xref: /openbmc/linux/block/bio.c (revision a20eefae)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 
21 #include <trace/events/block.h>
22 #include "blk.h"
23 #include "blk-rq-qos.h"
24 
25 /*
26  * Test patch to inline a certain number of bi_io_vec's inside the bio
27  * itself, to shrink a bio data allocation from two mempool calls to one
28  */
29 #define BIO_INLINE_VECS		4
30 
31 /*
32  * if you change this list, also change bvec_alloc or things will
33  * break badly! cannot be bigger than what you can fit into an
34  * unsigned short
35  */
36 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
37 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
38 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
39 };
40 #undef BV
41 
42 /*
43  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
44  * IO code that does not need private memory pools.
45  */
46 struct bio_set fs_bio_set;
47 EXPORT_SYMBOL(fs_bio_set);
48 
49 /*
50  * Our slab pool management
51  */
52 struct bio_slab {
53 	struct kmem_cache *slab;
54 	unsigned int slab_ref;
55 	unsigned int slab_size;
56 	char name[8];
57 };
58 static DEFINE_MUTEX(bio_slab_lock);
59 static struct bio_slab *bio_slabs;
60 static unsigned int bio_slab_nr, bio_slab_max;
61 
62 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
63 {
64 	unsigned int sz = sizeof(struct bio) + extra_size;
65 	struct kmem_cache *slab = NULL;
66 	struct bio_slab *bslab, *new_bio_slabs;
67 	unsigned int new_bio_slab_max;
68 	unsigned int i, entry = -1;
69 
70 	mutex_lock(&bio_slab_lock);
71 
72 	i = 0;
73 	while (i < bio_slab_nr) {
74 		bslab = &bio_slabs[i];
75 
76 		if (!bslab->slab && entry == -1)
77 			entry = i;
78 		else if (bslab->slab_size == sz) {
79 			slab = bslab->slab;
80 			bslab->slab_ref++;
81 			break;
82 		}
83 		i++;
84 	}
85 
86 	if (slab)
87 		goto out_unlock;
88 
89 	if (bio_slab_nr == bio_slab_max && entry == -1) {
90 		new_bio_slab_max = bio_slab_max << 1;
91 		new_bio_slabs = krealloc(bio_slabs,
92 					 new_bio_slab_max * sizeof(struct bio_slab),
93 					 GFP_KERNEL);
94 		if (!new_bio_slabs)
95 			goto out_unlock;
96 		bio_slab_max = new_bio_slab_max;
97 		bio_slabs = new_bio_slabs;
98 	}
99 	if (entry == -1)
100 		entry = bio_slab_nr++;
101 
102 	bslab = &bio_slabs[entry];
103 
104 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
105 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
106 				 SLAB_HWCACHE_ALIGN, NULL);
107 	if (!slab)
108 		goto out_unlock;
109 
110 	bslab->slab = slab;
111 	bslab->slab_ref = 1;
112 	bslab->slab_size = sz;
113 out_unlock:
114 	mutex_unlock(&bio_slab_lock);
115 	return slab;
116 }
117 
118 static void bio_put_slab(struct bio_set *bs)
119 {
120 	struct bio_slab *bslab = NULL;
121 	unsigned int i;
122 
123 	mutex_lock(&bio_slab_lock);
124 
125 	for (i = 0; i < bio_slab_nr; i++) {
126 		if (bs->bio_slab == bio_slabs[i].slab) {
127 			bslab = &bio_slabs[i];
128 			break;
129 		}
130 	}
131 
132 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
133 		goto out;
134 
135 	WARN_ON(!bslab->slab_ref);
136 
137 	if (--bslab->slab_ref)
138 		goto out;
139 
140 	kmem_cache_destroy(bslab->slab);
141 	bslab->slab = NULL;
142 
143 out:
144 	mutex_unlock(&bio_slab_lock);
145 }
146 
147 unsigned int bvec_nr_vecs(unsigned short idx)
148 {
149 	return bvec_slabs[--idx].nr_vecs;
150 }
151 
152 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
153 {
154 	if (!idx)
155 		return;
156 	idx--;
157 
158 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
159 
160 	if (idx == BVEC_POOL_MAX) {
161 		mempool_free(bv, pool);
162 	} else {
163 		struct biovec_slab *bvs = bvec_slabs + idx;
164 
165 		kmem_cache_free(bvs->slab, bv);
166 	}
167 }
168 
169 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
170 			   mempool_t *pool)
171 {
172 	struct bio_vec *bvl;
173 
174 	/*
175 	 * see comment near bvec_array define!
176 	 */
177 	switch (nr) {
178 	case 1:
179 		*idx = 0;
180 		break;
181 	case 2 ... 4:
182 		*idx = 1;
183 		break;
184 	case 5 ... 16:
185 		*idx = 2;
186 		break;
187 	case 17 ... 64:
188 		*idx = 3;
189 		break;
190 	case 65 ... 128:
191 		*idx = 4;
192 		break;
193 	case 129 ... BIO_MAX_PAGES:
194 		*idx = 5;
195 		break;
196 	default:
197 		return NULL;
198 	}
199 
200 	/*
201 	 * idx now points to the pool we want to allocate from. only the
202 	 * 1-vec entry pool is mempool backed.
203 	 */
204 	if (*idx == BVEC_POOL_MAX) {
205 fallback:
206 		bvl = mempool_alloc(pool, gfp_mask);
207 	} else {
208 		struct biovec_slab *bvs = bvec_slabs + *idx;
209 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
210 
211 		/*
212 		 * Make this allocation restricted and don't dump info on
213 		 * allocation failures, since we'll fallback to the mempool
214 		 * in case of failure.
215 		 */
216 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
217 
218 		/*
219 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
220 		 * is set, retry with the 1-entry mempool
221 		 */
222 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
223 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
224 			*idx = BVEC_POOL_MAX;
225 			goto fallback;
226 		}
227 	}
228 
229 	(*idx)++;
230 	return bvl;
231 }
232 
233 void bio_uninit(struct bio *bio)
234 {
235 	bio_disassociate_blkg(bio);
236 }
237 EXPORT_SYMBOL(bio_uninit);
238 
239 static void bio_free(struct bio *bio)
240 {
241 	struct bio_set *bs = bio->bi_pool;
242 	void *p;
243 
244 	bio_uninit(bio);
245 
246 	if (bs) {
247 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
248 
249 		/*
250 		 * If we have front padding, adjust the bio pointer before freeing
251 		 */
252 		p = bio;
253 		p -= bs->front_pad;
254 
255 		mempool_free(p, &bs->bio_pool);
256 	} else {
257 		/* Bio was allocated by bio_kmalloc() */
258 		kfree(bio);
259 	}
260 }
261 
262 /*
263  * Users of this function have their own bio allocation. Subsequently,
264  * they must remember to pair any call to bio_init() with bio_uninit()
265  * when IO has completed, or when the bio is released.
266  */
267 void bio_init(struct bio *bio, struct bio_vec *table,
268 	      unsigned short max_vecs)
269 {
270 	memset(bio, 0, sizeof(*bio));
271 	atomic_set(&bio->__bi_remaining, 1);
272 	atomic_set(&bio->__bi_cnt, 1);
273 
274 	bio->bi_io_vec = table;
275 	bio->bi_max_vecs = max_vecs;
276 }
277 EXPORT_SYMBOL(bio_init);
278 
279 /**
280  * bio_reset - reinitialize a bio
281  * @bio:	bio to reset
282  *
283  * Description:
284  *   After calling bio_reset(), @bio will be in the same state as a freshly
285  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
286  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
287  *   comment in struct bio.
288  */
289 void bio_reset(struct bio *bio)
290 {
291 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
292 
293 	bio_uninit(bio);
294 
295 	memset(bio, 0, BIO_RESET_BYTES);
296 	bio->bi_flags = flags;
297 	atomic_set(&bio->__bi_remaining, 1);
298 }
299 EXPORT_SYMBOL(bio_reset);
300 
301 static struct bio *__bio_chain_endio(struct bio *bio)
302 {
303 	struct bio *parent = bio->bi_private;
304 
305 	if (!parent->bi_status)
306 		parent->bi_status = bio->bi_status;
307 	bio_put(bio);
308 	return parent;
309 }
310 
311 static void bio_chain_endio(struct bio *bio)
312 {
313 	bio_endio(__bio_chain_endio(bio));
314 }
315 
316 /**
317  * bio_chain - chain bio completions
318  * @bio: the target bio
319  * @parent: the @bio's parent bio
320  *
321  * The caller won't have a bi_end_io called when @bio completes - instead,
322  * @parent's bi_end_io won't be called until both @parent and @bio have
323  * completed; the chained bio will also be freed when it completes.
324  *
325  * The caller must not set bi_private or bi_end_io in @bio.
326  */
327 void bio_chain(struct bio *bio, struct bio *parent)
328 {
329 	BUG_ON(bio->bi_private || bio->bi_end_io);
330 
331 	bio->bi_private = parent;
332 	bio->bi_end_io	= bio_chain_endio;
333 	bio_inc_remaining(parent);
334 }
335 EXPORT_SYMBOL(bio_chain);
336 
337 static void bio_alloc_rescue(struct work_struct *work)
338 {
339 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
340 	struct bio *bio;
341 
342 	while (1) {
343 		spin_lock(&bs->rescue_lock);
344 		bio = bio_list_pop(&bs->rescue_list);
345 		spin_unlock(&bs->rescue_lock);
346 
347 		if (!bio)
348 			break;
349 
350 		generic_make_request(bio);
351 	}
352 }
353 
354 static void punt_bios_to_rescuer(struct bio_set *bs)
355 {
356 	struct bio_list punt, nopunt;
357 	struct bio *bio;
358 
359 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
360 		return;
361 	/*
362 	 * In order to guarantee forward progress we must punt only bios that
363 	 * were allocated from this bio_set; otherwise, if there was a bio on
364 	 * there for a stacking driver higher up in the stack, processing it
365 	 * could require allocating bios from this bio_set, and doing that from
366 	 * our own rescuer would be bad.
367 	 *
368 	 * Since bio lists are singly linked, pop them all instead of trying to
369 	 * remove from the middle of the list:
370 	 */
371 
372 	bio_list_init(&punt);
373 	bio_list_init(&nopunt);
374 
375 	while ((bio = bio_list_pop(&current->bio_list[0])))
376 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
377 	current->bio_list[0] = nopunt;
378 
379 	bio_list_init(&nopunt);
380 	while ((bio = bio_list_pop(&current->bio_list[1])))
381 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
382 	current->bio_list[1] = nopunt;
383 
384 	spin_lock(&bs->rescue_lock);
385 	bio_list_merge(&bs->rescue_list, &punt);
386 	spin_unlock(&bs->rescue_lock);
387 
388 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
389 }
390 
391 /**
392  * bio_alloc_bioset - allocate a bio for I/O
393  * @gfp_mask:   the GFP_* mask given to the slab allocator
394  * @nr_iovecs:	number of iovecs to pre-allocate
395  * @bs:		the bio_set to allocate from.
396  *
397  * Description:
398  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
399  *   backed by the @bs's mempool.
400  *
401  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
402  *   always be able to allocate a bio. This is due to the mempool guarantees.
403  *   To make this work, callers must never allocate more than 1 bio at a time
404  *   from this pool. Callers that need to allocate more than 1 bio must always
405  *   submit the previously allocated bio for IO before attempting to allocate
406  *   a new one. Failure to do so can cause deadlocks under memory pressure.
407  *
408  *   Note that when running under generic_make_request() (i.e. any block
409  *   driver), bios are not submitted until after you return - see the code in
410  *   generic_make_request() that converts recursion into iteration, to prevent
411  *   stack overflows.
412  *
413  *   This would normally mean allocating multiple bios under
414  *   generic_make_request() would be susceptible to deadlocks, but we have
415  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
416  *   thread.
417  *
418  *   However, we do not guarantee forward progress for allocations from other
419  *   mempools. Doing multiple allocations from the same mempool under
420  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
421  *   for per bio allocations.
422  *
423  *   RETURNS:
424  *   Pointer to new bio on success, NULL on failure.
425  */
426 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
427 			     struct bio_set *bs)
428 {
429 	gfp_t saved_gfp = gfp_mask;
430 	unsigned front_pad;
431 	unsigned inline_vecs;
432 	struct bio_vec *bvl = NULL;
433 	struct bio *bio;
434 	void *p;
435 
436 	if (!bs) {
437 		if (nr_iovecs > UIO_MAXIOV)
438 			return NULL;
439 
440 		p = kmalloc(sizeof(struct bio) +
441 			    nr_iovecs * sizeof(struct bio_vec),
442 			    gfp_mask);
443 		front_pad = 0;
444 		inline_vecs = nr_iovecs;
445 	} else {
446 		/* should not use nobvec bioset for nr_iovecs > 0 */
447 		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
448 				 nr_iovecs > 0))
449 			return NULL;
450 		/*
451 		 * generic_make_request() converts recursion to iteration; this
452 		 * means if we're running beneath it, any bios we allocate and
453 		 * submit will not be submitted (and thus freed) until after we
454 		 * return.
455 		 *
456 		 * This exposes us to a potential deadlock if we allocate
457 		 * multiple bios from the same bio_set() while running
458 		 * underneath generic_make_request(). If we were to allocate
459 		 * multiple bios (say a stacking block driver that was splitting
460 		 * bios), we would deadlock if we exhausted the mempool's
461 		 * reserve.
462 		 *
463 		 * We solve this, and guarantee forward progress, with a rescuer
464 		 * workqueue per bio_set. If we go to allocate and there are
465 		 * bios on current->bio_list, we first try the allocation
466 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
467 		 * bios we would be blocking to the rescuer workqueue before
468 		 * we retry with the original gfp_flags.
469 		 */
470 
471 		if (current->bio_list &&
472 		    (!bio_list_empty(&current->bio_list[0]) ||
473 		     !bio_list_empty(&current->bio_list[1])) &&
474 		    bs->rescue_workqueue)
475 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
476 
477 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
478 		if (!p && gfp_mask != saved_gfp) {
479 			punt_bios_to_rescuer(bs);
480 			gfp_mask = saved_gfp;
481 			p = mempool_alloc(&bs->bio_pool, gfp_mask);
482 		}
483 
484 		front_pad = bs->front_pad;
485 		inline_vecs = BIO_INLINE_VECS;
486 	}
487 
488 	if (unlikely(!p))
489 		return NULL;
490 
491 	bio = p + front_pad;
492 	bio_init(bio, NULL, 0);
493 
494 	if (nr_iovecs > inline_vecs) {
495 		unsigned long idx = 0;
496 
497 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
498 		if (!bvl && gfp_mask != saved_gfp) {
499 			punt_bios_to_rescuer(bs);
500 			gfp_mask = saved_gfp;
501 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
502 		}
503 
504 		if (unlikely(!bvl))
505 			goto err_free;
506 
507 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
508 	} else if (nr_iovecs) {
509 		bvl = bio->bi_inline_vecs;
510 	}
511 
512 	bio->bi_pool = bs;
513 	bio->bi_max_vecs = nr_iovecs;
514 	bio->bi_io_vec = bvl;
515 	return bio;
516 
517 err_free:
518 	mempool_free(p, &bs->bio_pool);
519 	return NULL;
520 }
521 EXPORT_SYMBOL(bio_alloc_bioset);
522 
523 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
524 {
525 	unsigned long flags;
526 	struct bio_vec bv;
527 	struct bvec_iter iter;
528 
529 	__bio_for_each_segment(bv, bio, iter, start) {
530 		char *data = bvec_kmap_irq(&bv, &flags);
531 		memset(data, 0, bv.bv_len);
532 		flush_dcache_page(bv.bv_page);
533 		bvec_kunmap_irq(data, &flags);
534 	}
535 }
536 EXPORT_SYMBOL(zero_fill_bio_iter);
537 
538 /**
539  * bio_put - release a reference to a bio
540  * @bio:   bio to release reference to
541  *
542  * Description:
543  *   Put a reference to a &struct bio, either one you have gotten with
544  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
545  **/
546 void bio_put(struct bio *bio)
547 {
548 	if (!bio_flagged(bio, BIO_REFFED))
549 		bio_free(bio);
550 	else {
551 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
552 
553 		/*
554 		 * last put frees it
555 		 */
556 		if (atomic_dec_and_test(&bio->__bi_cnt))
557 			bio_free(bio);
558 	}
559 }
560 EXPORT_SYMBOL(bio_put);
561 
562 /**
563  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
564  * 	@bio: destination bio
565  * 	@bio_src: bio to clone
566  *
567  *	Clone a &bio. Caller will own the returned bio, but not
568  *	the actual data it points to. Reference count of returned
569  * 	bio will be one.
570  *
571  * 	Caller must ensure that @bio_src is not freed before @bio.
572  */
573 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
574 {
575 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
576 
577 	/*
578 	 * most users will be overriding ->bi_disk with a new target,
579 	 * so we don't set nor calculate new physical/hw segment counts here
580 	 */
581 	bio->bi_disk = bio_src->bi_disk;
582 	bio->bi_partno = bio_src->bi_partno;
583 	bio_set_flag(bio, BIO_CLONED);
584 	if (bio_flagged(bio_src, BIO_THROTTLED))
585 		bio_set_flag(bio, BIO_THROTTLED);
586 	bio->bi_opf = bio_src->bi_opf;
587 	bio->bi_ioprio = bio_src->bi_ioprio;
588 	bio->bi_write_hint = bio_src->bi_write_hint;
589 	bio->bi_iter = bio_src->bi_iter;
590 	bio->bi_io_vec = bio_src->bi_io_vec;
591 
592 	bio_clone_blkg_association(bio, bio_src);
593 	blkcg_bio_issue_init(bio);
594 }
595 EXPORT_SYMBOL(__bio_clone_fast);
596 
597 /**
598  *	bio_clone_fast - clone a bio that shares the original bio's biovec
599  *	@bio: bio to clone
600  *	@gfp_mask: allocation priority
601  *	@bs: bio_set to allocate from
602  *
603  * 	Like __bio_clone_fast, only also allocates the returned bio
604  */
605 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
606 {
607 	struct bio *b;
608 
609 	b = bio_alloc_bioset(gfp_mask, 0, bs);
610 	if (!b)
611 		return NULL;
612 
613 	__bio_clone_fast(b, bio);
614 
615 	if (bio_integrity(bio)) {
616 		int ret;
617 
618 		ret = bio_integrity_clone(b, bio, gfp_mask);
619 
620 		if (ret < 0) {
621 			bio_put(b);
622 			return NULL;
623 		}
624 	}
625 
626 	return b;
627 }
628 EXPORT_SYMBOL(bio_clone_fast);
629 
630 static inline bool page_is_mergeable(const struct bio_vec *bv,
631 		struct page *page, unsigned int len, unsigned int off,
632 		bool *same_page)
633 {
634 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
635 		bv->bv_offset + bv->bv_len - 1;
636 	phys_addr_t page_addr = page_to_phys(page);
637 
638 	if (vec_end_addr + 1 != page_addr + off)
639 		return false;
640 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
641 		return false;
642 
643 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
644 	if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
645 		return false;
646 	return true;
647 }
648 
649 /*
650  * Check if the @page can be added to the current segment(@bv), and make
651  * sure to call it only if page_is_mergeable(@bv, @page) is true
652  */
653 static bool can_add_page_to_seg(struct request_queue *q,
654 		struct bio_vec *bv, struct page *page, unsigned len,
655 		unsigned offset)
656 {
657 	unsigned long mask = queue_segment_boundary(q);
658 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
659 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
660 
661 	if ((addr1 | mask) != (addr2 | mask))
662 		return false;
663 
664 	if (bv->bv_len + len > queue_max_segment_size(q))
665 		return false;
666 
667 	return true;
668 }
669 
670 /**
671  *	__bio_add_pc_page	- attempt to add page to passthrough bio
672  *	@q: the target queue
673  *	@bio: destination bio
674  *	@page: page to add
675  *	@len: vec entry length
676  *	@offset: vec entry offset
677  *	@put_same_page: put the page if it is same with last added page
678  *
679  *	Attempt to add a page to the bio_vec maplist. This can fail for a
680  *	number of reasons, such as the bio being full or target block device
681  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
682  *	so it is always possible to add a single page to an empty bio.
683  *
684  *	This should only be used by passthrough bios.
685  */
686 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
687 		struct page *page, unsigned int len, unsigned int offset,
688 		bool put_same_page)
689 {
690 	struct bio_vec *bvec;
691 	bool same_page = false;
692 
693 	/*
694 	 * cloned bio must not modify vec list
695 	 */
696 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
697 		return 0;
698 
699 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
700 		return 0;
701 
702 	if (bio->bi_vcnt > 0) {
703 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
704 
705 		if (page == bvec->bv_page &&
706 		    offset == bvec->bv_offset + bvec->bv_len) {
707 			if (put_same_page)
708 				put_page(page);
709 			bvec->bv_len += len;
710 			goto done;
711 		}
712 
713 		/*
714 		 * If the queue doesn't support SG gaps and adding this
715 		 * offset would create a gap, disallow it.
716 		 */
717 		if (bvec_gap_to_prev(q, bvec, offset))
718 			return 0;
719 
720 		if (page_is_mergeable(bvec, page, len, offset, &same_page) &&
721 		    can_add_page_to_seg(q, bvec, page, len, offset)) {
722 			bvec->bv_len += len;
723 			goto done;
724 		}
725 	}
726 
727 	if (bio_full(bio, len))
728 		return 0;
729 
730 	if (bio->bi_vcnt >= queue_max_segments(q))
731 		return 0;
732 
733 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
734 	bvec->bv_page = page;
735 	bvec->bv_len = len;
736 	bvec->bv_offset = offset;
737 	bio->bi_vcnt++;
738  done:
739 	bio->bi_iter.bi_size += len;
740 	return len;
741 }
742 
743 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
744 		struct page *page, unsigned int len, unsigned int offset)
745 {
746 	return __bio_add_pc_page(q, bio, page, len, offset, false);
747 }
748 EXPORT_SYMBOL(bio_add_pc_page);
749 
750 /**
751  * __bio_try_merge_page - try appending data to an existing bvec.
752  * @bio: destination bio
753  * @page: start page to add
754  * @len: length of the data to add
755  * @off: offset of the data relative to @page
756  * @same_page: return if the segment has been merged inside the same page
757  *
758  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
759  * a useful optimisation for file systems with a block size smaller than the
760  * page size.
761  *
762  * Warn if (@len, @off) crosses pages in case that @same_page is true.
763  *
764  * Return %true on success or %false on failure.
765  */
766 bool __bio_try_merge_page(struct bio *bio, struct page *page,
767 		unsigned int len, unsigned int off, bool *same_page)
768 {
769 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
770 		return false;
771 
772 	if (bio->bi_vcnt > 0) {
773 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
774 
775 		if (page_is_mergeable(bv, page, len, off, same_page)) {
776 			bv->bv_len += len;
777 			bio->bi_iter.bi_size += len;
778 			return true;
779 		}
780 	}
781 	return false;
782 }
783 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
784 
785 /**
786  * __bio_add_page - add page(s) to a bio in a new segment
787  * @bio: destination bio
788  * @page: start page to add
789  * @len: length of the data to add, may cross pages
790  * @off: offset of the data relative to @page, may cross pages
791  *
792  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
793  * that @bio has space for another bvec.
794  */
795 void __bio_add_page(struct bio *bio, struct page *page,
796 		unsigned int len, unsigned int off)
797 {
798 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
799 
800 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
801 	WARN_ON_ONCE(bio_full(bio, len));
802 
803 	bv->bv_page = page;
804 	bv->bv_offset = off;
805 	bv->bv_len = len;
806 
807 	bio->bi_iter.bi_size += len;
808 	bio->bi_vcnt++;
809 }
810 EXPORT_SYMBOL_GPL(__bio_add_page);
811 
812 /**
813  *	bio_add_page	-	attempt to add page(s) to bio
814  *	@bio: destination bio
815  *	@page: start page to add
816  *	@len: vec entry length, may cross pages
817  *	@offset: vec entry offset relative to @page, may cross pages
818  *
819  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
820  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
821  */
822 int bio_add_page(struct bio *bio, struct page *page,
823 		 unsigned int len, unsigned int offset)
824 {
825 	bool same_page = false;
826 
827 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
828 		if (bio_full(bio, len))
829 			return 0;
830 		__bio_add_page(bio, page, len, offset);
831 	}
832 	return len;
833 }
834 EXPORT_SYMBOL(bio_add_page);
835 
836 void bio_release_pages(struct bio *bio, bool mark_dirty)
837 {
838 	struct bvec_iter_all iter_all;
839 	struct bio_vec *bvec;
840 
841 	if (bio_flagged(bio, BIO_NO_PAGE_REF))
842 		return;
843 
844 	bio_for_each_segment_all(bvec, bio, iter_all) {
845 		if (mark_dirty && !PageCompound(bvec->bv_page))
846 			set_page_dirty_lock(bvec->bv_page);
847 		put_page(bvec->bv_page);
848 	}
849 }
850 
851 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
852 {
853 	const struct bio_vec *bv = iter->bvec;
854 	unsigned int len;
855 	size_t size;
856 
857 	if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
858 		return -EINVAL;
859 
860 	len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
861 	size = bio_add_page(bio, bv->bv_page, len,
862 				bv->bv_offset + iter->iov_offset);
863 	if (unlikely(size != len))
864 		return -EINVAL;
865 	iov_iter_advance(iter, size);
866 	return 0;
867 }
868 
869 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
870 
871 /**
872  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
873  * @bio: bio to add pages to
874  * @iter: iov iterator describing the region to be mapped
875  *
876  * Pins pages from *iter and appends them to @bio's bvec array. The
877  * pages will have to be released using put_page() when done.
878  * For multi-segment *iter, this function only adds pages from the
879  * the next non-empty segment of the iov iterator.
880  */
881 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
882 {
883 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
884 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
885 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
886 	struct page **pages = (struct page **)bv;
887 	bool same_page = false;
888 	ssize_t size, left;
889 	unsigned len, i;
890 	size_t offset;
891 
892 	/*
893 	 * Move page array up in the allocated memory for the bio vecs as far as
894 	 * possible so that we can start filling biovecs from the beginning
895 	 * without overwriting the temporary page array.
896 	*/
897 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
898 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
899 
900 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
901 	if (unlikely(size <= 0))
902 		return size ? size : -EFAULT;
903 
904 	for (left = size, i = 0; left > 0; left -= len, i++) {
905 		struct page *page = pages[i];
906 
907 		len = min_t(size_t, PAGE_SIZE - offset, left);
908 
909 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
910 			if (same_page)
911 				put_page(page);
912 		} else {
913 			if (WARN_ON_ONCE(bio_full(bio, len)))
914                                 return -EINVAL;
915 			__bio_add_page(bio, page, len, offset);
916 		}
917 		offset = 0;
918 	}
919 
920 	iov_iter_advance(iter, size);
921 	return 0;
922 }
923 
924 /**
925  * bio_iov_iter_get_pages - add user or kernel pages to a bio
926  * @bio: bio to add pages to
927  * @iter: iov iterator describing the region to be added
928  *
929  * This takes either an iterator pointing to user memory, or one pointing to
930  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
931  * map them into the kernel. On IO completion, the caller should put those
932  * pages. If we're adding kernel pages, and the caller told us it's safe to
933  * do so, we just have to add the pages to the bio directly. We don't grab an
934  * extra reference to those pages (the user should already have that), and we
935  * don't put the page on IO completion. The caller needs to check if the bio is
936  * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
937  * released.
938  *
939  * The function tries, but does not guarantee, to pin as many pages as
940  * fit into the bio, or are requested in *iter, whatever is smaller. If
941  * MM encounters an error pinning the requested pages, it stops. Error
942  * is returned only if 0 pages could be pinned.
943  */
944 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
945 {
946 	const bool is_bvec = iov_iter_is_bvec(iter);
947 	int ret;
948 
949 	if (WARN_ON_ONCE(bio->bi_vcnt))
950 		return -EINVAL;
951 
952 	do {
953 		if (is_bvec)
954 			ret = __bio_iov_bvec_add_pages(bio, iter);
955 		else
956 			ret = __bio_iov_iter_get_pages(bio, iter);
957 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
958 
959 	if (is_bvec)
960 		bio_set_flag(bio, BIO_NO_PAGE_REF);
961 	return bio->bi_vcnt ? 0 : ret;
962 }
963 
964 static void submit_bio_wait_endio(struct bio *bio)
965 {
966 	complete(bio->bi_private);
967 }
968 
969 /**
970  * submit_bio_wait - submit a bio, and wait until it completes
971  * @bio: The &struct bio which describes the I/O
972  *
973  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
974  * bio_endio() on failure.
975  *
976  * WARNING: Unlike to how submit_bio() is usually used, this function does not
977  * result in bio reference to be consumed. The caller must drop the reference
978  * on his own.
979  */
980 int submit_bio_wait(struct bio *bio)
981 {
982 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
983 
984 	bio->bi_private = &done;
985 	bio->bi_end_io = submit_bio_wait_endio;
986 	bio->bi_opf |= REQ_SYNC;
987 	submit_bio(bio);
988 	wait_for_completion_io(&done);
989 
990 	return blk_status_to_errno(bio->bi_status);
991 }
992 EXPORT_SYMBOL(submit_bio_wait);
993 
994 /**
995  * bio_advance - increment/complete a bio by some number of bytes
996  * @bio:	bio to advance
997  * @bytes:	number of bytes to complete
998  *
999  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1000  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1001  * be updated on the last bvec as well.
1002  *
1003  * @bio will then represent the remaining, uncompleted portion of the io.
1004  */
1005 void bio_advance(struct bio *bio, unsigned bytes)
1006 {
1007 	if (bio_integrity(bio))
1008 		bio_integrity_advance(bio, bytes);
1009 
1010 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1011 }
1012 EXPORT_SYMBOL(bio_advance);
1013 
1014 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1015 			struct bio *src, struct bvec_iter *src_iter)
1016 {
1017 	struct bio_vec src_bv, dst_bv;
1018 	void *src_p, *dst_p;
1019 	unsigned bytes;
1020 
1021 	while (src_iter->bi_size && dst_iter->bi_size) {
1022 		src_bv = bio_iter_iovec(src, *src_iter);
1023 		dst_bv = bio_iter_iovec(dst, *dst_iter);
1024 
1025 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1026 
1027 		src_p = kmap_atomic(src_bv.bv_page);
1028 		dst_p = kmap_atomic(dst_bv.bv_page);
1029 
1030 		memcpy(dst_p + dst_bv.bv_offset,
1031 		       src_p + src_bv.bv_offset,
1032 		       bytes);
1033 
1034 		kunmap_atomic(dst_p);
1035 		kunmap_atomic(src_p);
1036 
1037 		flush_dcache_page(dst_bv.bv_page);
1038 
1039 		bio_advance_iter(src, src_iter, bytes);
1040 		bio_advance_iter(dst, dst_iter, bytes);
1041 	}
1042 }
1043 EXPORT_SYMBOL(bio_copy_data_iter);
1044 
1045 /**
1046  * bio_copy_data - copy contents of data buffers from one bio to another
1047  * @src: source bio
1048  * @dst: destination bio
1049  *
1050  * Stops when it reaches the end of either @src or @dst - that is, copies
1051  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1052  */
1053 void bio_copy_data(struct bio *dst, struct bio *src)
1054 {
1055 	struct bvec_iter src_iter = src->bi_iter;
1056 	struct bvec_iter dst_iter = dst->bi_iter;
1057 
1058 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1059 }
1060 EXPORT_SYMBOL(bio_copy_data);
1061 
1062 /**
1063  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1064  * another
1065  * @src: source bio list
1066  * @dst: destination bio list
1067  *
1068  * Stops when it reaches the end of either the @src list or @dst list - that is,
1069  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1070  * bios).
1071  */
1072 void bio_list_copy_data(struct bio *dst, struct bio *src)
1073 {
1074 	struct bvec_iter src_iter = src->bi_iter;
1075 	struct bvec_iter dst_iter = dst->bi_iter;
1076 
1077 	while (1) {
1078 		if (!src_iter.bi_size) {
1079 			src = src->bi_next;
1080 			if (!src)
1081 				break;
1082 
1083 			src_iter = src->bi_iter;
1084 		}
1085 
1086 		if (!dst_iter.bi_size) {
1087 			dst = dst->bi_next;
1088 			if (!dst)
1089 				break;
1090 
1091 			dst_iter = dst->bi_iter;
1092 		}
1093 
1094 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1095 	}
1096 }
1097 EXPORT_SYMBOL(bio_list_copy_data);
1098 
1099 struct bio_map_data {
1100 	int is_our_pages;
1101 	struct iov_iter iter;
1102 	struct iovec iov[];
1103 };
1104 
1105 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1106 					       gfp_t gfp_mask)
1107 {
1108 	struct bio_map_data *bmd;
1109 	if (data->nr_segs > UIO_MAXIOV)
1110 		return NULL;
1111 
1112 	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
1113 	if (!bmd)
1114 		return NULL;
1115 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1116 	bmd->iter = *data;
1117 	bmd->iter.iov = bmd->iov;
1118 	return bmd;
1119 }
1120 
1121 /**
1122  * bio_copy_from_iter - copy all pages from iov_iter to bio
1123  * @bio: The &struct bio which describes the I/O as destination
1124  * @iter: iov_iter as source
1125  *
1126  * Copy all pages from iov_iter to bio.
1127  * Returns 0 on success, or error on failure.
1128  */
1129 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1130 {
1131 	struct bio_vec *bvec;
1132 	struct bvec_iter_all iter_all;
1133 
1134 	bio_for_each_segment_all(bvec, bio, iter_all) {
1135 		ssize_t ret;
1136 
1137 		ret = copy_page_from_iter(bvec->bv_page,
1138 					  bvec->bv_offset,
1139 					  bvec->bv_len,
1140 					  iter);
1141 
1142 		if (!iov_iter_count(iter))
1143 			break;
1144 
1145 		if (ret < bvec->bv_len)
1146 			return -EFAULT;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 /**
1153  * bio_copy_to_iter - copy all pages from bio to iov_iter
1154  * @bio: The &struct bio which describes the I/O as source
1155  * @iter: iov_iter as destination
1156  *
1157  * Copy all pages from bio to iov_iter.
1158  * Returns 0 on success, or error on failure.
1159  */
1160 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1161 {
1162 	struct bio_vec *bvec;
1163 	struct bvec_iter_all iter_all;
1164 
1165 	bio_for_each_segment_all(bvec, bio, iter_all) {
1166 		ssize_t ret;
1167 
1168 		ret = copy_page_to_iter(bvec->bv_page,
1169 					bvec->bv_offset,
1170 					bvec->bv_len,
1171 					&iter);
1172 
1173 		if (!iov_iter_count(&iter))
1174 			break;
1175 
1176 		if (ret < bvec->bv_len)
1177 			return -EFAULT;
1178 	}
1179 
1180 	return 0;
1181 }
1182 
1183 void bio_free_pages(struct bio *bio)
1184 {
1185 	struct bio_vec *bvec;
1186 	struct bvec_iter_all iter_all;
1187 
1188 	bio_for_each_segment_all(bvec, bio, iter_all)
1189 		__free_page(bvec->bv_page);
1190 }
1191 EXPORT_SYMBOL(bio_free_pages);
1192 
1193 /**
1194  *	bio_uncopy_user	-	finish previously mapped bio
1195  *	@bio: bio being terminated
1196  *
1197  *	Free pages allocated from bio_copy_user_iov() and write back data
1198  *	to user space in case of a read.
1199  */
1200 int bio_uncopy_user(struct bio *bio)
1201 {
1202 	struct bio_map_data *bmd = bio->bi_private;
1203 	int ret = 0;
1204 
1205 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1206 		/*
1207 		 * if we're in a workqueue, the request is orphaned, so
1208 		 * don't copy into a random user address space, just free
1209 		 * and return -EINTR so user space doesn't expect any data.
1210 		 */
1211 		if (!current->mm)
1212 			ret = -EINTR;
1213 		else if (bio_data_dir(bio) == READ)
1214 			ret = bio_copy_to_iter(bio, bmd->iter);
1215 		if (bmd->is_our_pages)
1216 			bio_free_pages(bio);
1217 	}
1218 	kfree(bmd);
1219 	bio_put(bio);
1220 	return ret;
1221 }
1222 
1223 /**
1224  *	bio_copy_user_iov	-	copy user data to bio
1225  *	@q:		destination block queue
1226  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1227  *	@iter:		iovec iterator
1228  *	@gfp_mask:	memory allocation flags
1229  *
1230  *	Prepares and returns a bio for indirect user io, bouncing data
1231  *	to/from kernel pages as necessary. Must be paired with
1232  *	call bio_uncopy_user() on io completion.
1233  */
1234 struct bio *bio_copy_user_iov(struct request_queue *q,
1235 			      struct rq_map_data *map_data,
1236 			      struct iov_iter *iter,
1237 			      gfp_t gfp_mask)
1238 {
1239 	struct bio_map_data *bmd;
1240 	struct page *page;
1241 	struct bio *bio;
1242 	int i = 0, ret;
1243 	int nr_pages;
1244 	unsigned int len = iter->count;
1245 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1246 
1247 	bmd = bio_alloc_map_data(iter, gfp_mask);
1248 	if (!bmd)
1249 		return ERR_PTR(-ENOMEM);
1250 
1251 	/*
1252 	 * We need to do a deep copy of the iov_iter including the iovecs.
1253 	 * The caller provided iov might point to an on-stack or otherwise
1254 	 * shortlived one.
1255 	 */
1256 	bmd->is_our_pages = map_data ? 0 : 1;
1257 
1258 	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1259 	if (nr_pages > BIO_MAX_PAGES)
1260 		nr_pages = BIO_MAX_PAGES;
1261 
1262 	ret = -ENOMEM;
1263 	bio = bio_kmalloc(gfp_mask, nr_pages);
1264 	if (!bio)
1265 		goto out_bmd;
1266 
1267 	ret = 0;
1268 
1269 	if (map_data) {
1270 		nr_pages = 1 << map_data->page_order;
1271 		i = map_data->offset / PAGE_SIZE;
1272 	}
1273 	while (len) {
1274 		unsigned int bytes = PAGE_SIZE;
1275 
1276 		bytes -= offset;
1277 
1278 		if (bytes > len)
1279 			bytes = len;
1280 
1281 		if (map_data) {
1282 			if (i == map_data->nr_entries * nr_pages) {
1283 				ret = -ENOMEM;
1284 				break;
1285 			}
1286 
1287 			page = map_data->pages[i / nr_pages];
1288 			page += (i % nr_pages);
1289 
1290 			i++;
1291 		} else {
1292 			page = alloc_page(q->bounce_gfp | gfp_mask);
1293 			if (!page) {
1294 				ret = -ENOMEM;
1295 				break;
1296 			}
1297 		}
1298 
1299 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1300 			if (!map_data)
1301 				__free_page(page);
1302 			break;
1303 		}
1304 
1305 		len -= bytes;
1306 		offset = 0;
1307 	}
1308 
1309 	if (ret)
1310 		goto cleanup;
1311 
1312 	if (map_data)
1313 		map_data->offset += bio->bi_iter.bi_size;
1314 
1315 	/*
1316 	 * success
1317 	 */
1318 	if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1319 	    (map_data && map_data->from_user)) {
1320 		ret = bio_copy_from_iter(bio, iter);
1321 		if (ret)
1322 			goto cleanup;
1323 	} else {
1324 		if (bmd->is_our_pages)
1325 			zero_fill_bio(bio);
1326 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1327 	}
1328 
1329 	bio->bi_private = bmd;
1330 	if (map_data && map_data->null_mapped)
1331 		bio_set_flag(bio, BIO_NULL_MAPPED);
1332 	return bio;
1333 cleanup:
1334 	if (!map_data)
1335 		bio_free_pages(bio);
1336 	bio_put(bio);
1337 out_bmd:
1338 	kfree(bmd);
1339 	return ERR_PTR(ret);
1340 }
1341 
1342 /**
1343  *	bio_map_user_iov - map user iovec into bio
1344  *	@q:		the struct request_queue for the bio
1345  *	@iter:		iovec iterator
1346  *	@gfp_mask:	memory allocation flags
1347  *
1348  *	Map the user space address into a bio suitable for io to a block
1349  *	device. Returns an error pointer in case of error.
1350  */
1351 struct bio *bio_map_user_iov(struct request_queue *q,
1352 			     struct iov_iter *iter,
1353 			     gfp_t gfp_mask)
1354 {
1355 	int j;
1356 	struct bio *bio;
1357 	int ret;
1358 
1359 	if (!iov_iter_count(iter))
1360 		return ERR_PTR(-EINVAL);
1361 
1362 	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1363 	if (!bio)
1364 		return ERR_PTR(-ENOMEM);
1365 
1366 	while (iov_iter_count(iter)) {
1367 		struct page **pages;
1368 		ssize_t bytes;
1369 		size_t offs, added = 0;
1370 		int npages;
1371 
1372 		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1373 		if (unlikely(bytes <= 0)) {
1374 			ret = bytes ? bytes : -EFAULT;
1375 			goto out_unmap;
1376 		}
1377 
1378 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1379 
1380 		if (unlikely(offs & queue_dma_alignment(q))) {
1381 			ret = -EINVAL;
1382 			j = 0;
1383 		} else {
1384 			for (j = 0; j < npages; j++) {
1385 				struct page *page = pages[j];
1386 				unsigned int n = PAGE_SIZE - offs;
1387 
1388 				if (n > bytes)
1389 					n = bytes;
1390 
1391 				if (!__bio_add_pc_page(q, bio, page, n, offs,
1392 							true))
1393 					break;
1394 
1395 				added += n;
1396 				bytes -= n;
1397 				offs = 0;
1398 			}
1399 			iov_iter_advance(iter, added);
1400 		}
1401 		/*
1402 		 * release the pages we didn't map into the bio, if any
1403 		 */
1404 		while (j < npages)
1405 			put_page(pages[j++]);
1406 		kvfree(pages);
1407 		/* couldn't stuff something into bio? */
1408 		if (bytes)
1409 			break;
1410 	}
1411 
1412 	bio_set_flag(bio, BIO_USER_MAPPED);
1413 
1414 	/*
1415 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1416 	 * it would normally disappear when its bi_end_io is run.
1417 	 * however, we need it for the unmap, so grab an extra
1418 	 * reference to it
1419 	 */
1420 	bio_get(bio);
1421 	return bio;
1422 
1423  out_unmap:
1424 	bio_release_pages(bio, false);
1425 	bio_put(bio);
1426 	return ERR_PTR(ret);
1427 }
1428 
1429 /**
1430  *	bio_unmap_user	-	unmap a bio
1431  *	@bio:		the bio being unmapped
1432  *
1433  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1434  *	process context.
1435  *
1436  *	bio_unmap_user() may sleep.
1437  */
1438 void bio_unmap_user(struct bio *bio)
1439 {
1440 	bio_release_pages(bio, bio_data_dir(bio) == READ);
1441 	bio_put(bio);
1442 	bio_put(bio);
1443 }
1444 
1445 static void bio_invalidate_vmalloc_pages(struct bio *bio)
1446 {
1447 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
1448 	if (bio->bi_private && !op_is_write(bio_op(bio))) {
1449 		unsigned long i, len = 0;
1450 
1451 		for (i = 0; i < bio->bi_vcnt; i++)
1452 			len += bio->bi_io_vec[i].bv_len;
1453 		invalidate_kernel_vmap_range(bio->bi_private, len);
1454 	}
1455 #endif
1456 }
1457 
1458 static void bio_map_kern_endio(struct bio *bio)
1459 {
1460 	bio_invalidate_vmalloc_pages(bio);
1461 	bio_put(bio);
1462 }
1463 
1464 /**
1465  *	bio_map_kern	-	map kernel address into bio
1466  *	@q: the struct request_queue for the bio
1467  *	@data: pointer to buffer to map
1468  *	@len: length in bytes
1469  *	@gfp_mask: allocation flags for bio allocation
1470  *
1471  *	Map the kernel address into a bio suitable for io to a block
1472  *	device. Returns an error pointer in case of error.
1473  */
1474 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1475 			 gfp_t gfp_mask)
1476 {
1477 	unsigned long kaddr = (unsigned long)data;
1478 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1479 	unsigned long start = kaddr >> PAGE_SHIFT;
1480 	const int nr_pages = end - start;
1481 	bool is_vmalloc = is_vmalloc_addr(data);
1482 	struct page *page;
1483 	int offset, i;
1484 	struct bio *bio;
1485 
1486 	bio = bio_kmalloc(gfp_mask, nr_pages);
1487 	if (!bio)
1488 		return ERR_PTR(-ENOMEM);
1489 
1490 	if (is_vmalloc) {
1491 		flush_kernel_vmap_range(data, len);
1492 		bio->bi_private = data;
1493 	}
1494 
1495 	offset = offset_in_page(kaddr);
1496 	for (i = 0; i < nr_pages; i++) {
1497 		unsigned int bytes = PAGE_SIZE - offset;
1498 
1499 		if (len <= 0)
1500 			break;
1501 
1502 		if (bytes > len)
1503 			bytes = len;
1504 
1505 		if (!is_vmalloc)
1506 			page = virt_to_page(data);
1507 		else
1508 			page = vmalloc_to_page(data);
1509 		if (bio_add_pc_page(q, bio, page, bytes,
1510 				    offset) < bytes) {
1511 			/* we don't support partial mappings */
1512 			bio_put(bio);
1513 			return ERR_PTR(-EINVAL);
1514 		}
1515 
1516 		data += bytes;
1517 		len -= bytes;
1518 		offset = 0;
1519 	}
1520 
1521 	bio->bi_end_io = bio_map_kern_endio;
1522 	return bio;
1523 }
1524 EXPORT_SYMBOL(bio_map_kern);
1525 
1526 static void bio_copy_kern_endio(struct bio *bio)
1527 {
1528 	bio_free_pages(bio);
1529 	bio_put(bio);
1530 }
1531 
1532 static void bio_copy_kern_endio_read(struct bio *bio)
1533 {
1534 	char *p = bio->bi_private;
1535 	struct bio_vec *bvec;
1536 	struct bvec_iter_all iter_all;
1537 
1538 	bio_for_each_segment_all(bvec, bio, iter_all) {
1539 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1540 		p += bvec->bv_len;
1541 	}
1542 
1543 	bio_copy_kern_endio(bio);
1544 }
1545 
1546 /**
1547  *	bio_copy_kern	-	copy kernel address into bio
1548  *	@q: the struct request_queue for the bio
1549  *	@data: pointer to buffer to copy
1550  *	@len: length in bytes
1551  *	@gfp_mask: allocation flags for bio and page allocation
1552  *	@reading: data direction is READ
1553  *
1554  *	copy the kernel address into a bio suitable for io to a block
1555  *	device. Returns an error pointer in case of error.
1556  */
1557 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1558 			  gfp_t gfp_mask, int reading)
1559 {
1560 	unsigned long kaddr = (unsigned long)data;
1561 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1562 	unsigned long start = kaddr >> PAGE_SHIFT;
1563 	struct bio *bio;
1564 	void *p = data;
1565 	int nr_pages = 0;
1566 
1567 	/*
1568 	 * Overflow, abort
1569 	 */
1570 	if (end < start)
1571 		return ERR_PTR(-EINVAL);
1572 
1573 	nr_pages = end - start;
1574 	bio = bio_kmalloc(gfp_mask, nr_pages);
1575 	if (!bio)
1576 		return ERR_PTR(-ENOMEM);
1577 
1578 	while (len) {
1579 		struct page *page;
1580 		unsigned int bytes = PAGE_SIZE;
1581 
1582 		if (bytes > len)
1583 			bytes = len;
1584 
1585 		page = alloc_page(q->bounce_gfp | gfp_mask);
1586 		if (!page)
1587 			goto cleanup;
1588 
1589 		if (!reading)
1590 			memcpy(page_address(page), p, bytes);
1591 
1592 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1593 			break;
1594 
1595 		len -= bytes;
1596 		p += bytes;
1597 	}
1598 
1599 	if (reading) {
1600 		bio->bi_end_io = bio_copy_kern_endio_read;
1601 		bio->bi_private = data;
1602 	} else {
1603 		bio->bi_end_io = bio_copy_kern_endio;
1604 	}
1605 
1606 	return bio;
1607 
1608 cleanup:
1609 	bio_free_pages(bio);
1610 	bio_put(bio);
1611 	return ERR_PTR(-ENOMEM);
1612 }
1613 
1614 /*
1615  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1616  * for performing direct-IO in BIOs.
1617  *
1618  * The problem is that we cannot run set_page_dirty() from interrupt context
1619  * because the required locks are not interrupt-safe.  So what we can do is to
1620  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1621  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1622  * in process context.
1623  *
1624  * We special-case compound pages here: normally this means reads into hugetlb
1625  * pages.  The logic in here doesn't really work right for compound pages
1626  * because the VM does not uniformly chase down the head page in all cases.
1627  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1628  * handle them at all.  So we skip compound pages here at an early stage.
1629  *
1630  * Note that this code is very hard to test under normal circumstances because
1631  * direct-io pins the pages with get_user_pages().  This makes
1632  * is_page_cache_freeable return false, and the VM will not clean the pages.
1633  * But other code (eg, flusher threads) could clean the pages if they are mapped
1634  * pagecache.
1635  *
1636  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1637  * deferred bio dirtying paths.
1638  */
1639 
1640 /*
1641  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1642  */
1643 void bio_set_pages_dirty(struct bio *bio)
1644 {
1645 	struct bio_vec *bvec;
1646 	struct bvec_iter_all iter_all;
1647 
1648 	bio_for_each_segment_all(bvec, bio, iter_all) {
1649 		if (!PageCompound(bvec->bv_page))
1650 			set_page_dirty_lock(bvec->bv_page);
1651 	}
1652 }
1653 
1654 /*
1655  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1656  * If they are, then fine.  If, however, some pages are clean then they must
1657  * have been written out during the direct-IO read.  So we take another ref on
1658  * the BIO and re-dirty the pages in process context.
1659  *
1660  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1661  * here on.  It will run one put_page() against each page and will run one
1662  * bio_put() against the BIO.
1663  */
1664 
1665 static void bio_dirty_fn(struct work_struct *work);
1666 
1667 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1668 static DEFINE_SPINLOCK(bio_dirty_lock);
1669 static struct bio *bio_dirty_list;
1670 
1671 /*
1672  * This runs in process context
1673  */
1674 static void bio_dirty_fn(struct work_struct *work)
1675 {
1676 	struct bio *bio, *next;
1677 
1678 	spin_lock_irq(&bio_dirty_lock);
1679 	next = bio_dirty_list;
1680 	bio_dirty_list = NULL;
1681 	spin_unlock_irq(&bio_dirty_lock);
1682 
1683 	while ((bio = next) != NULL) {
1684 		next = bio->bi_private;
1685 
1686 		bio_release_pages(bio, true);
1687 		bio_put(bio);
1688 	}
1689 }
1690 
1691 void bio_check_pages_dirty(struct bio *bio)
1692 {
1693 	struct bio_vec *bvec;
1694 	unsigned long flags;
1695 	struct bvec_iter_all iter_all;
1696 
1697 	bio_for_each_segment_all(bvec, bio, iter_all) {
1698 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1699 			goto defer;
1700 	}
1701 
1702 	bio_release_pages(bio, false);
1703 	bio_put(bio);
1704 	return;
1705 defer:
1706 	spin_lock_irqsave(&bio_dirty_lock, flags);
1707 	bio->bi_private = bio_dirty_list;
1708 	bio_dirty_list = bio;
1709 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1710 	schedule_work(&bio_dirty_work);
1711 }
1712 
1713 void update_io_ticks(struct hd_struct *part, unsigned long now)
1714 {
1715 	unsigned long stamp;
1716 again:
1717 	stamp = READ_ONCE(part->stamp);
1718 	if (unlikely(stamp != now)) {
1719 		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1720 			__part_stat_add(part, io_ticks, 1);
1721 		}
1722 	}
1723 	if (part->partno) {
1724 		part = &part_to_disk(part)->part0;
1725 		goto again;
1726 	}
1727 }
1728 
1729 void generic_start_io_acct(struct request_queue *q, int op,
1730 			   unsigned long sectors, struct hd_struct *part)
1731 {
1732 	const int sgrp = op_stat_group(op);
1733 
1734 	part_stat_lock();
1735 
1736 	update_io_ticks(part, jiffies);
1737 	part_stat_inc(part, ios[sgrp]);
1738 	part_stat_add(part, sectors[sgrp], sectors);
1739 	part_inc_in_flight(q, part, op_is_write(op));
1740 
1741 	part_stat_unlock();
1742 }
1743 EXPORT_SYMBOL(generic_start_io_acct);
1744 
1745 void generic_end_io_acct(struct request_queue *q, int req_op,
1746 			 struct hd_struct *part, unsigned long start_time)
1747 {
1748 	unsigned long now = jiffies;
1749 	unsigned long duration = now - start_time;
1750 	const int sgrp = op_stat_group(req_op);
1751 
1752 	part_stat_lock();
1753 
1754 	update_io_ticks(part, now);
1755 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1756 	part_stat_add(part, time_in_queue, duration);
1757 	part_dec_in_flight(q, part, op_is_write(req_op));
1758 
1759 	part_stat_unlock();
1760 }
1761 EXPORT_SYMBOL(generic_end_io_acct);
1762 
1763 static inline bool bio_remaining_done(struct bio *bio)
1764 {
1765 	/*
1766 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1767 	 * we always end io on the first invocation.
1768 	 */
1769 	if (!bio_flagged(bio, BIO_CHAIN))
1770 		return true;
1771 
1772 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1773 
1774 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1775 		bio_clear_flag(bio, BIO_CHAIN);
1776 		return true;
1777 	}
1778 
1779 	return false;
1780 }
1781 
1782 /**
1783  * bio_endio - end I/O on a bio
1784  * @bio:	bio
1785  *
1786  * Description:
1787  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1788  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1789  *   bio unless they own it and thus know that it has an end_io function.
1790  *
1791  *   bio_endio() can be called several times on a bio that has been chained
1792  *   using bio_chain().  The ->bi_end_io() function will only be called the
1793  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1794  *   generated if BIO_TRACE_COMPLETION is set.
1795  **/
1796 void bio_endio(struct bio *bio)
1797 {
1798 again:
1799 	if (!bio_remaining_done(bio))
1800 		return;
1801 	if (!bio_integrity_endio(bio))
1802 		return;
1803 
1804 	if (bio->bi_disk)
1805 		rq_qos_done_bio(bio->bi_disk->queue, bio);
1806 
1807 	/*
1808 	 * Need to have a real endio function for chained bios, otherwise
1809 	 * various corner cases will break (like stacking block devices that
1810 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1811 	 * recursion and blowing the stack. Tail call optimization would
1812 	 * handle this, but compiling with frame pointers also disables
1813 	 * gcc's sibling call optimization.
1814 	 */
1815 	if (bio->bi_end_io == bio_chain_endio) {
1816 		bio = __bio_chain_endio(bio);
1817 		goto again;
1818 	}
1819 
1820 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1821 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1822 					 blk_status_to_errno(bio->bi_status));
1823 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1824 	}
1825 
1826 	blk_throtl_bio_endio(bio);
1827 	/* release cgroup info */
1828 	bio_uninit(bio);
1829 	if (bio->bi_end_io)
1830 		bio->bi_end_io(bio);
1831 }
1832 EXPORT_SYMBOL(bio_endio);
1833 
1834 /**
1835  * bio_split - split a bio
1836  * @bio:	bio to split
1837  * @sectors:	number of sectors to split from the front of @bio
1838  * @gfp:	gfp mask
1839  * @bs:		bio set to allocate from
1840  *
1841  * Allocates and returns a new bio which represents @sectors from the start of
1842  * @bio, and updates @bio to represent the remaining sectors.
1843  *
1844  * Unless this is a discard request the newly allocated bio will point
1845  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1846  * @bio is not freed before the split.
1847  */
1848 struct bio *bio_split(struct bio *bio, int sectors,
1849 		      gfp_t gfp, struct bio_set *bs)
1850 {
1851 	struct bio *split;
1852 
1853 	BUG_ON(sectors <= 0);
1854 	BUG_ON(sectors >= bio_sectors(bio));
1855 
1856 	split = bio_clone_fast(bio, gfp, bs);
1857 	if (!split)
1858 		return NULL;
1859 
1860 	split->bi_iter.bi_size = sectors << 9;
1861 
1862 	if (bio_integrity(split))
1863 		bio_integrity_trim(split);
1864 
1865 	bio_advance(bio, split->bi_iter.bi_size);
1866 
1867 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1868 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1869 
1870 	return split;
1871 }
1872 EXPORT_SYMBOL(bio_split);
1873 
1874 /**
1875  * bio_trim - trim a bio
1876  * @bio:	bio to trim
1877  * @offset:	number of sectors to trim from the front of @bio
1878  * @size:	size we want to trim @bio to, in sectors
1879  */
1880 void bio_trim(struct bio *bio, int offset, int size)
1881 {
1882 	/* 'bio' is a cloned bio which we need to trim to match
1883 	 * the given offset and size.
1884 	 */
1885 
1886 	size <<= 9;
1887 	if (offset == 0 && size == bio->bi_iter.bi_size)
1888 		return;
1889 
1890 	bio_advance(bio, offset << 9);
1891 	bio->bi_iter.bi_size = size;
1892 
1893 	if (bio_integrity(bio))
1894 		bio_integrity_trim(bio);
1895 
1896 }
1897 EXPORT_SYMBOL_GPL(bio_trim);
1898 
1899 /*
1900  * create memory pools for biovec's in a bio_set.
1901  * use the global biovec slabs created for general use.
1902  */
1903 int biovec_init_pool(mempool_t *pool, int pool_entries)
1904 {
1905 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1906 
1907 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1908 }
1909 
1910 /*
1911  * bioset_exit - exit a bioset initialized with bioset_init()
1912  *
1913  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1914  * kzalloc()).
1915  */
1916 void bioset_exit(struct bio_set *bs)
1917 {
1918 	if (bs->rescue_workqueue)
1919 		destroy_workqueue(bs->rescue_workqueue);
1920 	bs->rescue_workqueue = NULL;
1921 
1922 	mempool_exit(&bs->bio_pool);
1923 	mempool_exit(&bs->bvec_pool);
1924 
1925 	bioset_integrity_free(bs);
1926 	if (bs->bio_slab)
1927 		bio_put_slab(bs);
1928 	bs->bio_slab = NULL;
1929 }
1930 EXPORT_SYMBOL(bioset_exit);
1931 
1932 /**
1933  * bioset_init - Initialize a bio_set
1934  * @bs:		pool to initialize
1935  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1936  * @front_pad:	Number of bytes to allocate in front of the returned bio
1937  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1938  *              and %BIOSET_NEED_RESCUER
1939  *
1940  * Description:
1941  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1942  *    to ask for a number of bytes to be allocated in front of the bio.
1943  *    Front pad allocation is useful for embedding the bio inside
1944  *    another structure, to avoid allocating extra data to go with the bio.
1945  *    Note that the bio must be embedded at the END of that structure always,
1946  *    or things will break badly.
1947  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1948  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1949  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1950  *    dispatch queued requests when the mempool runs out of space.
1951  *
1952  */
1953 int bioset_init(struct bio_set *bs,
1954 		unsigned int pool_size,
1955 		unsigned int front_pad,
1956 		int flags)
1957 {
1958 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1959 
1960 	bs->front_pad = front_pad;
1961 
1962 	spin_lock_init(&bs->rescue_lock);
1963 	bio_list_init(&bs->rescue_list);
1964 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1965 
1966 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1967 	if (!bs->bio_slab)
1968 		return -ENOMEM;
1969 
1970 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1971 		goto bad;
1972 
1973 	if ((flags & BIOSET_NEED_BVECS) &&
1974 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1975 		goto bad;
1976 
1977 	if (!(flags & BIOSET_NEED_RESCUER))
1978 		return 0;
1979 
1980 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1981 	if (!bs->rescue_workqueue)
1982 		goto bad;
1983 
1984 	return 0;
1985 bad:
1986 	bioset_exit(bs);
1987 	return -ENOMEM;
1988 }
1989 EXPORT_SYMBOL(bioset_init);
1990 
1991 /*
1992  * Initialize and setup a new bio_set, based on the settings from
1993  * another bio_set.
1994  */
1995 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1996 {
1997 	int flags;
1998 
1999 	flags = 0;
2000 	if (src->bvec_pool.min_nr)
2001 		flags |= BIOSET_NEED_BVECS;
2002 	if (src->rescue_workqueue)
2003 		flags |= BIOSET_NEED_RESCUER;
2004 
2005 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2006 }
2007 EXPORT_SYMBOL(bioset_init_from_src);
2008 
2009 #ifdef CONFIG_BLK_CGROUP
2010 
2011 /**
2012  * bio_disassociate_blkg - puts back the blkg reference if associated
2013  * @bio: target bio
2014  *
2015  * Helper to disassociate the blkg from @bio if a blkg is associated.
2016  */
2017 void bio_disassociate_blkg(struct bio *bio)
2018 {
2019 	if (bio->bi_blkg) {
2020 		blkg_put(bio->bi_blkg);
2021 		bio->bi_blkg = NULL;
2022 	}
2023 }
2024 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2025 
2026 /**
2027  * __bio_associate_blkg - associate a bio with the a blkg
2028  * @bio: target bio
2029  * @blkg: the blkg to associate
2030  *
2031  * This tries to associate @bio with the specified @blkg.  Association failure
2032  * is handled by walking up the blkg tree.  Therefore, the blkg associated can
2033  * be anything between @blkg and the root_blkg.  This situation only happens
2034  * when a cgroup is dying and then the remaining bios will spill to the closest
2035  * alive blkg.
2036  *
2037  * A reference will be taken on the @blkg and will be released when @bio is
2038  * freed.
2039  */
2040 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2041 {
2042 	bio_disassociate_blkg(bio);
2043 
2044 	bio->bi_blkg = blkg_tryget_closest(blkg);
2045 }
2046 
2047 /**
2048  * bio_associate_blkg_from_css - associate a bio with a specified css
2049  * @bio: target bio
2050  * @css: target css
2051  *
2052  * Associate @bio with the blkg found by combining the css's blkg and the
2053  * request_queue of the @bio.  This falls back to the queue's root_blkg if
2054  * the association fails with the css.
2055  */
2056 void bio_associate_blkg_from_css(struct bio *bio,
2057 				 struct cgroup_subsys_state *css)
2058 {
2059 	struct request_queue *q = bio->bi_disk->queue;
2060 	struct blkcg_gq *blkg;
2061 
2062 	rcu_read_lock();
2063 
2064 	if (!css || !css->parent)
2065 		blkg = q->root_blkg;
2066 	else
2067 		blkg = blkg_lookup_create(css_to_blkcg(css), q);
2068 
2069 	__bio_associate_blkg(bio, blkg);
2070 
2071 	rcu_read_unlock();
2072 }
2073 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2074 
2075 #ifdef CONFIG_MEMCG
2076 /**
2077  * bio_associate_blkg_from_page - associate a bio with the page's blkg
2078  * @bio: target bio
2079  * @page: the page to lookup the blkcg from
2080  *
2081  * Associate @bio with the blkg from @page's owning memcg and the respective
2082  * request_queue.  If cgroup_e_css returns %NULL, fall back to the queue's
2083  * root_blkg.
2084  */
2085 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2086 {
2087 	struct cgroup_subsys_state *css;
2088 
2089 	if (!page->mem_cgroup)
2090 		return;
2091 
2092 	rcu_read_lock();
2093 
2094 	css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2095 	bio_associate_blkg_from_css(bio, css);
2096 
2097 	rcu_read_unlock();
2098 }
2099 #endif /* CONFIG_MEMCG */
2100 
2101 /**
2102  * bio_associate_blkg - associate a bio with a blkg
2103  * @bio: target bio
2104  *
2105  * Associate @bio with the blkg found from the bio's css and request_queue.
2106  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2107  * already associated, the css is reused and association redone as the
2108  * request_queue may have changed.
2109  */
2110 void bio_associate_blkg(struct bio *bio)
2111 {
2112 	struct cgroup_subsys_state *css;
2113 
2114 	rcu_read_lock();
2115 
2116 	if (bio->bi_blkg)
2117 		css = &bio_blkcg(bio)->css;
2118 	else
2119 		css = blkcg_css();
2120 
2121 	bio_associate_blkg_from_css(bio, css);
2122 
2123 	rcu_read_unlock();
2124 }
2125 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2126 
2127 /**
2128  * bio_clone_blkg_association - clone blkg association from src to dst bio
2129  * @dst: destination bio
2130  * @src: source bio
2131  */
2132 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2133 {
2134 	rcu_read_lock();
2135 
2136 	if (src->bi_blkg)
2137 		__bio_associate_blkg(dst, src->bi_blkg);
2138 
2139 	rcu_read_unlock();
2140 }
2141 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2142 #endif /* CONFIG_BLK_CGROUP */
2143 
2144 static void __init biovec_init_slabs(void)
2145 {
2146 	int i;
2147 
2148 	for (i = 0; i < BVEC_POOL_NR; i++) {
2149 		int size;
2150 		struct biovec_slab *bvs = bvec_slabs + i;
2151 
2152 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2153 			bvs->slab = NULL;
2154 			continue;
2155 		}
2156 
2157 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2158 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2159                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2160 	}
2161 }
2162 
2163 static int __init init_bio(void)
2164 {
2165 	bio_slab_max = 2;
2166 	bio_slab_nr = 0;
2167 	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2168 			    GFP_KERNEL);
2169 
2170 	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2171 
2172 	if (!bio_slabs)
2173 		panic("bio: can't allocate bios\n");
2174 
2175 	bio_integrity_init();
2176 	biovec_init_slabs();
2177 
2178 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2179 		panic("bio: can't allocate bios\n");
2180 
2181 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2182 		panic("bio: can't create integrity pool\n");
2183 
2184 	return 0;
2185 }
2186 subsys_initcall(init_bio);
2187