1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 4 */ 5 #include <linux/mm.h> 6 #include <linux/swap.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/uio.h> 10 #include <linux/iocontext.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/mempool.h> 16 #include <linux/workqueue.h> 17 #include <linux/cgroup.h> 18 #include <linux/highmem.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/blk-crypto.h> 21 #include <linux/xarray.h> 22 23 #include <trace/events/block.h> 24 #include "blk.h" 25 #include "blk-rq-qos.h" 26 #include "blk-cgroup.h" 27 28 #define ALLOC_CACHE_THRESHOLD 16 29 #define ALLOC_CACHE_SLACK 64 30 #define ALLOC_CACHE_MAX 256 31 32 struct bio_alloc_cache { 33 struct bio *free_list; 34 struct bio *free_list_irq; 35 unsigned int nr; 36 unsigned int nr_irq; 37 }; 38 39 static struct biovec_slab { 40 int nr_vecs; 41 char *name; 42 struct kmem_cache *slab; 43 } bvec_slabs[] __read_mostly = { 44 { .nr_vecs = 16, .name = "biovec-16" }, 45 { .nr_vecs = 64, .name = "biovec-64" }, 46 { .nr_vecs = 128, .name = "biovec-128" }, 47 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" }, 48 }; 49 50 static struct biovec_slab *biovec_slab(unsigned short nr_vecs) 51 { 52 switch (nr_vecs) { 53 /* smaller bios use inline vecs */ 54 case 5 ... 16: 55 return &bvec_slabs[0]; 56 case 17 ... 64: 57 return &bvec_slabs[1]; 58 case 65 ... 128: 59 return &bvec_slabs[2]; 60 case 129 ... BIO_MAX_VECS: 61 return &bvec_slabs[3]; 62 default: 63 BUG(); 64 return NULL; 65 } 66 } 67 68 /* 69 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 70 * IO code that does not need private memory pools. 71 */ 72 struct bio_set fs_bio_set; 73 EXPORT_SYMBOL(fs_bio_set); 74 75 /* 76 * Our slab pool management 77 */ 78 struct bio_slab { 79 struct kmem_cache *slab; 80 unsigned int slab_ref; 81 unsigned int slab_size; 82 char name[8]; 83 }; 84 static DEFINE_MUTEX(bio_slab_lock); 85 static DEFINE_XARRAY(bio_slabs); 86 87 static struct bio_slab *create_bio_slab(unsigned int size) 88 { 89 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL); 90 91 if (!bslab) 92 return NULL; 93 94 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size); 95 bslab->slab = kmem_cache_create(bslab->name, size, 96 ARCH_KMALLOC_MINALIGN, 97 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL); 98 if (!bslab->slab) 99 goto fail_alloc_slab; 100 101 bslab->slab_ref = 1; 102 bslab->slab_size = size; 103 104 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL))) 105 return bslab; 106 107 kmem_cache_destroy(bslab->slab); 108 109 fail_alloc_slab: 110 kfree(bslab); 111 return NULL; 112 } 113 114 static inline unsigned int bs_bio_slab_size(struct bio_set *bs) 115 { 116 return bs->front_pad + sizeof(struct bio) + bs->back_pad; 117 } 118 119 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs) 120 { 121 unsigned int size = bs_bio_slab_size(bs); 122 struct bio_slab *bslab; 123 124 mutex_lock(&bio_slab_lock); 125 bslab = xa_load(&bio_slabs, size); 126 if (bslab) 127 bslab->slab_ref++; 128 else 129 bslab = create_bio_slab(size); 130 mutex_unlock(&bio_slab_lock); 131 132 if (bslab) 133 return bslab->slab; 134 return NULL; 135 } 136 137 static void bio_put_slab(struct bio_set *bs) 138 { 139 struct bio_slab *bslab = NULL; 140 unsigned int slab_size = bs_bio_slab_size(bs); 141 142 mutex_lock(&bio_slab_lock); 143 144 bslab = xa_load(&bio_slabs, slab_size); 145 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 146 goto out; 147 148 WARN_ON_ONCE(bslab->slab != bs->bio_slab); 149 150 WARN_ON(!bslab->slab_ref); 151 152 if (--bslab->slab_ref) 153 goto out; 154 155 xa_erase(&bio_slabs, slab_size); 156 157 kmem_cache_destroy(bslab->slab); 158 kfree(bslab); 159 160 out: 161 mutex_unlock(&bio_slab_lock); 162 } 163 164 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs) 165 { 166 BUG_ON(nr_vecs > BIO_MAX_VECS); 167 168 if (nr_vecs == BIO_MAX_VECS) 169 mempool_free(bv, pool); 170 else if (nr_vecs > BIO_INLINE_VECS) 171 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv); 172 } 173 174 /* 175 * Make the first allocation restricted and don't dump info on allocation 176 * failures, since we'll fall back to the mempool in case of failure. 177 */ 178 static inline gfp_t bvec_alloc_gfp(gfp_t gfp) 179 { 180 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) | 181 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 182 } 183 184 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 185 gfp_t gfp_mask) 186 { 187 struct biovec_slab *bvs = biovec_slab(*nr_vecs); 188 189 if (WARN_ON_ONCE(!bvs)) 190 return NULL; 191 192 /* 193 * Upgrade the nr_vecs request to take full advantage of the allocation. 194 * We also rely on this in the bvec_free path. 195 */ 196 *nr_vecs = bvs->nr_vecs; 197 198 /* 199 * Try a slab allocation first for all smaller allocations. If that 200 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool. 201 * The mempool is sized to handle up to BIO_MAX_VECS entries. 202 */ 203 if (*nr_vecs < BIO_MAX_VECS) { 204 struct bio_vec *bvl; 205 206 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask)); 207 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 208 return bvl; 209 *nr_vecs = BIO_MAX_VECS; 210 } 211 212 return mempool_alloc(pool, gfp_mask); 213 } 214 215 void bio_uninit(struct bio *bio) 216 { 217 #ifdef CONFIG_BLK_CGROUP 218 if (bio->bi_blkg) { 219 blkg_put(bio->bi_blkg); 220 bio->bi_blkg = NULL; 221 } 222 #endif 223 if (bio_integrity(bio)) 224 bio_integrity_free(bio); 225 226 bio_crypt_free_ctx(bio); 227 } 228 EXPORT_SYMBOL(bio_uninit); 229 230 static void bio_free(struct bio *bio) 231 { 232 struct bio_set *bs = bio->bi_pool; 233 void *p = bio; 234 235 WARN_ON_ONCE(!bs); 236 237 bio_uninit(bio); 238 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs); 239 mempool_free(p - bs->front_pad, &bs->bio_pool); 240 } 241 242 /* 243 * Users of this function have their own bio allocation. Subsequently, 244 * they must remember to pair any call to bio_init() with bio_uninit() 245 * when IO has completed, or when the bio is released. 246 */ 247 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table, 248 unsigned short max_vecs, blk_opf_t opf) 249 { 250 bio->bi_next = NULL; 251 bio->bi_bdev = bdev; 252 bio->bi_opf = opf; 253 bio->bi_flags = 0; 254 bio->bi_ioprio = 0; 255 bio->bi_status = 0; 256 bio->bi_iter.bi_sector = 0; 257 bio->bi_iter.bi_size = 0; 258 bio->bi_iter.bi_idx = 0; 259 bio->bi_iter.bi_bvec_done = 0; 260 bio->bi_end_io = NULL; 261 bio->bi_private = NULL; 262 #ifdef CONFIG_BLK_CGROUP 263 bio->bi_blkg = NULL; 264 bio->bi_issue.value = 0; 265 if (bdev) 266 bio_associate_blkg(bio); 267 #ifdef CONFIG_BLK_CGROUP_IOCOST 268 bio->bi_iocost_cost = 0; 269 #endif 270 #endif 271 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 272 bio->bi_crypt_context = NULL; 273 #endif 274 #ifdef CONFIG_BLK_DEV_INTEGRITY 275 bio->bi_integrity = NULL; 276 #endif 277 bio->bi_vcnt = 0; 278 279 atomic_set(&bio->__bi_remaining, 1); 280 atomic_set(&bio->__bi_cnt, 1); 281 bio->bi_cookie = BLK_QC_T_NONE; 282 283 bio->bi_max_vecs = max_vecs; 284 bio->bi_io_vec = table; 285 bio->bi_pool = NULL; 286 } 287 EXPORT_SYMBOL(bio_init); 288 289 /** 290 * bio_reset - reinitialize a bio 291 * @bio: bio to reset 292 * @bdev: block device to use the bio for 293 * @opf: operation and flags for bio 294 * 295 * Description: 296 * After calling bio_reset(), @bio will be in the same state as a freshly 297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 298 * preserved are the ones that are initialized by bio_alloc_bioset(). See 299 * comment in struct bio. 300 */ 301 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf) 302 { 303 bio_uninit(bio); 304 memset(bio, 0, BIO_RESET_BYTES); 305 atomic_set(&bio->__bi_remaining, 1); 306 bio->bi_bdev = bdev; 307 if (bio->bi_bdev) 308 bio_associate_blkg(bio); 309 bio->bi_opf = opf; 310 } 311 EXPORT_SYMBOL(bio_reset); 312 313 static struct bio *__bio_chain_endio(struct bio *bio) 314 { 315 struct bio *parent = bio->bi_private; 316 317 if (bio->bi_status && !parent->bi_status) 318 parent->bi_status = bio->bi_status; 319 bio_put(bio); 320 return parent; 321 } 322 323 static void bio_chain_endio(struct bio *bio) 324 { 325 bio_endio(__bio_chain_endio(bio)); 326 } 327 328 /** 329 * bio_chain - chain bio completions 330 * @bio: the target bio 331 * @parent: the parent bio of @bio 332 * 333 * The caller won't have a bi_end_io called when @bio completes - instead, 334 * @parent's bi_end_io won't be called until both @parent and @bio have 335 * completed; the chained bio will also be freed when it completes. 336 * 337 * The caller must not set bi_private or bi_end_io in @bio. 338 */ 339 void bio_chain(struct bio *bio, struct bio *parent) 340 { 341 BUG_ON(bio->bi_private || bio->bi_end_io); 342 343 bio->bi_private = parent; 344 bio->bi_end_io = bio_chain_endio; 345 bio_inc_remaining(parent); 346 } 347 EXPORT_SYMBOL(bio_chain); 348 349 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev, 350 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp) 351 { 352 struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp); 353 354 if (bio) { 355 bio_chain(bio, new); 356 submit_bio(bio); 357 } 358 359 return new; 360 } 361 EXPORT_SYMBOL_GPL(blk_next_bio); 362 363 static void bio_alloc_rescue(struct work_struct *work) 364 { 365 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 366 struct bio *bio; 367 368 while (1) { 369 spin_lock(&bs->rescue_lock); 370 bio = bio_list_pop(&bs->rescue_list); 371 spin_unlock(&bs->rescue_lock); 372 373 if (!bio) 374 break; 375 376 submit_bio_noacct(bio); 377 } 378 } 379 380 static void punt_bios_to_rescuer(struct bio_set *bs) 381 { 382 struct bio_list punt, nopunt; 383 struct bio *bio; 384 385 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 386 return; 387 /* 388 * In order to guarantee forward progress we must punt only bios that 389 * were allocated from this bio_set; otherwise, if there was a bio on 390 * there for a stacking driver higher up in the stack, processing it 391 * could require allocating bios from this bio_set, and doing that from 392 * our own rescuer would be bad. 393 * 394 * Since bio lists are singly linked, pop them all instead of trying to 395 * remove from the middle of the list: 396 */ 397 398 bio_list_init(&punt); 399 bio_list_init(&nopunt); 400 401 while ((bio = bio_list_pop(¤t->bio_list[0]))) 402 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 403 current->bio_list[0] = nopunt; 404 405 bio_list_init(&nopunt); 406 while ((bio = bio_list_pop(¤t->bio_list[1]))) 407 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 408 current->bio_list[1] = nopunt; 409 410 spin_lock(&bs->rescue_lock); 411 bio_list_merge(&bs->rescue_list, &punt); 412 spin_unlock(&bs->rescue_lock); 413 414 queue_work(bs->rescue_workqueue, &bs->rescue_work); 415 } 416 417 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache) 418 { 419 unsigned long flags; 420 421 /* cache->free_list must be empty */ 422 if (WARN_ON_ONCE(cache->free_list)) 423 return; 424 425 local_irq_save(flags); 426 cache->free_list = cache->free_list_irq; 427 cache->free_list_irq = NULL; 428 cache->nr += cache->nr_irq; 429 cache->nr_irq = 0; 430 local_irq_restore(flags); 431 } 432 433 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev, 434 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp, 435 struct bio_set *bs) 436 { 437 struct bio_alloc_cache *cache; 438 struct bio *bio; 439 440 cache = per_cpu_ptr(bs->cache, get_cpu()); 441 if (!cache->free_list) { 442 if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD) 443 bio_alloc_irq_cache_splice(cache); 444 if (!cache->free_list) { 445 put_cpu(); 446 return NULL; 447 } 448 } 449 bio = cache->free_list; 450 cache->free_list = bio->bi_next; 451 cache->nr--; 452 put_cpu(); 453 454 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf); 455 bio->bi_pool = bs; 456 return bio; 457 } 458 459 /** 460 * bio_alloc_bioset - allocate a bio for I/O 461 * @bdev: block device to allocate the bio for (can be %NULL) 462 * @nr_vecs: number of bvecs to pre-allocate 463 * @opf: operation and flags for bio 464 * @gfp_mask: the GFP_* mask given to the slab allocator 465 * @bs: the bio_set to allocate from. 466 * 467 * Allocate a bio from the mempools in @bs. 468 * 469 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to 470 * allocate a bio. This is due to the mempool guarantees. To make this work, 471 * callers must never allocate more than 1 bio at a time from the general pool. 472 * Callers that need to allocate more than 1 bio must always submit the 473 * previously allocated bio for IO before attempting to allocate a new one. 474 * Failure to do so can cause deadlocks under memory pressure. 475 * 476 * Note that when running under submit_bio_noacct() (i.e. any block driver), 477 * bios are not submitted until after you return - see the code in 478 * submit_bio_noacct() that converts recursion into iteration, to prevent 479 * stack overflows. 480 * 481 * This would normally mean allocating multiple bios under submit_bio_noacct() 482 * would be susceptible to deadlocks, but we have 483 * deadlock avoidance code that resubmits any blocked bios from a rescuer 484 * thread. 485 * 486 * However, we do not guarantee forward progress for allocations from other 487 * mempools. Doing multiple allocations from the same mempool under 488 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad 489 * for per bio allocations. 490 * 491 * Returns: Pointer to new bio on success, NULL on failure. 492 */ 493 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs, 494 blk_opf_t opf, gfp_t gfp_mask, 495 struct bio_set *bs) 496 { 497 gfp_t saved_gfp = gfp_mask; 498 struct bio *bio; 499 void *p; 500 501 /* should not use nobvec bioset for nr_vecs > 0 */ 502 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0)) 503 return NULL; 504 505 if (opf & REQ_ALLOC_CACHE) { 506 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) { 507 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf, 508 gfp_mask, bs); 509 if (bio) 510 return bio; 511 /* 512 * No cached bio available, bio returned below marked with 513 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache. 514 */ 515 } else { 516 opf &= ~REQ_ALLOC_CACHE; 517 } 518 } 519 520 /* 521 * submit_bio_noacct() converts recursion to iteration; this means if 522 * we're running beneath it, any bios we allocate and submit will not be 523 * submitted (and thus freed) until after we return. 524 * 525 * This exposes us to a potential deadlock if we allocate multiple bios 526 * from the same bio_set() while running underneath submit_bio_noacct(). 527 * If we were to allocate multiple bios (say a stacking block driver 528 * that was splitting bios), we would deadlock if we exhausted the 529 * mempool's reserve. 530 * 531 * We solve this, and guarantee forward progress, with a rescuer 532 * workqueue per bio_set. If we go to allocate and there are bios on 533 * current->bio_list, we first try the allocation without 534 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be 535 * blocking to the rescuer workqueue before we retry with the original 536 * gfp_flags. 537 */ 538 if (current->bio_list && 539 (!bio_list_empty(¤t->bio_list[0]) || 540 !bio_list_empty(¤t->bio_list[1])) && 541 bs->rescue_workqueue) 542 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 543 544 p = mempool_alloc(&bs->bio_pool, gfp_mask); 545 if (!p && gfp_mask != saved_gfp) { 546 punt_bios_to_rescuer(bs); 547 gfp_mask = saved_gfp; 548 p = mempool_alloc(&bs->bio_pool, gfp_mask); 549 } 550 if (unlikely(!p)) 551 return NULL; 552 if (!mempool_is_saturated(&bs->bio_pool)) 553 opf &= ~REQ_ALLOC_CACHE; 554 555 bio = p + bs->front_pad; 556 if (nr_vecs > BIO_INLINE_VECS) { 557 struct bio_vec *bvl = NULL; 558 559 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); 560 if (!bvl && gfp_mask != saved_gfp) { 561 punt_bios_to_rescuer(bs); 562 gfp_mask = saved_gfp; 563 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); 564 } 565 if (unlikely(!bvl)) 566 goto err_free; 567 568 bio_init(bio, bdev, bvl, nr_vecs, opf); 569 } else if (nr_vecs) { 570 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf); 571 } else { 572 bio_init(bio, bdev, NULL, 0, opf); 573 } 574 575 bio->bi_pool = bs; 576 return bio; 577 578 err_free: 579 mempool_free(p, &bs->bio_pool); 580 return NULL; 581 } 582 EXPORT_SYMBOL(bio_alloc_bioset); 583 584 /** 585 * bio_kmalloc - kmalloc a bio 586 * @nr_vecs: number of bio_vecs to allocate 587 * @gfp_mask: the GFP_* mask given to the slab allocator 588 * 589 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized 590 * using bio_init() before use. To free a bio returned from this function use 591 * kfree() after calling bio_uninit(). A bio returned from this function can 592 * be reused by calling bio_uninit() before calling bio_init() again. 593 * 594 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this 595 * function are not backed by a mempool can fail. Do not use this function 596 * for allocations in the file system I/O path. 597 * 598 * Returns: Pointer to new bio on success, NULL on failure. 599 */ 600 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask) 601 { 602 struct bio *bio; 603 604 if (nr_vecs > UIO_MAXIOV) 605 return NULL; 606 return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask); 607 } 608 EXPORT_SYMBOL(bio_kmalloc); 609 610 void zero_fill_bio(struct bio *bio) 611 { 612 struct bio_vec bv; 613 struct bvec_iter iter; 614 615 bio_for_each_segment(bv, bio, iter) 616 memzero_bvec(&bv); 617 } 618 EXPORT_SYMBOL(zero_fill_bio); 619 620 /** 621 * bio_truncate - truncate the bio to small size of @new_size 622 * @bio: the bio to be truncated 623 * @new_size: new size for truncating the bio 624 * 625 * Description: 626 * Truncate the bio to new size of @new_size. If bio_op(bio) is 627 * REQ_OP_READ, zero the truncated part. This function should only 628 * be used for handling corner cases, such as bio eod. 629 */ 630 static void bio_truncate(struct bio *bio, unsigned new_size) 631 { 632 struct bio_vec bv; 633 struct bvec_iter iter; 634 unsigned int done = 0; 635 bool truncated = false; 636 637 if (new_size >= bio->bi_iter.bi_size) 638 return; 639 640 if (bio_op(bio) != REQ_OP_READ) 641 goto exit; 642 643 bio_for_each_segment(bv, bio, iter) { 644 if (done + bv.bv_len > new_size) { 645 unsigned offset; 646 647 if (!truncated) 648 offset = new_size - done; 649 else 650 offset = 0; 651 zero_user(bv.bv_page, bv.bv_offset + offset, 652 bv.bv_len - offset); 653 truncated = true; 654 } 655 done += bv.bv_len; 656 } 657 658 exit: 659 /* 660 * Don't touch bvec table here and make it really immutable, since 661 * fs bio user has to retrieve all pages via bio_for_each_segment_all 662 * in its .end_bio() callback. 663 * 664 * It is enough to truncate bio by updating .bi_size since we can make 665 * correct bvec with the updated .bi_size for drivers. 666 */ 667 bio->bi_iter.bi_size = new_size; 668 } 669 670 /** 671 * guard_bio_eod - truncate a BIO to fit the block device 672 * @bio: bio to truncate 673 * 674 * This allows us to do IO even on the odd last sectors of a device, even if the 675 * block size is some multiple of the physical sector size. 676 * 677 * We'll just truncate the bio to the size of the device, and clear the end of 678 * the buffer head manually. Truly out-of-range accesses will turn into actual 679 * I/O errors, this only handles the "we need to be able to do I/O at the final 680 * sector" case. 681 */ 682 void guard_bio_eod(struct bio *bio) 683 { 684 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 685 686 if (!maxsector) 687 return; 688 689 /* 690 * If the *whole* IO is past the end of the device, 691 * let it through, and the IO layer will turn it into 692 * an EIO. 693 */ 694 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 695 return; 696 697 maxsector -= bio->bi_iter.bi_sector; 698 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 699 return; 700 701 bio_truncate(bio, maxsector << 9); 702 } 703 704 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache, 705 unsigned int nr) 706 { 707 unsigned int i = 0; 708 struct bio *bio; 709 710 while ((bio = cache->free_list) != NULL) { 711 cache->free_list = bio->bi_next; 712 cache->nr--; 713 bio_free(bio); 714 if (++i == nr) 715 break; 716 } 717 return i; 718 } 719 720 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache, 721 unsigned int nr) 722 { 723 nr -= __bio_alloc_cache_prune(cache, nr); 724 if (!READ_ONCE(cache->free_list)) { 725 bio_alloc_irq_cache_splice(cache); 726 __bio_alloc_cache_prune(cache, nr); 727 } 728 } 729 730 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node) 731 { 732 struct bio_set *bs; 733 734 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead); 735 if (bs->cache) { 736 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu); 737 738 bio_alloc_cache_prune(cache, -1U); 739 } 740 return 0; 741 } 742 743 static void bio_alloc_cache_destroy(struct bio_set *bs) 744 { 745 int cpu; 746 747 if (!bs->cache) 748 return; 749 750 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 751 for_each_possible_cpu(cpu) { 752 struct bio_alloc_cache *cache; 753 754 cache = per_cpu_ptr(bs->cache, cpu); 755 bio_alloc_cache_prune(cache, -1U); 756 } 757 free_percpu(bs->cache); 758 bs->cache = NULL; 759 } 760 761 static inline void bio_put_percpu_cache(struct bio *bio) 762 { 763 struct bio_alloc_cache *cache; 764 765 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu()); 766 if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX) { 767 put_cpu(); 768 bio_free(bio); 769 return; 770 } 771 772 bio_uninit(bio); 773 774 if ((bio->bi_opf & REQ_POLLED) && !WARN_ON_ONCE(in_interrupt())) { 775 bio->bi_next = cache->free_list; 776 cache->free_list = bio; 777 cache->nr++; 778 } else { 779 unsigned long flags; 780 781 local_irq_save(flags); 782 bio->bi_next = cache->free_list_irq; 783 cache->free_list_irq = bio; 784 cache->nr_irq++; 785 local_irq_restore(flags); 786 } 787 put_cpu(); 788 } 789 790 /** 791 * bio_put - release a reference to a bio 792 * @bio: bio to release reference to 793 * 794 * Description: 795 * Put a reference to a &struct bio, either one you have gotten with 796 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 797 **/ 798 void bio_put(struct bio *bio) 799 { 800 if (unlikely(bio_flagged(bio, BIO_REFFED))) { 801 BUG_ON(!atomic_read(&bio->__bi_cnt)); 802 if (!atomic_dec_and_test(&bio->__bi_cnt)) 803 return; 804 } 805 if (bio->bi_opf & REQ_ALLOC_CACHE) 806 bio_put_percpu_cache(bio); 807 else 808 bio_free(bio); 809 } 810 EXPORT_SYMBOL(bio_put); 811 812 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp) 813 { 814 bio_set_flag(bio, BIO_CLONED); 815 bio->bi_ioprio = bio_src->bi_ioprio; 816 bio->bi_iter = bio_src->bi_iter; 817 818 if (bio->bi_bdev) { 819 if (bio->bi_bdev == bio_src->bi_bdev && 820 bio_flagged(bio_src, BIO_REMAPPED)) 821 bio_set_flag(bio, BIO_REMAPPED); 822 bio_clone_blkg_association(bio, bio_src); 823 } 824 825 if (bio_crypt_clone(bio, bio_src, gfp) < 0) 826 return -ENOMEM; 827 if (bio_integrity(bio_src) && 828 bio_integrity_clone(bio, bio_src, gfp) < 0) 829 return -ENOMEM; 830 return 0; 831 } 832 833 /** 834 * bio_alloc_clone - clone a bio that shares the original bio's biovec 835 * @bdev: block_device to clone onto 836 * @bio_src: bio to clone from 837 * @gfp: allocation priority 838 * @bs: bio_set to allocate from 839 * 840 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned 841 * bio, but not the actual data it points to. 842 * 843 * The caller must ensure that the return bio is not freed before @bio_src. 844 */ 845 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src, 846 gfp_t gfp, struct bio_set *bs) 847 { 848 struct bio *bio; 849 850 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs); 851 if (!bio) 852 return NULL; 853 854 if (__bio_clone(bio, bio_src, gfp) < 0) { 855 bio_put(bio); 856 return NULL; 857 } 858 bio->bi_io_vec = bio_src->bi_io_vec; 859 860 return bio; 861 } 862 EXPORT_SYMBOL(bio_alloc_clone); 863 864 /** 865 * bio_init_clone - clone a bio that shares the original bio's biovec 866 * @bdev: block_device to clone onto 867 * @bio: bio to clone into 868 * @bio_src: bio to clone from 869 * @gfp: allocation priority 870 * 871 * Initialize a new bio in caller provided memory that is a clone of @bio_src. 872 * The caller owns the returned bio, but not the actual data it points to. 873 * 874 * The caller must ensure that @bio_src is not freed before @bio. 875 */ 876 int bio_init_clone(struct block_device *bdev, struct bio *bio, 877 struct bio *bio_src, gfp_t gfp) 878 { 879 int ret; 880 881 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf); 882 ret = __bio_clone(bio, bio_src, gfp); 883 if (ret) 884 bio_uninit(bio); 885 return ret; 886 } 887 EXPORT_SYMBOL(bio_init_clone); 888 889 /** 890 * bio_full - check if the bio is full 891 * @bio: bio to check 892 * @len: length of one segment to be added 893 * 894 * Return true if @bio is full and one segment with @len bytes can't be 895 * added to the bio, otherwise return false 896 */ 897 static inline bool bio_full(struct bio *bio, unsigned len) 898 { 899 if (bio->bi_vcnt >= bio->bi_max_vecs) 900 return true; 901 if (bio->bi_iter.bi_size > UINT_MAX - len) 902 return true; 903 return false; 904 } 905 906 static inline bool page_is_mergeable(const struct bio_vec *bv, 907 struct page *page, unsigned int len, unsigned int off, 908 bool *same_page) 909 { 910 size_t bv_end = bv->bv_offset + bv->bv_len; 911 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1; 912 phys_addr_t page_addr = page_to_phys(page); 913 914 if (vec_end_addr + 1 != page_addr + off) 915 return false; 916 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 917 return false; 918 if (!zone_device_pages_have_same_pgmap(bv->bv_page, page)) 919 return false; 920 921 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); 922 if (*same_page) 923 return true; 924 else if (IS_ENABLED(CONFIG_KMSAN)) 925 return false; 926 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE); 927 } 928 929 /** 930 * __bio_try_merge_page - try appending data to an existing bvec. 931 * @bio: destination bio 932 * @page: start page to add 933 * @len: length of the data to add 934 * @off: offset of the data relative to @page 935 * @same_page: return if the segment has been merged inside the same page 936 * 937 * Try to add the data at @page + @off to the last bvec of @bio. This is a 938 * useful optimisation for file systems with a block size smaller than the 939 * page size. 940 * 941 * Warn if (@len, @off) crosses pages in case that @same_page is true. 942 * 943 * Return %true on success or %false on failure. 944 */ 945 static bool __bio_try_merge_page(struct bio *bio, struct page *page, 946 unsigned int len, unsigned int off, bool *same_page) 947 { 948 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 949 return false; 950 951 if (bio->bi_vcnt > 0) { 952 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 953 954 if (page_is_mergeable(bv, page, len, off, same_page)) { 955 if (bio->bi_iter.bi_size > UINT_MAX - len) { 956 *same_page = false; 957 return false; 958 } 959 bv->bv_len += len; 960 bio->bi_iter.bi_size += len; 961 return true; 962 } 963 } 964 return false; 965 } 966 967 /* 968 * Try to merge a page into a segment, while obeying the hardware segment 969 * size limit. This is not for normal read/write bios, but for passthrough 970 * or Zone Append operations that we can't split. 971 */ 972 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio, 973 struct page *page, unsigned len, 974 unsigned offset, bool *same_page) 975 { 976 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 977 unsigned long mask = queue_segment_boundary(q); 978 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; 979 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 980 981 if ((addr1 | mask) != (addr2 | mask)) 982 return false; 983 if (bv->bv_len + len > queue_max_segment_size(q)) 984 return false; 985 return __bio_try_merge_page(bio, page, len, offset, same_page); 986 } 987 988 /** 989 * bio_add_hw_page - attempt to add a page to a bio with hw constraints 990 * @q: the target queue 991 * @bio: destination bio 992 * @page: page to add 993 * @len: vec entry length 994 * @offset: vec entry offset 995 * @max_sectors: maximum number of sectors that can be added 996 * @same_page: return if the segment has been merged inside the same page 997 * 998 * Add a page to a bio while respecting the hardware max_sectors, max_segment 999 * and gap limitations. 1000 */ 1001 int bio_add_hw_page(struct request_queue *q, struct bio *bio, 1002 struct page *page, unsigned int len, unsigned int offset, 1003 unsigned int max_sectors, bool *same_page) 1004 { 1005 struct bio_vec *bvec; 1006 1007 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 1008 return 0; 1009 1010 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors) 1011 return 0; 1012 1013 if (bio->bi_vcnt > 0) { 1014 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page)) 1015 return len; 1016 1017 /* 1018 * If the queue doesn't support SG gaps and adding this segment 1019 * would create a gap, disallow it. 1020 */ 1021 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 1022 if (bvec_gap_to_prev(&q->limits, bvec, offset)) 1023 return 0; 1024 } 1025 1026 if (bio_full(bio, len)) 1027 return 0; 1028 1029 if (bio->bi_vcnt >= queue_max_segments(q)) 1030 return 0; 1031 1032 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 1033 bvec->bv_page = page; 1034 bvec->bv_len = len; 1035 bvec->bv_offset = offset; 1036 bio->bi_vcnt++; 1037 bio->bi_iter.bi_size += len; 1038 return len; 1039 } 1040 1041 /** 1042 * bio_add_pc_page - attempt to add page to passthrough bio 1043 * @q: the target queue 1044 * @bio: destination bio 1045 * @page: page to add 1046 * @len: vec entry length 1047 * @offset: vec entry offset 1048 * 1049 * Attempt to add a page to the bio_vec maplist. This can fail for a 1050 * number of reasons, such as the bio being full or target block device 1051 * limitations. The target block device must allow bio's up to PAGE_SIZE, 1052 * so it is always possible to add a single page to an empty bio. 1053 * 1054 * This should only be used by passthrough bios. 1055 */ 1056 int bio_add_pc_page(struct request_queue *q, struct bio *bio, 1057 struct page *page, unsigned int len, unsigned int offset) 1058 { 1059 bool same_page = false; 1060 return bio_add_hw_page(q, bio, page, len, offset, 1061 queue_max_hw_sectors(q), &same_page); 1062 } 1063 EXPORT_SYMBOL(bio_add_pc_page); 1064 1065 /** 1066 * bio_add_zone_append_page - attempt to add page to zone-append bio 1067 * @bio: destination bio 1068 * @page: page to add 1069 * @len: vec entry length 1070 * @offset: vec entry offset 1071 * 1072 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted 1073 * for a zone-append request. This can fail for a number of reasons, such as the 1074 * bio being full or the target block device is not a zoned block device or 1075 * other limitations of the target block device. The target block device must 1076 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page 1077 * to an empty bio. 1078 * 1079 * Returns: number of bytes added to the bio, or 0 in case of a failure. 1080 */ 1081 int bio_add_zone_append_page(struct bio *bio, struct page *page, 1082 unsigned int len, unsigned int offset) 1083 { 1084 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1085 bool same_page = false; 1086 1087 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND)) 1088 return 0; 1089 1090 if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev))) 1091 return 0; 1092 1093 return bio_add_hw_page(q, bio, page, len, offset, 1094 queue_max_zone_append_sectors(q), &same_page); 1095 } 1096 EXPORT_SYMBOL_GPL(bio_add_zone_append_page); 1097 1098 /** 1099 * __bio_add_page - add page(s) to a bio in a new segment 1100 * @bio: destination bio 1101 * @page: start page to add 1102 * @len: length of the data to add, may cross pages 1103 * @off: offset of the data relative to @page, may cross pages 1104 * 1105 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 1106 * that @bio has space for another bvec. 1107 */ 1108 void __bio_add_page(struct bio *bio, struct page *page, 1109 unsigned int len, unsigned int off) 1110 { 1111 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt]; 1112 1113 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 1114 WARN_ON_ONCE(bio_full(bio, len)); 1115 1116 bv->bv_page = page; 1117 bv->bv_offset = off; 1118 bv->bv_len = len; 1119 1120 bio->bi_iter.bi_size += len; 1121 bio->bi_vcnt++; 1122 } 1123 EXPORT_SYMBOL_GPL(__bio_add_page); 1124 1125 /** 1126 * bio_add_page - attempt to add page(s) to bio 1127 * @bio: destination bio 1128 * @page: start page to add 1129 * @len: vec entry length, may cross pages 1130 * @offset: vec entry offset relative to @page, may cross pages 1131 * 1132 * Attempt to add page(s) to the bio_vec maplist. This will only fail 1133 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 1134 */ 1135 int bio_add_page(struct bio *bio, struct page *page, 1136 unsigned int len, unsigned int offset) 1137 { 1138 bool same_page = false; 1139 1140 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { 1141 if (bio_full(bio, len)) 1142 return 0; 1143 __bio_add_page(bio, page, len, offset); 1144 } 1145 return len; 1146 } 1147 EXPORT_SYMBOL(bio_add_page); 1148 1149 /** 1150 * bio_add_folio - Attempt to add part of a folio to a bio. 1151 * @bio: BIO to add to. 1152 * @folio: Folio to add. 1153 * @len: How many bytes from the folio to add. 1154 * @off: First byte in this folio to add. 1155 * 1156 * Filesystems that use folios can call this function instead of calling 1157 * bio_add_page() for each page in the folio. If @off is bigger than 1158 * PAGE_SIZE, this function can create a bio_vec that starts in a page 1159 * after the bv_page. BIOs do not support folios that are 4GiB or larger. 1160 * 1161 * Return: Whether the addition was successful. 1162 */ 1163 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len, 1164 size_t off) 1165 { 1166 if (len > UINT_MAX || off > UINT_MAX) 1167 return false; 1168 return bio_add_page(bio, &folio->page, len, off) > 0; 1169 } 1170 1171 void __bio_release_pages(struct bio *bio, bool mark_dirty) 1172 { 1173 struct bvec_iter_all iter_all; 1174 struct bio_vec *bvec; 1175 1176 bio_for_each_segment_all(bvec, bio, iter_all) { 1177 if (mark_dirty && !PageCompound(bvec->bv_page)) 1178 set_page_dirty_lock(bvec->bv_page); 1179 put_page(bvec->bv_page); 1180 } 1181 } 1182 EXPORT_SYMBOL_GPL(__bio_release_pages); 1183 1184 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter) 1185 { 1186 size_t size = iov_iter_count(iter); 1187 1188 WARN_ON_ONCE(bio->bi_max_vecs); 1189 1190 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 1191 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1192 size_t max_sectors = queue_max_zone_append_sectors(q); 1193 1194 size = min(size, max_sectors << SECTOR_SHIFT); 1195 } 1196 1197 bio->bi_vcnt = iter->nr_segs; 1198 bio->bi_io_vec = (struct bio_vec *)iter->bvec; 1199 bio->bi_iter.bi_bvec_done = iter->iov_offset; 1200 bio->bi_iter.bi_size = size; 1201 bio_set_flag(bio, BIO_NO_PAGE_REF); 1202 bio_set_flag(bio, BIO_CLONED); 1203 } 1204 1205 static int bio_iov_add_page(struct bio *bio, struct page *page, 1206 unsigned int len, unsigned int offset) 1207 { 1208 bool same_page = false; 1209 1210 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { 1211 __bio_add_page(bio, page, len, offset); 1212 return 0; 1213 } 1214 1215 if (same_page) 1216 put_page(page); 1217 return 0; 1218 } 1219 1220 static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page, 1221 unsigned int len, unsigned int offset) 1222 { 1223 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1224 bool same_page = false; 1225 1226 if (bio_add_hw_page(q, bio, page, len, offset, 1227 queue_max_zone_append_sectors(q), &same_page) != len) 1228 return -EINVAL; 1229 if (same_page) 1230 put_page(page); 1231 return 0; 1232 } 1233 1234 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 1235 1236 /** 1237 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 1238 * @bio: bio to add pages to 1239 * @iter: iov iterator describing the region to be mapped 1240 * 1241 * Pins pages from *iter and appends them to @bio's bvec array. The 1242 * pages will have to be released using put_page() when done. 1243 * For multi-segment *iter, this function only adds pages from the 1244 * next non-empty segment of the iov iterator. 1245 */ 1246 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1247 { 1248 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 1249 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 1250 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 1251 struct page **pages = (struct page **)bv; 1252 unsigned int gup_flags = 0; 1253 ssize_t size, left; 1254 unsigned len, i = 0; 1255 size_t offset, trim; 1256 int ret = 0; 1257 1258 /* 1259 * Move page array up in the allocated memory for the bio vecs as far as 1260 * possible so that we can start filling biovecs from the beginning 1261 * without overwriting the temporary page array. 1262 */ 1263 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 1264 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 1265 1266 if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue)) 1267 gup_flags |= FOLL_PCI_P2PDMA; 1268 1269 /* 1270 * Each segment in the iov is required to be a block size multiple. 1271 * However, we may not be able to get the entire segment if it spans 1272 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the 1273 * result to ensure the bio's total size is correct. The remainder of 1274 * the iov data will be picked up in the next bio iteration. 1275 */ 1276 size = iov_iter_get_pages(iter, pages, 1277 UINT_MAX - bio->bi_iter.bi_size, 1278 nr_pages, &offset, gup_flags); 1279 if (unlikely(size <= 0)) 1280 return size ? size : -EFAULT; 1281 1282 nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE); 1283 1284 trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1); 1285 iov_iter_revert(iter, trim); 1286 1287 size -= trim; 1288 if (unlikely(!size)) { 1289 ret = -EFAULT; 1290 goto out; 1291 } 1292 1293 for (left = size, i = 0; left > 0; left -= len, i++) { 1294 struct page *page = pages[i]; 1295 1296 len = min_t(size_t, PAGE_SIZE - offset, left); 1297 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 1298 ret = bio_iov_add_zone_append_page(bio, page, len, 1299 offset); 1300 if (ret) 1301 break; 1302 } else 1303 bio_iov_add_page(bio, page, len, offset); 1304 1305 offset = 0; 1306 } 1307 1308 iov_iter_revert(iter, left); 1309 out: 1310 while (i < nr_pages) 1311 put_page(pages[i++]); 1312 1313 return ret; 1314 } 1315 1316 /** 1317 * bio_iov_iter_get_pages - add user or kernel pages to a bio 1318 * @bio: bio to add pages to 1319 * @iter: iov iterator describing the region to be added 1320 * 1321 * This takes either an iterator pointing to user memory, or one pointing to 1322 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 1323 * map them into the kernel. On IO completion, the caller should put those 1324 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided 1325 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs 1326 * to ensure the bvecs and pages stay referenced until the submitted I/O is 1327 * completed by a call to ->ki_complete() or returns with an error other than 1328 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF 1329 * on IO completion. If it isn't, then pages should be released. 1330 * 1331 * The function tries, but does not guarantee, to pin as many pages as 1332 * fit into the bio, or are requested in @iter, whatever is smaller. If 1333 * MM encounters an error pinning the requested pages, it stops. Error 1334 * is returned only if 0 pages could be pinned. 1335 */ 1336 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1337 { 1338 int ret = 0; 1339 1340 if (iov_iter_is_bvec(iter)) { 1341 bio_iov_bvec_set(bio, iter); 1342 iov_iter_advance(iter, bio->bi_iter.bi_size); 1343 return 0; 1344 } 1345 1346 do { 1347 ret = __bio_iov_iter_get_pages(bio, iter); 1348 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); 1349 1350 return bio->bi_vcnt ? 0 : ret; 1351 } 1352 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 1353 1354 static void submit_bio_wait_endio(struct bio *bio) 1355 { 1356 complete(bio->bi_private); 1357 } 1358 1359 /** 1360 * submit_bio_wait - submit a bio, and wait until it completes 1361 * @bio: The &struct bio which describes the I/O 1362 * 1363 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 1364 * bio_endio() on failure. 1365 * 1366 * WARNING: Unlike to how submit_bio() is usually used, this function does not 1367 * result in bio reference to be consumed. The caller must drop the reference 1368 * on his own. 1369 */ 1370 int submit_bio_wait(struct bio *bio) 1371 { 1372 DECLARE_COMPLETION_ONSTACK_MAP(done, 1373 bio->bi_bdev->bd_disk->lockdep_map); 1374 unsigned long hang_check; 1375 1376 bio->bi_private = &done; 1377 bio->bi_end_io = submit_bio_wait_endio; 1378 bio->bi_opf |= REQ_SYNC; 1379 submit_bio(bio); 1380 1381 /* Prevent hang_check timer from firing at us during very long I/O */ 1382 hang_check = sysctl_hung_task_timeout_secs; 1383 if (hang_check) 1384 while (!wait_for_completion_io_timeout(&done, 1385 hang_check * (HZ/2))) 1386 ; 1387 else 1388 wait_for_completion_io(&done); 1389 1390 return blk_status_to_errno(bio->bi_status); 1391 } 1392 EXPORT_SYMBOL(submit_bio_wait); 1393 1394 void __bio_advance(struct bio *bio, unsigned bytes) 1395 { 1396 if (bio_integrity(bio)) 1397 bio_integrity_advance(bio, bytes); 1398 1399 bio_crypt_advance(bio, bytes); 1400 bio_advance_iter(bio, &bio->bi_iter, bytes); 1401 } 1402 EXPORT_SYMBOL(__bio_advance); 1403 1404 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 1405 struct bio *src, struct bvec_iter *src_iter) 1406 { 1407 while (src_iter->bi_size && dst_iter->bi_size) { 1408 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter); 1409 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter); 1410 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len); 1411 void *src_buf = bvec_kmap_local(&src_bv); 1412 void *dst_buf = bvec_kmap_local(&dst_bv); 1413 1414 memcpy(dst_buf, src_buf, bytes); 1415 1416 kunmap_local(dst_buf); 1417 kunmap_local(src_buf); 1418 1419 bio_advance_iter_single(src, src_iter, bytes); 1420 bio_advance_iter_single(dst, dst_iter, bytes); 1421 } 1422 } 1423 EXPORT_SYMBOL(bio_copy_data_iter); 1424 1425 /** 1426 * bio_copy_data - copy contents of data buffers from one bio to another 1427 * @src: source bio 1428 * @dst: destination bio 1429 * 1430 * Stops when it reaches the end of either @src or @dst - that is, copies 1431 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1432 */ 1433 void bio_copy_data(struct bio *dst, struct bio *src) 1434 { 1435 struct bvec_iter src_iter = src->bi_iter; 1436 struct bvec_iter dst_iter = dst->bi_iter; 1437 1438 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1439 } 1440 EXPORT_SYMBOL(bio_copy_data); 1441 1442 void bio_free_pages(struct bio *bio) 1443 { 1444 struct bio_vec *bvec; 1445 struct bvec_iter_all iter_all; 1446 1447 bio_for_each_segment_all(bvec, bio, iter_all) 1448 __free_page(bvec->bv_page); 1449 } 1450 EXPORT_SYMBOL(bio_free_pages); 1451 1452 /* 1453 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1454 * for performing direct-IO in BIOs. 1455 * 1456 * The problem is that we cannot run set_page_dirty() from interrupt context 1457 * because the required locks are not interrupt-safe. So what we can do is to 1458 * mark the pages dirty _before_ performing IO. And in interrupt context, 1459 * check that the pages are still dirty. If so, fine. If not, redirty them 1460 * in process context. 1461 * 1462 * We special-case compound pages here: normally this means reads into hugetlb 1463 * pages. The logic in here doesn't really work right for compound pages 1464 * because the VM does not uniformly chase down the head page in all cases. 1465 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1466 * handle them at all. So we skip compound pages here at an early stage. 1467 * 1468 * Note that this code is very hard to test under normal circumstances because 1469 * direct-io pins the pages with get_user_pages(). This makes 1470 * is_page_cache_freeable return false, and the VM will not clean the pages. 1471 * But other code (eg, flusher threads) could clean the pages if they are mapped 1472 * pagecache. 1473 * 1474 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1475 * deferred bio dirtying paths. 1476 */ 1477 1478 /* 1479 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1480 */ 1481 void bio_set_pages_dirty(struct bio *bio) 1482 { 1483 struct bio_vec *bvec; 1484 struct bvec_iter_all iter_all; 1485 1486 bio_for_each_segment_all(bvec, bio, iter_all) { 1487 if (!PageCompound(bvec->bv_page)) 1488 set_page_dirty_lock(bvec->bv_page); 1489 } 1490 } 1491 1492 /* 1493 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1494 * If they are, then fine. If, however, some pages are clean then they must 1495 * have been written out during the direct-IO read. So we take another ref on 1496 * the BIO and re-dirty the pages in process context. 1497 * 1498 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1499 * here on. It will run one put_page() against each page and will run one 1500 * bio_put() against the BIO. 1501 */ 1502 1503 static void bio_dirty_fn(struct work_struct *work); 1504 1505 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1506 static DEFINE_SPINLOCK(bio_dirty_lock); 1507 static struct bio *bio_dirty_list; 1508 1509 /* 1510 * This runs in process context 1511 */ 1512 static void bio_dirty_fn(struct work_struct *work) 1513 { 1514 struct bio *bio, *next; 1515 1516 spin_lock_irq(&bio_dirty_lock); 1517 next = bio_dirty_list; 1518 bio_dirty_list = NULL; 1519 spin_unlock_irq(&bio_dirty_lock); 1520 1521 while ((bio = next) != NULL) { 1522 next = bio->bi_private; 1523 1524 bio_release_pages(bio, true); 1525 bio_put(bio); 1526 } 1527 } 1528 1529 void bio_check_pages_dirty(struct bio *bio) 1530 { 1531 struct bio_vec *bvec; 1532 unsigned long flags; 1533 struct bvec_iter_all iter_all; 1534 1535 bio_for_each_segment_all(bvec, bio, iter_all) { 1536 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page)) 1537 goto defer; 1538 } 1539 1540 bio_release_pages(bio, false); 1541 bio_put(bio); 1542 return; 1543 defer: 1544 spin_lock_irqsave(&bio_dirty_lock, flags); 1545 bio->bi_private = bio_dirty_list; 1546 bio_dirty_list = bio; 1547 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1548 schedule_work(&bio_dirty_work); 1549 } 1550 1551 static inline bool bio_remaining_done(struct bio *bio) 1552 { 1553 /* 1554 * If we're not chaining, then ->__bi_remaining is always 1 and 1555 * we always end io on the first invocation. 1556 */ 1557 if (!bio_flagged(bio, BIO_CHAIN)) 1558 return true; 1559 1560 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1561 1562 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1563 bio_clear_flag(bio, BIO_CHAIN); 1564 return true; 1565 } 1566 1567 return false; 1568 } 1569 1570 /** 1571 * bio_endio - end I/O on a bio 1572 * @bio: bio 1573 * 1574 * Description: 1575 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1576 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1577 * bio unless they own it and thus know that it has an end_io function. 1578 * 1579 * bio_endio() can be called several times on a bio that has been chained 1580 * using bio_chain(). The ->bi_end_io() function will only be called the 1581 * last time. 1582 **/ 1583 void bio_endio(struct bio *bio) 1584 { 1585 again: 1586 if (!bio_remaining_done(bio)) 1587 return; 1588 if (!bio_integrity_endio(bio)) 1589 return; 1590 1591 rq_qos_done_bio(bio); 1592 1593 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1594 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio); 1595 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1596 } 1597 1598 /* 1599 * Need to have a real endio function for chained bios, otherwise 1600 * various corner cases will break (like stacking block devices that 1601 * save/restore bi_end_io) - however, we want to avoid unbounded 1602 * recursion and blowing the stack. Tail call optimization would 1603 * handle this, but compiling with frame pointers also disables 1604 * gcc's sibling call optimization. 1605 */ 1606 if (bio->bi_end_io == bio_chain_endio) { 1607 bio = __bio_chain_endio(bio); 1608 goto again; 1609 } 1610 1611 blk_throtl_bio_endio(bio); 1612 /* release cgroup info */ 1613 bio_uninit(bio); 1614 if (bio->bi_end_io) 1615 bio->bi_end_io(bio); 1616 } 1617 EXPORT_SYMBOL(bio_endio); 1618 1619 /** 1620 * bio_split - split a bio 1621 * @bio: bio to split 1622 * @sectors: number of sectors to split from the front of @bio 1623 * @gfp: gfp mask 1624 * @bs: bio set to allocate from 1625 * 1626 * Allocates and returns a new bio which represents @sectors from the start of 1627 * @bio, and updates @bio to represent the remaining sectors. 1628 * 1629 * Unless this is a discard request the newly allocated bio will point 1630 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that 1631 * neither @bio nor @bs are freed before the split bio. 1632 */ 1633 struct bio *bio_split(struct bio *bio, int sectors, 1634 gfp_t gfp, struct bio_set *bs) 1635 { 1636 struct bio *split; 1637 1638 BUG_ON(sectors <= 0); 1639 BUG_ON(sectors >= bio_sectors(bio)); 1640 1641 /* Zone append commands cannot be split */ 1642 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND)) 1643 return NULL; 1644 1645 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs); 1646 if (!split) 1647 return NULL; 1648 1649 split->bi_iter.bi_size = sectors << 9; 1650 1651 if (bio_integrity(split)) 1652 bio_integrity_trim(split); 1653 1654 bio_advance(bio, split->bi_iter.bi_size); 1655 1656 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1657 bio_set_flag(split, BIO_TRACE_COMPLETION); 1658 1659 return split; 1660 } 1661 EXPORT_SYMBOL(bio_split); 1662 1663 /** 1664 * bio_trim - trim a bio 1665 * @bio: bio to trim 1666 * @offset: number of sectors to trim from the front of @bio 1667 * @size: size we want to trim @bio to, in sectors 1668 * 1669 * This function is typically used for bios that are cloned and submitted 1670 * to the underlying device in parts. 1671 */ 1672 void bio_trim(struct bio *bio, sector_t offset, sector_t size) 1673 { 1674 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS || 1675 offset + size > bio_sectors(bio))) 1676 return; 1677 1678 size <<= 9; 1679 if (offset == 0 && size == bio->bi_iter.bi_size) 1680 return; 1681 1682 bio_advance(bio, offset << 9); 1683 bio->bi_iter.bi_size = size; 1684 1685 if (bio_integrity(bio)) 1686 bio_integrity_trim(bio); 1687 } 1688 EXPORT_SYMBOL_GPL(bio_trim); 1689 1690 /* 1691 * create memory pools for biovec's in a bio_set. 1692 * use the global biovec slabs created for general use. 1693 */ 1694 int biovec_init_pool(mempool_t *pool, int pool_entries) 1695 { 1696 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1; 1697 1698 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1699 } 1700 1701 /* 1702 * bioset_exit - exit a bioset initialized with bioset_init() 1703 * 1704 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1705 * kzalloc()). 1706 */ 1707 void bioset_exit(struct bio_set *bs) 1708 { 1709 bio_alloc_cache_destroy(bs); 1710 if (bs->rescue_workqueue) 1711 destroy_workqueue(bs->rescue_workqueue); 1712 bs->rescue_workqueue = NULL; 1713 1714 mempool_exit(&bs->bio_pool); 1715 mempool_exit(&bs->bvec_pool); 1716 1717 bioset_integrity_free(bs); 1718 if (bs->bio_slab) 1719 bio_put_slab(bs); 1720 bs->bio_slab = NULL; 1721 } 1722 EXPORT_SYMBOL(bioset_exit); 1723 1724 /** 1725 * bioset_init - Initialize a bio_set 1726 * @bs: pool to initialize 1727 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1728 * @front_pad: Number of bytes to allocate in front of the returned bio 1729 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1730 * and %BIOSET_NEED_RESCUER 1731 * 1732 * Description: 1733 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1734 * to ask for a number of bytes to be allocated in front of the bio. 1735 * Front pad allocation is useful for embedding the bio inside 1736 * another structure, to avoid allocating extra data to go with the bio. 1737 * Note that the bio must be embedded at the END of that structure always, 1738 * or things will break badly. 1739 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1740 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone(). 1741 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used 1742 * to dispatch queued requests when the mempool runs out of space. 1743 * 1744 */ 1745 int bioset_init(struct bio_set *bs, 1746 unsigned int pool_size, 1747 unsigned int front_pad, 1748 int flags) 1749 { 1750 bs->front_pad = front_pad; 1751 if (flags & BIOSET_NEED_BVECS) 1752 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1753 else 1754 bs->back_pad = 0; 1755 1756 spin_lock_init(&bs->rescue_lock); 1757 bio_list_init(&bs->rescue_list); 1758 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1759 1760 bs->bio_slab = bio_find_or_create_slab(bs); 1761 if (!bs->bio_slab) 1762 return -ENOMEM; 1763 1764 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 1765 goto bad; 1766 1767 if ((flags & BIOSET_NEED_BVECS) && 1768 biovec_init_pool(&bs->bvec_pool, pool_size)) 1769 goto bad; 1770 1771 if (flags & BIOSET_NEED_RESCUER) { 1772 bs->rescue_workqueue = alloc_workqueue("bioset", 1773 WQ_MEM_RECLAIM, 0); 1774 if (!bs->rescue_workqueue) 1775 goto bad; 1776 } 1777 if (flags & BIOSET_PERCPU_CACHE) { 1778 bs->cache = alloc_percpu(struct bio_alloc_cache); 1779 if (!bs->cache) 1780 goto bad; 1781 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 1782 } 1783 1784 return 0; 1785 bad: 1786 bioset_exit(bs); 1787 return -ENOMEM; 1788 } 1789 EXPORT_SYMBOL(bioset_init); 1790 1791 static int __init init_bio(void) 1792 { 1793 int i; 1794 1795 bio_integrity_init(); 1796 1797 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) { 1798 struct biovec_slab *bvs = bvec_slabs + i; 1799 1800 bvs->slab = kmem_cache_create(bvs->name, 1801 bvs->nr_vecs * sizeof(struct bio_vec), 0, 1802 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1803 } 1804 1805 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL, 1806 bio_cpu_dead); 1807 1808 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, 1809 BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE)) 1810 panic("bio: can't allocate bios\n"); 1811 1812 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) 1813 panic("bio: can't create integrity pool\n"); 1814 1815 return 0; 1816 } 1817 subsys_initcall(init_bio); 1818