xref: /openbmc/linux/block/bio.c (revision 9a6083be)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
22 #include <linux/xarray.h>
23 
24 #include <trace/events/block.h>
25 #include "blk.h"
26 #include "blk-rq-qos.h"
27 
28 struct bio_alloc_cache {
29 	struct bio_list		free_list;
30 	unsigned int		nr;
31 };
32 
33 static struct biovec_slab {
34 	int nr_vecs;
35 	char *name;
36 	struct kmem_cache *slab;
37 } bvec_slabs[] __read_mostly = {
38 	{ .nr_vecs = 16, .name = "biovec-16" },
39 	{ .nr_vecs = 64, .name = "biovec-64" },
40 	{ .nr_vecs = 128, .name = "biovec-128" },
41 	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
42 };
43 
44 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45 {
46 	switch (nr_vecs) {
47 	/* smaller bios use inline vecs */
48 	case 5 ... 16:
49 		return &bvec_slabs[0];
50 	case 17 ... 64:
51 		return &bvec_slabs[1];
52 	case 65 ... 128:
53 		return &bvec_slabs[2];
54 	case 129 ... BIO_MAX_VECS:
55 		return &bvec_slabs[3];
56 	default:
57 		BUG();
58 		return NULL;
59 	}
60 }
61 
62 /*
63  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64  * IO code that does not need private memory pools.
65  */
66 struct bio_set fs_bio_set;
67 EXPORT_SYMBOL(fs_bio_set);
68 
69 /*
70  * Our slab pool management
71  */
72 struct bio_slab {
73 	struct kmem_cache *slab;
74 	unsigned int slab_ref;
75 	unsigned int slab_size;
76 	char name[8];
77 };
78 static DEFINE_MUTEX(bio_slab_lock);
79 static DEFINE_XARRAY(bio_slabs);
80 
81 static struct bio_slab *create_bio_slab(unsigned int size)
82 {
83 	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
84 
85 	if (!bslab)
86 		return NULL;
87 
88 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 	bslab->slab = kmem_cache_create(bslab->name, size,
90 			ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
91 	if (!bslab->slab)
92 		goto fail_alloc_slab;
93 
94 	bslab->slab_ref = 1;
95 	bslab->slab_size = size;
96 
97 	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
98 		return bslab;
99 
100 	kmem_cache_destroy(bslab->slab);
101 
102 fail_alloc_slab:
103 	kfree(bslab);
104 	return NULL;
105 }
106 
107 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
108 {
109 	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
110 }
111 
112 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
113 {
114 	unsigned int size = bs_bio_slab_size(bs);
115 	struct bio_slab *bslab;
116 
117 	mutex_lock(&bio_slab_lock);
118 	bslab = xa_load(&bio_slabs, size);
119 	if (bslab)
120 		bslab->slab_ref++;
121 	else
122 		bslab = create_bio_slab(size);
123 	mutex_unlock(&bio_slab_lock);
124 
125 	if (bslab)
126 		return bslab->slab;
127 	return NULL;
128 }
129 
130 static void bio_put_slab(struct bio_set *bs)
131 {
132 	struct bio_slab *bslab = NULL;
133 	unsigned int slab_size = bs_bio_slab_size(bs);
134 
135 	mutex_lock(&bio_slab_lock);
136 
137 	bslab = xa_load(&bio_slabs, slab_size);
138 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
139 		goto out;
140 
141 	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
142 
143 	WARN_ON(!bslab->slab_ref);
144 
145 	if (--bslab->slab_ref)
146 		goto out;
147 
148 	xa_erase(&bio_slabs, slab_size);
149 
150 	kmem_cache_destroy(bslab->slab);
151 	kfree(bslab);
152 
153 out:
154 	mutex_unlock(&bio_slab_lock);
155 }
156 
157 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
158 {
159 	BUG_ON(nr_vecs > BIO_MAX_VECS);
160 
161 	if (nr_vecs == BIO_MAX_VECS)
162 		mempool_free(bv, pool);
163 	else if (nr_vecs > BIO_INLINE_VECS)
164 		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
165 }
166 
167 /*
168  * Make the first allocation restricted and don't dump info on allocation
169  * failures, since we'll fall back to the mempool in case of failure.
170  */
171 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
172 {
173 	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
174 		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
175 }
176 
177 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
178 		gfp_t gfp_mask)
179 {
180 	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
181 
182 	if (WARN_ON_ONCE(!bvs))
183 		return NULL;
184 
185 	/*
186 	 * Upgrade the nr_vecs request to take full advantage of the allocation.
187 	 * We also rely on this in the bvec_free path.
188 	 */
189 	*nr_vecs = bvs->nr_vecs;
190 
191 	/*
192 	 * Try a slab allocation first for all smaller allocations.  If that
193 	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
194 	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
195 	 */
196 	if (*nr_vecs < BIO_MAX_VECS) {
197 		struct bio_vec *bvl;
198 
199 		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
200 		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
201 			return bvl;
202 		*nr_vecs = BIO_MAX_VECS;
203 	}
204 
205 	return mempool_alloc(pool, gfp_mask);
206 }
207 
208 void bio_uninit(struct bio *bio)
209 {
210 #ifdef CONFIG_BLK_CGROUP
211 	if (bio->bi_blkg) {
212 		blkg_put(bio->bi_blkg);
213 		bio->bi_blkg = NULL;
214 	}
215 #endif
216 	if (bio_integrity(bio))
217 		bio_integrity_free(bio);
218 
219 	bio_crypt_free_ctx(bio);
220 }
221 EXPORT_SYMBOL(bio_uninit);
222 
223 static void bio_free(struct bio *bio)
224 {
225 	struct bio_set *bs = bio->bi_pool;
226 	void *p;
227 
228 	bio_uninit(bio);
229 
230 	if (bs) {
231 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
232 
233 		/*
234 		 * If we have front padding, adjust the bio pointer before freeing
235 		 */
236 		p = bio;
237 		p -= bs->front_pad;
238 
239 		mempool_free(p, &bs->bio_pool);
240 	} else {
241 		/* Bio was allocated by bio_kmalloc() */
242 		kfree(bio);
243 	}
244 }
245 
246 /*
247  * Users of this function have their own bio allocation. Subsequently,
248  * they must remember to pair any call to bio_init() with bio_uninit()
249  * when IO has completed, or when the bio is released.
250  */
251 void bio_init(struct bio *bio, struct bio_vec *table,
252 	      unsigned short max_vecs)
253 {
254 	bio->bi_next = NULL;
255 	bio->bi_bdev = NULL;
256 	bio->bi_opf = 0;
257 	bio->bi_flags = 0;
258 	bio->bi_ioprio = 0;
259 	bio->bi_write_hint = 0;
260 	bio->bi_status = 0;
261 	bio->bi_iter.bi_sector = 0;
262 	bio->bi_iter.bi_size = 0;
263 	bio->bi_iter.bi_idx = 0;
264 	bio->bi_iter.bi_bvec_done = 0;
265 	bio->bi_end_io = NULL;
266 	bio->bi_private = NULL;
267 #ifdef CONFIG_BLK_CGROUP
268 	bio->bi_blkg = NULL;
269 	bio->bi_issue.value = 0;
270 #ifdef CONFIG_BLK_CGROUP_IOCOST
271 	bio->bi_iocost_cost = 0;
272 #endif
273 #endif
274 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
275 	bio->bi_crypt_context = NULL;
276 #endif
277 #ifdef CONFIG_BLK_DEV_INTEGRITY
278 	bio->bi_integrity = NULL;
279 #endif
280 	bio->bi_vcnt = 0;
281 
282 	atomic_set(&bio->__bi_remaining, 1);
283 	atomic_set(&bio->__bi_cnt, 1);
284 
285 	bio->bi_max_vecs = max_vecs;
286 	bio->bi_io_vec = table;
287 	bio->bi_pool = NULL;
288 }
289 EXPORT_SYMBOL(bio_init);
290 
291 /**
292  * bio_reset - reinitialize a bio
293  * @bio:	bio to reset
294  *
295  * Description:
296  *   After calling bio_reset(), @bio will be in the same state as a freshly
297  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
298  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
299  *   comment in struct bio.
300  */
301 void bio_reset(struct bio *bio)
302 {
303 	bio_uninit(bio);
304 	memset(bio, 0, BIO_RESET_BYTES);
305 	atomic_set(&bio->__bi_remaining, 1);
306 }
307 EXPORT_SYMBOL(bio_reset);
308 
309 static struct bio *__bio_chain_endio(struct bio *bio)
310 {
311 	struct bio *parent = bio->bi_private;
312 
313 	if (bio->bi_status && !parent->bi_status)
314 		parent->bi_status = bio->bi_status;
315 	bio_put(bio);
316 	return parent;
317 }
318 
319 static void bio_chain_endio(struct bio *bio)
320 {
321 	bio_endio(__bio_chain_endio(bio));
322 }
323 
324 /**
325  * bio_chain - chain bio completions
326  * @bio: the target bio
327  * @parent: the parent bio of @bio
328  *
329  * The caller won't have a bi_end_io called when @bio completes - instead,
330  * @parent's bi_end_io won't be called until both @parent and @bio have
331  * completed; the chained bio will also be freed when it completes.
332  *
333  * The caller must not set bi_private or bi_end_io in @bio.
334  */
335 void bio_chain(struct bio *bio, struct bio *parent)
336 {
337 	BUG_ON(bio->bi_private || bio->bi_end_io);
338 
339 	bio->bi_private = parent;
340 	bio->bi_end_io	= bio_chain_endio;
341 	bio_inc_remaining(parent);
342 }
343 EXPORT_SYMBOL(bio_chain);
344 
345 static void bio_alloc_rescue(struct work_struct *work)
346 {
347 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
348 	struct bio *bio;
349 
350 	while (1) {
351 		spin_lock(&bs->rescue_lock);
352 		bio = bio_list_pop(&bs->rescue_list);
353 		spin_unlock(&bs->rescue_lock);
354 
355 		if (!bio)
356 			break;
357 
358 		submit_bio_noacct(bio);
359 	}
360 }
361 
362 static void punt_bios_to_rescuer(struct bio_set *bs)
363 {
364 	struct bio_list punt, nopunt;
365 	struct bio *bio;
366 
367 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
368 		return;
369 	/*
370 	 * In order to guarantee forward progress we must punt only bios that
371 	 * were allocated from this bio_set; otherwise, if there was a bio on
372 	 * there for a stacking driver higher up in the stack, processing it
373 	 * could require allocating bios from this bio_set, and doing that from
374 	 * our own rescuer would be bad.
375 	 *
376 	 * Since bio lists are singly linked, pop them all instead of trying to
377 	 * remove from the middle of the list:
378 	 */
379 
380 	bio_list_init(&punt);
381 	bio_list_init(&nopunt);
382 
383 	while ((bio = bio_list_pop(&current->bio_list[0])))
384 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
385 	current->bio_list[0] = nopunt;
386 
387 	bio_list_init(&nopunt);
388 	while ((bio = bio_list_pop(&current->bio_list[1])))
389 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
390 	current->bio_list[1] = nopunt;
391 
392 	spin_lock(&bs->rescue_lock);
393 	bio_list_merge(&bs->rescue_list, &punt);
394 	spin_unlock(&bs->rescue_lock);
395 
396 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
397 }
398 
399 /**
400  * bio_alloc_bioset - allocate a bio for I/O
401  * @gfp_mask:   the GFP_* mask given to the slab allocator
402  * @nr_iovecs:	number of iovecs to pre-allocate
403  * @bs:		the bio_set to allocate from.
404  *
405  * Allocate a bio from the mempools in @bs.
406  *
407  * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
408  * allocate a bio.  This is due to the mempool guarantees.  To make this work,
409  * callers must never allocate more than 1 bio at a time from the general pool.
410  * Callers that need to allocate more than 1 bio must always submit the
411  * previously allocated bio for IO before attempting to allocate a new one.
412  * Failure to do so can cause deadlocks under memory pressure.
413  *
414  * Note that when running under submit_bio_noacct() (i.e. any block driver),
415  * bios are not submitted until after you return - see the code in
416  * submit_bio_noacct() that converts recursion into iteration, to prevent
417  * stack overflows.
418  *
419  * This would normally mean allocating multiple bios under submit_bio_noacct()
420  * would be susceptible to deadlocks, but we have
421  * deadlock avoidance code that resubmits any blocked bios from a rescuer
422  * thread.
423  *
424  * However, we do not guarantee forward progress for allocations from other
425  * mempools. Doing multiple allocations from the same mempool under
426  * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
427  * for per bio allocations.
428  *
429  * Returns: Pointer to new bio on success, NULL on failure.
430  */
431 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
432 			     struct bio_set *bs)
433 {
434 	gfp_t saved_gfp = gfp_mask;
435 	struct bio *bio;
436 	void *p;
437 
438 	/* should not use nobvec bioset for nr_iovecs > 0 */
439 	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
440 		return NULL;
441 
442 	/*
443 	 * submit_bio_noacct() converts recursion to iteration; this means if
444 	 * we're running beneath it, any bios we allocate and submit will not be
445 	 * submitted (and thus freed) until after we return.
446 	 *
447 	 * This exposes us to a potential deadlock if we allocate multiple bios
448 	 * from the same bio_set() while running underneath submit_bio_noacct().
449 	 * If we were to allocate multiple bios (say a stacking block driver
450 	 * that was splitting bios), we would deadlock if we exhausted the
451 	 * mempool's reserve.
452 	 *
453 	 * We solve this, and guarantee forward progress, with a rescuer
454 	 * workqueue per bio_set. If we go to allocate and there are bios on
455 	 * current->bio_list, we first try the allocation without
456 	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
457 	 * blocking to the rescuer workqueue before we retry with the original
458 	 * gfp_flags.
459 	 */
460 	if (current->bio_list &&
461 	    (!bio_list_empty(&current->bio_list[0]) ||
462 	     !bio_list_empty(&current->bio_list[1])) &&
463 	    bs->rescue_workqueue)
464 		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
465 
466 	p = mempool_alloc(&bs->bio_pool, gfp_mask);
467 	if (!p && gfp_mask != saved_gfp) {
468 		punt_bios_to_rescuer(bs);
469 		gfp_mask = saved_gfp;
470 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
471 	}
472 	if (unlikely(!p))
473 		return NULL;
474 
475 	bio = p + bs->front_pad;
476 	if (nr_iovecs > BIO_INLINE_VECS) {
477 		struct bio_vec *bvl = NULL;
478 
479 		bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
480 		if (!bvl && gfp_mask != saved_gfp) {
481 			punt_bios_to_rescuer(bs);
482 			gfp_mask = saved_gfp;
483 			bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
484 		}
485 		if (unlikely(!bvl))
486 			goto err_free;
487 
488 		bio_init(bio, bvl, nr_iovecs);
489 	} else if (nr_iovecs) {
490 		bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
491 	} else {
492 		bio_init(bio, NULL, 0);
493 	}
494 
495 	bio->bi_pool = bs;
496 	return bio;
497 
498 err_free:
499 	mempool_free(p, &bs->bio_pool);
500 	return NULL;
501 }
502 EXPORT_SYMBOL(bio_alloc_bioset);
503 
504 /**
505  * bio_kmalloc - kmalloc a bio for I/O
506  * @gfp_mask:   the GFP_* mask given to the slab allocator
507  * @nr_iovecs:	number of iovecs to pre-allocate
508  *
509  * Use kmalloc to allocate and initialize a bio.
510  *
511  * Returns: Pointer to new bio on success, NULL on failure.
512  */
513 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
514 {
515 	struct bio *bio;
516 
517 	if (nr_iovecs > UIO_MAXIOV)
518 		return NULL;
519 
520 	bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
521 	if (unlikely(!bio))
522 		return NULL;
523 	bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
524 	bio->bi_pool = NULL;
525 	return bio;
526 }
527 EXPORT_SYMBOL(bio_kmalloc);
528 
529 void zero_fill_bio(struct bio *bio)
530 {
531 	struct bio_vec bv;
532 	struct bvec_iter iter;
533 
534 	bio_for_each_segment(bv, bio, iter)
535 		memzero_bvec(&bv);
536 }
537 EXPORT_SYMBOL(zero_fill_bio);
538 
539 /**
540  * bio_truncate - truncate the bio to small size of @new_size
541  * @bio:	the bio to be truncated
542  * @new_size:	new size for truncating the bio
543  *
544  * Description:
545  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
546  *   REQ_OP_READ, zero the truncated part. This function should only
547  *   be used for handling corner cases, such as bio eod.
548  */
549 void bio_truncate(struct bio *bio, unsigned new_size)
550 {
551 	struct bio_vec bv;
552 	struct bvec_iter iter;
553 	unsigned int done = 0;
554 	bool truncated = false;
555 
556 	if (new_size >= bio->bi_iter.bi_size)
557 		return;
558 
559 	if (bio_op(bio) != REQ_OP_READ)
560 		goto exit;
561 
562 	bio_for_each_segment(bv, bio, iter) {
563 		if (done + bv.bv_len > new_size) {
564 			unsigned offset;
565 
566 			if (!truncated)
567 				offset = new_size - done;
568 			else
569 				offset = 0;
570 			zero_user(bv.bv_page, offset, bv.bv_len - offset);
571 			truncated = true;
572 		}
573 		done += bv.bv_len;
574 	}
575 
576  exit:
577 	/*
578 	 * Don't touch bvec table here and make it really immutable, since
579 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
580 	 * in its .end_bio() callback.
581 	 *
582 	 * It is enough to truncate bio by updating .bi_size since we can make
583 	 * correct bvec with the updated .bi_size for drivers.
584 	 */
585 	bio->bi_iter.bi_size = new_size;
586 }
587 
588 /**
589  * guard_bio_eod - truncate a BIO to fit the block device
590  * @bio:	bio to truncate
591  *
592  * This allows us to do IO even on the odd last sectors of a device, even if the
593  * block size is some multiple of the physical sector size.
594  *
595  * We'll just truncate the bio to the size of the device, and clear the end of
596  * the buffer head manually.  Truly out-of-range accesses will turn into actual
597  * I/O errors, this only handles the "we need to be able to do I/O at the final
598  * sector" case.
599  */
600 void guard_bio_eod(struct bio *bio)
601 {
602 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
603 
604 	if (!maxsector)
605 		return;
606 
607 	/*
608 	 * If the *whole* IO is past the end of the device,
609 	 * let it through, and the IO layer will turn it into
610 	 * an EIO.
611 	 */
612 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
613 		return;
614 
615 	maxsector -= bio->bi_iter.bi_sector;
616 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
617 		return;
618 
619 	bio_truncate(bio, maxsector << 9);
620 }
621 
622 #define ALLOC_CACHE_MAX		512
623 #define ALLOC_CACHE_SLACK	 64
624 
625 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
626 				  unsigned int nr)
627 {
628 	unsigned int i = 0;
629 	struct bio *bio;
630 
631 	while ((bio = bio_list_pop(&cache->free_list)) != NULL) {
632 		cache->nr--;
633 		bio_free(bio);
634 		if (++i == nr)
635 			break;
636 	}
637 }
638 
639 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
640 {
641 	struct bio_set *bs;
642 
643 	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
644 	if (bs->cache) {
645 		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
646 
647 		bio_alloc_cache_prune(cache, -1U);
648 	}
649 	return 0;
650 }
651 
652 static void bio_alloc_cache_destroy(struct bio_set *bs)
653 {
654 	int cpu;
655 
656 	if (!bs->cache)
657 		return;
658 
659 	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
660 	for_each_possible_cpu(cpu) {
661 		struct bio_alloc_cache *cache;
662 
663 		cache = per_cpu_ptr(bs->cache, cpu);
664 		bio_alloc_cache_prune(cache, -1U);
665 	}
666 	free_percpu(bs->cache);
667 }
668 
669 /**
670  * bio_put - release a reference to a bio
671  * @bio:   bio to release reference to
672  *
673  * Description:
674  *   Put a reference to a &struct bio, either one you have gotten with
675  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
676  **/
677 void bio_put(struct bio *bio)
678 {
679 	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
680 		BUG_ON(!atomic_read(&bio->__bi_cnt));
681 		if (!atomic_dec_and_test(&bio->__bi_cnt))
682 			return;
683 	}
684 
685 	if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
686 		struct bio_alloc_cache *cache;
687 
688 		bio_uninit(bio);
689 		cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
690 		bio_list_add_head(&cache->free_list, bio);
691 		if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
692 			bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
693 		put_cpu();
694 	} else {
695 		bio_free(bio);
696 	}
697 }
698 EXPORT_SYMBOL(bio_put);
699 
700 /**
701  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
702  * 	@bio: destination bio
703  * 	@bio_src: bio to clone
704  *
705  *	Clone a &bio. Caller will own the returned bio, but not
706  *	the actual data it points to. Reference count of returned
707  * 	bio will be one.
708  *
709  * 	Caller must ensure that @bio_src is not freed before @bio.
710  */
711 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
712 {
713 	WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
714 
715 	/*
716 	 * most users will be overriding ->bi_bdev with a new target,
717 	 * so we don't set nor calculate new physical/hw segment counts here
718 	 */
719 	bio->bi_bdev = bio_src->bi_bdev;
720 	bio_set_flag(bio, BIO_CLONED);
721 	if (bio_flagged(bio_src, BIO_THROTTLED))
722 		bio_set_flag(bio, BIO_THROTTLED);
723 	if (bio_flagged(bio_src, BIO_REMAPPED))
724 		bio_set_flag(bio, BIO_REMAPPED);
725 	bio->bi_opf = bio_src->bi_opf;
726 	bio->bi_ioprio = bio_src->bi_ioprio;
727 	bio->bi_write_hint = bio_src->bi_write_hint;
728 	bio->bi_iter = bio_src->bi_iter;
729 	bio->bi_io_vec = bio_src->bi_io_vec;
730 
731 	bio_clone_blkg_association(bio, bio_src);
732 	blkcg_bio_issue_init(bio);
733 }
734 EXPORT_SYMBOL(__bio_clone_fast);
735 
736 /**
737  *	bio_clone_fast - clone a bio that shares the original bio's biovec
738  *	@bio: bio to clone
739  *	@gfp_mask: allocation priority
740  *	@bs: bio_set to allocate from
741  *
742  * 	Like __bio_clone_fast, only also allocates the returned bio
743  */
744 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
745 {
746 	struct bio *b;
747 
748 	b = bio_alloc_bioset(gfp_mask, 0, bs);
749 	if (!b)
750 		return NULL;
751 
752 	__bio_clone_fast(b, bio);
753 
754 	if (bio_crypt_clone(b, bio, gfp_mask) < 0)
755 		goto err_put;
756 
757 	if (bio_integrity(bio) &&
758 	    bio_integrity_clone(b, bio, gfp_mask) < 0)
759 		goto err_put;
760 
761 	return b;
762 
763 err_put:
764 	bio_put(b);
765 	return NULL;
766 }
767 EXPORT_SYMBOL(bio_clone_fast);
768 
769 const char *bio_devname(struct bio *bio, char *buf)
770 {
771 	return bdevname(bio->bi_bdev, buf);
772 }
773 EXPORT_SYMBOL(bio_devname);
774 
775 /**
776  * bio_full - check if the bio is full
777  * @bio:	bio to check
778  * @len:	length of one segment to be added
779  *
780  * Return true if @bio is full and one segment with @len bytes can't be
781  * added to the bio, otherwise return false
782  */
783 static inline bool bio_full(struct bio *bio, unsigned len)
784 {
785 	if (bio->bi_vcnt >= bio->bi_max_vecs)
786 		return true;
787 	if (bio->bi_iter.bi_size > UINT_MAX - len)
788 		return true;
789 	return false;
790 }
791 
792 static inline bool page_is_mergeable(const struct bio_vec *bv,
793 		struct page *page, unsigned int len, unsigned int off,
794 		bool *same_page)
795 {
796 	size_t bv_end = bv->bv_offset + bv->bv_len;
797 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
798 	phys_addr_t page_addr = page_to_phys(page);
799 
800 	if (vec_end_addr + 1 != page_addr + off)
801 		return false;
802 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
803 		return false;
804 
805 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
806 	if (*same_page)
807 		return true;
808 	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
809 }
810 
811 /*
812  * Try to merge a page into a segment, while obeying the hardware segment
813  * size limit.  This is not for normal read/write bios, but for passthrough
814  * or Zone Append operations that we can't split.
815  */
816 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
817 				 struct page *page, unsigned len,
818 				 unsigned offset, bool *same_page)
819 {
820 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
821 	unsigned long mask = queue_segment_boundary(q);
822 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
823 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
824 
825 	if ((addr1 | mask) != (addr2 | mask))
826 		return false;
827 	if (bv->bv_len + len > queue_max_segment_size(q))
828 		return false;
829 	return __bio_try_merge_page(bio, page, len, offset, same_page);
830 }
831 
832 /**
833  * bio_add_hw_page - attempt to add a page to a bio with hw constraints
834  * @q: the target queue
835  * @bio: destination bio
836  * @page: page to add
837  * @len: vec entry length
838  * @offset: vec entry offset
839  * @max_sectors: maximum number of sectors that can be added
840  * @same_page: return if the segment has been merged inside the same page
841  *
842  * Add a page to a bio while respecting the hardware max_sectors, max_segment
843  * and gap limitations.
844  */
845 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
846 		struct page *page, unsigned int len, unsigned int offset,
847 		unsigned int max_sectors, bool *same_page)
848 {
849 	struct bio_vec *bvec;
850 
851 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
852 		return 0;
853 
854 	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
855 		return 0;
856 
857 	if (bio->bi_vcnt > 0) {
858 		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
859 			return len;
860 
861 		/*
862 		 * If the queue doesn't support SG gaps and adding this segment
863 		 * would create a gap, disallow it.
864 		 */
865 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
866 		if (bvec_gap_to_prev(q, bvec, offset))
867 			return 0;
868 	}
869 
870 	if (bio_full(bio, len))
871 		return 0;
872 
873 	if (bio->bi_vcnt >= queue_max_segments(q))
874 		return 0;
875 
876 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
877 	bvec->bv_page = page;
878 	bvec->bv_len = len;
879 	bvec->bv_offset = offset;
880 	bio->bi_vcnt++;
881 	bio->bi_iter.bi_size += len;
882 	return len;
883 }
884 
885 /**
886  * bio_add_pc_page	- attempt to add page to passthrough bio
887  * @q: the target queue
888  * @bio: destination bio
889  * @page: page to add
890  * @len: vec entry length
891  * @offset: vec entry offset
892  *
893  * Attempt to add a page to the bio_vec maplist. This can fail for a
894  * number of reasons, such as the bio being full or target block device
895  * limitations. The target block device must allow bio's up to PAGE_SIZE,
896  * so it is always possible to add a single page to an empty bio.
897  *
898  * This should only be used by passthrough bios.
899  */
900 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
901 		struct page *page, unsigned int len, unsigned int offset)
902 {
903 	bool same_page = false;
904 	return bio_add_hw_page(q, bio, page, len, offset,
905 			queue_max_hw_sectors(q), &same_page);
906 }
907 EXPORT_SYMBOL(bio_add_pc_page);
908 
909 /**
910  * bio_add_zone_append_page - attempt to add page to zone-append bio
911  * @bio: destination bio
912  * @page: page to add
913  * @len: vec entry length
914  * @offset: vec entry offset
915  *
916  * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
917  * for a zone-append request. This can fail for a number of reasons, such as the
918  * bio being full or the target block device is not a zoned block device or
919  * other limitations of the target block device. The target block device must
920  * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
921  * to an empty bio.
922  *
923  * Returns: number of bytes added to the bio, or 0 in case of a failure.
924  */
925 int bio_add_zone_append_page(struct bio *bio, struct page *page,
926 			     unsigned int len, unsigned int offset)
927 {
928 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
929 	bool same_page = false;
930 
931 	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
932 		return 0;
933 
934 	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
935 		return 0;
936 
937 	return bio_add_hw_page(q, bio, page, len, offset,
938 			       queue_max_zone_append_sectors(q), &same_page);
939 }
940 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
941 
942 /**
943  * __bio_try_merge_page - try appending data to an existing bvec.
944  * @bio: destination bio
945  * @page: start page to add
946  * @len: length of the data to add
947  * @off: offset of the data relative to @page
948  * @same_page: return if the segment has been merged inside the same page
949  *
950  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
951  * useful optimisation for file systems with a block size smaller than the
952  * page size.
953  *
954  * Warn if (@len, @off) crosses pages in case that @same_page is true.
955  *
956  * Return %true on success or %false on failure.
957  */
958 bool __bio_try_merge_page(struct bio *bio, struct page *page,
959 		unsigned int len, unsigned int off, bool *same_page)
960 {
961 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
962 		return false;
963 
964 	if (bio->bi_vcnt > 0) {
965 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
966 
967 		if (page_is_mergeable(bv, page, len, off, same_page)) {
968 			if (bio->bi_iter.bi_size > UINT_MAX - len) {
969 				*same_page = false;
970 				return false;
971 			}
972 			bv->bv_len += len;
973 			bio->bi_iter.bi_size += len;
974 			return true;
975 		}
976 	}
977 	return false;
978 }
979 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
980 
981 /**
982  * __bio_add_page - add page(s) to a bio in a new segment
983  * @bio: destination bio
984  * @page: start page to add
985  * @len: length of the data to add, may cross pages
986  * @off: offset of the data relative to @page, may cross pages
987  *
988  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
989  * that @bio has space for another bvec.
990  */
991 void __bio_add_page(struct bio *bio, struct page *page,
992 		unsigned int len, unsigned int off)
993 {
994 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
995 
996 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
997 	WARN_ON_ONCE(bio_full(bio, len));
998 
999 	bv->bv_page = page;
1000 	bv->bv_offset = off;
1001 	bv->bv_len = len;
1002 
1003 	bio->bi_iter.bi_size += len;
1004 	bio->bi_vcnt++;
1005 
1006 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
1007 		bio_set_flag(bio, BIO_WORKINGSET);
1008 }
1009 EXPORT_SYMBOL_GPL(__bio_add_page);
1010 
1011 /**
1012  *	bio_add_page	-	attempt to add page(s) to bio
1013  *	@bio: destination bio
1014  *	@page: start page to add
1015  *	@len: vec entry length, may cross pages
1016  *	@offset: vec entry offset relative to @page, may cross pages
1017  *
1018  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1019  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1020  */
1021 int bio_add_page(struct bio *bio, struct page *page,
1022 		 unsigned int len, unsigned int offset)
1023 {
1024 	bool same_page = false;
1025 
1026 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1027 		if (bio_full(bio, len))
1028 			return 0;
1029 		__bio_add_page(bio, page, len, offset);
1030 	}
1031 	return len;
1032 }
1033 EXPORT_SYMBOL(bio_add_page);
1034 
1035 void bio_release_pages(struct bio *bio, bool mark_dirty)
1036 {
1037 	struct bvec_iter_all iter_all;
1038 	struct bio_vec *bvec;
1039 
1040 	if (bio_flagged(bio, BIO_NO_PAGE_REF))
1041 		return;
1042 
1043 	bio_for_each_segment_all(bvec, bio, iter_all) {
1044 		if (mark_dirty && !PageCompound(bvec->bv_page))
1045 			set_page_dirty_lock(bvec->bv_page);
1046 		put_page(bvec->bv_page);
1047 	}
1048 }
1049 EXPORT_SYMBOL_GPL(bio_release_pages);
1050 
1051 static void __bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1052 {
1053 	WARN_ON_ONCE(bio->bi_max_vecs);
1054 
1055 	bio->bi_vcnt = iter->nr_segs;
1056 	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1057 	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1058 	bio->bi_iter.bi_size = iter->count;
1059 	bio_set_flag(bio, BIO_NO_PAGE_REF);
1060 	bio_set_flag(bio, BIO_CLONED);
1061 }
1062 
1063 static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1064 {
1065 	__bio_iov_bvec_set(bio, iter);
1066 	iov_iter_advance(iter, iter->count);
1067 	return 0;
1068 }
1069 
1070 static int bio_iov_bvec_set_append(struct bio *bio, struct iov_iter *iter)
1071 {
1072 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1073 	struct iov_iter i = *iter;
1074 
1075 	iov_iter_truncate(&i, queue_max_zone_append_sectors(q) << 9);
1076 	__bio_iov_bvec_set(bio, &i);
1077 	iov_iter_advance(iter, i.count);
1078 	return 0;
1079 }
1080 
1081 static void bio_put_pages(struct page **pages, size_t size, size_t off)
1082 {
1083 	size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1084 
1085 	for (i = 0; i < nr; i++)
1086 		put_page(pages[i]);
1087 }
1088 
1089 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
1090 
1091 /**
1092  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1093  * @bio: bio to add pages to
1094  * @iter: iov iterator describing the region to be mapped
1095  *
1096  * Pins pages from *iter and appends them to @bio's bvec array. The
1097  * pages will have to be released using put_page() when done.
1098  * For multi-segment *iter, this function only adds pages from the
1099  * next non-empty segment of the iov iterator.
1100  */
1101 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1102 {
1103 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1104 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1105 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1106 	struct page **pages = (struct page **)bv;
1107 	bool same_page = false;
1108 	ssize_t size, left;
1109 	unsigned len, i;
1110 	size_t offset;
1111 
1112 	/*
1113 	 * Move page array up in the allocated memory for the bio vecs as far as
1114 	 * possible so that we can start filling biovecs from the beginning
1115 	 * without overwriting the temporary page array.
1116 	*/
1117 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1118 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1119 
1120 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1121 	if (unlikely(size <= 0))
1122 		return size ? size : -EFAULT;
1123 
1124 	for (left = size, i = 0; left > 0; left -= len, i++) {
1125 		struct page *page = pages[i];
1126 
1127 		len = min_t(size_t, PAGE_SIZE - offset, left);
1128 
1129 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1130 			if (same_page)
1131 				put_page(page);
1132 		} else {
1133 			if (WARN_ON_ONCE(bio_full(bio, len))) {
1134 				bio_put_pages(pages + i, left, offset);
1135 				return -EINVAL;
1136 			}
1137 			__bio_add_page(bio, page, len, offset);
1138 		}
1139 		offset = 0;
1140 	}
1141 
1142 	iov_iter_advance(iter, size);
1143 	return 0;
1144 }
1145 
1146 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1147 {
1148 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1149 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1150 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1151 	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1152 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1153 	struct page **pages = (struct page **)bv;
1154 	ssize_t size, left;
1155 	unsigned len, i;
1156 	size_t offset;
1157 	int ret = 0;
1158 
1159 	if (WARN_ON_ONCE(!max_append_sectors))
1160 		return 0;
1161 
1162 	/*
1163 	 * Move page array up in the allocated memory for the bio vecs as far as
1164 	 * possible so that we can start filling biovecs from the beginning
1165 	 * without overwriting the temporary page array.
1166 	 */
1167 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1168 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1169 
1170 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1171 	if (unlikely(size <= 0))
1172 		return size ? size : -EFAULT;
1173 
1174 	for (left = size, i = 0; left > 0; left -= len, i++) {
1175 		struct page *page = pages[i];
1176 		bool same_page = false;
1177 
1178 		len = min_t(size_t, PAGE_SIZE - offset, left);
1179 		if (bio_add_hw_page(q, bio, page, len, offset,
1180 				max_append_sectors, &same_page) != len) {
1181 			bio_put_pages(pages + i, left, offset);
1182 			ret = -EINVAL;
1183 			break;
1184 		}
1185 		if (same_page)
1186 			put_page(page);
1187 		offset = 0;
1188 	}
1189 
1190 	iov_iter_advance(iter, size - left);
1191 	return ret;
1192 }
1193 
1194 /**
1195  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1196  * @bio: bio to add pages to
1197  * @iter: iov iterator describing the region to be added
1198  *
1199  * This takes either an iterator pointing to user memory, or one pointing to
1200  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1201  * map them into the kernel. On IO completion, the caller should put those
1202  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1203  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1204  * to ensure the bvecs and pages stay referenced until the submitted I/O is
1205  * completed by a call to ->ki_complete() or returns with an error other than
1206  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1207  * on IO completion. If it isn't, then pages should be released.
1208  *
1209  * The function tries, but does not guarantee, to pin as many pages as
1210  * fit into the bio, or are requested in @iter, whatever is smaller. If
1211  * MM encounters an error pinning the requested pages, it stops. Error
1212  * is returned only if 0 pages could be pinned.
1213  *
1214  * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1215  * responsible for setting BIO_WORKINGSET if necessary.
1216  */
1217 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1218 {
1219 	int ret = 0;
1220 
1221 	if (iov_iter_is_bvec(iter)) {
1222 		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1223 			return bio_iov_bvec_set_append(bio, iter);
1224 		return bio_iov_bvec_set(bio, iter);
1225 	}
1226 
1227 	do {
1228 		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1229 			ret = __bio_iov_append_get_pages(bio, iter);
1230 		else
1231 			ret = __bio_iov_iter_get_pages(bio, iter);
1232 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1233 
1234 	/* don't account direct I/O as memory stall */
1235 	bio_clear_flag(bio, BIO_WORKINGSET);
1236 	return bio->bi_vcnt ? 0 : ret;
1237 }
1238 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1239 
1240 static void submit_bio_wait_endio(struct bio *bio)
1241 {
1242 	complete(bio->bi_private);
1243 }
1244 
1245 /**
1246  * submit_bio_wait - submit a bio, and wait until it completes
1247  * @bio: The &struct bio which describes the I/O
1248  *
1249  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1250  * bio_endio() on failure.
1251  *
1252  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1253  * result in bio reference to be consumed. The caller must drop the reference
1254  * on his own.
1255  */
1256 int submit_bio_wait(struct bio *bio)
1257 {
1258 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1259 			bio->bi_bdev->bd_disk->lockdep_map);
1260 	unsigned long hang_check;
1261 
1262 	bio->bi_private = &done;
1263 	bio->bi_end_io = submit_bio_wait_endio;
1264 	bio->bi_opf |= REQ_SYNC;
1265 	submit_bio(bio);
1266 
1267 	/* Prevent hang_check timer from firing at us during very long I/O */
1268 	hang_check = sysctl_hung_task_timeout_secs;
1269 	if (hang_check)
1270 		while (!wait_for_completion_io_timeout(&done,
1271 					hang_check * (HZ/2)))
1272 			;
1273 	else
1274 		wait_for_completion_io(&done);
1275 
1276 	return blk_status_to_errno(bio->bi_status);
1277 }
1278 EXPORT_SYMBOL(submit_bio_wait);
1279 
1280 /**
1281  * bio_advance - increment/complete a bio by some number of bytes
1282  * @bio:	bio to advance
1283  * @bytes:	number of bytes to complete
1284  *
1285  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1286  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1287  * be updated on the last bvec as well.
1288  *
1289  * @bio will then represent the remaining, uncompleted portion of the io.
1290  */
1291 void bio_advance(struct bio *bio, unsigned bytes)
1292 {
1293 	if (bio_integrity(bio))
1294 		bio_integrity_advance(bio, bytes);
1295 
1296 	bio_crypt_advance(bio, bytes);
1297 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1298 }
1299 EXPORT_SYMBOL(bio_advance);
1300 
1301 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1302 			struct bio *src, struct bvec_iter *src_iter)
1303 {
1304 	while (src_iter->bi_size && dst_iter->bi_size) {
1305 		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1306 		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1307 		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1308 		void *src_buf;
1309 
1310 		src_buf = bvec_kmap_local(&src_bv);
1311 		memcpy_to_bvec(&dst_bv, src_buf);
1312 		kunmap_local(src_buf);
1313 
1314 		bio_advance_iter_single(src, src_iter, bytes);
1315 		bio_advance_iter_single(dst, dst_iter, bytes);
1316 	}
1317 }
1318 EXPORT_SYMBOL(bio_copy_data_iter);
1319 
1320 /**
1321  * bio_copy_data - copy contents of data buffers from one bio to another
1322  * @src: source bio
1323  * @dst: destination bio
1324  *
1325  * Stops when it reaches the end of either @src or @dst - that is, copies
1326  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1327  */
1328 void bio_copy_data(struct bio *dst, struct bio *src)
1329 {
1330 	struct bvec_iter src_iter = src->bi_iter;
1331 	struct bvec_iter dst_iter = dst->bi_iter;
1332 
1333 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1334 }
1335 EXPORT_SYMBOL(bio_copy_data);
1336 
1337 void bio_free_pages(struct bio *bio)
1338 {
1339 	struct bio_vec *bvec;
1340 	struct bvec_iter_all iter_all;
1341 
1342 	bio_for_each_segment_all(bvec, bio, iter_all)
1343 		__free_page(bvec->bv_page);
1344 }
1345 EXPORT_SYMBOL(bio_free_pages);
1346 
1347 /*
1348  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1349  * for performing direct-IO in BIOs.
1350  *
1351  * The problem is that we cannot run set_page_dirty() from interrupt context
1352  * because the required locks are not interrupt-safe.  So what we can do is to
1353  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1354  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1355  * in process context.
1356  *
1357  * We special-case compound pages here: normally this means reads into hugetlb
1358  * pages.  The logic in here doesn't really work right for compound pages
1359  * because the VM does not uniformly chase down the head page in all cases.
1360  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1361  * handle them at all.  So we skip compound pages here at an early stage.
1362  *
1363  * Note that this code is very hard to test under normal circumstances because
1364  * direct-io pins the pages with get_user_pages().  This makes
1365  * is_page_cache_freeable return false, and the VM will not clean the pages.
1366  * But other code (eg, flusher threads) could clean the pages if they are mapped
1367  * pagecache.
1368  *
1369  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1370  * deferred bio dirtying paths.
1371  */
1372 
1373 /*
1374  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1375  */
1376 void bio_set_pages_dirty(struct bio *bio)
1377 {
1378 	struct bio_vec *bvec;
1379 	struct bvec_iter_all iter_all;
1380 
1381 	bio_for_each_segment_all(bvec, bio, iter_all) {
1382 		if (!PageCompound(bvec->bv_page))
1383 			set_page_dirty_lock(bvec->bv_page);
1384 	}
1385 }
1386 
1387 /*
1388  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1389  * If they are, then fine.  If, however, some pages are clean then they must
1390  * have been written out during the direct-IO read.  So we take another ref on
1391  * the BIO and re-dirty the pages in process context.
1392  *
1393  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1394  * here on.  It will run one put_page() against each page and will run one
1395  * bio_put() against the BIO.
1396  */
1397 
1398 static void bio_dirty_fn(struct work_struct *work);
1399 
1400 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1401 static DEFINE_SPINLOCK(bio_dirty_lock);
1402 static struct bio *bio_dirty_list;
1403 
1404 /*
1405  * This runs in process context
1406  */
1407 static void bio_dirty_fn(struct work_struct *work)
1408 {
1409 	struct bio *bio, *next;
1410 
1411 	spin_lock_irq(&bio_dirty_lock);
1412 	next = bio_dirty_list;
1413 	bio_dirty_list = NULL;
1414 	spin_unlock_irq(&bio_dirty_lock);
1415 
1416 	while ((bio = next) != NULL) {
1417 		next = bio->bi_private;
1418 
1419 		bio_release_pages(bio, true);
1420 		bio_put(bio);
1421 	}
1422 }
1423 
1424 void bio_check_pages_dirty(struct bio *bio)
1425 {
1426 	struct bio_vec *bvec;
1427 	unsigned long flags;
1428 	struct bvec_iter_all iter_all;
1429 
1430 	bio_for_each_segment_all(bvec, bio, iter_all) {
1431 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1432 			goto defer;
1433 	}
1434 
1435 	bio_release_pages(bio, false);
1436 	bio_put(bio);
1437 	return;
1438 defer:
1439 	spin_lock_irqsave(&bio_dirty_lock, flags);
1440 	bio->bi_private = bio_dirty_list;
1441 	bio_dirty_list = bio;
1442 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1443 	schedule_work(&bio_dirty_work);
1444 }
1445 
1446 static inline bool bio_remaining_done(struct bio *bio)
1447 {
1448 	/*
1449 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1450 	 * we always end io on the first invocation.
1451 	 */
1452 	if (!bio_flagged(bio, BIO_CHAIN))
1453 		return true;
1454 
1455 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1456 
1457 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1458 		bio_clear_flag(bio, BIO_CHAIN);
1459 		return true;
1460 	}
1461 
1462 	return false;
1463 }
1464 
1465 /**
1466  * bio_endio - end I/O on a bio
1467  * @bio:	bio
1468  *
1469  * Description:
1470  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1471  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1472  *   bio unless they own it and thus know that it has an end_io function.
1473  *
1474  *   bio_endio() can be called several times on a bio that has been chained
1475  *   using bio_chain().  The ->bi_end_io() function will only be called the
1476  *   last time.
1477  **/
1478 void bio_endio(struct bio *bio)
1479 {
1480 again:
1481 	if (!bio_remaining_done(bio))
1482 		return;
1483 	if (!bio_integrity_endio(bio))
1484 		return;
1485 
1486 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACKED))
1487 		rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
1488 
1489 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1490 		trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
1491 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1492 	}
1493 
1494 	/*
1495 	 * Need to have a real endio function for chained bios, otherwise
1496 	 * various corner cases will break (like stacking block devices that
1497 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1498 	 * recursion and blowing the stack. Tail call optimization would
1499 	 * handle this, but compiling with frame pointers also disables
1500 	 * gcc's sibling call optimization.
1501 	 */
1502 	if (bio->bi_end_io == bio_chain_endio) {
1503 		bio = __bio_chain_endio(bio);
1504 		goto again;
1505 	}
1506 
1507 	blk_throtl_bio_endio(bio);
1508 	/* release cgroup info */
1509 	bio_uninit(bio);
1510 	if (bio->bi_end_io)
1511 		bio->bi_end_io(bio);
1512 }
1513 EXPORT_SYMBOL(bio_endio);
1514 
1515 /**
1516  * bio_split - split a bio
1517  * @bio:	bio to split
1518  * @sectors:	number of sectors to split from the front of @bio
1519  * @gfp:	gfp mask
1520  * @bs:		bio set to allocate from
1521  *
1522  * Allocates and returns a new bio which represents @sectors from the start of
1523  * @bio, and updates @bio to represent the remaining sectors.
1524  *
1525  * Unless this is a discard request the newly allocated bio will point
1526  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1527  * neither @bio nor @bs are freed before the split bio.
1528  */
1529 struct bio *bio_split(struct bio *bio, int sectors,
1530 		      gfp_t gfp, struct bio_set *bs)
1531 {
1532 	struct bio *split;
1533 
1534 	BUG_ON(sectors <= 0);
1535 	BUG_ON(sectors >= bio_sectors(bio));
1536 
1537 	/* Zone append commands cannot be split */
1538 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1539 		return NULL;
1540 
1541 	split = bio_clone_fast(bio, gfp, bs);
1542 	if (!split)
1543 		return NULL;
1544 
1545 	split->bi_iter.bi_size = sectors << 9;
1546 
1547 	if (bio_integrity(split))
1548 		bio_integrity_trim(split);
1549 
1550 	bio_advance(bio, split->bi_iter.bi_size);
1551 
1552 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1553 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1554 
1555 	return split;
1556 }
1557 EXPORT_SYMBOL(bio_split);
1558 
1559 /**
1560  * bio_trim - trim a bio
1561  * @bio:	bio to trim
1562  * @offset:	number of sectors to trim from the front of @bio
1563  * @size:	size we want to trim @bio to, in sectors
1564  *
1565  * This function is typically used for bios that are cloned and submitted
1566  * to the underlying device in parts.
1567  */
1568 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1569 {
1570 	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1571 			 offset + size > bio->bi_iter.bi_size))
1572 		return;
1573 
1574 	size <<= 9;
1575 	if (offset == 0 && size == bio->bi_iter.bi_size)
1576 		return;
1577 
1578 	bio_advance(bio, offset << 9);
1579 	bio->bi_iter.bi_size = size;
1580 
1581 	if (bio_integrity(bio))
1582 		bio_integrity_trim(bio);
1583 }
1584 EXPORT_SYMBOL_GPL(bio_trim);
1585 
1586 /*
1587  * create memory pools for biovec's in a bio_set.
1588  * use the global biovec slabs created for general use.
1589  */
1590 int biovec_init_pool(mempool_t *pool, int pool_entries)
1591 {
1592 	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1593 
1594 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1595 }
1596 
1597 /*
1598  * bioset_exit - exit a bioset initialized with bioset_init()
1599  *
1600  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1601  * kzalloc()).
1602  */
1603 void bioset_exit(struct bio_set *bs)
1604 {
1605 	bio_alloc_cache_destroy(bs);
1606 	if (bs->rescue_workqueue)
1607 		destroy_workqueue(bs->rescue_workqueue);
1608 	bs->rescue_workqueue = NULL;
1609 
1610 	mempool_exit(&bs->bio_pool);
1611 	mempool_exit(&bs->bvec_pool);
1612 
1613 	bioset_integrity_free(bs);
1614 	if (bs->bio_slab)
1615 		bio_put_slab(bs);
1616 	bs->bio_slab = NULL;
1617 }
1618 EXPORT_SYMBOL(bioset_exit);
1619 
1620 /**
1621  * bioset_init - Initialize a bio_set
1622  * @bs:		pool to initialize
1623  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1624  * @front_pad:	Number of bytes to allocate in front of the returned bio
1625  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1626  *              and %BIOSET_NEED_RESCUER
1627  *
1628  * Description:
1629  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1630  *    to ask for a number of bytes to be allocated in front of the bio.
1631  *    Front pad allocation is useful for embedding the bio inside
1632  *    another structure, to avoid allocating extra data to go with the bio.
1633  *    Note that the bio must be embedded at the END of that structure always,
1634  *    or things will break badly.
1635  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1636  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1637  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1638  *    dispatch queued requests when the mempool runs out of space.
1639  *
1640  */
1641 int bioset_init(struct bio_set *bs,
1642 		unsigned int pool_size,
1643 		unsigned int front_pad,
1644 		int flags)
1645 {
1646 	bs->front_pad = front_pad;
1647 	if (flags & BIOSET_NEED_BVECS)
1648 		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1649 	else
1650 		bs->back_pad = 0;
1651 
1652 	spin_lock_init(&bs->rescue_lock);
1653 	bio_list_init(&bs->rescue_list);
1654 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1655 
1656 	bs->bio_slab = bio_find_or_create_slab(bs);
1657 	if (!bs->bio_slab)
1658 		return -ENOMEM;
1659 
1660 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1661 		goto bad;
1662 
1663 	if ((flags & BIOSET_NEED_BVECS) &&
1664 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1665 		goto bad;
1666 
1667 	if (flags & BIOSET_NEED_RESCUER) {
1668 		bs->rescue_workqueue = alloc_workqueue("bioset",
1669 							WQ_MEM_RECLAIM, 0);
1670 		if (!bs->rescue_workqueue)
1671 			goto bad;
1672 	}
1673 	if (flags & BIOSET_PERCPU_CACHE) {
1674 		bs->cache = alloc_percpu(struct bio_alloc_cache);
1675 		if (!bs->cache)
1676 			goto bad;
1677 		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1678 	}
1679 
1680 	return 0;
1681 bad:
1682 	bioset_exit(bs);
1683 	return -ENOMEM;
1684 }
1685 EXPORT_SYMBOL(bioset_init);
1686 
1687 /*
1688  * Initialize and setup a new bio_set, based on the settings from
1689  * another bio_set.
1690  */
1691 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1692 {
1693 	int flags;
1694 
1695 	flags = 0;
1696 	if (src->bvec_pool.min_nr)
1697 		flags |= BIOSET_NEED_BVECS;
1698 	if (src->rescue_workqueue)
1699 		flags |= BIOSET_NEED_RESCUER;
1700 
1701 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1702 }
1703 EXPORT_SYMBOL(bioset_init_from_src);
1704 
1705 /**
1706  * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
1707  * @kiocb:	kiocb describing the IO
1708  * @nr_vecs:	number of iovecs to pre-allocate
1709  * @bs:		bio_set to allocate from
1710  *
1711  * Description:
1712  *    Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
1713  *    used to check if we should dip into the per-cpu bio_set allocation
1714  *    cache. The allocation uses GFP_KERNEL internally. On return, the
1715  *    bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
1716  *    MUST be done from process context, not hard/soft IRQ.
1717  *
1718  */
1719 struct bio *bio_alloc_kiocb(struct kiocb *kiocb, unsigned short nr_vecs,
1720 			    struct bio_set *bs)
1721 {
1722 	struct bio_alloc_cache *cache;
1723 	struct bio *bio;
1724 
1725 	if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
1726 		return bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1727 
1728 	cache = per_cpu_ptr(bs->cache, get_cpu());
1729 	bio = bio_list_pop(&cache->free_list);
1730 	if (bio) {
1731 		cache->nr--;
1732 		put_cpu();
1733 		bio_init(bio, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs);
1734 		bio->bi_pool = bs;
1735 		bio_set_flag(bio, BIO_PERCPU_CACHE);
1736 		return bio;
1737 	}
1738 	put_cpu();
1739 	bio = bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1740 	bio_set_flag(bio, BIO_PERCPU_CACHE);
1741 	return bio;
1742 }
1743 EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
1744 
1745 static int __init init_bio(void)
1746 {
1747 	int i;
1748 
1749 	bio_integrity_init();
1750 
1751 	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1752 		struct biovec_slab *bvs = bvec_slabs + i;
1753 
1754 		bvs->slab = kmem_cache_create(bvs->name,
1755 				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1756 				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1757 	}
1758 
1759 	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1760 					bio_cpu_dead);
1761 
1762 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1763 		panic("bio: can't allocate bios\n");
1764 
1765 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1766 		panic("bio: can't create integrity pool\n");
1767 
1768 	return 0;
1769 }
1770 subsys_initcall(init_bio);
1771