1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 4 */ 5 #include <linux/mm.h> 6 #include <linux/swap.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/uio.h> 10 #include <linux/iocontext.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/mempool.h> 16 #include <linux/workqueue.h> 17 #include <linux/cgroup.h> 18 #include <linux/blk-cgroup.h> 19 #include <linux/highmem.h> 20 #include <linux/sched/sysctl.h> 21 #include <linux/blk-crypto.h> 22 #include <linux/xarray.h> 23 24 #include <trace/events/block.h> 25 #include "blk.h" 26 #include "blk-rq-qos.h" 27 28 struct bio_alloc_cache { 29 struct bio_list free_list; 30 unsigned int nr; 31 }; 32 33 static struct biovec_slab { 34 int nr_vecs; 35 char *name; 36 struct kmem_cache *slab; 37 } bvec_slabs[] __read_mostly = { 38 { .nr_vecs = 16, .name = "biovec-16" }, 39 { .nr_vecs = 64, .name = "biovec-64" }, 40 { .nr_vecs = 128, .name = "biovec-128" }, 41 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" }, 42 }; 43 44 static struct biovec_slab *biovec_slab(unsigned short nr_vecs) 45 { 46 switch (nr_vecs) { 47 /* smaller bios use inline vecs */ 48 case 5 ... 16: 49 return &bvec_slabs[0]; 50 case 17 ... 64: 51 return &bvec_slabs[1]; 52 case 65 ... 128: 53 return &bvec_slabs[2]; 54 case 129 ... BIO_MAX_VECS: 55 return &bvec_slabs[3]; 56 default: 57 BUG(); 58 return NULL; 59 } 60 } 61 62 /* 63 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 64 * IO code that does not need private memory pools. 65 */ 66 struct bio_set fs_bio_set; 67 EXPORT_SYMBOL(fs_bio_set); 68 69 /* 70 * Our slab pool management 71 */ 72 struct bio_slab { 73 struct kmem_cache *slab; 74 unsigned int slab_ref; 75 unsigned int slab_size; 76 char name[8]; 77 }; 78 static DEFINE_MUTEX(bio_slab_lock); 79 static DEFINE_XARRAY(bio_slabs); 80 81 static struct bio_slab *create_bio_slab(unsigned int size) 82 { 83 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL); 84 85 if (!bslab) 86 return NULL; 87 88 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size); 89 bslab->slab = kmem_cache_create(bslab->name, size, 90 ARCH_KMALLOC_MINALIGN, 91 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL); 92 if (!bslab->slab) 93 goto fail_alloc_slab; 94 95 bslab->slab_ref = 1; 96 bslab->slab_size = size; 97 98 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL))) 99 return bslab; 100 101 kmem_cache_destroy(bslab->slab); 102 103 fail_alloc_slab: 104 kfree(bslab); 105 return NULL; 106 } 107 108 static inline unsigned int bs_bio_slab_size(struct bio_set *bs) 109 { 110 return bs->front_pad + sizeof(struct bio) + bs->back_pad; 111 } 112 113 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs) 114 { 115 unsigned int size = bs_bio_slab_size(bs); 116 struct bio_slab *bslab; 117 118 mutex_lock(&bio_slab_lock); 119 bslab = xa_load(&bio_slabs, size); 120 if (bslab) 121 bslab->slab_ref++; 122 else 123 bslab = create_bio_slab(size); 124 mutex_unlock(&bio_slab_lock); 125 126 if (bslab) 127 return bslab->slab; 128 return NULL; 129 } 130 131 static void bio_put_slab(struct bio_set *bs) 132 { 133 struct bio_slab *bslab = NULL; 134 unsigned int slab_size = bs_bio_slab_size(bs); 135 136 mutex_lock(&bio_slab_lock); 137 138 bslab = xa_load(&bio_slabs, slab_size); 139 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 140 goto out; 141 142 WARN_ON_ONCE(bslab->slab != bs->bio_slab); 143 144 WARN_ON(!bslab->slab_ref); 145 146 if (--bslab->slab_ref) 147 goto out; 148 149 xa_erase(&bio_slabs, slab_size); 150 151 kmem_cache_destroy(bslab->slab); 152 kfree(bslab); 153 154 out: 155 mutex_unlock(&bio_slab_lock); 156 } 157 158 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs) 159 { 160 BUG_ON(nr_vecs > BIO_MAX_VECS); 161 162 if (nr_vecs == BIO_MAX_VECS) 163 mempool_free(bv, pool); 164 else if (nr_vecs > BIO_INLINE_VECS) 165 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv); 166 } 167 168 /* 169 * Make the first allocation restricted and don't dump info on allocation 170 * failures, since we'll fall back to the mempool in case of failure. 171 */ 172 static inline gfp_t bvec_alloc_gfp(gfp_t gfp) 173 { 174 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) | 175 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 176 } 177 178 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 179 gfp_t gfp_mask) 180 { 181 struct biovec_slab *bvs = biovec_slab(*nr_vecs); 182 183 if (WARN_ON_ONCE(!bvs)) 184 return NULL; 185 186 /* 187 * Upgrade the nr_vecs request to take full advantage of the allocation. 188 * We also rely on this in the bvec_free path. 189 */ 190 *nr_vecs = bvs->nr_vecs; 191 192 /* 193 * Try a slab allocation first for all smaller allocations. If that 194 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool. 195 * The mempool is sized to handle up to BIO_MAX_VECS entries. 196 */ 197 if (*nr_vecs < BIO_MAX_VECS) { 198 struct bio_vec *bvl; 199 200 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask)); 201 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 202 return bvl; 203 *nr_vecs = BIO_MAX_VECS; 204 } 205 206 return mempool_alloc(pool, gfp_mask); 207 } 208 209 void bio_uninit(struct bio *bio) 210 { 211 #ifdef CONFIG_BLK_CGROUP 212 if (bio->bi_blkg) { 213 blkg_put(bio->bi_blkg); 214 bio->bi_blkg = NULL; 215 } 216 #endif 217 if (bio_integrity(bio)) 218 bio_integrity_free(bio); 219 220 bio_crypt_free_ctx(bio); 221 } 222 EXPORT_SYMBOL(bio_uninit); 223 224 static void bio_free(struct bio *bio) 225 { 226 struct bio_set *bs = bio->bi_pool; 227 void *p; 228 229 bio_uninit(bio); 230 231 if (bs) { 232 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs); 233 234 /* 235 * If we have front padding, adjust the bio pointer before freeing 236 */ 237 p = bio; 238 p -= bs->front_pad; 239 240 mempool_free(p, &bs->bio_pool); 241 } else { 242 /* Bio was allocated by bio_kmalloc() */ 243 kfree(bio); 244 } 245 } 246 247 /* 248 * Users of this function have their own bio allocation. Subsequently, 249 * they must remember to pair any call to bio_init() with bio_uninit() 250 * when IO has completed, or when the bio is released. 251 */ 252 void bio_init(struct bio *bio, struct bio_vec *table, 253 unsigned short max_vecs) 254 { 255 bio->bi_next = NULL; 256 bio->bi_bdev = NULL; 257 bio->bi_opf = 0; 258 bio->bi_flags = 0; 259 bio->bi_ioprio = 0; 260 bio->bi_write_hint = 0; 261 bio->bi_status = 0; 262 bio->bi_iter.bi_sector = 0; 263 bio->bi_iter.bi_size = 0; 264 bio->bi_iter.bi_idx = 0; 265 bio->bi_iter.bi_bvec_done = 0; 266 bio->bi_end_io = NULL; 267 bio->bi_private = NULL; 268 #ifdef CONFIG_BLK_CGROUP 269 bio->bi_blkg = NULL; 270 bio->bi_issue.value = 0; 271 #ifdef CONFIG_BLK_CGROUP_IOCOST 272 bio->bi_iocost_cost = 0; 273 #endif 274 #endif 275 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 276 bio->bi_crypt_context = NULL; 277 #endif 278 #ifdef CONFIG_BLK_DEV_INTEGRITY 279 bio->bi_integrity = NULL; 280 #endif 281 bio->bi_vcnt = 0; 282 283 atomic_set(&bio->__bi_remaining, 1); 284 atomic_set(&bio->__bi_cnt, 1); 285 bio->bi_cookie = BLK_QC_T_NONE; 286 287 bio->bi_max_vecs = max_vecs; 288 bio->bi_io_vec = table; 289 bio->bi_pool = NULL; 290 } 291 EXPORT_SYMBOL(bio_init); 292 293 /** 294 * bio_reset - reinitialize a bio 295 * @bio: bio to reset 296 * 297 * Description: 298 * After calling bio_reset(), @bio will be in the same state as a freshly 299 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 300 * preserved are the ones that are initialized by bio_alloc_bioset(). See 301 * comment in struct bio. 302 */ 303 void bio_reset(struct bio *bio) 304 { 305 bio_uninit(bio); 306 memset(bio, 0, BIO_RESET_BYTES); 307 atomic_set(&bio->__bi_remaining, 1); 308 } 309 EXPORT_SYMBOL(bio_reset); 310 311 static struct bio *__bio_chain_endio(struct bio *bio) 312 { 313 struct bio *parent = bio->bi_private; 314 315 if (bio->bi_status && !parent->bi_status) 316 parent->bi_status = bio->bi_status; 317 bio_put(bio); 318 return parent; 319 } 320 321 static void bio_chain_endio(struct bio *bio) 322 { 323 bio_endio(__bio_chain_endio(bio)); 324 } 325 326 /** 327 * bio_chain - chain bio completions 328 * @bio: the target bio 329 * @parent: the parent bio of @bio 330 * 331 * The caller won't have a bi_end_io called when @bio completes - instead, 332 * @parent's bi_end_io won't be called until both @parent and @bio have 333 * completed; the chained bio will also be freed when it completes. 334 * 335 * The caller must not set bi_private or bi_end_io in @bio. 336 */ 337 void bio_chain(struct bio *bio, struct bio *parent) 338 { 339 BUG_ON(bio->bi_private || bio->bi_end_io); 340 341 bio->bi_private = parent; 342 bio->bi_end_io = bio_chain_endio; 343 bio_inc_remaining(parent); 344 } 345 EXPORT_SYMBOL(bio_chain); 346 347 static void bio_alloc_rescue(struct work_struct *work) 348 { 349 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 350 struct bio *bio; 351 352 while (1) { 353 spin_lock(&bs->rescue_lock); 354 bio = bio_list_pop(&bs->rescue_list); 355 spin_unlock(&bs->rescue_lock); 356 357 if (!bio) 358 break; 359 360 submit_bio_noacct(bio); 361 } 362 } 363 364 static void punt_bios_to_rescuer(struct bio_set *bs) 365 { 366 struct bio_list punt, nopunt; 367 struct bio *bio; 368 369 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 370 return; 371 /* 372 * In order to guarantee forward progress we must punt only bios that 373 * were allocated from this bio_set; otherwise, if there was a bio on 374 * there for a stacking driver higher up in the stack, processing it 375 * could require allocating bios from this bio_set, and doing that from 376 * our own rescuer would be bad. 377 * 378 * Since bio lists are singly linked, pop them all instead of trying to 379 * remove from the middle of the list: 380 */ 381 382 bio_list_init(&punt); 383 bio_list_init(&nopunt); 384 385 while ((bio = bio_list_pop(¤t->bio_list[0]))) 386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 387 current->bio_list[0] = nopunt; 388 389 bio_list_init(&nopunt); 390 while ((bio = bio_list_pop(¤t->bio_list[1]))) 391 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 392 current->bio_list[1] = nopunt; 393 394 spin_lock(&bs->rescue_lock); 395 bio_list_merge(&bs->rescue_list, &punt); 396 spin_unlock(&bs->rescue_lock); 397 398 queue_work(bs->rescue_workqueue, &bs->rescue_work); 399 } 400 401 /** 402 * bio_alloc_bioset - allocate a bio for I/O 403 * @gfp_mask: the GFP_* mask given to the slab allocator 404 * @nr_iovecs: number of iovecs to pre-allocate 405 * @bs: the bio_set to allocate from. 406 * 407 * Allocate a bio from the mempools in @bs. 408 * 409 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to 410 * allocate a bio. This is due to the mempool guarantees. To make this work, 411 * callers must never allocate more than 1 bio at a time from the general pool. 412 * Callers that need to allocate more than 1 bio must always submit the 413 * previously allocated bio for IO before attempting to allocate a new one. 414 * Failure to do so can cause deadlocks under memory pressure. 415 * 416 * Note that when running under submit_bio_noacct() (i.e. any block driver), 417 * bios are not submitted until after you return - see the code in 418 * submit_bio_noacct() that converts recursion into iteration, to prevent 419 * stack overflows. 420 * 421 * This would normally mean allocating multiple bios under submit_bio_noacct() 422 * would be susceptible to deadlocks, but we have 423 * deadlock avoidance code that resubmits any blocked bios from a rescuer 424 * thread. 425 * 426 * However, we do not guarantee forward progress for allocations from other 427 * mempools. Doing multiple allocations from the same mempool under 428 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad 429 * for per bio allocations. 430 * 431 * Returns: Pointer to new bio on success, NULL on failure. 432 */ 433 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs, 434 struct bio_set *bs) 435 { 436 gfp_t saved_gfp = gfp_mask; 437 struct bio *bio; 438 void *p; 439 440 /* should not use nobvec bioset for nr_iovecs > 0 */ 441 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0)) 442 return NULL; 443 444 /* 445 * submit_bio_noacct() converts recursion to iteration; this means if 446 * we're running beneath it, any bios we allocate and submit will not be 447 * submitted (and thus freed) until after we return. 448 * 449 * This exposes us to a potential deadlock if we allocate multiple bios 450 * from the same bio_set() while running underneath submit_bio_noacct(). 451 * If we were to allocate multiple bios (say a stacking block driver 452 * that was splitting bios), we would deadlock if we exhausted the 453 * mempool's reserve. 454 * 455 * We solve this, and guarantee forward progress, with a rescuer 456 * workqueue per bio_set. If we go to allocate and there are bios on 457 * current->bio_list, we first try the allocation without 458 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be 459 * blocking to the rescuer workqueue before we retry with the original 460 * gfp_flags. 461 */ 462 if (current->bio_list && 463 (!bio_list_empty(¤t->bio_list[0]) || 464 !bio_list_empty(¤t->bio_list[1])) && 465 bs->rescue_workqueue) 466 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 467 468 p = mempool_alloc(&bs->bio_pool, gfp_mask); 469 if (!p && gfp_mask != saved_gfp) { 470 punt_bios_to_rescuer(bs); 471 gfp_mask = saved_gfp; 472 p = mempool_alloc(&bs->bio_pool, gfp_mask); 473 } 474 if (unlikely(!p)) 475 return NULL; 476 477 bio = p + bs->front_pad; 478 if (nr_iovecs > BIO_INLINE_VECS) { 479 struct bio_vec *bvl = NULL; 480 481 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask); 482 if (!bvl && gfp_mask != saved_gfp) { 483 punt_bios_to_rescuer(bs); 484 gfp_mask = saved_gfp; 485 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask); 486 } 487 if (unlikely(!bvl)) 488 goto err_free; 489 490 bio_init(bio, bvl, nr_iovecs); 491 } else if (nr_iovecs) { 492 bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS); 493 } else { 494 bio_init(bio, NULL, 0); 495 } 496 497 bio->bi_pool = bs; 498 return bio; 499 500 err_free: 501 mempool_free(p, &bs->bio_pool); 502 return NULL; 503 } 504 EXPORT_SYMBOL(bio_alloc_bioset); 505 506 /** 507 * bio_kmalloc - kmalloc a bio for I/O 508 * @gfp_mask: the GFP_* mask given to the slab allocator 509 * @nr_iovecs: number of iovecs to pre-allocate 510 * 511 * Use kmalloc to allocate and initialize a bio. 512 * 513 * Returns: Pointer to new bio on success, NULL on failure. 514 */ 515 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs) 516 { 517 struct bio *bio; 518 519 if (nr_iovecs > UIO_MAXIOV) 520 return NULL; 521 522 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask); 523 if (unlikely(!bio)) 524 return NULL; 525 bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs); 526 bio->bi_pool = NULL; 527 return bio; 528 } 529 EXPORT_SYMBOL(bio_kmalloc); 530 531 void zero_fill_bio(struct bio *bio) 532 { 533 struct bio_vec bv; 534 struct bvec_iter iter; 535 536 bio_for_each_segment(bv, bio, iter) 537 memzero_bvec(&bv); 538 } 539 EXPORT_SYMBOL(zero_fill_bio); 540 541 /** 542 * bio_truncate - truncate the bio to small size of @new_size 543 * @bio: the bio to be truncated 544 * @new_size: new size for truncating the bio 545 * 546 * Description: 547 * Truncate the bio to new size of @new_size. If bio_op(bio) is 548 * REQ_OP_READ, zero the truncated part. This function should only 549 * be used for handling corner cases, such as bio eod. 550 */ 551 static void bio_truncate(struct bio *bio, unsigned new_size) 552 { 553 struct bio_vec bv; 554 struct bvec_iter iter; 555 unsigned int done = 0; 556 bool truncated = false; 557 558 if (new_size >= bio->bi_iter.bi_size) 559 return; 560 561 if (bio_op(bio) != REQ_OP_READ) 562 goto exit; 563 564 bio_for_each_segment(bv, bio, iter) { 565 if (done + bv.bv_len > new_size) { 566 unsigned offset; 567 568 if (!truncated) 569 offset = new_size - done; 570 else 571 offset = 0; 572 zero_user(bv.bv_page, offset, bv.bv_len - offset); 573 truncated = true; 574 } 575 done += bv.bv_len; 576 } 577 578 exit: 579 /* 580 * Don't touch bvec table here and make it really immutable, since 581 * fs bio user has to retrieve all pages via bio_for_each_segment_all 582 * in its .end_bio() callback. 583 * 584 * It is enough to truncate bio by updating .bi_size since we can make 585 * correct bvec with the updated .bi_size for drivers. 586 */ 587 bio->bi_iter.bi_size = new_size; 588 } 589 590 /** 591 * guard_bio_eod - truncate a BIO to fit the block device 592 * @bio: bio to truncate 593 * 594 * This allows us to do IO even on the odd last sectors of a device, even if the 595 * block size is some multiple of the physical sector size. 596 * 597 * We'll just truncate the bio to the size of the device, and clear the end of 598 * the buffer head manually. Truly out-of-range accesses will turn into actual 599 * I/O errors, this only handles the "we need to be able to do I/O at the final 600 * sector" case. 601 */ 602 void guard_bio_eod(struct bio *bio) 603 { 604 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 605 606 if (!maxsector) 607 return; 608 609 /* 610 * If the *whole* IO is past the end of the device, 611 * let it through, and the IO layer will turn it into 612 * an EIO. 613 */ 614 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 615 return; 616 617 maxsector -= bio->bi_iter.bi_sector; 618 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 619 return; 620 621 bio_truncate(bio, maxsector << 9); 622 } 623 624 #define ALLOC_CACHE_MAX 512 625 #define ALLOC_CACHE_SLACK 64 626 627 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache, 628 unsigned int nr) 629 { 630 unsigned int i = 0; 631 struct bio *bio; 632 633 while ((bio = bio_list_pop(&cache->free_list)) != NULL) { 634 cache->nr--; 635 bio_free(bio); 636 if (++i == nr) 637 break; 638 } 639 } 640 641 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node) 642 { 643 struct bio_set *bs; 644 645 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead); 646 if (bs->cache) { 647 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu); 648 649 bio_alloc_cache_prune(cache, -1U); 650 } 651 return 0; 652 } 653 654 static void bio_alloc_cache_destroy(struct bio_set *bs) 655 { 656 int cpu; 657 658 if (!bs->cache) 659 return; 660 661 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 662 for_each_possible_cpu(cpu) { 663 struct bio_alloc_cache *cache; 664 665 cache = per_cpu_ptr(bs->cache, cpu); 666 bio_alloc_cache_prune(cache, -1U); 667 } 668 free_percpu(bs->cache); 669 } 670 671 /** 672 * bio_put - release a reference to a bio 673 * @bio: bio to release reference to 674 * 675 * Description: 676 * Put a reference to a &struct bio, either one you have gotten with 677 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 678 **/ 679 void bio_put(struct bio *bio) 680 { 681 if (unlikely(bio_flagged(bio, BIO_REFFED))) { 682 BUG_ON(!atomic_read(&bio->__bi_cnt)); 683 if (!atomic_dec_and_test(&bio->__bi_cnt)) 684 return; 685 } 686 687 if (bio_flagged(bio, BIO_PERCPU_CACHE)) { 688 struct bio_alloc_cache *cache; 689 690 bio_uninit(bio); 691 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu()); 692 bio_list_add_head(&cache->free_list, bio); 693 if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK) 694 bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK); 695 put_cpu(); 696 } else { 697 bio_free(bio); 698 } 699 } 700 EXPORT_SYMBOL(bio_put); 701 702 /** 703 * __bio_clone_fast - clone a bio that shares the original bio's biovec 704 * @bio: destination bio 705 * @bio_src: bio to clone 706 * 707 * Clone a &bio. Caller will own the returned bio, but not 708 * the actual data it points to. Reference count of returned 709 * bio will be one. 710 * 711 * Caller must ensure that @bio_src is not freed before @bio. 712 */ 713 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 714 { 715 WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs); 716 717 /* 718 * most users will be overriding ->bi_bdev with a new target, 719 * so we don't set nor calculate new physical/hw segment counts here 720 */ 721 bio->bi_bdev = bio_src->bi_bdev; 722 bio_set_flag(bio, BIO_CLONED); 723 if (bio_flagged(bio_src, BIO_THROTTLED)) 724 bio_set_flag(bio, BIO_THROTTLED); 725 if (bio_flagged(bio_src, BIO_REMAPPED)) 726 bio_set_flag(bio, BIO_REMAPPED); 727 bio->bi_opf = bio_src->bi_opf; 728 bio->bi_ioprio = bio_src->bi_ioprio; 729 bio->bi_write_hint = bio_src->bi_write_hint; 730 bio->bi_iter = bio_src->bi_iter; 731 bio->bi_io_vec = bio_src->bi_io_vec; 732 733 bio_clone_blkg_association(bio, bio_src); 734 blkcg_bio_issue_init(bio); 735 } 736 EXPORT_SYMBOL(__bio_clone_fast); 737 738 /** 739 * bio_clone_fast - clone a bio that shares the original bio's biovec 740 * @bio: bio to clone 741 * @gfp_mask: allocation priority 742 * @bs: bio_set to allocate from 743 * 744 * Like __bio_clone_fast, only also allocates the returned bio 745 */ 746 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 747 { 748 struct bio *b; 749 750 b = bio_alloc_bioset(gfp_mask, 0, bs); 751 if (!b) 752 return NULL; 753 754 __bio_clone_fast(b, bio); 755 756 if (bio_crypt_clone(b, bio, gfp_mask) < 0) 757 goto err_put; 758 759 if (bio_integrity(bio) && 760 bio_integrity_clone(b, bio, gfp_mask) < 0) 761 goto err_put; 762 763 return b; 764 765 err_put: 766 bio_put(b); 767 return NULL; 768 } 769 EXPORT_SYMBOL(bio_clone_fast); 770 771 const char *bio_devname(struct bio *bio, char *buf) 772 { 773 return bdevname(bio->bi_bdev, buf); 774 } 775 EXPORT_SYMBOL(bio_devname); 776 777 /** 778 * bio_full - check if the bio is full 779 * @bio: bio to check 780 * @len: length of one segment to be added 781 * 782 * Return true if @bio is full and one segment with @len bytes can't be 783 * added to the bio, otherwise return false 784 */ 785 static inline bool bio_full(struct bio *bio, unsigned len) 786 { 787 if (bio->bi_vcnt >= bio->bi_max_vecs) 788 return true; 789 if (bio->bi_iter.bi_size > UINT_MAX - len) 790 return true; 791 return false; 792 } 793 794 static inline bool page_is_mergeable(const struct bio_vec *bv, 795 struct page *page, unsigned int len, unsigned int off, 796 bool *same_page) 797 { 798 size_t bv_end = bv->bv_offset + bv->bv_len; 799 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1; 800 phys_addr_t page_addr = page_to_phys(page); 801 802 if (vec_end_addr + 1 != page_addr + off) 803 return false; 804 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 805 return false; 806 807 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); 808 if (*same_page) 809 return true; 810 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE); 811 } 812 813 /** 814 * __bio_try_merge_page - try appending data to an existing bvec. 815 * @bio: destination bio 816 * @page: start page to add 817 * @len: length of the data to add 818 * @off: offset of the data relative to @page 819 * @same_page: return if the segment has been merged inside the same page 820 * 821 * Try to add the data at @page + @off to the last bvec of @bio. This is a 822 * useful optimisation for file systems with a block size smaller than the 823 * page size. 824 * 825 * Warn if (@len, @off) crosses pages in case that @same_page is true. 826 * 827 * Return %true on success or %false on failure. 828 */ 829 static bool __bio_try_merge_page(struct bio *bio, struct page *page, 830 unsigned int len, unsigned int off, bool *same_page) 831 { 832 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 833 return false; 834 835 if (bio->bi_vcnt > 0) { 836 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 837 838 if (page_is_mergeable(bv, page, len, off, same_page)) { 839 if (bio->bi_iter.bi_size > UINT_MAX - len) { 840 *same_page = false; 841 return false; 842 } 843 bv->bv_len += len; 844 bio->bi_iter.bi_size += len; 845 return true; 846 } 847 } 848 return false; 849 } 850 851 /* 852 * Try to merge a page into a segment, while obeying the hardware segment 853 * size limit. This is not for normal read/write bios, but for passthrough 854 * or Zone Append operations that we can't split. 855 */ 856 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio, 857 struct page *page, unsigned len, 858 unsigned offset, bool *same_page) 859 { 860 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 861 unsigned long mask = queue_segment_boundary(q); 862 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; 863 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 864 865 if ((addr1 | mask) != (addr2 | mask)) 866 return false; 867 if (bv->bv_len + len > queue_max_segment_size(q)) 868 return false; 869 return __bio_try_merge_page(bio, page, len, offset, same_page); 870 } 871 872 /** 873 * bio_add_hw_page - attempt to add a page to a bio with hw constraints 874 * @q: the target queue 875 * @bio: destination bio 876 * @page: page to add 877 * @len: vec entry length 878 * @offset: vec entry offset 879 * @max_sectors: maximum number of sectors that can be added 880 * @same_page: return if the segment has been merged inside the same page 881 * 882 * Add a page to a bio while respecting the hardware max_sectors, max_segment 883 * and gap limitations. 884 */ 885 int bio_add_hw_page(struct request_queue *q, struct bio *bio, 886 struct page *page, unsigned int len, unsigned int offset, 887 unsigned int max_sectors, bool *same_page) 888 { 889 struct bio_vec *bvec; 890 891 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 892 return 0; 893 894 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors) 895 return 0; 896 897 if (bio->bi_vcnt > 0) { 898 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page)) 899 return len; 900 901 /* 902 * If the queue doesn't support SG gaps and adding this segment 903 * would create a gap, disallow it. 904 */ 905 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 906 if (bvec_gap_to_prev(q, bvec, offset)) 907 return 0; 908 } 909 910 if (bio_full(bio, len)) 911 return 0; 912 913 if (bio->bi_vcnt >= queue_max_segments(q)) 914 return 0; 915 916 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 917 bvec->bv_page = page; 918 bvec->bv_len = len; 919 bvec->bv_offset = offset; 920 bio->bi_vcnt++; 921 bio->bi_iter.bi_size += len; 922 return len; 923 } 924 925 /** 926 * bio_add_pc_page - attempt to add page to passthrough bio 927 * @q: the target queue 928 * @bio: destination bio 929 * @page: page to add 930 * @len: vec entry length 931 * @offset: vec entry offset 932 * 933 * Attempt to add a page to the bio_vec maplist. This can fail for a 934 * number of reasons, such as the bio being full or target block device 935 * limitations. The target block device must allow bio's up to PAGE_SIZE, 936 * so it is always possible to add a single page to an empty bio. 937 * 938 * This should only be used by passthrough bios. 939 */ 940 int bio_add_pc_page(struct request_queue *q, struct bio *bio, 941 struct page *page, unsigned int len, unsigned int offset) 942 { 943 bool same_page = false; 944 return bio_add_hw_page(q, bio, page, len, offset, 945 queue_max_hw_sectors(q), &same_page); 946 } 947 EXPORT_SYMBOL(bio_add_pc_page); 948 949 /** 950 * bio_add_zone_append_page - attempt to add page to zone-append bio 951 * @bio: destination bio 952 * @page: page to add 953 * @len: vec entry length 954 * @offset: vec entry offset 955 * 956 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted 957 * for a zone-append request. This can fail for a number of reasons, such as the 958 * bio being full or the target block device is not a zoned block device or 959 * other limitations of the target block device. The target block device must 960 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page 961 * to an empty bio. 962 * 963 * Returns: number of bytes added to the bio, or 0 in case of a failure. 964 */ 965 int bio_add_zone_append_page(struct bio *bio, struct page *page, 966 unsigned int len, unsigned int offset) 967 { 968 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 969 bool same_page = false; 970 971 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND)) 972 return 0; 973 974 if (WARN_ON_ONCE(!blk_queue_is_zoned(q))) 975 return 0; 976 977 return bio_add_hw_page(q, bio, page, len, offset, 978 queue_max_zone_append_sectors(q), &same_page); 979 } 980 EXPORT_SYMBOL_GPL(bio_add_zone_append_page); 981 982 /** 983 * __bio_add_page - add page(s) to a bio in a new segment 984 * @bio: destination bio 985 * @page: start page to add 986 * @len: length of the data to add, may cross pages 987 * @off: offset of the data relative to @page, may cross pages 988 * 989 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 990 * that @bio has space for another bvec. 991 */ 992 void __bio_add_page(struct bio *bio, struct page *page, 993 unsigned int len, unsigned int off) 994 { 995 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt]; 996 997 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 998 WARN_ON_ONCE(bio_full(bio, len)); 999 1000 bv->bv_page = page; 1001 bv->bv_offset = off; 1002 bv->bv_len = len; 1003 1004 bio->bi_iter.bi_size += len; 1005 bio->bi_vcnt++; 1006 1007 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page))) 1008 bio_set_flag(bio, BIO_WORKINGSET); 1009 } 1010 EXPORT_SYMBOL_GPL(__bio_add_page); 1011 1012 /** 1013 * bio_add_page - attempt to add page(s) to bio 1014 * @bio: destination bio 1015 * @page: start page to add 1016 * @len: vec entry length, may cross pages 1017 * @offset: vec entry offset relative to @page, may cross pages 1018 * 1019 * Attempt to add page(s) to the bio_vec maplist. This will only fail 1020 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 1021 */ 1022 int bio_add_page(struct bio *bio, struct page *page, 1023 unsigned int len, unsigned int offset) 1024 { 1025 bool same_page = false; 1026 1027 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { 1028 if (bio_full(bio, len)) 1029 return 0; 1030 __bio_add_page(bio, page, len, offset); 1031 } 1032 return len; 1033 } 1034 EXPORT_SYMBOL(bio_add_page); 1035 1036 void __bio_release_pages(struct bio *bio, bool mark_dirty) 1037 { 1038 struct bvec_iter_all iter_all; 1039 struct bio_vec *bvec; 1040 1041 bio_for_each_segment_all(bvec, bio, iter_all) { 1042 if (mark_dirty && !PageCompound(bvec->bv_page)) 1043 set_page_dirty_lock(bvec->bv_page); 1044 put_page(bvec->bv_page); 1045 } 1046 } 1047 EXPORT_SYMBOL_GPL(__bio_release_pages); 1048 1049 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter) 1050 { 1051 size_t size = iov_iter_count(iter); 1052 1053 WARN_ON_ONCE(bio->bi_max_vecs); 1054 1055 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 1056 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1057 size_t max_sectors = queue_max_zone_append_sectors(q); 1058 1059 size = min(size, max_sectors << SECTOR_SHIFT); 1060 } 1061 1062 bio->bi_vcnt = iter->nr_segs; 1063 bio->bi_io_vec = (struct bio_vec *)iter->bvec; 1064 bio->bi_iter.bi_bvec_done = iter->iov_offset; 1065 bio->bi_iter.bi_size = size; 1066 bio_set_flag(bio, BIO_NO_PAGE_REF); 1067 bio_set_flag(bio, BIO_CLONED); 1068 } 1069 1070 static void bio_put_pages(struct page **pages, size_t size, size_t off) 1071 { 1072 size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE); 1073 1074 for (i = 0; i < nr; i++) 1075 put_page(pages[i]); 1076 } 1077 1078 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 1079 1080 /** 1081 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 1082 * @bio: bio to add pages to 1083 * @iter: iov iterator describing the region to be mapped 1084 * 1085 * Pins pages from *iter and appends them to @bio's bvec array. The 1086 * pages will have to be released using put_page() when done. 1087 * For multi-segment *iter, this function only adds pages from the 1088 * next non-empty segment of the iov iterator. 1089 */ 1090 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1091 { 1092 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 1093 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 1094 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 1095 struct page **pages = (struct page **)bv; 1096 bool same_page = false; 1097 ssize_t size, left; 1098 unsigned len, i; 1099 size_t offset; 1100 1101 /* 1102 * Move page array up in the allocated memory for the bio vecs as far as 1103 * possible so that we can start filling biovecs from the beginning 1104 * without overwriting the temporary page array. 1105 */ 1106 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 1107 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 1108 1109 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 1110 if (unlikely(size <= 0)) 1111 return size ? size : -EFAULT; 1112 1113 for (left = size, i = 0; left > 0; left -= len, i++) { 1114 struct page *page = pages[i]; 1115 1116 len = min_t(size_t, PAGE_SIZE - offset, left); 1117 1118 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) { 1119 if (same_page) 1120 put_page(page); 1121 } else { 1122 if (WARN_ON_ONCE(bio_full(bio, len))) { 1123 bio_put_pages(pages + i, left, offset); 1124 return -EINVAL; 1125 } 1126 __bio_add_page(bio, page, len, offset); 1127 } 1128 offset = 0; 1129 } 1130 1131 iov_iter_advance(iter, size); 1132 return 0; 1133 } 1134 1135 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter) 1136 { 1137 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 1138 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 1139 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1140 unsigned int max_append_sectors = queue_max_zone_append_sectors(q); 1141 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 1142 struct page **pages = (struct page **)bv; 1143 ssize_t size, left; 1144 unsigned len, i; 1145 size_t offset; 1146 int ret = 0; 1147 1148 if (WARN_ON_ONCE(!max_append_sectors)) 1149 return 0; 1150 1151 /* 1152 * Move page array up in the allocated memory for the bio vecs as far as 1153 * possible so that we can start filling biovecs from the beginning 1154 * without overwriting the temporary page array. 1155 */ 1156 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 1157 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 1158 1159 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 1160 if (unlikely(size <= 0)) 1161 return size ? size : -EFAULT; 1162 1163 for (left = size, i = 0; left > 0; left -= len, i++) { 1164 struct page *page = pages[i]; 1165 bool same_page = false; 1166 1167 len = min_t(size_t, PAGE_SIZE - offset, left); 1168 if (bio_add_hw_page(q, bio, page, len, offset, 1169 max_append_sectors, &same_page) != len) { 1170 bio_put_pages(pages + i, left, offset); 1171 ret = -EINVAL; 1172 break; 1173 } 1174 if (same_page) 1175 put_page(page); 1176 offset = 0; 1177 } 1178 1179 iov_iter_advance(iter, size - left); 1180 return ret; 1181 } 1182 1183 /** 1184 * bio_iov_iter_get_pages - add user or kernel pages to a bio 1185 * @bio: bio to add pages to 1186 * @iter: iov iterator describing the region to be added 1187 * 1188 * This takes either an iterator pointing to user memory, or one pointing to 1189 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 1190 * map them into the kernel. On IO completion, the caller should put those 1191 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided 1192 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs 1193 * to ensure the bvecs and pages stay referenced until the submitted I/O is 1194 * completed by a call to ->ki_complete() or returns with an error other than 1195 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF 1196 * on IO completion. If it isn't, then pages should be released. 1197 * 1198 * The function tries, but does not guarantee, to pin as many pages as 1199 * fit into the bio, or are requested in @iter, whatever is smaller. If 1200 * MM encounters an error pinning the requested pages, it stops. Error 1201 * is returned only if 0 pages could be pinned. 1202 * 1203 * It's intended for direct IO, so doesn't do PSI tracking, the caller is 1204 * responsible for setting BIO_WORKINGSET if necessary. 1205 */ 1206 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1207 { 1208 int ret = 0; 1209 1210 if (iov_iter_is_bvec(iter)) { 1211 bio_iov_bvec_set(bio, iter); 1212 iov_iter_advance(iter, bio->bi_iter.bi_size); 1213 return 0; 1214 } 1215 1216 do { 1217 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 1218 ret = __bio_iov_append_get_pages(bio, iter); 1219 else 1220 ret = __bio_iov_iter_get_pages(bio, iter); 1221 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); 1222 1223 /* don't account direct I/O as memory stall */ 1224 bio_clear_flag(bio, BIO_WORKINGSET); 1225 return bio->bi_vcnt ? 0 : ret; 1226 } 1227 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 1228 1229 static void submit_bio_wait_endio(struct bio *bio) 1230 { 1231 complete(bio->bi_private); 1232 } 1233 1234 /** 1235 * submit_bio_wait - submit a bio, and wait until it completes 1236 * @bio: The &struct bio which describes the I/O 1237 * 1238 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 1239 * bio_endio() on failure. 1240 * 1241 * WARNING: Unlike to how submit_bio() is usually used, this function does not 1242 * result in bio reference to be consumed. The caller must drop the reference 1243 * on his own. 1244 */ 1245 int submit_bio_wait(struct bio *bio) 1246 { 1247 DECLARE_COMPLETION_ONSTACK_MAP(done, 1248 bio->bi_bdev->bd_disk->lockdep_map); 1249 unsigned long hang_check; 1250 1251 bio->bi_private = &done; 1252 bio->bi_end_io = submit_bio_wait_endio; 1253 bio->bi_opf |= REQ_SYNC; 1254 submit_bio(bio); 1255 1256 /* Prevent hang_check timer from firing at us during very long I/O */ 1257 hang_check = sysctl_hung_task_timeout_secs; 1258 if (hang_check) 1259 while (!wait_for_completion_io_timeout(&done, 1260 hang_check * (HZ/2))) 1261 ; 1262 else 1263 wait_for_completion_io(&done); 1264 1265 return blk_status_to_errno(bio->bi_status); 1266 } 1267 EXPORT_SYMBOL(submit_bio_wait); 1268 1269 void __bio_advance(struct bio *bio, unsigned bytes) 1270 { 1271 if (bio_integrity(bio)) 1272 bio_integrity_advance(bio, bytes); 1273 1274 bio_crypt_advance(bio, bytes); 1275 bio_advance_iter(bio, &bio->bi_iter, bytes); 1276 } 1277 EXPORT_SYMBOL(__bio_advance); 1278 1279 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 1280 struct bio *src, struct bvec_iter *src_iter) 1281 { 1282 while (src_iter->bi_size && dst_iter->bi_size) { 1283 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter); 1284 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter); 1285 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len); 1286 void *src_buf; 1287 1288 src_buf = bvec_kmap_local(&src_bv); 1289 memcpy_to_bvec(&dst_bv, src_buf); 1290 kunmap_local(src_buf); 1291 1292 bio_advance_iter_single(src, src_iter, bytes); 1293 bio_advance_iter_single(dst, dst_iter, bytes); 1294 } 1295 } 1296 EXPORT_SYMBOL(bio_copy_data_iter); 1297 1298 /** 1299 * bio_copy_data - copy contents of data buffers from one bio to another 1300 * @src: source bio 1301 * @dst: destination bio 1302 * 1303 * Stops when it reaches the end of either @src or @dst - that is, copies 1304 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1305 */ 1306 void bio_copy_data(struct bio *dst, struct bio *src) 1307 { 1308 struct bvec_iter src_iter = src->bi_iter; 1309 struct bvec_iter dst_iter = dst->bi_iter; 1310 1311 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1312 } 1313 EXPORT_SYMBOL(bio_copy_data); 1314 1315 void bio_free_pages(struct bio *bio) 1316 { 1317 struct bio_vec *bvec; 1318 struct bvec_iter_all iter_all; 1319 1320 bio_for_each_segment_all(bvec, bio, iter_all) 1321 __free_page(bvec->bv_page); 1322 } 1323 EXPORT_SYMBOL(bio_free_pages); 1324 1325 /* 1326 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1327 * for performing direct-IO in BIOs. 1328 * 1329 * The problem is that we cannot run set_page_dirty() from interrupt context 1330 * because the required locks are not interrupt-safe. So what we can do is to 1331 * mark the pages dirty _before_ performing IO. And in interrupt context, 1332 * check that the pages are still dirty. If so, fine. If not, redirty them 1333 * in process context. 1334 * 1335 * We special-case compound pages here: normally this means reads into hugetlb 1336 * pages. The logic in here doesn't really work right for compound pages 1337 * because the VM does not uniformly chase down the head page in all cases. 1338 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1339 * handle them at all. So we skip compound pages here at an early stage. 1340 * 1341 * Note that this code is very hard to test under normal circumstances because 1342 * direct-io pins the pages with get_user_pages(). This makes 1343 * is_page_cache_freeable return false, and the VM will not clean the pages. 1344 * But other code (eg, flusher threads) could clean the pages if they are mapped 1345 * pagecache. 1346 * 1347 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1348 * deferred bio dirtying paths. 1349 */ 1350 1351 /* 1352 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1353 */ 1354 void bio_set_pages_dirty(struct bio *bio) 1355 { 1356 struct bio_vec *bvec; 1357 struct bvec_iter_all iter_all; 1358 1359 bio_for_each_segment_all(bvec, bio, iter_all) { 1360 if (!PageCompound(bvec->bv_page)) 1361 set_page_dirty_lock(bvec->bv_page); 1362 } 1363 } 1364 1365 /* 1366 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1367 * If they are, then fine. If, however, some pages are clean then they must 1368 * have been written out during the direct-IO read. So we take another ref on 1369 * the BIO and re-dirty the pages in process context. 1370 * 1371 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1372 * here on. It will run one put_page() against each page and will run one 1373 * bio_put() against the BIO. 1374 */ 1375 1376 static void bio_dirty_fn(struct work_struct *work); 1377 1378 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1379 static DEFINE_SPINLOCK(bio_dirty_lock); 1380 static struct bio *bio_dirty_list; 1381 1382 /* 1383 * This runs in process context 1384 */ 1385 static void bio_dirty_fn(struct work_struct *work) 1386 { 1387 struct bio *bio, *next; 1388 1389 spin_lock_irq(&bio_dirty_lock); 1390 next = bio_dirty_list; 1391 bio_dirty_list = NULL; 1392 spin_unlock_irq(&bio_dirty_lock); 1393 1394 while ((bio = next) != NULL) { 1395 next = bio->bi_private; 1396 1397 bio_release_pages(bio, true); 1398 bio_put(bio); 1399 } 1400 } 1401 1402 void bio_check_pages_dirty(struct bio *bio) 1403 { 1404 struct bio_vec *bvec; 1405 unsigned long flags; 1406 struct bvec_iter_all iter_all; 1407 1408 bio_for_each_segment_all(bvec, bio, iter_all) { 1409 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page)) 1410 goto defer; 1411 } 1412 1413 bio_release_pages(bio, false); 1414 bio_put(bio); 1415 return; 1416 defer: 1417 spin_lock_irqsave(&bio_dirty_lock, flags); 1418 bio->bi_private = bio_dirty_list; 1419 bio_dirty_list = bio; 1420 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1421 schedule_work(&bio_dirty_work); 1422 } 1423 1424 static inline bool bio_remaining_done(struct bio *bio) 1425 { 1426 /* 1427 * If we're not chaining, then ->__bi_remaining is always 1 and 1428 * we always end io on the first invocation. 1429 */ 1430 if (!bio_flagged(bio, BIO_CHAIN)) 1431 return true; 1432 1433 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1434 1435 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1436 bio_clear_flag(bio, BIO_CHAIN); 1437 return true; 1438 } 1439 1440 return false; 1441 } 1442 1443 /** 1444 * bio_endio - end I/O on a bio 1445 * @bio: bio 1446 * 1447 * Description: 1448 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1449 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1450 * bio unless they own it and thus know that it has an end_io function. 1451 * 1452 * bio_endio() can be called several times on a bio that has been chained 1453 * using bio_chain(). The ->bi_end_io() function will only be called the 1454 * last time. 1455 **/ 1456 void bio_endio(struct bio *bio) 1457 { 1458 again: 1459 if (!bio_remaining_done(bio)) 1460 return; 1461 if (!bio_integrity_endio(bio)) 1462 return; 1463 1464 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACKED)) 1465 rq_qos_done_bio(bdev_get_queue(bio->bi_bdev), bio); 1466 1467 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1468 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio); 1469 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1470 } 1471 1472 /* 1473 * Need to have a real endio function for chained bios, otherwise 1474 * various corner cases will break (like stacking block devices that 1475 * save/restore bi_end_io) - however, we want to avoid unbounded 1476 * recursion and blowing the stack. Tail call optimization would 1477 * handle this, but compiling with frame pointers also disables 1478 * gcc's sibling call optimization. 1479 */ 1480 if (bio->bi_end_io == bio_chain_endio) { 1481 bio = __bio_chain_endio(bio); 1482 goto again; 1483 } 1484 1485 blk_throtl_bio_endio(bio); 1486 /* release cgroup info */ 1487 bio_uninit(bio); 1488 if (bio->bi_end_io) 1489 bio->bi_end_io(bio); 1490 } 1491 EXPORT_SYMBOL(bio_endio); 1492 1493 /** 1494 * bio_split - split a bio 1495 * @bio: bio to split 1496 * @sectors: number of sectors to split from the front of @bio 1497 * @gfp: gfp mask 1498 * @bs: bio set to allocate from 1499 * 1500 * Allocates and returns a new bio which represents @sectors from the start of 1501 * @bio, and updates @bio to represent the remaining sectors. 1502 * 1503 * Unless this is a discard request the newly allocated bio will point 1504 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that 1505 * neither @bio nor @bs are freed before the split bio. 1506 */ 1507 struct bio *bio_split(struct bio *bio, int sectors, 1508 gfp_t gfp, struct bio_set *bs) 1509 { 1510 struct bio *split; 1511 1512 BUG_ON(sectors <= 0); 1513 BUG_ON(sectors >= bio_sectors(bio)); 1514 1515 /* Zone append commands cannot be split */ 1516 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND)) 1517 return NULL; 1518 1519 split = bio_clone_fast(bio, gfp, bs); 1520 if (!split) 1521 return NULL; 1522 1523 split->bi_iter.bi_size = sectors << 9; 1524 1525 if (bio_integrity(split)) 1526 bio_integrity_trim(split); 1527 1528 bio_advance(bio, split->bi_iter.bi_size); 1529 1530 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1531 bio_set_flag(split, BIO_TRACE_COMPLETION); 1532 1533 return split; 1534 } 1535 EXPORT_SYMBOL(bio_split); 1536 1537 /** 1538 * bio_trim - trim a bio 1539 * @bio: bio to trim 1540 * @offset: number of sectors to trim from the front of @bio 1541 * @size: size we want to trim @bio to, in sectors 1542 * 1543 * This function is typically used for bios that are cloned and submitted 1544 * to the underlying device in parts. 1545 */ 1546 void bio_trim(struct bio *bio, sector_t offset, sector_t size) 1547 { 1548 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS || 1549 offset + size > bio->bi_iter.bi_size)) 1550 return; 1551 1552 size <<= 9; 1553 if (offset == 0 && size == bio->bi_iter.bi_size) 1554 return; 1555 1556 bio_advance(bio, offset << 9); 1557 bio->bi_iter.bi_size = size; 1558 1559 if (bio_integrity(bio)) 1560 bio_integrity_trim(bio); 1561 } 1562 EXPORT_SYMBOL_GPL(bio_trim); 1563 1564 /* 1565 * create memory pools for biovec's in a bio_set. 1566 * use the global biovec slabs created for general use. 1567 */ 1568 int biovec_init_pool(mempool_t *pool, int pool_entries) 1569 { 1570 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1; 1571 1572 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1573 } 1574 1575 /* 1576 * bioset_exit - exit a bioset initialized with bioset_init() 1577 * 1578 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1579 * kzalloc()). 1580 */ 1581 void bioset_exit(struct bio_set *bs) 1582 { 1583 bio_alloc_cache_destroy(bs); 1584 if (bs->rescue_workqueue) 1585 destroy_workqueue(bs->rescue_workqueue); 1586 bs->rescue_workqueue = NULL; 1587 1588 mempool_exit(&bs->bio_pool); 1589 mempool_exit(&bs->bvec_pool); 1590 1591 bioset_integrity_free(bs); 1592 if (bs->bio_slab) 1593 bio_put_slab(bs); 1594 bs->bio_slab = NULL; 1595 } 1596 EXPORT_SYMBOL(bioset_exit); 1597 1598 /** 1599 * bioset_init - Initialize a bio_set 1600 * @bs: pool to initialize 1601 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1602 * @front_pad: Number of bytes to allocate in front of the returned bio 1603 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1604 * and %BIOSET_NEED_RESCUER 1605 * 1606 * Description: 1607 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1608 * to ask for a number of bytes to be allocated in front of the bio. 1609 * Front pad allocation is useful for embedding the bio inside 1610 * another structure, to avoid allocating extra data to go with the bio. 1611 * Note that the bio must be embedded at the END of that structure always, 1612 * or things will break badly. 1613 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1614 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast(). 1615 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to 1616 * dispatch queued requests when the mempool runs out of space. 1617 * 1618 */ 1619 int bioset_init(struct bio_set *bs, 1620 unsigned int pool_size, 1621 unsigned int front_pad, 1622 int flags) 1623 { 1624 bs->front_pad = front_pad; 1625 if (flags & BIOSET_NEED_BVECS) 1626 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1627 else 1628 bs->back_pad = 0; 1629 1630 spin_lock_init(&bs->rescue_lock); 1631 bio_list_init(&bs->rescue_list); 1632 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1633 1634 bs->bio_slab = bio_find_or_create_slab(bs); 1635 if (!bs->bio_slab) 1636 return -ENOMEM; 1637 1638 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 1639 goto bad; 1640 1641 if ((flags & BIOSET_NEED_BVECS) && 1642 biovec_init_pool(&bs->bvec_pool, pool_size)) 1643 goto bad; 1644 1645 if (flags & BIOSET_NEED_RESCUER) { 1646 bs->rescue_workqueue = alloc_workqueue("bioset", 1647 WQ_MEM_RECLAIM, 0); 1648 if (!bs->rescue_workqueue) 1649 goto bad; 1650 } 1651 if (flags & BIOSET_PERCPU_CACHE) { 1652 bs->cache = alloc_percpu(struct bio_alloc_cache); 1653 if (!bs->cache) 1654 goto bad; 1655 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 1656 } 1657 1658 return 0; 1659 bad: 1660 bioset_exit(bs); 1661 return -ENOMEM; 1662 } 1663 EXPORT_SYMBOL(bioset_init); 1664 1665 /* 1666 * Initialize and setup a new bio_set, based on the settings from 1667 * another bio_set. 1668 */ 1669 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src) 1670 { 1671 int flags; 1672 1673 flags = 0; 1674 if (src->bvec_pool.min_nr) 1675 flags |= BIOSET_NEED_BVECS; 1676 if (src->rescue_workqueue) 1677 flags |= BIOSET_NEED_RESCUER; 1678 1679 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags); 1680 } 1681 EXPORT_SYMBOL(bioset_init_from_src); 1682 1683 /** 1684 * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb 1685 * @kiocb: kiocb describing the IO 1686 * @nr_vecs: number of iovecs to pre-allocate 1687 * @bs: bio_set to allocate from 1688 * 1689 * Description: 1690 * Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only 1691 * used to check if we should dip into the per-cpu bio_set allocation 1692 * cache. The allocation uses GFP_KERNEL internally. On return, the 1693 * bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio 1694 * MUST be done from process context, not hard/soft IRQ. 1695 * 1696 */ 1697 struct bio *bio_alloc_kiocb(struct kiocb *kiocb, unsigned short nr_vecs, 1698 struct bio_set *bs) 1699 { 1700 struct bio_alloc_cache *cache; 1701 struct bio *bio; 1702 1703 if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS) 1704 return bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs); 1705 1706 cache = per_cpu_ptr(bs->cache, get_cpu()); 1707 bio = bio_list_pop(&cache->free_list); 1708 if (bio) { 1709 cache->nr--; 1710 put_cpu(); 1711 bio_init(bio, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs); 1712 bio->bi_pool = bs; 1713 bio_set_flag(bio, BIO_PERCPU_CACHE); 1714 return bio; 1715 } 1716 put_cpu(); 1717 bio = bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs); 1718 bio_set_flag(bio, BIO_PERCPU_CACHE); 1719 return bio; 1720 } 1721 EXPORT_SYMBOL_GPL(bio_alloc_kiocb); 1722 1723 static int __init init_bio(void) 1724 { 1725 int i; 1726 1727 bio_integrity_init(); 1728 1729 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) { 1730 struct biovec_slab *bvs = bvec_slabs + i; 1731 1732 bvs->slab = kmem_cache_create(bvs->name, 1733 bvs->nr_vecs * sizeof(struct bio_vec), 0, 1734 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1735 } 1736 1737 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL, 1738 bio_cpu_dead); 1739 1740 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS)) 1741 panic("bio: can't allocate bios\n"); 1742 1743 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) 1744 panic("bio: can't create integrity pool\n"); 1745 1746 return 0; 1747 } 1748 subsys_initcall(init_bio); 1749