1 /* 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public Licens 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 16 * 17 */ 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/bio.h> 21 #include <linux/blkdev.h> 22 #include <linux/uio.h> 23 #include <linux/iocontext.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/kernel.h> 27 #include <linux/export.h> 28 #include <linux/mempool.h> 29 #include <linux/workqueue.h> 30 #include <linux/cgroup.h> 31 #include <scsi/sg.h> /* for struct sg_iovec */ 32 33 #include <trace/events/block.h> 34 35 /* 36 * Test patch to inline a certain number of bi_io_vec's inside the bio 37 * itself, to shrink a bio data allocation from two mempool calls to one 38 */ 39 #define BIO_INLINE_VECS 4 40 41 /* 42 * if you change this list, also change bvec_alloc or things will 43 * break badly! cannot be bigger than what you can fit into an 44 * unsigned short 45 */ 46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } 47 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = { 48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), 49 }; 50 #undef BV 51 52 /* 53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 54 * IO code that does not need private memory pools. 55 */ 56 struct bio_set *fs_bio_set; 57 EXPORT_SYMBOL(fs_bio_set); 58 59 /* 60 * Our slab pool management 61 */ 62 struct bio_slab { 63 struct kmem_cache *slab; 64 unsigned int slab_ref; 65 unsigned int slab_size; 66 char name[8]; 67 }; 68 static DEFINE_MUTEX(bio_slab_lock); 69 static struct bio_slab *bio_slabs; 70 static unsigned int bio_slab_nr, bio_slab_max; 71 72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 73 { 74 unsigned int sz = sizeof(struct bio) + extra_size; 75 struct kmem_cache *slab = NULL; 76 struct bio_slab *bslab, *new_bio_slabs; 77 unsigned int new_bio_slab_max; 78 unsigned int i, entry = -1; 79 80 mutex_lock(&bio_slab_lock); 81 82 i = 0; 83 while (i < bio_slab_nr) { 84 bslab = &bio_slabs[i]; 85 86 if (!bslab->slab && entry == -1) 87 entry = i; 88 else if (bslab->slab_size == sz) { 89 slab = bslab->slab; 90 bslab->slab_ref++; 91 break; 92 } 93 i++; 94 } 95 96 if (slab) 97 goto out_unlock; 98 99 if (bio_slab_nr == bio_slab_max && entry == -1) { 100 new_bio_slab_max = bio_slab_max << 1; 101 new_bio_slabs = krealloc(bio_slabs, 102 new_bio_slab_max * sizeof(struct bio_slab), 103 GFP_KERNEL); 104 if (!new_bio_slabs) 105 goto out_unlock; 106 bio_slab_max = new_bio_slab_max; 107 bio_slabs = new_bio_slabs; 108 } 109 if (entry == -1) 110 entry = bio_slab_nr++; 111 112 bslab = &bio_slabs[entry]; 113 114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 115 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL); 116 if (!slab) 117 goto out_unlock; 118 119 bslab->slab = slab; 120 bslab->slab_ref = 1; 121 bslab->slab_size = sz; 122 out_unlock: 123 mutex_unlock(&bio_slab_lock); 124 return slab; 125 } 126 127 static void bio_put_slab(struct bio_set *bs) 128 { 129 struct bio_slab *bslab = NULL; 130 unsigned int i; 131 132 mutex_lock(&bio_slab_lock); 133 134 for (i = 0; i < bio_slab_nr; i++) { 135 if (bs->bio_slab == bio_slabs[i].slab) { 136 bslab = &bio_slabs[i]; 137 break; 138 } 139 } 140 141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 142 goto out; 143 144 WARN_ON(!bslab->slab_ref); 145 146 if (--bslab->slab_ref) 147 goto out; 148 149 kmem_cache_destroy(bslab->slab); 150 bslab->slab = NULL; 151 152 out: 153 mutex_unlock(&bio_slab_lock); 154 } 155 156 unsigned int bvec_nr_vecs(unsigned short idx) 157 { 158 return bvec_slabs[idx].nr_vecs; 159 } 160 161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 162 { 163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS); 164 165 if (idx == BIOVEC_MAX_IDX) 166 mempool_free(bv, pool); 167 else { 168 struct biovec_slab *bvs = bvec_slabs + idx; 169 170 kmem_cache_free(bvs->slab, bv); 171 } 172 } 173 174 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 175 mempool_t *pool) 176 { 177 struct bio_vec *bvl; 178 179 /* 180 * see comment near bvec_array define! 181 */ 182 switch (nr) { 183 case 1: 184 *idx = 0; 185 break; 186 case 2 ... 4: 187 *idx = 1; 188 break; 189 case 5 ... 16: 190 *idx = 2; 191 break; 192 case 17 ... 64: 193 *idx = 3; 194 break; 195 case 65 ... 128: 196 *idx = 4; 197 break; 198 case 129 ... BIO_MAX_PAGES: 199 *idx = 5; 200 break; 201 default: 202 return NULL; 203 } 204 205 /* 206 * idx now points to the pool we want to allocate from. only the 207 * 1-vec entry pool is mempool backed. 208 */ 209 if (*idx == BIOVEC_MAX_IDX) { 210 fallback: 211 bvl = mempool_alloc(pool, gfp_mask); 212 } else { 213 struct biovec_slab *bvs = bvec_slabs + *idx; 214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO); 215 216 /* 217 * Make this allocation restricted and don't dump info on 218 * allocation failures, since we'll fallback to the mempool 219 * in case of failure. 220 */ 221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 222 223 /* 224 * Try a slab allocation. If this fails and __GFP_WAIT 225 * is set, retry with the 1-entry mempool 226 */ 227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 228 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) { 229 *idx = BIOVEC_MAX_IDX; 230 goto fallback; 231 } 232 } 233 234 return bvl; 235 } 236 237 static void __bio_free(struct bio *bio) 238 { 239 bio_disassociate_task(bio); 240 241 if (bio_integrity(bio)) 242 bio_integrity_free(bio); 243 } 244 245 static void bio_free(struct bio *bio) 246 { 247 struct bio_set *bs = bio->bi_pool; 248 void *p; 249 250 __bio_free(bio); 251 252 if (bs) { 253 if (bio_flagged(bio, BIO_OWNS_VEC)) 254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio)); 255 256 /* 257 * If we have front padding, adjust the bio pointer before freeing 258 */ 259 p = bio; 260 p -= bs->front_pad; 261 262 mempool_free(p, bs->bio_pool); 263 } else { 264 /* Bio was allocated by bio_kmalloc() */ 265 kfree(bio); 266 } 267 } 268 269 void bio_init(struct bio *bio) 270 { 271 memset(bio, 0, sizeof(*bio)); 272 bio->bi_flags = 1 << BIO_UPTODATE; 273 atomic_set(&bio->bi_remaining, 1); 274 atomic_set(&bio->bi_cnt, 1); 275 } 276 EXPORT_SYMBOL(bio_init); 277 278 /** 279 * bio_reset - reinitialize a bio 280 * @bio: bio to reset 281 * 282 * Description: 283 * After calling bio_reset(), @bio will be in the same state as a freshly 284 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 285 * preserved are the ones that are initialized by bio_alloc_bioset(). See 286 * comment in struct bio. 287 */ 288 void bio_reset(struct bio *bio) 289 { 290 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 291 292 __bio_free(bio); 293 294 memset(bio, 0, BIO_RESET_BYTES); 295 bio->bi_flags = flags|(1 << BIO_UPTODATE); 296 atomic_set(&bio->bi_remaining, 1); 297 } 298 EXPORT_SYMBOL(bio_reset); 299 300 static void bio_chain_endio(struct bio *bio, int error) 301 { 302 bio_endio(bio->bi_private, error); 303 bio_put(bio); 304 } 305 306 /** 307 * bio_chain - chain bio completions 308 * @bio: the target bio 309 * @parent: the @bio's parent bio 310 * 311 * The caller won't have a bi_end_io called when @bio completes - instead, 312 * @parent's bi_end_io won't be called until both @parent and @bio have 313 * completed; the chained bio will also be freed when it completes. 314 * 315 * The caller must not set bi_private or bi_end_io in @bio. 316 */ 317 void bio_chain(struct bio *bio, struct bio *parent) 318 { 319 BUG_ON(bio->bi_private || bio->bi_end_io); 320 321 bio->bi_private = parent; 322 bio->bi_end_io = bio_chain_endio; 323 atomic_inc(&parent->bi_remaining); 324 } 325 EXPORT_SYMBOL(bio_chain); 326 327 static void bio_alloc_rescue(struct work_struct *work) 328 { 329 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 330 struct bio *bio; 331 332 while (1) { 333 spin_lock(&bs->rescue_lock); 334 bio = bio_list_pop(&bs->rescue_list); 335 spin_unlock(&bs->rescue_lock); 336 337 if (!bio) 338 break; 339 340 generic_make_request(bio); 341 } 342 } 343 344 static void punt_bios_to_rescuer(struct bio_set *bs) 345 { 346 struct bio_list punt, nopunt; 347 struct bio *bio; 348 349 /* 350 * In order to guarantee forward progress we must punt only bios that 351 * were allocated from this bio_set; otherwise, if there was a bio on 352 * there for a stacking driver higher up in the stack, processing it 353 * could require allocating bios from this bio_set, and doing that from 354 * our own rescuer would be bad. 355 * 356 * Since bio lists are singly linked, pop them all instead of trying to 357 * remove from the middle of the list: 358 */ 359 360 bio_list_init(&punt); 361 bio_list_init(&nopunt); 362 363 while ((bio = bio_list_pop(current->bio_list))) 364 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 365 366 *current->bio_list = nopunt; 367 368 spin_lock(&bs->rescue_lock); 369 bio_list_merge(&bs->rescue_list, &punt); 370 spin_unlock(&bs->rescue_lock); 371 372 queue_work(bs->rescue_workqueue, &bs->rescue_work); 373 } 374 375 /** 376 * bio_alloc_bioset - allocate a bio for I/O 377 * @gfp_mask: the GFP_ mask given to the slab allocator 378 * @nr_iovecs: number of iovecs to pre-allocate 379 * @bs: the bio_set to allocate from. 380 * 381 * Description: 382 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 383 * backed by the @bs's mempool. 384 * 385 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be 386 * able to allocate a bio. This is due to the mempool guarantees. To make this 387 * work, callers must never allocate more than 1 bio at a time from this pool. 388 * Callers that need to allocate more than 1 bio must always submit the 389 * previously allocated bio for IO before attempting to allocate a new one. 390 * Failure to do so can cause deadlocks under memory pressure. 391 * 392 * Note that when running under generic_make_request() (i.e. any block 393 * driver), bios are not submitted until after you return - see the code in 394 * generic_make_request() that converts recursion into iteration, to prevent 395 * stack overflows. 396 * 397 * This would normally mean allocating multiple bios under 398 * generic_make_request() would be susceptible to deadlocks, but we have 399 * deadlock avoidance code that resubmits any blocked bios from a rescuer 400 * thread. 401 * 402 * However, we do not guarantee forward progress for allocations from other 403 * mempools. Doing multiple allocations from the same mempool under 404 * generic_make_request() should be avoided - instead, use bio_set's front_pad 405 * for per bio allocations. 406 * 407 * RETURNS: 408 * Pointer to new bio on success, NULL on failure. 409 */ 410 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) 411 { 412 gfp_t saved_gfp = gfp_mask; 413 unsigned front_pad; 414 unsigned inline_vecs; 415 unsigned long idx = BIO_POOL_NONE; 416 struct bio_vec *bvl = NULL; 417 struct bio *bio; 418 void *p; 419 420 if (!bs) { 421 if (nr_iovecs > UIO_MAXIOV) 422 return NULL; 423 424 p = kmalloc(sizeof(struct bio) + 425 nr_iovecs * sizeof(struct bio_vec), 426 gfp_mask); 427 front_pad = 0; 428 inline_vecs = nr_iovecs; 429 } else { 430 /* 431 * generic_make_request() converts recursion to iteration; this 432 * means if we're running beneath it, any bios we allocate and 433 * submit will not be submitted (and thus freed) until after we 434 * return. 435 * 436 * This exposes us to a potential deadlock if we allocate 437 * multiple bios from the same bio_set() while running 438 * underneath generic_make_request(). If we were to allocate 439 * multiple bios (say a stacking block driver that was splitting 440 * bios), we would deadlock if we exhausted the mempool's 441 * reserve. 442 * 443 * We solve this, and guarantee forward progress, with a rescuer 444 * workqueue per bio_set. If we go to allocate and there are 445 * bios on current->bio_list, we first try the allocation 446 * without __GFP_WAIT; if that fails, we punt those bios we 447 * would be blocking to the rescuer workqueue before we retry 448 * with the original gfp_flags. 449 */ 450 451 if (current->bio_list && !bio_list_empty(current->bio_list)) 452 gfp_mask &= ~__GFP_WAIT; 453 454 p = mempool_alloc(bs->bio_pool, gfp_mask); 455 if (!p && gfp_mask != saved_gfp) { 456 punt_bios_to_rescuer(bs); 457 gfp_mask = saved_gfp; 458 p = mempool_alloc(bs->bio_pool, gfp_mask); 459 } 460 461 front_pad = bs->front_pad; 462 inline_vecs = BIO_INLINE_VECS; 463 } 464 465 if (unlikely(!p)) 466 return NULL; 467 468 bio = p + front_pad; 469 bio_init(bio); 470 471 if (nr_iovecs > inline_vecs) { 472 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 473 if (!bvl && gfp_mask != saved_gfp) { 474 punt_bios_to_rescuer(bs); 475 gfp_mask = saved_gfp; 476 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 477 } 478 479 if (unlikely(!bvl)) 480 goto err_free; 481 482 bio->bi_flags |= 1 << BIO_OWNS_VEC; 483 } else if (nr_iovecs) { 484 bvl = bio->bi_inline_vecs; 485 } 486 487 bio->bi_pool = bs; 488 bio->bi_flags |= idx << BIO_POOL_OFFSET; 489 bio->bi_max_vecs = nr_iovecs; 490 bio->bi_io_vec = bvl; 491 return bio; 492 493 err_free: 494 mempool_free(p, bs->bio_pool); 495 return NULL; 496 } 497 EXPORT_SYMBOL(bio_alloc_bioset); 498 499 void zero_fill_bio(struct bio *bio) 500 { 501 unsigned long flags; 502 struct bio_vec bv; 503 struct bvec_iter iter; 504 505 bio_for_each_segment(bv, bio, iter) { 506 char *data = bvec_kmap_irq(&bv, &flags); 507 memset(data, 0, bv.bv_len); 508 flush_dcache_page(bv.bv_page); 509 bvec_kunmap_irq(data, &flags); 510 } 511 } 512 EXPORT_SYMBOL(zero_fill_bio); 513 514 /** 515 * bio_put - release a reference to a bio 516 * @bio: bio to release reference to 517 * 518 * Description: 519 * Put a reference to a &struct bio, either one you have gotten with 520 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it. 521 **/ 522 void bio_put(struct bio *bio) 523 { 524 BIO_BUG_ON(!atomic_read(&bio->bi_cnt)); 525 526 /* 527 * last put frees it 528 */ 529 if (atomic_dec_and_test(&bio->bi_cnt)) 530 bio_free(bio); 531 } 532 EXPORT_SYMBOL(bio_put); 533 534 inline int bio_phys_segments(struct request_queue *q, struct bio *bio) 535 { 536 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) 537 blk_recount_segments(q, bio); 538 539 return bio->bi_phys_segments; 540 } 541 EXPORT_SYMBOL(bio_phys_segments); 542 543 /** 544 * __bio_clone_fast - clone a bio that shares the original bio's biovec 545 * @bio: destination bio 546 * @bio_src: bio to clone 547 * 548 * Clone a &bio. Caller will own the returned bio, but not 549 * the actual data it points to. Reference count of returned 550 * bio will be one. 551 * 552 * Caller must ensure that @bio_src is not freed before @bio. 553 */ 554 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 555 { 556 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE); 557 558 /* 559 * most users will be overriding ->bi_bdev with a new target, 560 * so we don't set nor calculate new physical/hw segment counts here 561 */ 562 bio->bi_bdev = bio_src->bi_bdev; 563 bio->bi_flags |= 1 << BIO_CLONED; 564 bio->bi_rw = bio_src->bi_rw; 565 bio->bi_iter = bio_src->bi_iter; 566 bio->bi_io_vec = bio_src->bi_io_vec; 567 } 568 EXPORT_SYMBOL(__bio_clone_fast); 569 570 /** 571 * bio_clone_fast - clone a bio that shares the original bio's biovec 572 * @bio: bio to clone 573 * @gfp_mask: allocation priority 574 * @bs: bio_set to allocate from 575 * 576 * Like __bio_clone_fast, only also allocates the returned bio 577 */ 578 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 579 { 580 struct bio *b; 581 582 b = bio_alloc_bioset(gfp_mask, 0, bs); 583 if (!b) 584 return NULL; 585 586 __bio_clone_fast(b, bio); 587 588 if (bio_integrity(bio)) { 589 int ret; 590 591 ret = bio_integrity_clone(b, bio, gfp_mask); 592 593 if (ret < 0) { 594 bio_put(b); 595 return NULL; 596 } 597 } 598 599 return b; 600 } 601 EXPORT_SYMBOL(bio_clone_fast); 602 603 /** 604 * bio_clone_bioset - clone a bio 605 * @bio_src: bio to clone 606 * @gfp_mask: allocation priority 607 * @bs: bio_set to allocate from 608 * 609 * Clone bio. Caller will own the returned bio, but not the actual data it 610 * points to. Reference count of returned bio will be one. 611 */ 612 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, 613 struct bio_set *bs) 614 { 615 struct bvec_iter iter; 616 struct bio_vec bv; 617 struct bio *bio; 618 619 /* 620 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from 621 * bio_src->bi_io_vec to bio->bi_io_vec. 622 * 623 * We can't do that anymore, because: 624 * 625 * - The point of cloning the biovec is to produce a bio with a biovec 626 * the caller can modify: bi_idx and bi_bvec_done should be 0. 627 * 628 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if 629 * we tried to clone the whole thing bio_alloc_bioset() would fail. 630 * But the clone should succeed as long as the number of biovecs we 631 * actually need to allocate is fewer than BIO_MAX_PAGES. 632 * 633 * - Lastly, bi_vcnt should not be looked at or relied upon by code 634 * that does not own the bio - reason being drivers don't use it for 635 * iterating over the biovec anymore, so expecting it to be kept up 636 * to date (i.e. for clones that share the parent biovec) is just 637 * asking for trouble and would force extra work on 638 * __bio_clone_fast() anyways. 639 */ 640 641 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs); 642 if (!bio) 643 return NULL; 644 645 bio->bi_bdev = bio_src->bi_bdev; 646 bio->bi_rw = bio_src->bi_rw; 647 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; 648 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; 649 650 if (bio->bi_rw & REQ_DISCARD) 651 goto integrity_clone; 652 653 if (bio->bi_rw & REQ_WRITE_SAME) { 654 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0]; 655 goto integrity_clone; 656 } 657 658 bio_for_each_segment(bv, bio_src, iter) 659 bio->bi_io_vec[bio->bi_vcnt++] = bv; 660 661 integrity_clone: 662 if (bio_integrity(bio_src)) { 663 int ret; 664 665 ret = bio_integrity_clone(bio, bio_src, gfp_mask); 666 if (ret < 0) { 667 bio_put(bio); 668 return NULL; 669 } 670 } 671 672 return bio; 673 } 674 EXPORT_SYMBOL(bio_clone_bioset); 675 676 /** 677 * bio_get_nr_vecs - return approx number of vecs 678 * @bdev: I/O target 679 * 680 * Return the approximate number of pages we can send to this target. 681 * There's no guarantee that you will be able to fit this number of pages 682 * into a bio, it does not account for dynamic restrictions that vary 683 * on offset. 684 */ 685 int bio_get_nr_vecs(struct block_device *bdev) 686 { 687 struct request_queue *q = bdev_get_queue(bdev); 688 int nr_pages; 689 690 nr_pages = min_t(unsigned, 691 queue_max_segments(q), 692 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1); 693 694 return min_t(unsigned, nr_pages, BIO_MAX_PAGES); 695 696 } 697 EXPORT_SYMBOL(bio_get_nr_vecs); 698 699 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page 700 *page, unsigned int len, unsigned int offset, 701 unsigned int max_sectors) 702 { 703 int retried_segments = 0; 704 struct bio_vec *bvec; 705 706 /* 707 * cloned bio must not modify vec list 708 */ 709 if (unlikely(bio_flagged(bio, BIO_CLONED))) 710 return 0; 711 712 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors) 713 return 0; 714 715 /* 716 * For filesystems with a blocksize smaller than the pagesize 717 * we will often be called with the same page as last time and 718 * a consecutive offset. Optimize this special case. 719 */ 720 if (bio->bi_vcnt > 0) { 721 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 722 723 if (page == prev->bv_page && 724 offset == prev->bv_offset + prev->bv_len) { 725 unsigned int prev_bv_len = prev->bv_len; 726 prev->bv_len += len; 727 728 if (q->merge_bvec_fn) { 729 struct bvec_merge_data bvm = { 730 /* prev_bvec is already charged in 731 bi_size, discharge it in order to 732 simulate merging updated prev_bvec 733 as new bvec. */ 734 .bi_bdev = bio->bi_bdev, 735 .bi_sector = bio->bi_iter.bi_sector, 736 .bi_size = bio->bi_iter.bi_size - 737 prev_bv_len, 738 .bi_rw = bio->bi_rw, 739 }; 740 741 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) { 742 prev->bv_len -= len; 743 return 0; 744 } 745 } 746 747 goto done; 748 } 749 } 750 751 if (bio->bi_vcnt >= bio->bi_max_vecs) 752 return 0; 753 754 /* 755 * we might lose a segment or two here, but rather that than 756 * make this too complex. 757 */ 758 759 while (bio->bi_phys_segments >= queue_max_segments(q)) { 760 761 if (retried_segments) 762 return 0; 763 764 retried_segments = 1; 765 blk_recount_segments(q, bio); 766 } 767 768 /* 769 * setup the new entry, we might clear it again later if we 770 * cannot add the page 771 */ 772 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 773 bvec->bv_page = page; 774 bvec->bv_len = len; 775 bvec->bv_offset = offset; 776 777 /* 778 * if queue has other restrictions (eg varying max sector size 779 * depending on offset), it can specify a merge_bvec_fn in the 780 * queue to get further control 781 */ 782 if (q->merge_bvec_fn) { 783 struct bvec_merge_data bvm = { 784 .bi_bdev = bio->bi_bdev, 785 .bi_sector = bio->bi_iter.bi_sector, 786 .bi_size = bio->bi_iter.bi_size, 787 .bi_rw = bio->bi_rw, 788 }; 789 790 /* 791 * merge_bvec_fn() returns number of bytes it can accept 792 * at this offset 793 */ 794 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) { 795 bvec->bv_page = NULL; 796 bvec->bv_len = 0; 797 bvec->bv_offset = 0; 798 return 0; 799 } 800 } 801 802 /* If we may be able to merge these biovecs, force a recount */ 803 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) 804 bio->bi_flags &= ~(1 << BIO_SEG_VALID); 805 806 bio->bi_vcnt++; 807 bio->bi_phys_segments++; 808 done: 809 bio->bi_iter.bi_size += len; 810 return len; 811 } 812 813 /** 814 * bio_add_pc_page - attempt to add page to bio 815 * @q: the target queue 816 * @bio: destination bio 817 * @page: page to add 818 * @len: vec entry length 819 * @offset: vec entry offset 820 * 821 * Attempt to add a page to the bio_vec maplist. This can fail for a 822 * number of reasons, such as the bio being full or target block device 823 * limitations. The target block device must allow bio's up to PAGE_SIZE, 824 * so it is always possible to add a single page to an empty bio. 825 * 826 * This should only be used by REQ_PC bios. 827 */ 828 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page, 829 unsigned int len, unsigned int offset) 830 { 831 return __bio_add_page(q, bio, page, len, offset, 832 queue_max_hw_sectors(q)); 833 } 834 EXPORT_SYMBOL(bio_add_pc_page); 835 836 /** 837 * bio_add_page - attempt to add page to bio 838 * @bio: destination bio 839 * @page: page to add 840 * @len: vec entry length 841 * @offset: vec entry offset 842 * 843 * Attempt to add a page to the bio_vec maplist. This can fail for a 844 * number of reasons, such as the bio being full or target block device 845 * limitations. The target block device must allow bio's up to PAGE_SIZE, 846 * so it is always possible to add a single page to an empty bio. 847 */ 848 int bio_add_page(struct bio *bio, struct page *page, unsigned int len, 849 unsigned int offset) 850 { 851 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 852 unsigned int max_sectors; 853 854 max_sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector); 855 if ((max_sectors < (len >> 9)) && !bio->bi_iter.bi_size) 856 max_sectors = len >> 9; 857 858 return __bio_add_page(q, bio, page, len, offset, max_sectors); 859 } 860 EXPORT_SYMBOL(bio_add_page); 861 862 struct submit_bio_ret { 863 struct completion event; 864 int error; 865 }; 866 867 static void submit_bio_wait_endio(struct bio *bio, int error) 868 { 869 struct submit_bio_ret *ret = bio->bi_private; 870 871 ret->error = error; 872 complete(&ret->event); 873 } 874 875 /** 876 * submit_bio_wait - submit a bio, and wait until it completes 877 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 878 * @bio: The &struct bio which describes the I/O 879 * 880 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 881 * bio_endio() on failure. 882 */ 883 int submit_bio_wait(int rw, struct bio *bio) 884 { 885 struct submit_bio_ret ret; 886 887 rw |= REQ_SYNC; 888 init_completion(&ret.event); 889 bio->bi_private = &ret; 890 bio->bi_end_io = submit_bio_wait_endio; 891 submit_bio(rw, bio); 892 wait_for_completion(&ret.event); 893 894 return ret.error; 895 } 896 EXPORT_SYMBOL(submit_bio_wait); 897 898 /** 899 * bio_advance - increment/complete a bio by some number of bytes 900 * @bio: bio to advance 901 * @bytes: number of bytes to complete 902 * 903 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 904 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 905 * be updated on the last bvec as well. 906 * 907 * @bio will then represent the remaining, uncompleted portion of the io. 908 */ 909 void bio_advance(struct bio *bio, unsigned bytes) 910 { 911 if (bio_integrity(bio)) 912 bio_integrity_advance(bio, bytes); 913 914 bio_advance_iter(bio, &bio->bi_iter, bytes); 915 } 916 EXPORT_SYMBOL(bio_advance); 917 918 /** 919 * bio_alloc_pages - allocates a single page for each bvec in a bio 920 * @bio: bio to allocate pages for 921 * @gfp_mask: flags for allocation 922 * 923 * Allocates pages up to @bio->bi_vcnt. 924 * 925 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are 926 * freed. 927 */ 928 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask) 929 { 930 int i; 931 struct bio_vec *bv; 932 933 bio_for_each_segment_all(bv, bio, i) { 934 bv->bv_page = alloc_page(gfp_mask); 935 if (!bv->bv_page) { 936 while (--bv >= bio->bi_io_vec) 937 __free_page(bv->bv_page); 938 return -ENOMEM; 939 } 940 } 941 942 return 0; 943 } 944 EXPORT_SYMBOL(bio_alloc_pages); 945 946 /** 947 * bio_copy_data - copy contents of data buffers from one chain of bios to 948 * another 949 * @src: source bio list 950 * @dst: destination bio list 951 * 952 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats 953 * @src and @dst as linked lists of bios. 954 * 955 * Stops when it reaches the end of either @src or @dst - that is, copies 956 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 957 */ 958 void bio_copy_data(struct bio *dst, struct bio *src) 959 { 960 struct bvec_iter src_iter, dst_iter; 961 struct bio_vec src_bv, dst_bv; 962 void *src_p, *dst_p; 963 unsigned bytes; 964 965 src_iter = src->bi_iter; 966 dst_iter = dst->bi_iter; 967 968 while (1) { 969 if (!src_iter.bi_size) { 970 src = src->bi_next; 971 if (!src) 972 break; 973 974 src_iter = src->bi_iter; 975 } 976 977 if (!dst_iter.bi_size) { 978 dst = dst->bi_next; 979 if (!dst) 980 break; 981 982 dst_iter = dst->bi_iter; 983 } 984 985 src_bv = bio_iter_iovec(src, src_iter); 986 dst_bv = bio_iter_iovec(dst, dst_iter); 987 988 bytes = min(src_bv.bv_len, dst_bv.bv_len); 989 990 src_p = kmap_atomic(src_bv.bv_page); 991 dst_p = kmap_atomic(dst_bv.bv_page); 992 993 memcpy(dst_p + dst_bv.bv_offset, 994 src_p + src_bv.bv_offset, 995 bytes); 996 997 kunmap_atomic(dst_p); 998 kunmap_atomic(src_p); 999 1000 bio_advance_iter(src, &src_iter, bytes); 1001 bio_advance_iter(dst, &dst_iter, bytes); 1002 } 1003 } 1004 EXPORT_SYMBOL(bio_copy_data); 1005 1006 struct bio_map_data { 1007 int nr_sgvecs; 1008 int is_our_pages; 1009 struct sg_iovec sgvecs[]; 1010 }; 1011 1012 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio, 1013 const struct sg_iovec *iov, int iov_count, 1014 int is_our_pages) 1015 { 1016 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count); 1017 bmd->nr_sgvecs = iov_count; 1018 bmd->is_our_pages = is_our_pages; 1019 bio->bi_private = bmd; 1020 } 1021 1022 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count, 1023 gfp_t gfp_mask) 1024 { 1025 if (iov_count > UIO_MAXIOV) 1026 return NULL; 1027 1028 return kmalloc(sizeof(struct bio_map_data) + 1029 sizeof(struct sg_iovec) * iov_count, gfp_mask); 1030 } 1031 1032 static int __bio_copy_iov(struct bio *bio, const struct sg_iovec *iov, int iov_count, 1033 int to_user, int from_user, int do_free_page) 1034 { 1035 int ret = 0, i; 1036 struct bio_vec *bvec; 1037 int iov_idx = 0; 1038 unsigned int iov_off = 0; 1039 1040 bio_for_each_segment_all(bvec, bio, i) { 1041 char *bv_addr = page_address(bvec->bv_page); 1042 unsigned int bv_len = bvec->bv_len; 1043 1044 while (bv_len && iov_idx < iov_count) { 1045 unsigned int bytes; 1046 char __user *iov_addr; 1047 1048 bytes = min_t(unsigned int, 1049 iov[iov_idx].iov_len - iov_off, bv_len); 1050 iov_addr = iov[iov_idx].iov_base + iov_off; 1051 1052 if (!ret) { 1053 if (to_user) 1054 ret = copy_to_user(iov_addr, bv_addr, 1055 bytes); 1056 1057 if (from_user) 1058 ret = copy_from_user(bv_addr, iov_addr, 1059 bytes); 1060 1061 if (ret) 1062 ret = -EFAULT; 1063 } 1064 1065 bv_len -= bytes; 1066 bv_addr += bytes; 1067 iov_addr += bytes; 1068 iov_off += bytes; 1069 1070 if (iov[iov_idx].iov_len == iov_off) { 1071 iov_idx++; 1072 iov_off = 0; 1073 } 1074 } 1075 1076 if (do_free_page) 1077 __free_page(bvec->bv_page); 1078 } 1079 1080 return ret; 1081 } 1082 1083 /** 1084 * bio_uncopy_user - finish previously mapped bio 1085 * @bio: bio being terminated 1086 * 1087 * Free pages allocated from bio_copy_user() and write back data 1088 * to user space in case of a read. 1089 */ 1090 int bio_uncopy_user(struct bio *bio) 1091 { 1092 struct bio_map_data *bmd = bio->bi_private; 1093 struct bio_vec *bvec; 1094 int ret = 0, i; 1095 1096 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1097 /* 1098 * if we're in a workqueue, the request is orphaned, so 1099 * don't copy into a random user address space, just free. 1100 */ 1101 if (current->mm) 1102 ret = __bio_copy_iov(bio, bmd->sgvecs, bmd->nr_sgvecs, 1103 bio_data_dir(bio) == READ, 1104 0, bmd->is_our_pages); 1105 else if (bmd->is_our_pages) 1106 bio_for_each_segment_all(bvec, bio, i) 1107 __free_page(bvec->bv_page); 1108 } 1109 kfree(bmd); 1110 bio_put(bio); 1111 return ret; 1112 } 1113 EXPORT_SYMBOL(bio_uncopy_user); 1114 1115 /** 1116 * bio_copy_user_iov - copy user data to bio 1117 * @q: destination block queue 1118 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1119 * @iov: the iovec. 1120 * @iov_count: number of elements in the iovec 1121 * @write_to_vm: bool indicating writing to pages or not 1122 * @gfp_mask: memory allocation flags 1123 * 1124 * Prepares and returns a bio for indirect user io, bouncing data 1125 * to/from kernel pages as necessary. Must be paired with 1126 * call bio_uncopy_user() on io completion. 1127 */ 1128 struct bio *bio_copy_user_iov(struct request_queue *q, 1129 struct rq_map_data *map_data, 1130 const struct sg_iovec *iov, int iov_count, 1131 int write_to_vm, gfp_t gfp_mask) 1132 { 1133 struct bio_map_data *bmd; 1134 struct bio_vec *bvec; 1135 struct page *page; 1136 struct bio *bio; 1137 int i, ret; 1138 int nr_pages = 0; 1139 unsigned int len = 0; 1140 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0; 1141 1142 for (i = 0; i < iov_count; i++) { 1143 unsigned long uaddr; 1144 unsigned long end; 1145 unsigned long start; 1146 1147 uaddr = (unsigned long)iov[i].iov_base; 1148 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1149 start = uaddr >> PAGE_SHIFT; 1150 1151 /* 1152 * Overflow, abort 1153 */ 1154 if (end < start) 1155 return ERR_PTR(-EINVAL); 1156 1157 nr_pages += end - start; 1158 len += iov[i].iov_len; 1159 } 1160 1161 if (offset) 1162 nr_pages++; 1163 1164 bmd = bio_alloc_map_data(iov_count, gfp_mask); 1165 if (!bmd) 1166 return ERR_PTR(-ENOMEM); 1167 1168 ret = -ENOMEM; 1169 bio = bio_kmalloc(gfp_mask, nr_pages); 1170 if (!bio) 1171 goto out_bmd; 1172 1173 if (!write_to_vm) 1174 bio->bi_rw |= REQ_WRITE; 1175 1176 ret = 0; 1177 1178 if (map_data) { 1179 nr_pages = 1 << map_data->page_order; 1180 i = map_data->offset / PAGE_SIZE; 1181 } 1182 while (len) { 1183 unsigned int bytes = PAGE_SIZE; 1184 1185 bytes -= offset; 1186 1187 if (bytes > len) 1188 bytes = len; 1189 1190 if (map_data) { 1191 if (i == map_data->nr_entries * nr_pages) { 1192 ret = -ENOMEM; 1193 break; 1194 } 1195 1196 page = map_data->pages[i / nr_pages]; 1197 page += (i % nr_pages); 1198 1199 i++; 1200 } else { 1201 page = alloc_page(q->bounce_gfp | gfp_mask); 1202 if (!page) { 1203 ret = -ENOMEM; 1204 break; 1205 } 1206 } 1207 1208 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) 1209 break; 1210 1211 len -= bytes; 1212 offset = 0; 1213 } 1214 1215 if (ret) 1216 goto cleanup; 1217 1218 /* 1219 * success 1220 */ 1221 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) || 1222 (map_data && map_data->from_user)) { 1223 ret = __bio_copy_iov(bio, iov, iov_count, 0, 1, 0); 1224 if (ret) 1225 goto cleanup; 1226 } 1227 1228 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1); 1229 return bio; 1230 cleanup: 1231 if (!map_data) 1232 bio_for_each_segment_all(bvec, bio, i) 1233 __free_page(bvec->bv_page); 1234 1235 bio_put(bio); 1236 out_bmd: 1237 kfree(bmd); 1238 return ERR_PTR(ret); 1239 } 1240 1241 /** 1242 * bio_copy_user - copy user data to bio 1243 * @q: destination block queue 1244 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1245 * @uaddr: start of user address 1246 * @len: length in bytes 1247 * @write_to_vm: bool indicating writing to pages or not 1248 * @gfp_mask: memory allocation flags 1249 * 1250 * Prepares and returns a bio for indirect user io, bouncing data 1251 * to/from kernel pages as necessary. Must be paired with 1252 * call bio_uncopy_user() on io completion. 1253 */ 1254 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data, 1255 unsigned long uaddr, unsigned int len, 1256 int write_to_vm, gfp_t gfp_mask) 1257 { 1258 struct sg_iovec iov; 1259 1260 iov.iov_base = (void __user *)uaddr; 1261 iov.iov_len = len; 1262 1263 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask); 1264 } 1265 EXPORT_SYMBOL(bio_copy_user); 1266 1267 static struct bio *__bio_map_user_iov(struct request_queue *q, 1268 struct block_device *bdev, 1269 const struct sg_iovec *iov, int iov_count, 1270 int write_to_vm, gfp_t gfp_mask) 1271 { 1272 int i, j; 1273 int nr_pages = 0; 1274 struct page **pages; 1275 struct bio *bio; 1276 int cur_page = 0; 1277 int ret, offset; 1278 1279 for (i = 0; i < iov_count; i++) { 1280 unsigned long uaddr = (unsigned long)iov[i].iov_base; 1281 unsigned long len = iov[i].iov_len; 1282 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1283 unsigned long start = uaddr >> PAGE_SHIFT; 1284 1285 /* 1286 * Overflow, abort 1287 */ 1288 if (end < start) 1289 return ERR_PTR(-EINVAL); 1290 1291 nr_pages += end - start; 1292 /* 1293 * buffer must be aligned to at least hardsector size for now 1294 */ 1295 if (uaddr & queue_dma_alignment(q)) 1296 return ERR_PTR(-EINVAL); 1297 } 1298 1299 if (!nr_pages) 1300 return ERR_PTR(-EINVAL); 1301 1302 bio = bio_kmalloc(gfp_mask, nr_pages); 1303 if (!bio) 1304 return ERR_PTR(-ENOMEM); 1305 1306 ret = -ENOMEM; 1307 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); 1308 if (!pages) 1309 goto out; 1310 1311 for (i = 0; i < iov_count; i++) { 1312 unsigned long uaddr = (unsigned long)iov[i].iov_base; 1313 unsigned long len = iov[i].iov_len; 1314 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1315 unsigned long start = uaddr >> PAGE_SHIFT; 1316 const int local_nr_pages = end - start; 1317 const int page_limit = cur_page + local_nr_pages; 1318 1319 ret = get_user_pages_fast(uaddr, local_nr_pages, 1320 write_to_vm, &pages[cur_page]); 1321 if (ret < local_nr_pages) { 1322 ret = -EFAULT; 1323 goto out_unmap; 1324 } 1325 1326 offset = uaddr & ~PAGE_MASK; 1327 for (j = cur_page; j < page_limit; j++) { 1328 unsigned int bytes = PAGE_SIZE - offset; 1329 1330 if (len <= 0) 1331 break; 1332 1333 if (bytes > len) 1334 bytes = len; 1335 1336 /* 1337 * sorry... 1338 */ 1339 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < 1340 bytes) 1341 break; 1342 1343 len -= bytes; 1344 offset = 0; 1345 } 1346 1347 cur_page = j; 1348 /* 1349 * release the pages we didn't map into the bio, if any 1350 */ 1351 while (j < page_limit) 1352 page_cache_release(pages[j++]); 1353 } 1354 1355 kfree(pages); 1356 1357 /* 1358 * set data direction, and check if mapped pages need bouncing 1359 */ 1360 if (!write_to_vm) 1361 bio->bi_rw |= REQ_WRITE; 1362 1363 bio->bi_bdev = bdev; 1364 bio->bi_flags |= (1 << BIO_USER_MAPPED); 1365 return bio; 1366 1367 out_unmap: 1368 for (i = 0; i < nr_pages; i++) { 1369 if(!pages[i]) 1370 break; 1371 page_cache_release(pages[i]); 1372 } 1373 out: 1374 kfree(pages); 1375 bio_put(bio); 1376 return ERR_PTR(ret); 1377 } 1378 1379 /** 1380 * bio_map_user - map user address into bio 1381 * @q: the struct request_queue for the bio 1382 * @bdev: destination block device 1383 * @uaddr: start of user address 1384 * @len: length in bytes 1385 * @write_to_vm: bool indicating writing to pages or not 1386 * @gfp_mask: memory allocation flags 1387 * 1388 * Map the user space address into a bio suitable for io to a block 1389 * device. Returns an error pointer in case of error. 1390 */ 1391 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev, 1392 unsigned long uaddr, unsigned int len, int write_to_vm, 1393 gfp_t gfp_mask) 1394 { 1395 struct sg_iovec iov; 1396 1397 iov.iov_base = (void __user *)uaddr; 1398 iov.iov_len = len; 1399 1400 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask); 1401 } 1402 EXPORT_SYMBOL(bio_map_user); 1403 1404 /** 1405 * bio_map_user_iov - map user sg_iovec table into bio 1406 * @q: the struct request_queue for the bio 1407 * @bdev: destination block device 1408 * @iov: the iovec. 1409 * @iov_count: number of elements in the iovec 1410 * @write_to_vm: bool indicating writing to pages or not 1411 * @gfp_mask: memory allocation flags 1412 * 1413 * Map the user space address into a bio suitable for io to a block 1414 * device. Returns an error pointer in case of error. 1415 */ 1416 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev, 1417 const struct sg_iovec *iov, int iov_count, 1418 int write_to_vm, gfp_t gfp_mask) 1419 { 1420 struct bio *bio; 1421 1422 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm, 1423 gfp_mask); 1424 if (IS_ERR(bio)) 1425 return bio; 1426 1427 /* 1428 * subtle -- if __bio_map_user() ended up bouncing a bio, 1429 * it would normally disappear when its bi_end_io is run. 1430 * however, we need it for the unmap, so grab an extra 1431 * reference to it 1432 */ 1433 bio_get(bio); 1434 1435 return bio; 1436 } 1437 1438 static void __bio_unmap_user(struct bio *bio) 1439 { 1440 struct bio_vec *bvec; 1441 int i; 1442 1443 /* 1444 * make sure we dirty pages we wrote to 1445 */ 1446 bio_for_each_segment_all(bvec, bio, i) { 1447 if (bio_data_dir(bio) == READ) 1448 set_page_dirty_lock(bvec->bv_page); 1449 1450 page_cache_release(bvec->bv_page); 1451 } 1452 1453 bio_put(bio); 1454 } 1455 1456 /** 1457 * bio_unmap_user - unmap a bio 1458 * @bio: the bio being unmapped 1459 * 1460 * Unmap a bio previously mapped by bio_map_user(). Must be called with 1461 * a process context. 1462 * 1463 * bio_unmap_user() may sleep. 1464 */ 1465 void bio_unmap_user(struct bio *bio) 1466 { 1467 __bio_unmap_user(bio); 1468 bio_put(bio); 1469 } 1470 EXPORT_SYMBOL(bio_unmap_user); 1471 1472 static void bio_map_kern_endio(struct bio *bio, int err) 1473 { 1474 bio_put(bio); 1475 } 1476 1477 static struct bio *__bio_map_kern(struct request_queue *q, void *data, 1478 unsigned int len, gfp_t gfp_mask) 1479 { 1480 unsigned long kaddr = (unsigned long)data; 1481 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1482 unsigned long start = kaddr >> PAGE_SHIFT; 1483 const int nr_pages = end - start; 1484 int offset, i; 1485 struct bio *bio; 1486 1487 bio = bio_kmalloc(gfp_mask, nr_pages); 1488 if (!bio) 1489 return ERR_PTR(-ENOMEM); 1490 1491 offset = offset_in_page(kaddr); 1492 for (i = 0; i < nr_pages; i++) { 1493 unsigned int bytes = PAGE_SIZE - offset; 1494 1495 if (len <= 0) 1496 break; 1497 1498 if (bytes > len) 1499 bytes = len; 1500 1501 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, 1502 offset) < bytes) 1503 break; 1504 1505 data += bytes; 1506 len -= bytes; 1507 offset = 0; 1508 } 1509 1510 bio->bi_end_io = bio_map_kern_endio; 1511 return bio; 1512 } 1513 1514 /** 1515 * bio_map_kern - map kernel address into bio 1516 * @q: the struct request_queue for the bio 1517 * @data: pointer to buffer to map 1518 * @len: length in bytes 1519 * @gfp_mask: allocation flags for bio allocation 1520 * 1521 * Map the kernel address into a bio suitable for io to a block 1522 * device. Returns an error pointer in case of error. 1523 */ 1524 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1525 gfp_t gfp_mask) 1526 { 1527 struct bio *bio; 1528 1529 bio = __bio_map_kern(q, data, len, gfp_mask); 1530 if (IS_ERR(bio)) 1531 return bio; 1532 1533 if (bio->bi_iter.bi_size == len) 1534 return bio; 1535 1536 /* 1537 * Don't support partial mappings. 1538 */ 1539 bio_put(bio); 1540 return ERR_PTR(-EINVAL); 1541 } 1542 EXPORT_SYMBOL(bio_map_kern); 1543 1544 static void bio_copy_kern_endio(struct bio *bio, int err) 1545 { 1546 struct bio_vec *bvec; 1547 const int read = bio_data_dir(bio) == READ; 1548 struct bio_map_data *bmd = bio->bi_private; 1549 int i; 1550 char *p = bmd->sgvecs[0].iov_base; 1551 1552 bio_for_each_segment_all(bvec, bio, i) { 1553 char *addr = page_address(bvec->bv_page); 1554 1555 if (read) 1556 memcpy(p, addr, bvec->bv_len); 1557 1558 __free_page(bvec->bv_page); 1559 p += bvec->bv_len; 1560 } 1561 1562 kfree(bmd); 1563 bio_put(bio); 1564 } 1565 1566 /** 1567 * bio_copy_kern - copy kernel address into bio 1568 * @q: the struct request_queue for the bio 1569 * @data: pointer to buffer to copy 1570 * @len: length in bytes 1571 * @gfp_mask: allocation flags for bio and page allocation 1572 * @reading: data direction is READ 1573 * 1574 * copy the kernel address into a bio suitable for io to a block 1575 * device. Returns an error pointer in case of error. 1576 */ 1577 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1578 gfp_t gfp_mask, int reading) 1579 { 1580 struct bio *bio; 1581 struct bio_vec *bvec; 1582 int i; 1583 1584 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask); 1585 if (IS_ERR(bio)) 1586 return bio; 1587 1588 if (!reading) { 1589 void *p = data; 1590 1591 bio_for_each_segment_all(bvec, bio, i) { 1592 char *addr = page_address(bvec->bv_page); 1593 1594 memcpy(addr, p, bvec->bv_len); 1595 p += bvec->bv_len; 1596 } 1597 } 1598 1599 bio->bi_end_io = bio_copy_kern_endio; 1600 1601 return bio; 1602 } 1603 EXPORT_SYMBOL(bio_copy_kern); 1604 1605 /* 1606 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1607 * for performing direct-IO in BIOs. 1608 * 1609 * The problem is that we cannot run set_page_dirty() from interrupt context 1610 * because the required locks are not interrupt-safe. So what we can do is to 1611 * mark the pages dirty _before_ performing IO. And in interrupt context, 1612 * check that the pages are still dirty. If so, fine. If not, redirty them 1613 * in process context. 1614 * 1615 * We special-case compound pages here: normally this means reads into hugetlb 1616 * pages. The logic in here doesn't really work right for compound pages 1617 * because the VM does not uniformly chase down the head page in all cases. 1618 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1619 * handle them at all. So we skip compound pages here at an early stage. 1620 * 1621 * Note that this code is very hard to test under normal circumstances because 1622 * direct-io pins the pages with get_user_pages(). This makes 1623 * is_page_cache_freeable return false, and the VM will not clean the pages. 1624 * But other code (eg, flusher threads) could clean the pages if they are mapped 1625 * pagecache. 1626 * 1627 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1628 * deferred bio dirtying paths. 1629 */ 1630 1631 /* 1632 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1633 */ 1634 void bio_set_pages_dirty(struct bio *bio) 1635 { 1636 struct bio_vec *bvec; 1637 int i; 1638 1639 bio_for_each_segment_all(bvec, bio, i) { 1640 struct page *page = bvec->bv_page; 1641 1642 if (page && !PageCompound(page)) 1643 set_page_dirty_lock(page); 1644 } 1645 } 1646 1647 static void bio_release_pages(struct bio *bio) 1648 { 1649 struct bio_vec *bvec; 1650 int i; 1651 1652 bio_for_each_segment_all(bvec, bio, i) { 1653 struct page *page = bvec->bv_page; 1654 1655 if (page) 1656 put_page(page); 1657 } 1658 } 1659 1660 /* 1661 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1662 * If they are, then fine. If, however, some pages are clean then they must 1663 * have been written out during the direct-IO read. So we take another ref on 1664 * the BIO and the offending pages and re-dirty the pages in process context. 1665 * 1666 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1667 * here on. It will run one page_cache_release() against each page and will 1668 * run one bio_put() against the BIO. 1669 */ 1670 1671 static void bio_dirty_fn(struct work_struct *work); 1672 1673 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1674 static DEFINE_SPINLOCK(bio_dirty_lock); 1675 static struct bio *bio_dirty_list; 1676 1677 /* 1678 * This runs in process context 1679 */ 1680 static void bio_dirty_fn(struct work_struct *work) 1681 { 1682 unsigned long flags; 1683 struct bio *bio; 1684 1685 spin_lock_irqsave(&bio_dirty_lock, flags); 1686 bio = bio_dirty_list; 1687 bio_dirty_list = NULL; 1688 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1689 1690 while (bio) { 1691 struct bio *next = bio->bi_private; 1692 1693 bio_set_pages_dirty(bio); 1694 bio_release_pages(bio); 1695 bio_put(bio); 1696 bio = next; 1697 } 1698 } 1699 1700 void bio_check_pages_dirty(struct bio *bio) 1701 { 1702 struct bio_vec *bvec; 1703 int nr_clean_pages = 0; 1704 int i; 1705 1706 bio_for_each_segment_all(bvec, bio, i) { 1707 struct page *page = bvec->bv_page; 1708 1709 if (PageDirty(page) || PageCompound(page)) { 1710 page_cache_release(page); 1711 bvec->bv_page = NULL; 1712 } else { 1713 nr_clean_pages++; 1714 } 1715 } 1716 1717 if (nr_clean_pages) { 1718 unsigned long flags; 1719 1720 spin_lock_irqsave(&bio_dirty_lock, flags); 1721 bio->bi_private = bio_dirty_list; 1722 bio_dirty_list = bio; 1723 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1724 schedule_work(&bio_dirty_work); 1725 } else { 1726 bio_put(bio); 1727 } 1728 } 1729 1730 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1731 void bio_flush_dcache_pages(struct bio *bi) 1732 { 1733 struct bio_vec bvec; 1734 struct bvec_iter iter; 1735 1736 bio_for_each_segment(bvec, bi, iter) 1737 flush_dcache_page(bvec.bv_page); 1738 } 1739 EXPORT_SYMBOL(bio_flush_dcache_pages); 1740 #endif 1741 1742 /** 1743 * bio_endio - end I/O on a bio 1744 * @bio: bio 1745 * @error: error, if any 1746 * 1747 * Description: 1748 * bio_endio() will end I/O on the whole bio. bio_endio() is the 1749 * preferred way to end I/O on a bio, it takes care of clearing 1750 * BIO_UPTODATE on error. @error is 0 on success, and and one of the 1751 * established -Exxxx (-EIO, for instance) error values in case 1752 * something went wrong. No one should call bi_end_io() directly on a 1753 * bio unless they own it and thus know that it has an end_io 1754 * function. 1755 **/ 1756 void bio_endio(struct bio *bio, int error) 1757 { 1758 while (bio) { 1759 BUG_ON(atomic_read(&bio->bi_remaining) <= 0); 1760 1761 if (error) 1762 clear_bit(BIO_UPTODATE, &bio->bi_flags); 1763 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 1764 error = -EIO; 1765 1766 if (!atomic_dec_and_test(&bio->bi_remaining)) 1767 return; 1768 1769 /* 1770 * Need to have a real endio function for chained bios, 1771 * otherwise various corner cases will break (like stacking 1772 * block devices that save/restore bi_end_io) - however, we want 1773 * to avoid unbounded recursion and blowing the stack. Tail call 1774 * optimization would handle this, but compiling with frame 1775 * pointers also disables gcc's sibling call optimization. 1776 */ 1777 if (bio->bi_end_io == bio_chain_endio) { 1778 struct bio *parent = bio->bi_private; 1779 bio_put(bio); 1780 bio = parent; 1781 } else { 1782 if (bio->bi_end_io) 1783 bio->bi_end_io(bio, error); 1784 bio = NULL; 1785 } 1786 } 1787 } 1788 EXPORT_SYMBOL(bio_endio); 1789 1790 /** 1791 * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining 1792 * @bio: bio 1793 * @error: error, if any 1794 * 1795 * For code that has saved and restored bi_end_io; thing hard before using this 1796 * function, probably you should've cloned the entire bio. 1797 **/ 1798 void bio_endio_nodec(struct bio *bio, int error) 1799 { 1800 atomic_inc(&bio->bi_remaining); 1801 bio_endio(bio, error); 1802 } 1803 EXPORT_SYMBOL(bio_endio_nodec); 1804 1805 /** 1806 * bio_split - split a bio 1807 * @bio: bio to split 1808 * @sectors: number of sectors to split from the front of @bio 1809 * @gfp: gfp mask 1810 * @bs: bio set to allocate from 1811 * 1812 * Allocates and returns a new bio which represents @sectors from the start of 1813 * @bio, and updates @bio to represent the remaining sectors. 1814 * 1815 * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's 1816 * responsibility to ensure that @bio is not freed before the split. 1817 */ 1818 struct bio *bio_split(struct bio *bio, int sectors, 1819 gfp_t gfp, struct bio_set *bs) 1820 { 1821 struct bio *split = NULL; 1822 1823 BUG_ON(sectors <= 0); 1824 BUG_ON(sectors >= bio_sectors(bio)); 1825 1826 split = bio_clone_fast(bio, gfp, bs); 1827 if (!split) 1828 return NULL; 1829 1830 split->bi_iter.bi_size = sectors << 9; 1831 1832 if (bio_integrity(split)) 1833 bio_integrity_trim(split, 0, sectors); 1834 1835 bio_advance(bio, split->bi_iter.bi_size); 1836 1837 return split; 1838 } 1839 EXPORT_SYMBOL(bio_split); 1840 1841 /** 1842 * bio_trim - trim a bio 1843 * @bio: bio to trim 1844 * @offset: number of sectors to trim from the front of @bio 1845 * @size: size we want to trim @bio to, in sectors 1846 */ 1847 void bio_trim(struct bio *bio, int offset, int size) 1848 { 1849 /* 'bio' is a cloned bio which we need to trim to match 1850 * the given offset and size. 1851 */ 1852 1853 size <<= 9; 1854 if (offset == 0 && size == bio->bi_iter.bi_size) 1855 return; 1856 1857 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1858 1859 bio_advance(bio, offset << 9); 1860 1861 bio->bi_iter.bi_size = size; 1862 } 1863 EXPORT_SYMBOL_GPL(bio_trim); 1864 1865 /* 1866 * create memory pools for biovec's in a bio_set. 1867 * use the global biovec slabs created for general use. 1868 */ 1869 mempool_t *biovec_create_pool(int pool_entries) 1870 { 1871 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX; 1872 1873 return mempool_create_slab_pool(pool_entries, bp->slab); 1874 } 1875 1876 void bioset_free(struct bio_set *bs) 1877 { 1878 if (bs->rescue_workqueue) 1879 destroy_workqueue(bs->rescue_workqueue); 1880 1881 if (bs->bio_pool) 1882 mempool_destroy(bs->bio_pool); 1883 1884 if (bs->bvec_pool) 1885 mempool_destroy(bs->bvec_pool); 1886 1887 bioset_integrity_free(bs); 1888 bio_put_slab(bs); 1889 1890 kfree(bs); 1891 } 1892 EXPORT_SYMBOL(bioset_free); 1893 1894 /** 1895 * bioset_create - Create a bio_set 1896 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1897 * @front_pad: Number of bytes to allocate in front of the returned bio 1898 * 1899 * Description: 1900 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1901 * to ask for a number of bytes to be allocated in front of the bio. 1902 * Front pad allocation is useful for embedding the bio inside 1903 * another structure, to avoid allocating extra data to go with the bio. 1904 * Note that the bio must be embedded at the END of that structure always, 1905 * or things will break badly. 1906 */ 1907 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) 1908 { 1909 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1910 struct bio_set *bs; 1911 1912 bs = kzalloc(sizeof(*bs), GFP_KERNEL); 1913 if (!bs) 1914 return NULL; 1915 1916 bs->front_pad = front_pad; 1917 1918 spin_lock_init(&bs->rescue_lock); 1919 bio_list_init(&bs->rescue_list); 1920 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1921 1922 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1923 if (!bs->bio_slab) { 1924 kfree(bs); 1925 return NULL; 1926 } 1927 1928 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); 1929 if (!bs->bio_pool) 1930 goto bad; 1931 1932 bs->bvec_pool = biovec_create_pool(pool_size); 1933 if (!bs->bvec_pool) 1934 goto bad; 1935 1936 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1937 if (!bs->rescue_workqueue) 1938 goto bad; 1939 1940 return bs; 1941 bad: 1942 bioset_free(bs); 1943 return NULL; 1944 } 1945 EXPORT_SYMBOL(bioset_create); 1946 1947 #ifdef CONFIG_BLK_CGROUP 1948 /** 1949 * bio_associate_current - associate a bio with %current 1950 * @bio: target bio 1951 * 1952 * Associate @bio with %current if it hasn't been associated yet. Block 1953 * layer will treat @bio as if it were issued by %current no matter which 1954 * task actually issues it. 1955 * 1956 * This function takes an extra reference of @task's io_context and blkcg 1957 * which will be put when @bio is released. The caller must own @bio, 1958 * ensure %current->io_context exists, and is responsible for synchronizing 1959 * calls to this function. 1960 */ 1961 int bio_associate_current(struct bio *bio) 1962 { 1963 struct io_context *ioc; 1964 struct cgroup_subsys_state *css; 1965 1966 if (bio->bi_ioc) 1967 return -EBUSY; 1968 1969 ioc = current->io_context; 1970 if (!ioc) 1971 return -ENOENT; 1972 1973 /* acquire active ref on @ioc and associate */ 1974 get_io_context_active(ioc); 1975 bio->bi_ioc = ioc; 1976 1977 /* associate blkcg if exists */ 1978 rcu_read_lock(); 1979 css = task_css(current, blkio_cgrp_id); 1980 if (css && css_tryget_online(css)) 1981 bio->bi_css = css; 1982 rcu_read_unlock(); 1983 1984 return 0; 1985 } 1986 1987 /** 1988 * bio_disassociate_task - undo bio_associate_current() 1989 * @bio: target bio 1990 */ 1991 void bio_disassociate_task(struct bio *bio) 1992 { 1993 if (bio->bi_ioc) { 1994 put_io_context(bio->bi_ioc); 1995 bio->bi_ioc = NULL; 1996 } 1997 if (bio->bi_css) { 1998 css_put(bio->bi_css); 1999 bio->bi_css = NULL; 2000 } 2001 } 2002 2003 #endif /* CONFIG_BLK_CGROUP */ 2004 2005 static void __init biovec_init_slabs(void) 2006 { 2007 int i; 2008 2009 for (i = 0; i < BIOVEC_NR_POOLS; i++) { 2010 int size; 2011 struct biovec_slab *bvs = bvec_slabs + i; 2012 2013 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2014 bvs->slab = NULL; 2015 continue; 2016 } 2017 2018 size = bvs->nr_vecs * sizeof(struct bio_vec); 2019 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2020 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2021 } 2022 } 2023 2024 static int __init init_bio(void) 2025 { 2026 bio_slab_max = 2; 2027 bio_slab_nr = 0; 2028 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); 2029 if (!bio_slabs) 2030 panic("bio: can't allocate bios\n"); 2031 2032 bio_integrity_init(); 2033 biovec_init_slabs(); 2034 2035 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); 2036 if (!fs_bio_set) 2037 panic("bio: can't allocate bios\n"); 2038 2039 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) 2040 panic("bio: can't create integrity pool\n"); 2041 2042 return 0; 2043 } 2044 subsys_initcall(init_bio); 2045