1521 bio->bi_end_io = bio_map_kern_endio; 1522 return bio; 1523 } 1524 EXPORT_SYMBOL(bio_map_kern); 1525 1526 static void bio_copy_kern_endio(struct bio *bio) 1527 { 1528 bio_free_pages(bio); 1529 bio_put(bio); 1530 } 1531 1532 static void bio_copy_kern_endio_read(struct bio *bio) 1533 { 1534 char *p = bio->bi_private; 1535 struct bio_vec *bvec; 1536 struct bvec_iter_all iter_all; 1537 1538 bio_for_each_segment_all(bvec, bio, iter_all) { 1539 memcpy(p, page_address(bvec->bv_page), bvec->bv_len); 1540 p += bvec->bv_len; 1541 } 1542 1543 bio_copy_kern_endio(bio); 1544 } 1545 1546 /** 1547 * bio_copy_kern - copy kernel address into bio 1548 * @q: the struct request_queue for the bio 1549 * @data: pointer to buffer to copy 1550 * @len: length in bytes 1551 * @gfp_mask: allocation flags for bio and page allocation 1552 * @reading: data direction is READ 1553 * 1554 * copy the kernel address into a bio suitable for io to a block 1555 * device. Returns an error pointer in case of error. 1556 */ 1557 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1558 gfp_t gfp_mask, int reading) 1559 { 1560 unsigned long kaddr = (unsigned long)data; 1561 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1562 unsigned long start = kaddr >> PAGE_SHIFT; 1563 struct bio *bio; 1564 void *p = data; 1565 int nr_pages = 0; 1566 1567 /* 1568 * Overflow, abort 1569 */ 1570 if (end < start) 1571 return ERR_PTR(-EINVAL); 1572 1573 nr_pages = end - start; 1574 bio = bio_kmalloc(gfp_mask, nr_pages); 1575 if (!bio) 1576 return ERR_PTR(-ENOMEM); 1577 1578 while (len) { 1579 struct page *page; 1580 unsigned int bytes = PAGE_SIZE; 1581 1582 if (bytes > len) 1583 bytes = len; 1584 1585 page = alloc_page(q->bounce_gfp | gfp_mask); 1586 if (!page) 1587 goto cleanup; 1588 1589 if (!reading) 1590 memcpy(page_address(page), p, bytes); 1591 1592 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 1593 break; 1594 1595 len -= bytes; 1596 p += bytes; 1597 } 1598 1599 if (reading) { 1600 bio->bi_end_io = bio_copy_kern_endio_read; 1601 bio->bi_private = data; 1602 } else { 1603 bio->bi_end_io = bio_copy_kern_endio; 1604 } 1605 1606 return bio; 1607 1608 cleanup: 1609 bio_free_pages(bio); 1610 bio_put(bio); 1611 return ERR_PTR(-ENOMEM); 1612 } 1613 1614 /* 1615 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1616 * for performing direct-IO in BIOs. 1617 * 1618 * The problem is that we cannot run set_page_dirty() from interrupt context 1619 * because the required locks are not interrupt-safe. So what we can do is to 1620 * mark the pages dirty _before_ performing IO. And in interrupt context, 1621 * check that the pages are still dirty. If so, fine. If not, redirty them 1622 * in process context. 1623 * 1624 * We special-case compound pages here: normally this means reads into hugetlb 1625 * pages. The logic in here doesn't really work right for compound pages 1626 * because the VM does not uniformly chase down the head page in all cases. 1627 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1628 * handle them at all. So we skip compound pages here at an early stage. 1629 * 1630 * Note that this code is very hard to test under normal circumstances because 1631 * direct-io pins the pages with get_user_pages(). This makes 1632 * is_page_cache_freeable return false, and the VM will not clean the pages. 1633 * But other code (eg, flusher threads) could clean the pages if they are mapped 1634 * pagecache. 1635 * 1636 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1637 * deferred bio dirtying paths. 1638 */ 1639 1640 /* 1641 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1642 */ 1643 void bio_set_pages_dirty(struct bio *bio) 1644 { 1645 struct bio_vec *bvec; 1646 struct bvec_iter_all iter_all; 1647 1648 bio_for_each_segment_all(bvec, bio, iter_all) { 1649 if (!PageCompound(bvec->bv_page)) 1650 set_page_dirty_lock(bvec->bv_page); 1651 } 1652 } 1653 1654 /* 1655 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1656 * If they are, then fine. If, however, some pages are clean then they must 1657 * have been written out during the direct-IO read. So we take another ref on 1658 * the BIO and re-dirty the pages in process context. 1659 * 1660 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1661 * here on. It will run one put_page() against each page and will run one 1662 * bio_put() against the BIO. 1663 */ 1664 1665 static void bio_dirty_fn(struct work_struct *work); 1666 1667 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1668 static DEFINE_SPINLOCK(bio_dirty_lock); 1669 static struct bio *bio_dirty_list; 1670 1671 /* 1672 * This runs in process context 1673 */ 1674 static void bio_dirty_fn(struct work_struct *work) 1675 { 1676 struct bio *bio, *next; 1677 1678 spin_lock_irq(&bio_dirty_lock); 1679 next = bio_dirty_list; 1680 bio_dirty_list = NULL; 1681 spin_unlock_irq(&bio_dirty_lock); 1682 1683 while ((bio = next) != NULL) { 1684 next = bio->bi_private; 1685 1686 bio_release_pages(bio, true); 1687 bio_put(bio); 1688 } 1689 } 1690 1691 void bio_check_pages_dirty(struct bio *bio) 1692 { 1693 struct bio_vec *bvec; 1694 unsigned long flags; 1695 struct bvec_iter_all iter_all; 1696 1697 bio_for_each_segment_all(bvec, bio, iter_all) { 1698 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page)) 1699 goto defer; 1700 } 1701 1702 bio_release_pages(bio, false); 1703 bio_put(bio); 1704 return; 1705 defer: 1706 spin_lock_irqsave(&bio_dirty_lock, flags); 1707 bio->bi_private = bio_dirty_list; 1708 bio_dirty_list = bio; 1709 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1710 schedule_work(&bio_dirty_work); 1711 } 1712 1713 void update_io_ticks(struct hd_struct *part, unsigned long now) 1714 { 1715 unsigned long stamp; 1716 again: 1717 stamp = READ_ONCE(part->stamp); 1718 if (unlikely(stamp != now)) { 1719 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) { 1720 __part_stat_add(part, io_ticks, 1); 1721 } 1722 } 1723 if (part->partno) { 1724 part = &part_to_disk(part)->part0; 1725 goto again; 1726 } 1727 } 1728 1729 void generic_start_io_acct(struct request_queue *q, int op, 1730 unsigned long sectors, struct hd_struct *part) 1731 { 1732 const int sgrp = op_stat_group(op); 1733 1734 part_stat_lock(); 1735 1736 update_io_ticks(part, jiffies); 1737 part_stat_inc(part, ios[sgrp]); 1738 part_stat_add(part, sectors[sgrp], sectors); 1739 part_inc_in_flight(q, part, op_is_write(op)); 1740 1741 part_stat_unlock(); 1742 } 1743 EXPORT_SYMBOL(generic_start_io_acct); 1744 1745 void generic_end_io_acct(struct request_queue *q, int req_op, 1746 struct hd_struct *part, unsigned long start_time) 1747 { 1748 unsigned long now = jiffies; 1749 unsigned long duration = now - start_time; 1750 const int sgrp = op_stat_group(req_op); 1751 1752 part_stat_lock(); 1753 1754 update_io_ticks(part, now); 1755 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration)); 1756 part_stat_add(part, time_in_queue, duration); 1757 part_dec_in_flight(q, part, op_is_write(req_op)); 1758 1759 part_stat_unlock(); 1760 } 1761 EXPORT_SYMBOL(generic_end_io_acct); 1762 1763 static inline bool bio_remaining_done(struct bio *bio) 1764 { 1765 /* 1766 * If we're not chaining, then ->__bi_remaining is always 1 and 1767 * we always end io on the first invocation. 1768 */ 1769 if (!bio_flagged(bio, BIO_CHAIN)) 1770 return true; 1771 1772 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1773 1774 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1775 bio_clear_flag(bio, BIO_CHAIN); 1776 return true; 1777 } 1778 1779 return false; 1780 } 1781 1782 /** 1783 * bio_endio - end I/O on a bio 1784 * @bio: bio 1785 * 1786 * Description: 1787 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1788 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1789 * bio unless they own it and thus know that it has an end_io function. 1790 * 1791 * bio_endio() can be called several times on a bio that has been chained 1792 * using bio_chain(). The ->bi_end_io() function will only be called the 1793 * last time. At this point the BLK_TA_COMPLETE tracing event will be 1794 * generated if BIO_TRACE_COMPLETION is set. 1795 **/ 1796 void bio_endio(struct bio *bio) 1797 { 1798 again: 1799 if (!bio_remaining_done(bio)) 1800 return; 1801 if (!bio_integrity_endio(bio)) 1802 return; 1803 1804 if (bio->bi_disk) 1805 rq_qos_done_bio(bio->bi_disk->queue, bio); 1806 1807 /* 1808 * Need to have a real endio function for chained bios, otherwise 1809 * various corner cases will break (like stacking block devices that 1810 * save/restore bi_end_io) - however, we want to avoid unbounded 1811 * recursion and blowing the stack. Tail call optimization would 1812 * handle this, but compiling with frame pointers also disables 1813 * gcc's sibling call optimization. 1814 */ 1815 if (bio->bi_end_io == bio_chain_endio) { 1816 bio = __bio_chain_endio(bio); 1817 goto again; 1818 } 1819 1820 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1821 trace_block_bio_complete(bio->bi_disk->queue, bio, 1822 blk_status_to_errno(bio->bi_status)); 1823 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1824 } 1825 1826 blk_throtl_bio_endio(bio); 1827 /* release cgroup info */ 1828 bio_uninit(bio); 1829 if (bio->bi_end_io) 1830 bio->bi_end_io(bio); 1831 } 1832 EXPORT_SYMBOL(bio_endio); 1833 1834 /** 1835 * bio_split - split a bio 1836 * @bio: bio to split 1837 * @sectors: number of sectors to split from the front of @bio 1838 * @gfp: gfp mask 1839 * @bs: bio set to allocate from 1840 * 1841 * Allocates and returns a new bio which represents @sectors from the start of 1842 * @bio, and updates @bio to represent the remaining sectors. 1843 * 1844 * Unless this is a discard request the newly allocated bio will point 1845 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that 1846 * @bio is not freed before the split. 1847 */ 1848 struct bio *bio_split(struct bio *bio, int sectors, 1849 gfp_t gfp, struct bio_set *bs) 1850 { 1851 struct bio *split; 1852 1853 BUG_ON(sectors <= 0); 1854 BUG_ON(sectors >= bio_sectors(bio)); 1855 1856 split = bio_clone_fast(bio, gfp, bs); 1857 if (!split) 1858 return NULL; 1859 1860 split->bi_iter.bi_size = sectors << 9; 1861 1862 if (bio_integrity(split)) 1863 bio_integrity_trim(split); 1864 1865 bio_advance(bio, split->bi_iter.bi_size); 1866 1867 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1868 bio_set_flag(split, BIO_TRACE_COMPLETION); 1869 1870 return split; 1871 } 1872 EXPORT_SYMBOL(bio_split); 1873 1874 /** 1875 * bio_trim - trim a bio 1876 * @bio: bio to trim 1877 * @offset: number of sectors to trim from the front of @bio 1878 * @size: size we want to trim @bio to, in sectors 1879 */ 1880 void bio_trim(struct bio *bio, int offset, int size) 1881 { 1882 /* 'bio' is a cloned bio which we need to trim to match 1883 * the given offset and size. 1884 */ 1885 1886 size <<= 9; 1887 if (offset == 0 && size == bio->bi_iter.bi_size) 1888 return; 1889 1890 bio_advance(bio, offset << 9); 1891 bio->bi_iter.bi_size = size; 1892 1893 if (bio_integrity(bio)) 1894 bio_integrity_trim(bio); 1895 1896 } 1897 EXPORT_SYMBOL_GPL(bio_trim); 1898 1899 /* 1900 * create memory pools for biovec's in a bio_set. 1901 * use the global biovec slabs created for general use. 1902 */ 1903 int biovec_init_pool(mempool_t *pool, int pool_entries) 1904 { 1905 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; 1906 1907 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1908 } 1909 1910 /* 1911 * bioset_exit - exit a bioset initialized with bioset_init() 1912 * 1913 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1914 * kzalloc()). 1915 */ 1916 void bioset_exit(struct bio_set *bs) 1917 { 1918 if (bs->rescue_workqueue) 1919 destroy_workqueue(bs->rescue_workqueue); 1920 bs->rescue_workqueue = NULL; 1921 1922 mempool_exit(&bs->bio_pool); 1923 mempool_exit(&bs->bvec_pool); 1924 1925 bioset_integrity_free(bs); 1926 if (bs->bio_slab) 1927 bio_put_slab(bs); 1928 bs->bio_slab = NULL; 1929 } 1930 EXPORT_SYMBOL(bioset_exit); 1931 1932 /** 1933 * bioset_init - Initialize a bio_set 1934 * @bs: pool to initialize 1935 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1936 * @front_pad: Number of bytes to allocate in front of the returned bio 1937 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1938 * and %BIOSET_NEED_RESCUER 1939 * 1940 * Description: 1941 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1942 * to ask for a number of bytes to be allocated in front of the bio. 1943 * Front pad allocation is useful for embedding the bio inside 1944 * another structure, to avoid allocating extra data to go with the bio. 1945 * Note that the bio must be embedded at the END of that structure always, 1946 * or things will break badly. 1947 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1948 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast(). 1949 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to 1950 * dispatch queued requests when the mempool runs out of space. 1951 * 1952 */ 1953 int bioset_init(struct bio_set *bs, 1954 unsigned int pool_size, 1955 unsigned int front_pad, 1956 int flags) 1957 { 1958 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1959 1960 bs->front_pad = front_pad; 1961 1962 spin_lock_init(&bs->rescue_lock); 1963 bio_list_init(&bs->rescue_list); 1964 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1965 1966 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1967 if (!bs->bio_slab) 1968 return -ENOMEM; 1969 1970 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 1971 goto bad; 1972 1973 if ((flags & BIOSET_NEED_BVECS) && 1974 biovec_init_pool(&bs->bvec_pool, pool_size)) 1975 goto bad; 1976 1977 if (!(flags & BIOSET_NEED_RESCUER)) 1978 return 0; 1979 1980 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1981 if (!bs->rescue_workqueue) 1982 goto bad; 1983 1984 return 0; 1985 bad: 1986 bioset_exit(bs); 1987 return -ENOMEM; 1988 } 1989 EXPORT_SYMBOL(bioset_init); 1990 1991 /* 1992 * Initialize and setup a new bio_set, based on the settings from 1993 * another bio_set. 1994 */ 1995 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src) 1996 { 1997 int flags; 1998 1999 flags = 0; 2000 if (src->bvec_pool.min_nr) 2001 flags |= BIOSET_NEED_BVECS; 2002 if (src->rescue_workqueue) 2003 flags |= BIOSET_NEED_RESCUER; 2004 2005 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags); 2006 } 2007 EXPORT_SYMBOL(bioset_init_from_src); 2008 2009 #ifdef CONFIG_BLK_CGROUP 2010 2011 /** 2012 * bio_disassociate_blkg - puts back the blkg reference if associated 2013 * @bio: target bio 2014 * 2015 * Helper to disassociate the blkg from @bio if a blkg is associated. 2016 */ 2017 void bio_disassociate_blkg(struct bio *bio) 2018 { 2019 if (bio->bi_blkg) { 2020 blkg_put(bio->bi_blkg); 2021 bio->bi_blkg = NULL; 2022 } 2023 } 2024 EXPORT_SYMBOL_GPL(bio_disassociate_blkg); 2025 2026 /** 2027 * __bio_associate_blkg - associate a bio with the a blkg 2028 * @bio: target bio 2029 * @blkg: the blkg to associate 2030 * 2031 * This tries to associate @bio with the specified @blkg. Association failure 2032 * is handled by walking up the blkg tree. Therefore, the blkg associated can 2033 * be anything between @blkg and the root_blkg. This situation only happens 2034 * when a cgroup is dying and then the remaining bios will spill to the closest 2035 * alive blkg. 2036 * 2037 * A reference will be taken on the @blkg and will be released when @bio is 2038 * freed. 2039 */ 2040 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg) 2041 { 2042 bio_disassociate_blkg(bio); 2043 2044 bio->bi_blkg = blkg_tryget_closest(blkg); 2045 } 2046 2047 /** 2048 * bio_associate_blkg_from_css - associate a bio with a specified css 2049 * @bio: target bio 2050 * @css: target css 2051 * 2052 * Associate @bio with the blkg found by combining the css's blkg and the 2053 * request_queue of the @bio. This falls back to the queue's root_blkg if 2054 * the association fails with the css. 2055 */ 2056 void bio_associate_blkg_from_css(struct bio *bio, 2057 struct cgroup_subsys_state *css) 2058 { 2059 struct request_queue *q = bio->bi_disk->queue; 2060 struct blkcg_gq *blkg; 2061 2062 rcu_read_lock(); 2063 2064 if (!css || !css->parent) 2065 blkg = q->root_blkg; 2066 else 2067 blkg = blkg_lookup_create(css_to_blkcg(css), q); 2068 2069 __bio_associate_blkg(bio, blkg); 2070 2071 rcu_read_unlock(); 2072 } 2073 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 2074 2075 #ifdef CONFIG_MEMCG 2076 /** 2077 * bio_associate_blkg_from_page - associate a bio with the page's blkg 2078 * @bio: target bio 2079 * @page: the page to lookup the blkcg from 2080 * 2081 * Associate @bio with the blkg from @page's owning memcg and the respective 2082 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's 2083 * root_blkg. 2084 */ 2085 void bio_associate_blkg_from_page(struct bio *bio, struct page *page) 2086 { 2087 struct cgroup_subsys_state *css; 2088 2089 if (!page->mem_cgroup) 2090 return; 2091 2092 rcu_read_lock(); 2093 2094 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys); 2095 bio_associate_blkg_from_css(bio, css); 2096 2097 rcu_read_unlock(); 2098 } 2099 #endif /* CONFIG_MEMCG */ 2100 2101 /** 2102 * bio_associate_blkg - associate a bio with a blkg 2103 * @bio: target bio 2104 * 2105 * Associate @bio with the blkg found from the bio's css and request_queue. 2106 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 2107 * already associated, the css is reused and association redone as the 2108 * request_queue may have changed. 2109 */ 2110 void bio_associate_blkg(struct bio *bio) 2111 { 2112 struct cgroup_subsys_state *css; 2113 2114 rcu_read_lock(); 2115 2116 if (bio->bi_blkg) 2117 css = &bio_blkcg(bio)->css; 2118 else 2119 css = blkcg_css(); 2120 2121 bio_associate_blkg_from_css(bio, css); 2122 2123 rcu_read_unlock(); 2124 } 2125 EXPORT_SYMBOL_GPL(bio_associate_blkg); 2126 2127 /** 2128 * bio_clone_blkg_association - clone blkg association from src to dst bio 2129 * @dst: destination bio 2130 * @src: source bio 2131 */ 2132 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 2133 { 2134 rcu_read_lock(); 2135 2136 if (src->bi_blkg) 2137 __bio_associate_blkg(dst, src->bi_blkg); 2138 2139 rcu_read_unlock(); 2140 } 2141 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 2142 #endif /* CONFIG_BLK_CGROUP */ 2143 2144 static void __init biovec_init_slabs(void) 2145 { 2146 int i; 2147 2148 for (i = 0; i < BVEC_POOL_NR; i++) { 2149 int size; 2150 struct biovec_slab *bvs = bvec_slabs + i; 2151 2152 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2153 bvs->slab = NULL; 2154 continue; 2155 } 2156 2157 size = bvs->nr_vecs * sizeof(struct bio_vec); 2158 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2159 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2160 } 2161 } 2162 2163 static int __init init_bio(void) 2164 { 2165 bio_slab_max = 2; 2166 bio_slab_nr = 0; 2167 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab), 2168 GFP_KERNEL); 2169 2170 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET); 2171 2172 if (!bio_slabs) 2173 panic("bio: can't allocate bios\n"); 2174 2175 bio_integrity_init(); 2176 biovec_init_slabs(); 2177 2178 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS)) 2179 panic("bio: can't allocate bios\n"); 2180 2181 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) 2182 panic("bio: can't create integrity pool\n"); 2183 2184 return 0; 2185 } 2186 subsys_initcall(init_bio); 2187