1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 4 */ 5 #include <linux/mm.h> 6 #include <linux/swap.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/uio.h> 10 #include <linux/iocontext.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/mempool.h> 16 #include <linux/workqueue.h> 17 #include <linux/cgroup.h> 18 #include <linux/blk-cgroup.h> 19 #include <linux/highmem.h> 20 21 #include <trace/events/block.h> 22 #include "blk.h" 23 #include "blk-rq-qos.h" 24 25 /* 26 * Test patch to inline a certain number of bi_io_vec's inside the bio 27 * itself, to shrink a bio data allocation from two mempool calls to one 28 */ 29 #define BIO_INLINE_VECS 4 30 31 /* 32 * if you change this list, also change bvec_alloc or things will 33 * break badly! cannot be bigger than what you can fit into an 34 * unsigned short 35 */ 36 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n } 37 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { 38 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max), 39 }; 40 #undef BV 41 42 /* 43 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 44 * IO code that does not need private memory pools. 45 */ 46 struct bio_set fs_bio_set; 47 EXPORT_SYMBOL(fs_bio_set); 48 49 /* 50 * Our slab pool management 51 */ 52 struct bio_slab { 53 struct kmem_cache *slab; 54 unsigned int slab_ref; 55 unsigned int slab_size; 56 char name[8]; 57 }; 58 static DEFINE_MUTEX(bio_slab_lock); 59 static struct bio_slab *bio_slabs; 60 static unsigned int bio_slab_nr, bio_slab_max; 61 62 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 63 { 64 unsigned int sz = sizeof(struct bio) + extra_size; 65 struct kmem_cache *slab = NULL; 66 struct bio_slab *bslab, *new_bio_slabs; 67 unsigned int new_bio_slab_max; 68 unsigned int i, entry = -1; 69 70 mutex_lock(&bio_slab_lock); 71 72 i = 0; 73 while (i < bio_slab_nr) { 74 bslab = &bio_slabs[i]; 75 76 if (!bslab->slab && entry == -1) 77 entry = i; 78 else if (bslab->slab_size == sz) { 79 slab = bslab->slab; 80 bslab->slab_ref++; 81 break; 82 } 83 i++; 84 } 85 86 if (slab) 87 goto out_unlock; 88 89 if (bio_slab_nr == bio_slab_max && entry == -1) { 90 new_bio_slab_max = bio_slab_max << 1; 91 new_bio_slabs = krealloc(bio_slabs, 92 new_bio_slab_max * sizeof(struct bio_slab), 93 GFP_KERNEL); 94 if (!new_bio_slabs) 95 goto out_unlock; 96 bio_slab_max = new_bio_slab_max; 97 bio_slabs = new_bio_slabs; 98 } 99 if (entry == -1) 100 entry = bio_slab_nr++; 101 102 bslab = &bio_slabs[entry]; 103 104 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 105 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, 106 SLAB_HWCACHE_ALIGN, NULL); 107 if (!slab) 108 goto out_unlock; 109 110 bslab->slab = slab; 111 bslab->slab_ref = 1; 112 bslab->slab_size = sz; 113 out_unlock: 114 mutex_unlock(&bio_slab_lock); 115 return slab; 116 } 117 118 static void bio_put_slab(struct bio_set *bs) 119 { 120 struct bio_slab *bslab = NULL; 121 unsigned int i; 122 123 mutex_lock(&bio_slab_lock); 124 125 for (i = 0; i < bio_slab_nr; i++) { 126 if (bs->bio_slab == bio_slabs[i].slab) { 127 bslab = &bio_slabs[i]; 128 break; 129 } 130 } 131 132 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 133 goto out; 134 135 WARN_ON(!bslab->slab_ref); 136 137 if (--bslab->slab_ref) 138 goto out; 139 140 kmem_cache_destroy(bslab->slab); 141 bslab->slab = NULL; 142 143 out: 144 mutex_unlock(&bio_slab_lock); 145 } 146 147 unsigned int bvec_nr_vecs(unsigned short idx) 148 { 149 return bvec_slabs[--idx].nr_vecs; 150 } 151 152 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 153 { 154 if (!idx) 155 return; 156 idx--; 157 158 BIO_BUG_ON(idx >= BVEC_POOL_NR); 159 160 if (idx == BVEC_POOL_MAX) { 161 mempool_free(bv, pool); 162 } else { 163 struct biovec_slab *bvs = bvec_slabs + idx; 164 165 kmem_cache_free(bvs->slab, bv); 166 } 167 } 168 169 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 170 mempool_t *pool) 171 { 172 struct bio_vec *bvl; 173 174 /* 175 * see comment near bvec_array define! 176 */ 177 switch (nr) { 178 case 1: 179 *idx = 0; 180 break; 181 case 2 ... 4: 182 *idx = 1; 183 break; 184 case 5 ... 16: 185 *idx = 2; 186 break; 187 case 17 ... 64: 188 *idx = 3; 189 break; 190 case 65 ... 128: 191 *idx = 4; 192 break; 193 case 129 ... BIO_MAX_PAGES: 194 *idx = 5; 195 break; 196 default: 197 return NULL; 198 } 199 200 /* 201 * idx now points to the pool we want to allocate from. only the 202 * 1-vec entry pool is mempool backed. 203 */ 204 if (*idx == BVEC_POOL_MAX) { 205 fallback: 206 bvl = mempool_alloc(pool, gfp_mask); 207 } else { 208 struct biovec_slab *bvs = bvec_slabs + *idx; 209 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); 210 211 /* 212 * Make this allocation restricted and don't dump info on 213 * allocation failures, since we'll fallback to the mempool 214 * in case of failure. 215 */ 216 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 217 218 /* 219 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM 220 * is set, retry with the 1-entry mempool 221 */ 222 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 223 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { 224 *idx = BVEC_POOL_MAX; 225 goto fallback; 226 } 227 } 228 229 (*idx)++; 230 return bvl; 231 } 232 233 void bio_uninit(struct bio *bio) 234 { 235 bio_disassociate_blkg(bio); 236 } 237 EXPORT_SYMBOL(bio_uninit); 238 239 static void bio_free(struct bio *bio) 240 { 241 struct bio_set *bs = bio->bi_pool; 242 void *p; 243 244 bio_uninit(bio); 245 246 if (bs) { 247 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); 248 249 /* 250 * If we have front padding, adjust the bio pointer before freeing 251 */ 252 p = bio; 253 p -= bs->front_pad; 254 255 mempool_free(p, &bs->bio_pool); 256 } else { 257 /* Bio was allocated by bio_kmalloc() */ 258 kfree(bio); 259 } 260 } 261 262 /* 263 * Users of this function have their own bio allocation. Subsequently, 264 * they must remember to pair any call to bio_init() with bio_uninit() 265 * when IO has completed, or when the bio is released. 266 */ 267 void bio_init(struct bio *bio, struct bio_vec *table, 268 unsigned short max_vecs) 269 { 270 memset(bio, 0, sizeof(*bio)); 271 atomic_set(&bio->__bi_remaining, 1); 272 atomic_set(&bio->__bi_cnt, 1); 273 274 bio->bi_io_vec = table; 275 bio->bi_max_vecs = max_vecs; 276 } 277 EXPORT_SYMBOL(bio_init); 278 279 /** 280 * bio_reset - reinitialize a bio 281 * @bio: bio to reset 282 * 283 * Description: 284 * After calling bio_reset(), @bio will be in the same state as a freshly 285 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 286 * preserved are the ones that are initialized by bio_alloc_bioset(). See 287 * comment in struct bio. 288 */ 289 void bio_reset(struct bio *bio) 290 { 291 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 292 293 bio_uninit(bio); 294 295 memset(bio, 0, BIO_RESET_BYTES); 296 bio->bi_flags = flags; 297 atomic_set(&bio->__bi_remaining, 1); 298 } 299 EXPORT_SYMBOL(bio_reset); 300 301 static struct bio *__bio_chain_endio(struct bio *bio) 302 { 303 struct bio *parent = bio->bi_private; 304 305 if (!parent->bi_status) 306 parent->bi_status = bio->bi_status; 307 bio_put(bio); 308 return parent; 309 } 310 311 static void bio_chain_endio(struct bio *bio) 312 { 313 bio_endio(__bio_chain_endio(bio)); 314 } 315 316 /** 317 * bio_chain - chain bio completions 318 * @bio: the target bio 319 * @parent: the @bio's parent bio 320 * 321 * The caller won't have a bi_end_io called when @bio completes - instead, 322 * @parent's bi_end_io won't be called until both @parent and @bio have 323 * completed; the chained bio will also be freed when it completes. 324 * 325 * The caller must not set bi_private or bi_end_io in @bio. 326 */ 327 void bio_chain(struct bio *bio, struct bio *parent) 328 { 329 BUG_ON(bio->bi_private || bio->bi_end_io); 330 331 bio->bi_private = parent; 332 bio->bi_end_io = bio_chain_endio; 333 bio_inc_remaining(parent); 334 } 335 EXPORT_SYMBOL(bio_chain); 336 337 static void bio_alloc_rescue(struct work_struct *work) 338 { 339 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 340 struct bio *bio; 341 342 while (1) { 343 spin_lock(&bs->rescue_lock); 344 bio = bio_list_pop(&bs->rescue_list); 345 spin_unlock(&bs->rescue_lock); 346 347 if (!bio) 348 break; 349 350 generic_make_request(bio); 351 } 352 } 353 354 static void punt_bios_to_rescuer(struct bio_set *bs) 355 { 356 struct bio_list punt, nopunt; 357 struct bio *bio; 358 359 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 360 return; 361 /* 362 * In order to guarantee forward progress we must punt only bios that 363 * were allocated from this bio_set; otherwise, if there was a bio on 364 * there for a stacking driver higher up in the stack, processing it 365 * could require allocating bios from this bio_set, and doing that from 366 * our own rescuer would be bad. 367 * 368 * Since bio lists are singly linked, pop them all instead of trying to 369 * remove from the middle of the list: 370 */ 371 372 bio_list_init(&punt); 373 bio_list_init(&nopunt); 374 375 while ((bio = bio_list_pop(¤t->bio_list[0]))) 376 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 377 current->bio_list[0] = nopunt; 378 379 bio_list_init(&nopunt); 380 while ((bio = bio_list_pop(¤t->bio_list[1]))) 381 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 382 current->bio_list[1] = nopunt; 383 384 spin_lock(&bs->rescue_lock); 385 bio_list_merge(&bs->rescue_list, &punt); 386 spin_unlock(&bs->rescue_lock); 387 388 queue_work(bs->rescue_workqueue, &bs->rescue_work); 389 } 390 391 /** 392 * bio_alloc_bioset - allocate a bio for I/O 393 * @gfp_mask: the GFP_* mask given to the slab allocator 394 * @nr_iovecs: number of iovecs to pre-allocate 395 * @bs: the bio_set to allocate from. 396 * 397 * Description: 398 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 399 * backed by the @bs's mempool. 400 * 401 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will 402 * always be able to allocate a bio. This is due to the mempool guarantees. 403 * To make this work, callers must never allocate more than 1 bio at a time 404 * from this pool. Callers that need to allocate more than 1 bio must always 405 * submit the previously allocated bio for IO before attempting to allocate 406 * a new one. Failure to do so can cause deadlocks under memory pressure. 407 * 408 * Note that when running under generic_make_request() (i.e. any block 409 * driver), bios are not submitted until after you return - see the code in 410 * generic_make_request() that converts recursion into iteration, to prevent 411 * stack overflows. 412 * 413 * This would normally mean allocating multiple bios under 414 * generic_make_request() would be susceptible to deadlocks, but we have 415 * deadlock avoidance code that resubmits any blocked bios from a rescuer 416 * thread. 417 * 418 * However, we do not guarantee forward progress for allocations from other 419 * mempools. Doing multiple allocations from the same mempool under 420 * generic_make_request() should be avoided - instead, use bio_set's front_pad 421 * for per bio allocations. 422 * 423 * RETURNS: 424 * Pointer to new bio on success, NULL on failure. 425 */ 426 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs, 427 struct bio_set *bs) 428 { 429 gfp_t saved_gfp = gfp_mask; 430 unsigned front_pad; 431 unsigned inline_vecs; 432 struct bio_vec *bvl = NULL; 433 struct bio *bio; 434 void *p; 435 436 if (!bs) { 437 if (nr_iovecs > UIO_MAXIOV) 438 return NULL; 439 440 p = kmalloc(sizeof(struct bio) + 441 nr_iovecs * sizeof(struct bio_vec), 442 gfp_mask); 443 front_pad = 0; 444 inline_vecs = nr_iovecs; 445 } else { 446 /* should not use nobvec bioset for nr_iovecs > 0 */ 447 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && 448 nr_iovecs > 0)) 449 return NULL; 450 /* 451 * generic_make_request() converts recursion to iteration; this 452 * means if we're running beneath it, any bios we allocate and 453 * submit will not be submitted (and thus freed) until after we 454 * return. 455 * 456 * This exposes us to a potential deadlock if we allocate 457 * multiple bios from the same bio_set() while running 458 * underneath generic_make_request(). If we were to allocate 459 * multiple bios (say a stacking block driver that was splitting 460 * bios), we would deadlock if we exhausted the mempool's 461 * reserve. 462 * 463 * We solve this, and guarantee forward progress, with a rescuer 464 * workqueue per bio_set. If we go to allocate and there are 465 * bios on current->bio_list, we first try the allocation 466 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those 467 * bios we would be blocking to the rescuer workqueue before 468 * we retry with the original gfp_flags. 469 */ 470 471 if (current->bio_list && 472 (!bio_list_empty(¤t->bio_list[0]) || 473 !bio_list_empty(¤t->bio_list[1])) && 474 bs->rescue_workqueue) 475 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 476 477 p = mempool_alloc(&bs->bio_pool, gfp_mask); 478 if (!p && gfp_mask != saved_gfp) { 479 punt_bios_to_rescuer(bs); 480 gfp_mask = saved_gfp; 481 p = mempool_alloc(&bs->bio_pool, gfp_mask); 482 } 483 484 front_pad = bs->front_pad; 485 inline_vecs = BIO_INLINE_VECS; 486 } 487 488 if (unlikely(!p)) 489 return NULL; 490 491 bio = p + front_pad; 492 bio_init(bio, NULL, 0); 493 494 if (nr_iovecs > inline_vecs) { 495 unsigned long idx = 0; 496 497 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); 498 if (!bvl && gfp_mask != saved_gfp) { 499 punt_bios_to_rescuer(bs); 500 gfp_mask = saved_gfp; 501 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); 502 } 503 504 if (unlikely(!bvl)) 505 goto err_free; 506 507 bio->bi_flags |= idx << BVEC_POOL_OFFSET; 508 } else if (nr_iovecs) { 509 bvl = bio->bi_inline_vecs; 510 } 511 512 bio->bi_pool = bs; 513 bio->bi_max_vecs = nr_iovecs; 514 bio->bi_io_vec = bvl; 515 return bio; 516 517 err_free: 518 mempool_free(p, &bs->bio_pool); 519 return NULL; 520 } 521 EXPORT_SYMBOL(bio_alloc_bioset); 522 523 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start) 524 { 525 unsigned long flags; 526 struct bio_vec bv; 527 struct bvec_iter iter; 528 529 __bio_for_each_segment(bv, bio, iter, start) { 530 char *data = bvec_kmap_irq(&bv, &flags); 531 memset(data, 0, bv.bv_len); 532 flush_dcache_page(bv.bv_page); 533 bvec_kunmap_irq(data, &flags); 534 } 535 } 536 EXPORT_SYMBOL(zero_fill_bio_iter); 537 538 /** 539 * bio_put - release a reference to a bio 540 * @bio: bio to release reference to 541 * 542 * Description: 543 * Put a reference to a &struct bio, either one you have gotten with 544 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 545 **/ 546 void bio_put(struct bio *bio) 547 { 548 if (!bio_flagged(bio, BIO_REFFED)) 549 bio_free(bio); 550 else { 551 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 552 553 /* 554 * last put frees it 555 */ 556 if (atomic_dec_and_test(&bio->__bi_cnt)) 557 bio_free(bio); 558 } 559 } 560 EXPORT_SYMBOL(bio_put); 561 562 /** 563 * __bio_clone_fast - clone a bio that shares the original bio's biovec 564 * @bio: destination bio 565 * @bio_src: bio to clone 566 * 567 * Clone a &bio. Caller will own the returned bio, but not 568 * the actual data it points to. Reference count of returned 569 * bio will be one. 570 * 571 * Caller must ensure that @bio_src is not freed before @bio. 572 */ 573 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 574 { 575 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); 576 577 /* 578 * most users will be overriding ->bi_disk with a new target, 579 * so we don't set nor calculate new physical/hw segment counts here 580 */ 581 bio->bi_disk = bio_src->bi_disk; 582 bio->bi_partno = bio_src->bi_partno; 583 bio_set_flag(bio, BIO_CLONED); 584 if (bio_flagged(bio_src, BIO_THROTTLED)) 585 bio_set_flag(bio, BIO_THROTTLED); 586 bio->bi_opf = bio_src->bi_opf; 587 bio->bi_ioprio = bio_src->bi_ioprio; 588 bio->bi_write_hint = bio_src->bi_write_hint; 589 bio->bi_iter = bio_src->bi_iter; 590 bio->bi_io_vec = bio_src->bi_io_vec; 591 592 bio_clone_blkg_association(bio, bio_src); 593 blkcg_bio_issue_init(bio); 594 } 595 EXPORT_SYMBOL(__bio_clone_fast); 596 597 /** 598 * bio_clone_fast - clone a bio that shares the original bio's biovec 599 * @bio: bio to clone 600 * @gfp_mask: allocation priority 601 * @bs: bio_set to allocate from 602 * 603 * Like __bio_clone_fast, only also allocates the returned bio 604 */ 605 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 606 { 607 struct bio *b; 608 609 b = bio_alloc_bioset(gfp_mask, 0, bs); 610 if (!b) 611 return NULL; 612 613 __bio_clone_fast(b, bio); 614 615 if (bio_integrity(bio)) { 616 int ret; 617 618 ret = bio_integrity_clone(b, bio, gfp_mask); 619 620 if (ret < 0) { 621 bio_put(b); 622 return NULL; 623 } 624 } 625 626 return b; 627 } 628 EXPORT_SYMBOL(bio_clone_fast); 629 630 static inline bool page_is_mergeable(const struct bio_vec *bv, 631 struct page *page, unsigned int len, unsigned int off, 632 bool *same_page) 633 { 634 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + 635 bv->bv_offset + bv->bv_len - 1; 636 phys_addr_t page_addr = page_to_phys(page); 637 638 if (vec_end_addr + 1 != page_addr + off) 639 return false; 640 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 641 return false; 642 643 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); 644 if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page) 645 return false; 646 return true; 647 } 648 649 static bool bio_try_merge_pc_page(struct request_queue *q, struct bio *bio, 650 struct page *page, unsigned len, unsigned offset, 651 bool *same_page) 652 { 653 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 654 unsigned long mask = queue_segment_boundary(q); 655 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; 656 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 657 658 if ((addr1 | mask) != (addr2 | mask)) 659 return false; 660 if (bv->bv_len + len > queue_max_segment_size(q)) 661 return false; 662 return __bio_try_merge_page(bio, page, len, offset, same_page); 663 } 664 665 /** 666 * __bio_add_pc_page - attempt to add page to passthrough bio 667 * @q: the target queue 668 * @bio: destination bio 669 * @page: page to add 670 * @len: vec entry length 671 * @offset: vec entry offset 672 * @same_page: return if the merge happen inside the same page 673 * 674 * Attempt to add a page to the bio_vec maplist. This can fail for a 675 * number of reasons, such as the bio being full or target block device 676 * limitations. The target block device must allow bio's up to PAGE_SIZE, 677 * so it is always possible to add a single page to an empty bio. 678 * 679 * This should only be used by passthrough bios. 680 */ 681 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio, 682 struct page *page, unsigned int len, unsigned int offset, 683 bool *same_page) 684 { 685 struct bio_vec *bvec; 686 687 /* 688 * cloned bio must not modify vec list 689 */ 690 if (unlikely(bio_flagged(bio, BIO_CLONED))) 691 return 0; 692 693 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q)) 694 return 0; 695 696 if (bio->bi_vcnt > 0) { 697 if (bio_try_merge_pc_page(q, bio, page, len, offset, same_page)) 698 return len; 699 700 /* 701 * If the queue doesn't support SG gaps and adding this segment 702 * would create a gap, disallow it. 703 */ 704 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 705 if (bvec_gap_to_prev(q, bvec, offset)) 706 return 0; 707 } 708 709 if (bio_full(bio, len)) 710 return 0; 711 712 if (bio->bi_vcnt >= queue_max_segments(q)) 713 return 0; 714 715 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 716 bvec->bv_page = page; 717 bvec->bv_len = len; 718 bvec->bv_offset = offset; 719 bio->bi_vcnt++; 720 bio->bi_iter.bi_size += len; 721 return len; 722 } 723 724 int bio_add_pc_page(struct request_queue *q, struct bio *bio, 725 struct page *page, unsigned int len, unsigned int offset) 726 { 727 bool same_page = false; 728 return __bio_add_pc_page(q, bio, page, len, offset, &same_page); 729 } 730 EXPORT_SYMBOL(bio_add_pc_page); 731 732 /** 733 * __bio_try_merge_page - try appending data to an existing bvec. 734 * @bio: destination bio 735 * @page: start page to add 736 * @len: length of the data to add 737 * @off: offset of the data relative to @page 738 * @same_page: return if the segment has been merged inside the same page 739 * 740 * Try to add the data at @page + @off to the last bvec of @bio. This is a 741 * a useful optimisation for file systems with a block size smaller than the 742 * page size. 743 * 744 * Warn if (@len, @off) crosses pages in case that @same_page is true. 745 * 746 * Return %true on success or %false on failure. 747 */ 748 bool __bio_try_merge_page(struct bio *bio, struct page *page, 749 unsigned int len, unsigned int off, bool *same_page) 750 { 751 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 752 return false; 753 754 if (bio->bi_vcnt > 0) { 755 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 756 757 if (page_is_mergeable(bv, page, len, off, same_page)) { 758 bv->bv_len += len; 759 bio->bi_iter.bi_size += len; 760 return true; 761 } 762 } 763 return false; 764 } 765 EXPORT_SYMBOL_GPL(__bio_try_merge_page); 766 767 /** 768 * __bio_add_page - add page(s) to a bio in a new segment 769 * @bio: destination bio 770 * @page: start page to add 771 * @len: length of the data to add, may cross pages 772 * @off: offset of the data relative to @page, may cross pages 773 * 774 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 775 * that @bio has space for another bvec. 776 */ 777 void __bio_add_page(struct bio *bio, struct page *page, 778 unsigned int len, unsigned int off) 779 { 780 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt]; 781 782 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 783 WARN_ON_ONCE(bio_full(bio, len)); 784 785 bv->bv_page = page; 786 bv->bv_offset = off; 787 bv->bv_len = len; 788 789 bio->bi_iter.bi_size += len; 790 bio->bi_vcnt++; 791 792 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page))) 793 bio_set_flag(bio, BIO_WORKINGSET); 794 } 795 EXPORT_SYMBOL_GPL(__bio_add_page); 796 797 /** 798 * bio_add_page - attempt to add page(s) to bio 799 * @bio: destination bio 800 * @page: start page to add 801 * @len: vec entry length, may cross pages 802 * @offset: vec entry offset relative to @page, may cross pages 803 * 804 * Attempt to add page(s) to the bio_vec maplist. This will only fail 805 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 806 */ 807 int bio_add_page(struct bio *bio, struct page *page, 808 unsigned int len, unsigned int offset) 809 { 810 bool same_page = false; 811 812 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { 813 if (bio_full(bio, len)) 814 return 0; 815 __bio_add_page(bio, page, len, offset); 816 } 817 return len; 818 } 819 EXPORT_SYMBOL(bio_add_page); 820 821 void bio_release_pages(struct bio *bio, bool mark_dirty) 822 { 823 struct bvec_iter_all iter_all; 824 struct bio_vec *bvec; 825 826 if (bio_flagged(bio, BIO_NO_PAGE_REF)) 827 return; 828 829 bio_for_each_segment_all(bvec, bio, iter_all) { 830 if (mark_dirty && !PageCompound(bvec->bv_page)) 831 set_page_dirty_lock(bvec->bv_page); 832 put_page(bvec->bv_page); 833 } 834 } 835 836 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter) 837 { 838 const struct bio_vec *bv = iter->bvec; 839 unsigned int len; 840 size_t size; 841 842 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len)) 843 return -EINVAL; 844 845 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count); 846 size = bio_add_page(bio, bv->bv_page, len, 847 bv->bv_offset + iter->iov_offset); 848 if (unlikely(size != len)) 849 return -EINVAL; 850 iov_iter_advance(iter, size); 851 return 0; 852 } 853 854 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 855 856 /** 857 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 858 * @bio: bio to add pages to 859 * @iter: iov iterator describing the region to be mapped 860 * 861 * Pins pages from *iter and appends them to @bio's bvec array. The 862 * pages will have to be released using put_page() when done. 863 * For multi-segment *iter, this function only adds pages from the 864 * the next non-empty segment of the iov iterator. 865 */ 866 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 867 { 868 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 869 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 870 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 871 struct page **pages = (struct page **)bv; 872 bool same_page = false; 873 ssize_t size, left; 874 unsigned len, i; 875 size_t offset; 876 877 /* 878 * Move page array up in the allocated memory for the bio vecs as far as 879 * possible so that we can start filling biovecs from the beginning 880 * without overwriting the temporary page array. 881 */ 882 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 883 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 884 885 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 886 if (unlikely(size <= 0)) 887 return size ? size : -EFAULT; 888 889 for (left = size, i = 0; left > 0; left -= len, i++) { 890 struct page *page = pages[i]; 891 892 len = min_t(size_t, PAGE_SIZE - offset, left); 893 894 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) { 895 if (same_page) 896 put_page(page); 897 } else { 898 if (WARN_ON_ONCE(bio_full(bio, len))) 899 return -EINVAL; 900 __bio_add_page(bio, page, len, offset); 901 } 902 offset = 0; 903 } 904 905 iov_iter_advance(iter, size); 906 return 0; 907 } 908 909 /** 910 * bio_iov_iter_get_pages - add user or kernel pages to a bio 911 * @bio: bio to add pages to 912 * @iter: iov iterator describing the region to be added 913 * 914 * This takes either an iterator pointing to user memory, or one pointing to 915 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 916 * map them into the kernel. On IO completion, the caller should put those 917 * pages. If we're adding kernel pages, and the caller told us it's safe to 918 * do so, we just have to add the pages to the bio directly. We don't grab an 919 * extra reference to those pages (the user should already have that), and we 920 * don't put the page on IO completion. The caller needs to check if the bio is 921 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be 922 * released. 923 * 924 * The function tries, but does not guarantee, to pin as many pages as 925 * fit into the bio, or are requested in *iter, whatever is smaller. If 926 * MM encounters an error pinning the requested pages, it stops. Error 927 * is returned only if 0 pages could be pinned. 928 */ 929 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 930 { 931 const bool is_bvec = iov_iter_is_bvec(iter); 932 int ret; 933 934 if (WARN_ON_ONCE(bio->bi_vcnt)) 935 return -EINVAL; 936 937 do { 938 if (is_bvec) 939 ret = __bio_iov_bvec_add_pages(bio, iter); 940 else 941 ret = __bio_iov_iter_get_pages(bio, iter); 942 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); 943 944 if (is_bvec) 945 bio_set_flag(bio, BIO_NO_PAGE_REF); 946 return bio->bi_vcnt ? 0 : ret; 947 } 948 949 static void submit_bio_wait_endio(struct bio *bio) 950 { 951 complete(bio->bi_private); 952 } 953 954 /** 955 * submit_bio_wait - submit a bio, and wait until it completes 956 * @bio: The &struct bio which describes the I/O 957 * 958 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 959 * bio_endio() on failure. 960 * 961 * WARNING: Unlike to how submit_bio() is usually used, this function does not 962 * result in bio reference to be consumed. The caller must drop the reference 963 * on his own. 964 */ 965 int submit_bio_wait(struct bio *bio) 966 { 967 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map); 968 969 bio->bi_private = &done; 970 bio->bi_end_io = submit_bio_wait_endio; 971 bio->bi_opf |= REQ_SYNC; 972 submit_bio(bio); 973 wait_for_completion_io(&done); 974 975 return blk_status_to_errno(bio->bi_status); 976 } 977 EXPORT_SYMBOL(submit_bio_wait); 978 979 /** 980 * bio_advance - increment/complete a bio by some number of bytes 981 * @bio: bio to advance 982 * @bytes: number of bytes to complete 983 * 984 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 985 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 986 * be updated on the last bvec as well. 987 * 988 * @bio will then represent the remaining, uncompleted portion of the io. 989 */ 990 void bio_advance(struct bio *bio, unsigned bytes) 991 { 992 if (bio_integrity(bio)) 993 bio_integrity_advance(bio, bytes); 994 995 bio_advance_iter(bio, &bio->bi_iter, bytes); 996 } 997 EXPORT_SYMBOL(bio_advance); 998 999 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 1000 struct bio *src, struct bvec_iter *src_iter) 1001 { 1002 struct bio_vec src_bv, dst_bv; 1003 void *src_p, *dst_p; 1004 unsigned bytes; 1005 1006 while (src_iter->bi_size && dst_iter->bi_size) { 1007 src_bv = bio_iter_iovec(src, *src_iter); 1008 dst_bv = bio_iter_iovec(dst, *dst_iter); 1009 1010 bytes = min(src_bv.bv_len, dst_bv.bv_len); 1011 1012 src_p = kmap_atomic(src_bv.bv_page); 1013 dst_p = kmap_atomic(dst_bv.bv_page); 1014 1015 memcpy(dst_p + dst_bv.bv_offset, 1016 src_p + src_bv.bv_offset, 1017 bytes); 1018 1019 kunmap_atomic(dst_p); 1020 kunmap_atomic(src_p); 1021 1022 flush_dcache_page(dst_bv.bv_page); 1023 1024 bio_advance_iter(src, src_iter, bytes); 1025 bio_advance_iter(dst, dst_iter, bytes); 1026 } 1027 } 1028 EXPORT_SYMBOL(bio_copy_data_iter); 1029 1030 /** 1031 * bio_copy_data - copy contents of data buffers from one bio to another 1032 * @src: source bio 1033 * @dst: destination bio 1034 * 1035 * Stops when it reaches the end of either @src or @dst - that is, copies 1036 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1037 */ 1038 void bio_copy_data(struct bio *dst, struct bio *src) 1039 { 1040 struct bvec_iter src_iter = src->bi_iter; 1041 struct bvec_iter dst_iter = dst->bi_iter; 1042 1043 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1044 } 1045 EXPORT_SYMBOL(bio_copy_data); 1046 1047 /** 1048 * bio_list_copy_data - copy contents of data buffers from one chain of bios to 1049 * another 1050 * @src: source bio list 1051 * @dst: destination bio list 1052 * 1053 * Stops when it reaches the end of either the @src list or @dst list - that is, 1054 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of 1055 * bios). 1056 */ 1057 void bio_list_copy_data(struct bio *dst, struct bio *src) 1058 { 1059 struct bvec_iter src_iter = src->bi_iter; 1060 struct bvec_iter dst_iter = dst->bi_iter; 1061 1062 while (1) { 1063 if (!src_iter.bi_size) { 1064 src = src->bi_next; 1065 if (!src) 1066 break; 1067 1068 src_iter = src->bi_iter; 1069 } 1070 1071 if (!dst_iter.bi_size) { 1072 dst = dst->bi_next; 1073 if (!dst) 1074 break; 1075 1076 dst_iter = dst->bi_iter; 1077 } 1078 1079 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1080 } 1081 } 1082 EXPORT_SYMBOL(bio_list_copy_data); 1083 1084 struct bio_map_data { 1085 int is_our_pages; 1086 struct iov_iter iter; 1087 struct iovec iov[]; 1088 }; 1089 1090 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data, 1091 gfp_t gfp_mask) 1092 { 1093 struct bio_map_data *bmd; 1094 if (data->nr_segs > UIO_MAXIOV) 1095 return NULL; 1096 1097 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask); 1098 if (!bmd) 1099 return NULL; 1100 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs); 1101 bmd->iter = *data; 1102 bmd->iter.iov = bmd->iov; 1103 return bmd; 1104 } 1105 1106 /** 1107 * bio_copy_from_iter - copy all pages from iov_iter to bio 1108 * @bio: The &struct bio which describes the I/O as destination 1109 * @iter: iov_iter as source 1110 * 1111 * Copy all pages from iov_iter to bio. 1112 * Returns 0 on success, or error on failure. 1113 */ 1114 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter) 1115 { 1116 struct bio_vec *bvec; 1117 struct bvec_iter_all iter_all; 1118 1119 bio_for_each_segment_all(bvec, bio, iter_all) { 1120 ssize_t ret; 1121 1122 ret = copy_page_from_iter(bvec->bv_page, 1123 bvec->bv_offset, 1124 bvec->bv_len, 1125 iter); 1126 1127 if (!iov_iter_count(iter)) 1128 break; 1129 1130 if (ret < bvec->bv_len) 1131 return -EFAULT; 1132 } 1133 1134 return 0; 1135 } 1136 1137 /** 1138 * bio_copy_to_iter - copy all pages from bio to iov_iter 1139 * @bio: The &struct bio which describes the I/O as source 1140 * @iter: iov_iter as destination 1141 * 1142 * Copy all pages from bio to iov_iter. 1143 * Returns 0 on success, or error on failure. 1144 */ 1145 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 1146 { 1147 struct bio_vec *bvec; 1148 struct bvec_iter_all iter_all; 1149 1150 bio_for_each_segment_all(bvec, bio, iter_all) { 1151 ssize_t ret; 1152 1153 ret = copy_page_to_iter(bvec->bv_page, 1154 bvec->bv_offset, 1155 bvec->bv_len, 1156 &iter); 1157 1158 if (!iov_iter_count(&iter)) 1159 break; 1160 1161 if (ret < bvec->bv_len) 1162 return -EFAULT; 1163 } 1164 1165 return 0; 1166 } 1167 1168 void bio_free_pages(struct bio *bio) 1169 { 1170 struct bio_vec *bvec; 1171 struct bvec_iter_all iter_all; 1172 1173 bio_for_each_segment_all(bvec, bio, iter_all) 1174 __free_page(bvec->bv_page); 1175 } 1176 EXPORT_SYMBOL(bio_free_pages); 1177 1178 /** 1179 * bio_uncopy_user - finish previously mapped bio 1180 * @bio: bio being terminated 1181 * 1182 * Free pages allocated from bio_copy_user_iov() and write back data 1183 * to user space in case of a read. 1184 */ 1185 int bio_uncopy_user(struct bio *bio) 1186 { 1187 struct bio_map_data *bmd = bio->bi_private; 1188 int ret = 0; 1189 1190 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1191 /* 1192 * if we're in a workqueue, the request is orphaned, so 1193 * don't copy into a random user address space, just free 1194 * and return -EINTR so user space doesn't expect any data. 1195 */ 1196 if (!current->mm) 1197 ret = -EINTR; 1198 else if (bio_data_dir(bio) == READ) 1199 ret = bio_copy_to_iter(bio, bmd->iter); 1200 if (bmd->is_our_pages) 1201 bio_free_pages(bio); 1202 } 1203 kfree(bmd); 1204 bio_put(bio); 1205 return ret; 1206 } 1207 1208 /** 1209 * bio_copy_user_iov - copy user data to bio 1210 * @q: destination block queue 1211 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1212 * @iter: iovec iterator 1213 * @gfp_mask: memory allocation flags 1214 * 1215 * Prepares and returns a bio for indirect user io, bouncing data 1216 * to/from kernel pages as necessary. Must be paired with 1217 * call bio_uncopy_user() on io completion. 1218 */ 1219 struct bio *bio_copy_user_iov(struct request_queue *q, 1220 struct rq_map_data *map_data, 1221 struct iov_iter *iter, 1222 gfp_t gfp_mask) 1223 { 1224 struct bio_map_data *bmd; 1225 struct page *page; 1226 struct bio *bio; 1227 int i = 0, ret; 1228 int nr_pages; 1229 unsigned int len = iter->count; 1230 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 1231 1232 bmd = bio_alloc_map_data(iter, gfp_mask); 1233 if (!bmd) 1234 return ERR_PTR(-ENOMEM); 1235 1236 /* 1237 * We need to do a deep copy of the iov_iter including the iovecs. 1238 * The caller provided iov might point to an on-stack or otherwise 1239 * shortlived one. 1240 */ 1241 bmd->is_our_pages = map_data ? 0 : 1; 1242 1243 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE); 1244 if (nr_pages > BIO_MAX_PAGES) 1245 nr_pages = BIO_MAX_PAGES; 1246 1247 ret = -ENOMEM; 1248 bio = bio_kmalloc(gfp_mask, nr_pages); 1249 if (!bio) 1250 goto out_bmd; 1251 1252 ret = 0; 1253 1254 if (map_data) { 1255 nr_pages = 1 << map_data->page_order; 1256 i = map_data->offset / PAGE_SIZE; 1257 } 1258 while (len) { 1259 unsigned int bytes = PAGE_SIZE; 1260 1261 bytes -= offset; 1262 1263 if (bytes > len) 1264 bytes = len; 1265 1266 if (map_data) { 1267 if (i == map_data->nr_entries * nr_pages) { 1268 ret = -ENOMEM; 1269 break; 1270 } 1271 1272 page = map_data->pages[i / nr_pages]; 1273 page += (i % nr_pages); 1274 1275 i++; 1276 } else { 1277 page = alloc_page(q->bounce_gfp | gfp_mask); 1278 if (!page) { 1279 ret = -ENOMEM; 1280 break; 1281 } 1282 } 1283 1284 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) { 1285 if (!map_data) 1286 __free_page(page); 1287 break; 1288 } 1289 1290 len -= bytes; 1291 offset = 0; 1292 } 1293 1294 if (ret) 1295 goto cleanup; 1296 1297 if (map_data) 1298 map_data->offset += bio->bi_iter.bi_size; 1299 1300 /* 1301 * success 1302 */ 1303 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) || 1304 (map_data && map_data->from_user)) { 1305 ret = bio_copy_from_iter(bio, iter); 1306 if (ret) 1307 goto cleanup; 1308 } else { 1309 if (bmd->is_our_pages) 1310 zero_fill_bio(bio); 1311 iov_iter_advance(iter, bio->bi_iter.bi_size); 1312 } 1313 1314 bio->bi_private = bmd; 1315 if (map_data && map_data->null_mapped) 1316 bio_set_flag(bio, BIO_NULL_MAPPED); 1317 return bio; 1318 cleanup: 1319 if (!map_data) 1320 bio_free_pages(bio); 1321 bio_put(bio); 1322 out_bmd: 1323 kfree(bmd); 1324 return ERR_PTR(ret); 1325 } 1326 1327 /** 1328 * bio_map_user_iov - map user iovec into bio 1329 * @q: the struct request_queue for the bio 1330 * @iter: iovec iterator 1331 * @gfp_mask: memory allocation flags 1332 * 1333 * Map the user space address into a bio suitable for io to a block 1334 * device. Returns an error pointer in case of error. 1335 */ 1336 struct bio *bio_map_user_iov(struct request_queue *q, 1337 struct iov_iter *iter, 1338 gfp_t gfp_mask) 1339 { 1340 int j; 1341 struct bio *bio; 1342 int ret; 1343 1344 if (!iov_iter_count(iter)) 1345 return ERR_PTR(-EINVAL); 1346 1347 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES)); 1348 if (!bio) 1349 return ERR_PTR(-ENOMEM); 1350 1351 while (iov_iter_count(iter)) { 1352 struct page **pages; 1353 ssize_t bytes; 1354 size_t offs, added = 0; 1355 int npages; 1356 1357 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs); 1358 if (unlikely(bytes <= 0)) { 1359 ret = bytes ? bytes : -EFAULT; 1360 goto out_unmap; 1361 } 1362 1363 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE); 1364 1365 if (unlikely(offs & queue_dma_alignment(q))) { 1366 ret = -EINVAL; 1367 j = 0; 1368 } else { 1369 for (j = 0; j < npages; j++) { 1370 struct page *page = pages[j]; 1371 unsigned int n = PAGE_SIZE - offs; 1372 bool same_page = false; 1373 1374 if (n > bytes) 1375 n = bytes; 1376 1377 if (!__bio_add_pc_page(q, bio, page, n, offs, 1378 &same_page)) { 1379 if (same_page) 1380 put_page(page); 1381 break; 1382 } 1383 1384 added += n; 1385 bytes -= n; 1386 offs = 0; 1387 } 1388 iov_iter_advance(iter, added); 1389 } 1390 /* 1391 * release the pages we didn't map into the bio, if any 1392 */ 1393 while (j < npages) 1394 put_page(pages[j++]); 1395 kvfree(pages); 1396 /* couldn't stuff something into bio? */ 1397 if (bytes) 1398 break; 1399 } 1400 1401 bio_set_flag(bio, BIO_USER_MAPPED); 1402 1403 /* 1404 * subtle -- if bio_map_user_iov() ended up bouncing a bio, 1405 * it would normally disappear when its bi_end_io is run. 1406 * however, we need it for the unmap, so grab an extra 1407 * reference to it 1408 */ 1409 bio_get(bio); 1410 return bio; 1411 1412 out_unmap: 1413 bio_release_pages(bio, false); 1414 bio_put(bio); 1415 return ERR_PTR(ret); 1416 } 1417 1418 /** 1419 * bio_unmap_user - unmap a bio 1420 * @bio: the bio being unmapped 1421 * 1422 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from 1423 * process context. 1424 * 1425 * bio_unmap_user() may sleep. 1426 */ 1427 void bio_unmap_user(struct bio *bio) 1428 { 1429 bio_release_pages(bio, bio_data_dir(bio) == READ); 1430 bio_put(bio); 1431 bio_put(bio); 1432 } 1433 1434 static void bio_invalidate_vmalloc_pages(struct bio *bio) 1435 { 1436 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE 1437 if (bio->bi_private && !op_is_write(bio_op(bio))) { 1438 unsigned long i, len = 0; 1439 1440 for (i = 0; i < bio->bi_vcnt; i++) 1441 len += bio->bi_io_vec[i].bv_len; 1442 invalidate_kernel_vmap_range(bio->bi_private, len); 1443 } 1444 #endif 1445 } 1446 1447 static void bio_map_kern_endio(struct bio *bio) 1448 { 1449 bio_invalidate_vmalloc_pages(bio); 1450 bio_put(bio); 1451 } 1452 1453 /** 1454 * bio_map_kern - map kernel address into bio 1455 * @q: the struct request_queue for the bio 1456 * @data: pointer to buffer to map 1457 * @len: length in bytes 1458 * @gfp_mask: allocation flags for bio allocation 1459 * 1460 * Map the kernel address into a bio suitable for io to a block 1461 * device. Returns an error pointer in case of error. 1462 */ 1463 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1464 gfp_t gfp_mask) 1465 { 1466 unsigned long kaddr = (unsigned long)data; 1467 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1468 unsigned long start = kaddr >> PAGE_SHIFT; 1469 const int nr_pages = end - start; 1470 bool is_vmalloc = is_vmalloc_addr(data); 1471 struct page *page; 1472 int offset, i; 1473 struct bio *bio; 1474 1475 bio = bio_kmalloc(gfp_mask, nr_pages); 1476 if (!bio) 1477 return ERR_PTR(-ENOMEM); 1478 1479 if (is_vmalloc) { 1480 flush_kernel_vmap_range(data, len); 1481 bio->bi_private = data; 1482 } 1483 1484 offset = offset_in_page(kaddr); 1485 for (i = 0; i < nr_pages; i++) { 1486 unsigned int bytes = PAGE_SIZE - offset; 1487 1488 if (len <= 0) 1489 break; 1490 1491 if (bytes > len) 1492 bytes = len; 1493 1494 if (!is_vmalloc) 1495 page = virt_to_page(data); 1496 else 1497 page = vmalloc_to_page(data); 1498 if (bio_add_pc_page(q, bio, page, bytes, 1499 offset) < bytes) { 1500 /* we don't support partial mappings */ 1501 bio_put(bio); 1502 return ERR_PTR(-EINVAL); 1503 } 1504 1505 data += bytes; 1506 len -= bytes; 1507 offset = 0; 1508 } 1509 1510 bio->bi_end_io = bio_map_kern_endio; 1511 return bio; 1512 } 1513 1514 static void bio_copy_kern_endio(struct bio *bio) 1515 { 1516 bio_free_pages(bio); 1517 bio_put(bio); 1518 } 1519 1520 static void bio_copy_kern_endio_read(struct bio *bio) 1521 { 1522 char *p = bio->bi_private; 1523 struct bio_vec *bvec; 1524 struct bvec_iter_all iter_all; 1525 1526 bio_for_each_segment_all(bvec, bio, iter_all) { 1527 memcpy(p, page_address(bvec->bv_page), bvec->bv_len); 1528 p += bvec->bv_len; 1529 } 1530 1531 bio_copy_kern_endio(bio); 1532 } 1533 1534 /** 1535 * bio_copy_kern - copy kernel address into bio 1536 * @q: the struct request_queue for the bio 1537 * @data: pointer to buffer to copy 1538 * @len: length in bytes 1539 * @gfp_mask: allocation flags for bio and page allocation 1540 * @reading: data direction is READ 1541 * 1542 * copy the kernel address into a bio suitable for io to a block 1543 * device. Returns an error pointer in case of error. 1544 */ 1545 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1546 gfp_t gfp_mask, int reading) 1547 { 1548 unsigned long kaddr = (unsigned long)data; 1549 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1550 unsigned long start = kaddr >> PAGE_SHIFT; 1551 struct bio *bio; 1552 void *p = data; 1553 int nr_pages = 0; 1554 1555 /* 1556 * Overflow, abort 1557 */ 1558 if (end < start) 1559 return ERR_PTR(-EINVAL); 1560 1561 nr_pages = end - start; 1562 bio = bio_kmalloc(gfp_mask, nr_pages); 1563 if (!bio) 1564 return ERR_PTR(-ENOMEM); 1565 1566 while (len) { 1567 struct page *page; 1568 unsigned int bytes = PAGE_SIZE; 1569 1570 if (bytes > len) 1571 bytes = len; 1572 1573 page = alloc_page(q->bounce_gfp | gfp_mask); 1574 if (!page) 1575 goto cleanup; 1576 1577 if (!reading) 1578 memcpy(page_address(page), p, bytes); 1579 1580 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 1581 break; 1582 1583 len -= bytes; 1584 p += bytes; 1585 } 1586 1587 if (reading) { 1588 bio->bi_end_io = bio_copy_kern_endio_read; 1589 bio->bi_private = data; 1590 } else { 1591 bio->bi_end_io = bio_copy_kern_endio; 1592 } 1593 1594 return bio; 1595 1596 cleanup: 1597 bio_free_pages(bio); 1598 bio_put(bio); 1599 return ERR_PTR(-ENOMEM); 1600 } 1601 1602 /* 1603 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1604 * for performing direct-IO in BIOs. 1605 * 1606 * The problem is that we cannot run set_page_dirty() from interrupt context 1607 * because the required locks are not interrupt-safe. So what we can do is to 1608 * mark the pages dirty _before_ performing IO. And in interrupt context, 1609 * check that the pages are still dirty. If so, fine. If not, redirty them 1610 * in process context. 1611 * 1612 * We special-case compound pages here: normally this means reads into hugetlb 1613 * pages. The logic in here doesn't really work right for compound pages 1614 * because the VM does not uniformly chase down the head page in all cases. 1615 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1616 * handle them at all. So we skip compound pages here at an early stage. 1617 * 1618 * Note that this code is very hard to test under normal circumstances because 1619 * direct-io pins the pages with get_user_pages(). This makes 1620 * is_page_cache_freeable return false, and the VM will not clean the pages. 1621 * But other code (eg, flusher threads) could clean the pages if they are mapped 1622 * pagecache. 1623 * 1624 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1625 * deferred bio dirtying paths. 1626 */ 1627 1628 /* 1629 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1630 */ 1631 void bio_set_pages_dirty(struct bio *bio) 1632 { 1633 struct bio_vec *bvec; 1634 struct bvec_iter_all iter_all; 1635 1636 bio_for_each_segment_all(bvec, bio, iter_all) { 1637 if (!PageCompound(bvec->bv_page)) 1638 set_page_dirty_lock(bvec->bv_page); 1639 } 1640 } 1641 1642 /* 1643 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1644 * If they are, then fine. If, however, some pages are clean then they must 1645 * have been written out during the direct-IO read. So we take another ref on 1646 * the BIO and re-dirty the pages in process context. 1647 * 1648 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1649 * here on. It will run one put_page() against each page and will run one 1650 * bio_put() against the BIO. 1651 */ 1652 1653 static void bio_dirty_fn(struct work_struct *work); 1654 1655 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1656 static DEFINE_SPINLOCK(bio_dirty_lock); 1657 static struct bio *bio_dirty_list; 1658 1659 /* 1660 * This runs in process context 1661 */ 1662 static void bio_dirty_fn(struct work_struct *work) 1663 { 1664 struct bio *bio, *next; 1665 1666 spin_lock_irq(&bio_dirty_lock); 1667 next = bio_dirty_list; 1668 bio_dirty_list = NULL; 1669 spin_unlock_irq(&bio_dirty_lock); 1670 1671 while ((bio = next) != NULL) { 1672 next = bio->bi_private; 1673 1674 bio_release_pages(bio, true); 1675 bio_put(bio); 1676 } 1677 } 1678 1679 void bio_check_pages_dirty(struct bio *bio) 1680 { 1681 struct bio_vec *bvec; 1682 unsigned long flags; 1683 struct bvec_iter_all iter_all; 1684 1685 bio_for_each_segment_all(bvec, bio, iter_all) { 1686 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page)) 1687 goto defer; 1688 } 1689 1690 bio_release_pages(bio, false); 1691 bio_put(bio); 1692 return; 1693 defer: 1694 spin_lock_irqsave(&bio_dirty_lock, flags); 1695 bio->bi_private = bio_dirty_list; 1696 bio_dirty_list = bio; 1697 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1698 schedule_work(&bio_dirty_work); 1699 } 1700 1701 void update_io_ticks(struct hd_struct *part, unsigned long now) 1702 { 1703 unsigned long stamp; 1704 again: 1705 stamp = READ_ONCE(part->stamp); 1706 if (unlikely(stamp != now)) { 1707 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) { 1708 __part_stat_add(part, io_ticks, 1); 1709 } 1710 } 1711 if (part->partno) { 1712 part = &part_to_disk(part)->part0; 1713 goto again; 1714 } 1715 } 1716 1717 void generic_start_io_acct(struct request_queue *q, int op, 1718 unsigned long sectors, struct hd_struct *part) 1719 { 1720 const int sgrp = op_stat_group(op); 1721 1722 part_stat_lock(); 1723 1724 update_io_ticks(part, jiffies); 1725 part_stat_inc(part, ios[sgrp]); 1726 part_stat_add(part, sectors[sgrp], sectors); 1727 part_inc_in_flight(q, part, op_is_write(op)); 1728 1729 part_stat_unlock(); 1730 } 1731 EXPORT_SYMBOL(generic_start_io_acct); 1732 1733 void generic_end_io_acct(struct request_queue *q, int req_op, 1734 struct hd_struct *part, unsigned long start_time) 1735 { 1736 unsigned long now = jiffies; 1737 unsigned long duration = now - start_time; 1738 const int sgrp = op_stat_group(req_op); 1739 1740 part_stat_lock(); 1741 1742 update_io_ticks(part, now); 1743 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration)); 1744 part_stat_add(part, time_in_queue, duration); 1745 part_dec_in_flight(q, part, op_is_write(req_op)); 1746 1747 part_stat_unlock(); 1748 } 1749 EXPORT_SYMBOL(generic_end_io_acct); 1750 1751 static inline bool bio_remaining_done(struct bio *bio) 1752 { 1753 /* 1754 * If we're not chaining, then ->__bi_remaining is always 1 and 1755 * we always end io on the first invocation. 1756 */ 1757 if (!bio_flagged(bio, BIO_CHAIN)) 1758 return true; 1759 1760 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1761 1762 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1763 bio_clear_flag(bio, BIO_CHAIN); 1764 return true; 1765 } 1766 1767 return false; 1768 } 1769 1770 /** 1771 * bio_endio - end I/O on a bio 1772 * @bio: bio 1773 * 1774 * Description: 1775 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1776 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1777 * bio unless they own it and thus know that it has an end_io function. 1778 * 1779 * bio_endio() can be called several times on a bio that has been chained 1780 * using bio_chain(). The ->bi_end_io() function will only be called the 1781 * last time. At this point the BLK_TA_COMPLETE tracing event will be 1782 * generated if BIO_TRACE_COMPLETION is set. 1783 **/ 1784 void bio_endio(struct bio *bio) 1785 { 1786 again: 1787 if (!bio_remaining_done(bio)) 1788 return; 1789 if (!bio_integrity_endio(bio)) 1790 return; 1791 1792 if (bio->bi_disk) 1793 rq_qos_done_bio(bio->bi_disk->queue, bio); 1794 1795 /* 1796 * Need to have a real endio function for chained bios, otherwise 1797 * various corner cases will break (like stacking block devices that 1798 * save/restore bi_end_io) - however, we want to avoid unbounded 1799 * recursion and blowing the stack. Tail call optimization would 1800 * handle this, but compiling with frame pointers also disables 1801 * gcc's sibling call optimization. 1802 */ 1803 if (bio->bi_end_io == bio_chain_endio) { 1804 bio = __bio_chain_endio(bio); 1805 goto again; 1806 } 1807 1808 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1809 trace_block_bio_complete(bio->bi_disk->queue, bio, 1810 blk_status_to_errno(bio->bi_status)); 1811 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1812 } 1813 1814 blk_throtl_bio_endio(bio); 1815 /* release cgroup info */ 1816 bio_uninit(bio); 1817 if (bio->bi_end_io) 1818 bio->bi_end_io(bio); 1819 } 1820 EXPORT_SYMBOL(bio_endio); 1821 1822 /** 1823 * bio_split - split a bio 1824 * @bio: bio to split 1825 * @sectors: number of sectors to split from the front of @bio 1826 * @gfp: gfp mask 1827 * @bs: bio set to allocate from 1828 * 1829 * Allocates and returns a new bio which represents @sectors from the start of 1830 * @bio, and updates @bio to represent the remaining sectors. 1831 * 1832 * Unless this is a discard request the newly allocated bio will point 1833 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that 1834 * neither @bio nor @bs are freed before the split bio. 1835 */ 1836 struct bio *bio_split(struct bio *bio, int sectors, 1837 gfp_t gfp, struct bio_set *bs) 1838 { 1839 struct bio *split; 1840 1841 BUG_ON(sectors <= 0); 1842 BUG_ON(sectors >= bio_sectors(bio)); 1843 1844 split = bio_clone_fast(bio, gfp, bs); 1845 if (!split) 1846 return NULL; 1847 1848 split->bi_iter.bi_size = sectors << 9; 1849 1850 if (bio_integrity(split)) 1851 bio_integrity_trim(split); 1852 1853 bio_advance(bio, split->bi_iter.bi_size); 1854 1855 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1856 bio_set_flag(split, BIO_TRACE_COMPLETION); 1857 1858 return split; 1859 } 1860 EXPORT_SYMBOL(bio_split); 1861 1862 /** 1863 * bio_trim - trim a bio 1864 * @bio: bio to trim 1865 * @offset: number of sectors to trim from the front of @bio 1866 * @size: size we want to trim @bio to, in sectors 1867 */ 1868 void bio_trim(struct bio *bio, int offset, int size) 1869 { 1870 /* 'bio' is a cloned bio which we need to trim to match 1871 * the given offset and size. 1872 */ 1873 1874 size <<= 9; 1875 if (offset == 0 && size == bio->bi_iter.bi_size) 1876 return; 1877 1878 bio_advance(bio, offset << 9); 1879 bio->bi_iter.bi_size = size; 1880 1881 if (bio_integrity(bio)) 1882 bio_integrity_trim(bio); 1883 1884 } 1885 EXPORT_SYMBOL_GPL(bio_trim); 1886 1887 /* 1888 * create memory pools for biovec's in a bio_set. 1889 * use the global biovec slabs created for general use. 1890 */ 1891 int biovec_init_pool(mempool_t *pool, int pool_entries) 1892 { 1893 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; 1894 1895 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1896 } 1897 1898 /* 1899 * bioset_exit - exit a bioset initialized with bioset_init() 1900 * 1901 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1902 * kzalloc()). 1903 */ 1904 void bioset_exit(struct bio_set *bs) 1905 { 1906 if (bs->rescue_workqueue) 1907 destroy_workqueue(bs->rescue_workqueue); 1908 bs->rescue_workqueue = NULL; 1909 1910 mempool_exit(&bs->bio_pool); 1911 mempool_exit(&bs->bvec_pool); 1912 1913 bioset_integrity_free(bs); 1914 if (bs->bio_slab) 1915 bio_put_slab(bs); 1916 bs->bio_slab = NULL; 1917 } 1918 EXPORT_SYMBOL(bioset_exit); 1919 1920 /** 1921 * bioset_init - Initialize a bio_set 1922 * @bs: pool to initialize 1923 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1924 * @front_pad: Number of bytes to allocate in front of the returned bio 1925 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1926 * and %BIOSET_NEED_RESCUER 1927 * 1928 * Description: 1929 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1930 * to ask for a number of bytes to be allocated in front of the bio. 1931 * Front pad allocation is useful for embedding the bio inside 1932 * another structure, to avoid allocating extra data to go with the bio. 1933 * Note that the bio must be embedded at the END of that structure always, 1934 * or things will break badly. 1935 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1936 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast(). 1937 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to 1938 * dispatch queued requests when the mempool runs out of space. 1939 * 1940 */ 1941 int bioset_init(struct bio_set *bs, 1942 unsigned int pool_size, 1943 unsigned int front_pad, 1944 int flags) 1945 { 1946 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1947 1948 bs->front_pad = front_pad; 1949 1950 spin_lock_init(&bs->rescue_lock); 1951 bio_list_init(&bs->rescue_list); 1952 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1953 1954 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1955 if (!bs->bio_slab) 1956 return -ENOMEM; 1957 1958 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 1959 goto bad; 1960 1961 if ((flags & BIOSET_NEED_BVECS) && 1962 biovec_init_pool(&bs->bvec_pool, pool_size)) 1963 goto bad; 1964 1965 if (!(flags & BIOSET_NEED_RESCUER)) 1966 return 0; 1967 1968 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1969 if (!bs->rescue_workqueue) 1970 goto bad; 1971 1972 return 0; 1973 bad: 1974 bioset_exit(bs); 1975 return -ENOMEM; 1976 } 1977 EXPORT_SYMBOL(bioset_init); 1978 1979 /* 1980 * Initialize and setup a new bio_set, based on the settings from 1981 * another bio_set. 1982 */ 1983 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src) 1984 { 1985 int flags; 1986 1987 flags = 0; 1988 if (src->bvec_pool.min_nr) 1989 flags |= BIOSET_NEED_BVECS; 1990 if (src->rescue_workqueue) 1991 flags |= BIOSET_NEED_RESCUER; 1992 1993 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags); 1994 } 1995 EXPORT_SYMBOL(bioset_init_from_src); 1996 1997 #ifdef CONFIG_BLK_CGROUP 1998 1999 /** 2000 * bio_disassociate_blkg - puts back the blkg reference if associated 2001 * @bio: target bio 2002 * 2003 * Helper to disassociate the blkg from @bio if a blkg is associated. 2004 */ 2005 void bio_disassociate_blkg(struct bio *bio) 2006 { 2007 if (bio->bi_blkg) { 2008 blkg_put(bio->bi_blkg); 2009 bio->bi_blkg = NULL; 2010 } 2011 } 2012 EXPORT_SYMBOL_GPL(bio_disassociate_blkg); 2013 2014 /** 2015 * __bio_associate_blkg - associate a bio with the a blkg 2016 * @bio: target bio 2017 * @blkg: the blkg to associate 2018 * 2019 * This tries to associate @bio with the specified @blkg. Association failure 2020 * is handled by walking up the blkg tree. Therefore, the blkg associated can 2021 * be anything between @blkg and the root_blkg. This situation only happens 2022 * when a cgroup is dying and then the remaining bios will spill to the closest 2023 * alive blkg. 2024 * 2025 * A reference will be taken on the @blkg and will be released when @bio is 2026 * freed. 2027 */ 2028 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg) 2029 { 2030 bio_disassociate_blkg(bio); 2031 2032 bio->bi_blkg = blkg_tryget_closest(blkg); 2033 } 2034 2035 /** 2036 * bio_associate_blkg_from_css - associate a bio with a specified css 2037 * @bio: target bio 2038 * @css: target css 2039 * 2040 * Associate @bio with the blkg found by combining the css's blkg and the 2041 * request_queue of the @bio. This falls back to the queue's root_blkg if 2042 * the association fails with the css. 2043 */ 2044 void bio_associate_blkg_from_css(struct bio *bio, 2045 struct cgroup_subsys_state *css) 2046 { 2047 struct request_queue *q = bio->bi_disk->queue; 2048 struct blkcg_gq *blkg; 2049 2050 rcu_read_lock(); 2051 2052 if (!css || !css->parent) 2053 blkg = q->root_blkg; 2054 else 2055 blkg = blkg_lookup_create(css_to_blkcg(css), q); 2056 2057 __bio_associate_blkg(bio, blkg); 2058 2059 rcu_read_unlock(); 2060 } 2061 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 2062 2063 #ifdef CONFIG_MEMCG 2064 /** 2065 * bio_associate_blkg_from_page - associate a bio with the page's blkg 2066 * @bio: target bio 2067 * @page: the page to lookup the blkcg from 2068 * 2069 * Associate @bio with the blkg from @page's owning memcg and the respective 2070 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's 2071 * root_blkg. 2072 */ 2073 void bio_associate_blkg_from_page(struct bio *bio, struct page *page) 2074 { 2075 struct cgroup_subsys_state *css; 2076 2077 if (!page->mem_cgroup) 2078 return; 2079 2080 rcu_read_lock(); 2081 2082 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys); 2083 bio_associate_blkg_from_css(bio, css); 2084 2085 rcu_read_unlock(); 2086 } 2087 #endif /* CONFIG_MEMCG */ 2088 2089 /** 2090 * bio_associate_blkg - associate a bio with a blkg 2091 * @bio: target bio 2092 * 2093 * Associate @bio with the blkg found from the bio's css and request_queue. 2094 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 2095 * already associated, the css is reused and association redone as the 2096 * request_queue may have changed. 2097 */ 2098 void bio_associate_blkg(struct bio *bio) 2099 { 2100 struct cgroup_subsys_state *css; 2101 2102 rcu_read_lock(); 2103 2104 if (bio->bi_blkg) 2105 css = &bio_blkcg(bio)->css; 2106 else 2107 css = blkcg_css(); 2108 2109 bio_associate_blkg_from_css(bio, css); 2110 2111 rcu_read_unlock(); 2112 } 2113 EXPORT_SYMBOL_GPL(bio_associate_blkg); 2114 2115 /** 2116 * bio_clone_blkg_association - clone blkg association from src to dst bio 2117 * @dst: destination bio 2118 * @src: source bio 2119 */ 2120 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 2121 { 2122 rcu_read_lock(); 2123 2124 if (src->bi_blkg) 2125 __bio_associate_blkg(dst, src->bi_blkg); 2126 2127 rcu_read_unlock(); 2128 } 2129 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 2130 #endif /* CONFIG_BLK_CGROUP */ 2131 2132 static void __init biovec_init_slabs(void) 2133 { 2134 int i; 2135 2136 for (i = 0; i < BVEC_POOL_NR; i++) { 2137 int size; 2138 struct biovec_slab *bvs = bvec_slabs + i; 2139 2140 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2141 bvs->slab = NULL; 2142 continue; 2143 } 2144 2145 size = bvs->nr_vecs * sizeof(struct bio_vec); 2146 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2147 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2148 } 2149 } 2150 2151 static int __init init_bio(void) 2152 { 2153 bio_slab_max = 2; 2154 bio_slab_nr = 0; 2155 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab), 2156 GFP_KERNEL); 2157 2158 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET); 2159 2160 if (!bio_slabs) 2161 panic("bio: can't allocate bios\n"); 2162 2163 bio_integrity_init(); 2164 biovec_init_slabs(); 2165 2166 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS)) 2167 panic("bio: can't allocate bios\n"); 2168 2169 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) 2170 panic("bio: can't create integrity pool\n"); 2171 2172 return 0; 2173 } 2174 subsys_initcall(init_bio); 2175