xref: /openbmc/linux/block/bio.c (revision 867a0e05)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <scsi/sg.h>		/* for struct sg_iovec */
32 
33 #include <trace/events/block.h>
34 
35 /*
36  * Test patch to inline a certain number of bi_io_vec's inside the bio
37  * itself, to shrink a bio data allocation from two mempool calls to one
38  */
39 #define BIO_INLINE_VECS		4
40 
41 /*
42  * if you change this list, also change bvec_alloc or things will
43  * break badly! cannot be bigger than what you can fit into an
44  * unsigned short
45  */
46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
48 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 };
50 #undef BV
51 
52 /*
53  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54  * IO code that does not need private memory pools.
55  */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58 
59 /*
60  * Our slab pool management
61  */
62 struct bio_slab {
63 	struct kmem_cache *slab;
64 	unsigned int slab_ref;
65 	unsigned int slab_size;
66 	char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71 
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 	unsigned int sz = sizeof(struct bio) + extra_size;
75 	struct kmem_cache *slab = NULL;
76 	struct bio_slab *bslab, *new_bio_slabs;
77 	unsigned int new_bio_slab_max;
78 	unsigned int i, entry = -1;
79 
80 	mutex_lock(&bio_slab_lock);
81 
82 	i = 0;
83 	while (i < bio_slab_nr) {
84 		bslab = &bio_slabs[i];
85 
86 		if (!bslab->slab && entry == -1)
87 			entry = i;
88 		else if (bslab->slab_size == sz) {
89 			slab = bslab->slab;
90 			bslab->slab_ref++;
91 			break;
92 		}
93 		i++;
94 	}
95 
96 	if (slab)
97 		goto out_unlock;
98 
99 	if (bio_slab_nr == bio_slab_max && entry == -1) {
100 		new_bio_slab_max = bio_slab_max << 1;
101 		new_bio_slabs = krealloc(bio_slabs,
102 					 new_bio_slab_max * sizeof(struct bio_slab),
103 					 GFP_KERNEL);
104 		if (!new_bio_slabs)
105 			goto out_unlock;
106 		bio_slab_max = new_bio_slab_max;
107 		bio_slabs = new_bio_slabs;
108 	}
109 	if (entry == -1)
110 		entry = bio_slab_nr++;
111 
112 	bslab = &bio_slabs[entry];
113 
114 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 				 SLAB_HWCACHE_ALIGN, NULL);
117 	if (!slab)
118 		goto out_unlock;
119 
120 	bslab->slab = slab;
121 	bslab->slab_ref = 1;
122 	bslab->slab_size = sz;
123 out_unlock:
124 	mutex_unlock(&bio_slab_lock);
125 	return slab;
126 }
127 
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 	struct bio_slab *bslab = NULL;
131 	unsigned int i;
132 
133 	mutex_lock(&bio_slab_lock);
134 
135 	for (i = 0; i < bio_slab_nr; i++) {
136 		if (bs->bio_slab == bio_slabs[i].slab) {
137 			bslab = &bio_slabs[i];
138 			break;
139 		}
140 	}
141 
142 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 		goto out;
144 
145 	WARN_ON(!bslab->slab_ref);
146 
147 	if (--bslab->slab_ref)
148 		goto out;
149 
150 	kmem_cache_destroy(bslab->slab);
151 	bslab->slab = NULL;
152 
153 out:
154 	mutex_unlock(&bio_slab_lock);
155 }
156 
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 	return bvec_slabs[idx].nr_vecs;
160 }
161 
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
165 
166 	if (idx == BIOVEC_MAX_IDX)
167 		mempool_free(bv, pool);
168 	else {
169 		struct biovec_slab *bvs = bvec_slabs + idx;
170 
171 		kmem_cache_free(bvs->slab, bv);
172 	}
173 }
174 
175 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
176 			   mempool_t *pool)
177 {
178 	struct bio_vec *bvl;
179 
180 	/*
181 	 * see comment near bvec_array define!
182 	 */
183 	switch (nr) {
184 	case 1:
185 		*idx = 0;
186 		break;
187 	case 2 ... 4:
188 		*idx = 1;
189 		break;
190 	case 5 ... 16:
191 		*idx = 2;
192 		break;
193 	case 17 ... 64:
194 		*idx = 3;
195 		break;
196 	case 65 ... 128:
197 		*idx = 4;
198 		break;
199 	case 129 ... BIO_MAX_PAGES:
200 		*idx = 5;
201 		break;
202 	default:
203 		return NULL;
204 	}
205 
206 	/*
207 	 * idx now points to the pool we want to allocate from. only the
208 	 * 1-vec entry pool is mempool backed.
209 	 */
210 	if (*idx == BIOVEC_MAX_IDX) {
211 fallback:
212 		bvl = mempool_alloc(pool, gfp_mask);
213 	} else {
214 		struct biovec_slab *bvs = bvec_slabs + *idx;
215 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
216 
217 		/*
218 		 * Make this allocation restricted and don't dump info on
219 		 * allocation failures, since we'll fallback to the mempool
220 		 * in case of failure.
221 		 */
222 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
223 
224 		/*
225 		 * Try a slab allocation. If this fails and __GFP_WAIT
226 		 * is set, retry with the 1-entry mempool
227 		 */
228 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
229 		if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
230 			*idx = BIOVEC_MAX_IDX;
231 			goto fallback;
232 		}
233 	}
234 
235 	return bvl;
236 }
237 
238 static void __bio_free(struct bio *bio)
239 {
240 	bio_disassociate_task(bio);
241 
242 	if (bio_integrity(bio))
243 		bio_integrity_free(bio);
244 }
245 
246 static void bio_free(struct bio *bio)
247 {
248 	struct bio_set *bs = bio->bi_pool;
249 	void *p;
250 
251 	__bio_free(bio);
252 
253 	if (bs) {
254 		if (bio_flagged(bio, BIO_OWNS_VEC))
255 			bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
256 
257 		/*
258 		 * If we have front padding, adjust the bio pointer before freeing
259 		 */
260 		p = bio;
261 		p -= bs->front_pad;
262 
263 		mempool_free(p, bs->bio_pool);
264 	} else {
265 		/* Bio was allocated by bio_kmalloc() */
266 		kfree(bio);
267 	}
268 }
269 
270 void bio_init(struct bio *bio)
271 {
272 	memset(bio, 0, sizeof(*bio));
273 	bio->bi_flags = 1 << BIO_UPTODATE;
274 	atomic_set(&bio->bi_remaining, 1);
275 	atomic_set(&bio->bi_cnt, 1);
276 }
277 EXPORT_SYMBOL(bio_init);
278 
279 /**
280  * bio_reset - reinitialize a bio
281  * @bio:	bio to reset
282  *
283  * Description:
284  *   After calling bio_reset(), @bio will be in the same state as a freshly
285  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
286  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
287  *   comment in struct bio.
288  */
289 void bio_reset(struct bio *bio)
290 {
291 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
292 
293 	__bio_free(bio);
294 
295 	memset(bio, 0, BIO_RESET_BYTES);
296 	bio->bi_flags = flags|(1 << BIO_UPTODATE);
297 	atomic_set(&bio->bi_remaining, 1);
298 }
299 EXPORT_SYMBOL(bio_reset);
300 
301 static void bio_chain_endio(struct bio *bio, int error)
302 {
303 	bio_endio(bio->bi_private, error);
304 	bio_put(bio);
305 }
306 
307 /**
308  * bio_chain - chain bio completions
309  * @bio: the target bio
310  * @parent: the @bio's parent bio
311  *
312  * The caller won't have a bi_end_io called when @bio completes - instead,
313  * @parent's bi_end_io won't be called until both @parent and @bio have
314  * completed; the chained bio will also be freed when it completes.
315  *
316  * The caller must not set bi_private or bi_end_io in @bio.
317  */
318 void bio_chain(struct bio *bio, struct bio *parent)
319 {
320 	BUG_ON(bio->bi_private || bio->bi_end_io);
321 
322 	bio->bi_private = parent;
323 	bio->bi_end_io	= bio_chain_endio;
324 	atomic_inc(&parent->bi_remaining);
325 }
326 EXPORT_SYMBOL(bio_chain);
327 
328 static void bio_alloc_rescue(struct work_struct *work)
329 {
330 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
331 	struct bio *bio;
332 
333 	while (1) {
334 		spin_lock(&bs->rescue_lock);
335 		bio = bio_list_pop(&bs->rescue_list);
336 		spin_unlock(&bs->rescue_lock);
337 
338 		if (!bio)
339 			break;
340 
341 		generic_make_request(bio);
342 	}
343 }
344 
345 static void punt_bios_to_rescuer(struct bio_set *bs)
346 {
347 	struct bio_list punt, nopunt;
348 	struct bio *bio;
349 
350 	/*
351 	 * In order to guarantee forward progress we must punt only bios that
352 	 * were allocated from this bio_set; otherwise, if there was a bio on
353 	 * there for a stacking driver higher up in the stack, processing it
354 	 * could require allocating bios from this bio_set, and doing that from
355 	 * our own rescuer would be bad.
356 	 *
357 	 * Since bio lists are singly linked, pop them all instead of trying to
358 	 * remove from the middle of the list:
359 	 */
360 
361 	bio_list_init(&punt);
362 	bio_list_init(&nopunt);
363 
364 	while ((bio = bio_list_pop(current->bio_list)))
365 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
366 
367 	*current->bio_list = nopunt;
368 
369 	spin_lock(&bs->rescue_lock);
370 	bio_list_merge(&bs->rescue_list, &punt);
371 	spin_unlock(&bs->rescue_lock);
372 
373 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
374 }
375 
376 /**
377  * bio_alloc_bioset - allocate a bio for I/O
378  * @gfp_mask:   the GFP_ mask given to the slab allocator
379  * @nr_iovecs:	number of iovecs to pre-allocate
380  * @bs:		the bio_set to allocate from.
381  *
382  * Description:
383  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
384  *   backed by the @bs's mempool.
385  *
386  *   When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
387  *   able to allocate a bio. This is due to the mempool guarantees. To make this
388  *   work, callers must never allocate more than 1 bio at a time from this pool.
389  *   Callers that need to allocate more than 1 bio must always submit the
390  *   previously allocated bio for IO before attempting to allocate a new one.
391  *   Failure to do so can cause deadlocks under memory pressure.
392  *
393  *   Note that when running under generic_make_request() (i.e. any block
394  *   driver), bios are not submitted until after you return - see the code in
395  *   generic_make_request() that converts recursion into iteration, to prevent
396  *   stack overflows.
397  *
398  *   This would normally mean allocating multiple bios under
399  *   generic_make_request() would be susceptible to deadlocks, but we have
400  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
401  *   thread.
402  *
403  *   However, we do not guarantee forward progress for allocations from other
404  *   mempools. Doing multiple allocations from the same mempool under
405  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
406  *   for per bio allocations.
407  *
408  *   RETURNS:
409  *   Pointer to new bio on success, NULL on failure.
410  */
411 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
412 {
413 	gfp_t saved_gfp = gfp_mask;
414 	unsigned front_pad;
415 	unsigned inline_vecs;
416 	unsigned long idx = BIO_POOL_NONE;
417 	struct bio_vec *bvl = NULL;
418 	struct bio *bio;
419 	void *p;
420 
421 	if (!bs) {
422 		if (nr_iovecs > UIO_MAXIOV)
423 			return NULL;
424 
425 		p = kmalloc(sizeof(struct bio) +
426 			    nr_iovecs * sizeof(struct bio_vec),
427 			    gfp_mask);
428 		front_pad = 0;
429 		inline_vecs = nr_iovecs;
430 	} else {
431 		/* should not use nobvec bioset for nr_iovecs > 0 */
432 		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
433 			return NULL;
434 		/*
435 		 * generic_make_request() converts recursion to iteration; this
436 		 * means if we're running beneath it, any bios we allocate and
437 		 * submit will not be submitted (and thus freed) until after we
438 		 * return.
439 		 *
440 		 * This exposes us to a potential deadlock if we allocate
441 		 * multiple bios from the same bio_set() while running
442 		 * underneath generic_make_request(). If we were to allocate
443 		 * multiple bios (say a stacking block driver that was splitting
444 		 * bios), we would deadlock if we exhausted the mempool's
445 		 * reserve.
446 		 *
447 		 * We solve this, and guarantee forward progress, with a rescuer
448 		 * workqueue per bio_set. If we go to allocate and there are
449 		 * bios on current->bio_list, we first try the allocation
450 		 * without __GFP_WAIT; if that fails, we punt those bios we
451 		 * would be blocking to the rescuer workqueue before we retry
452 		 * with the original gfp_flags.
453 		 */
454 
455 		if (current->bio_list && !bio_list_empty(current->bio_list))
456 			gfp_mask &= ~__GFP_WAIT;
457 
458 		p = mempool_alloc(bs->bio_pool, gfp_mask);
459 		if (!p && gfp_mask != saved_gfp) {
460 			punt_bios_to_rescuer(bs);
461 			gfp_mask = saved_gfp;
462 			p = mempool_alloc(bs->bio_pool, gfp_mask);
463 		}
464 
465 		front_pad = bs->front_pad;
466 		inline_vecs = BIO_INLINE_VECS;
467 	}
468 
469 	if (unlikely(!p))
470 		return NULL;
471 
472 	bio = p + front_pad;
473 	bio_init(bio);
474 
475 	if (nr_iovecs > inline_vecs) {
476 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
477 		if (!bvl && gfp_mask != saved_gfp) {
478 			punt_bios_to_rescuer(bs);
479 			gfp_mask = saved_gfp;
480 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
481 		}
482 
483 		if (unlikely(!bvl))
484 			goto err_free;
485 
486 		bio->bi_flags |= 1 << BIO_OWNS_VEC;
487 	} else if (nr_iovecs) {
488 		bvl = bio->bi_inline_vecs;
489 	}
490 
491 	bio->bi_pool = bs;
492 	bio->bi_flags |= idx << BIO_POOL_OFFSET;
493 	bio->bi_max_vecs = nr_iovecs;
494 	bio->bi_io_vec = bvl;
495 	return bio;
496 
497 err_free:
498 	mempool_free(p, bs->bio_pool);
499 	return NULL;
500 }
501 EXPORT_SYMBOL(bio_alloc_bioset);
502 
503 void zero_fill_bio(struct bio *bio)
504 {
505 	unsigned long flags;
506 	struct bio_vec bv;
507 	struct bvec_iter iter;
508 
509 	bio_for_each_segment(bv, bio, iter) {
510 		char *data = bvec_kmap_irq(&bv, &flags);
511 		memset(data, 0, bv.bv_len);
512 		flush_dcache_page(bv.bv_page);
513 		bvec_kunmap_irq(data, &flags);
514 	}
515 }
516 EXPORT_SYMBOL(zero_fill_bio);
517 
518 /**
519  * bio_put - release a reference to a bio
520  * @bio:   bio to release reference to
521  *
522  * Description:
523  *   Put a reference to a &struct bio, either one you have gotten with
524  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
525  **/
526 void bio_put(struct bio *bio)
527 {
528 	BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
529 
530 	/*
531 	 * last put frees it
532 	 */
533 	if (atomic_dec_and_test(&bio->bi_cnt))
534 		bio_free(bio);
535 }
536 EXPORT_SYMBOL(bio_put);
537 
538 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
539 {
540 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
541 		blk_recount_segments(q, bio);
542 
543 	return bio->bi_phys_segments;
544 }
545 EXPORT_SYMBOL(bio_phys_segments);
546 
547 /**
548  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
549  * 	@bio: destination bio
550  * 	@bio_src: bio to clone
551  *
552  *	Clone a &bio. Caller will own the returned bio, but not
553  *	the actual data it points to. Reference count of returned
554  * 	bio will be one.
555  *
556  * 	Caller must ensure that @bio_src is not freed before @bio.
557  */
558 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
559 {
560 	BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
561 
562 	/*
563 	 * most users will be overriding ->bi_bdev with a new target,
564 	 * so we don't set nor calculate new physical/hw segment counts here
565 	 */
566 	bio->bi_bdev = bio_src->bi_bdev;
567 	bio->bi_flags |= 1 << BIO_CLONED;
568 	bio->bi_rw = bio_src->bi_rw;
569 	bio->bi_iter = bio_src->bi_iter;
570 	bio->bi_io_vec = bio_src->bi_io_vec;
571 }
572 EXPORT_SYMBOL(__bio_clone_fast);
573 
574 /**
575  *	bio_clone_fast - clone a bio that shares the original bio's biovec
576  *	@bio: bio to clone
577  *	@gfp_mask: allocation priority
578  *	@bs: bio_set to allocate from
579  *
580  * 	Like __bio_clone_fast, only also allocates the returned bio
581  */
582 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
583 {
584 	struct bio *b;
585 
586 	b = bio_alloc_bioset(gfp_mask, 0, bs);
587 	if (!b)
588 		return NULL;
589 
590 	__bio_clone_fast(b, bio);
591 
592 	if (bio_integrity(bio)) {
593 		int ret;
594 
595 		ret = bio_integrity_clone(b, bio, gfp_mask);
596 
597 		if (ret < 0) {
598 			bio_put(b);
599 			return NULL;
600 		}
601 	}
602 
603 	return b;
604 }
605 EXPORT_SYMBOL(bio_clone_fast);
606 
607 /**
608  * 	bio_clone_bioset - clone a bio
609  * 	@bio_src: bio to clone
610  *	@gfp_mask: allocation priority
611  *	@bs: bio_set to allocate from
612  *
613  *	Clone bio. Caller will own the returned bio, but not the actual data it
614  *	points to. Reference count of returned bio will be one.
615  */
616 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
617 			     struct bio_set *bs)
618 {
619 	struct bvec_iter iter;
620 	struct bio_vec bv;
621 	struct bio *bio;
622 
623 	/*
624 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
625 	 * bio_src->bi_io_vec to bio->bi_io_vec.
626 	 *
627 	 * We can't do that anymore, because:
628 	 *
629 	 *  - The point of cloning the biovec is to produce a bio with a biovec
630 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
631 	 *
632 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
633 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
634 	 *    But the clone should succeed as long as the number of biovecs we
635 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
636 	 *
637 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
638 	 *    that does not own the bio - reason being drivers don't use it for
639 	 *    iterating over the biovec anymore, so expecting it to be kept up
640 	 *    to date (i.e. for clones that share the parent biovec) is just
641 	 *    asking for trouble and would force extra work on
642 	 *    __bio_clone_fast() anyways.
643 	 */
644 
645 	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
646 	if (!bio)
647 		return NULL;
648 
649 	bio->bi_bdev		= bio_src->bi_bdev;
650 	bio->bi_rw		= bio_src->bi_rw;
651 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
652 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
653 
654 	if (bio->bi_rw & REQ_DISCARD)
655 		goto integrity_clone;
656 
657 	if (bio->bi_rw & REQ_WRITE_SAME) {
658 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
659 		goto integrity_clone;
660 	}
661 
662 	bio_for_each_segment(bv, bio_src, iter)
663 		bio->bi_io_vec[bio->bi_vcnt++] = bv;
664 
665 integrity_clone:
666 	if (bio_integrity(bio_src)) {
667 		int ret;
668 
669 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
670 		if (ret < 0) {
671 			bio_put(bio);
672 			return NULL;
673 		}
674 	}
675 
676 	return bio;
677 }
678 EXPORT_SYMBOL(bio_clone_bioset);
679 
680 /**
681  *	bio_get_nr_vecs		- return approx number of vecs
682  *	@bdev:  I/O target
683  *
684  *	Return the approximate number of pages we can send to this target.
685  *	There's no guarantee that you will be able to fit this number of pages
686  *	into a bio, it does not account for dynamic restrictions that vary
687  *	on offset.
688  */
689 int bio_get_nr_vecs(struct block_device *bdev)
690 {
691 	struct request_queue *q = bdev_get_queue(bdev);
692 	int nr_pages;
693 
694 	nr_pages = min_t(unsigned,
695 		     queue_max_segments(q),
696 		     queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
697 
698 	return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
699 
700 }
701 EXPORT_SYMBOL(bio_get_nr_vecs);
702 
703 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
704 			  *page, unsigned int len, unsigned int offset,
705 			  unsigned int max_sectors)
706 {
707 	int retried_segments = 0;
708 	struct bio_vec *bvec;
709 
710 	/*
711 	 * cloned bio must not modify vec list
712 	 */
713 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
714 		return 0;
715 
716 	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
717 		return 0;
718 
719 	/*
720 	 * For filesystems with a blocksize smaller than the pagesize
721 	 * we will often be called with the same page as last time and
722 	 * a consecutive offset.  Optimize this special case.
723 	 */
724 	if (bio->bi_vcnt > 0) {
725 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
726 
727 		if (page == prev->bv_page &&
728 		    offset == prev->bv_offset + prev->bv_len) {
729 			unsigned int prev_bv_len = prev->bv_len;
730 			prev->bv_len += len;
731 
732 			if (q->merge_bvec_fn) {
733 				struct bvec_merge_data bvm = {
734 					/* prev_bvec is already charged in
735 					   bi_size, discharge it in order to
736 					   simulate merging updated prev_bvec
737 					   as new bvec. */
738 					.bi_bdev = bio->bi_bdev,
739 					.bi_sector = bio->bi_iter.bi_sector,
740 					.bi_size = bio->bi_iter.bi_size -
741 						prev_bv_len,
742 					.bi_rw = bio->bi_rw,
743 				};
744 
745 				if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
746 					prev->bv_len -= len;
747 					return 0;
748 				}
749 			}
750 
751 			bio->bi_iter.bi_size += len;
752 			goto done;
753 		}
754 
755 		/*
756 		 * If the queue doesn't support SG gaps and adding this
757 		 * offset would create a gap, disallow it.
758 		 */
759 		if (q->queue_flags & (1 << QUEUE_FLAG_SG_GAPS) &&
760 		    bvec_gap_to_prev(prev, offset))
761 			return 0;
762 	}
763 
764 	if (bio->bi_vcnt >= bio->bi_max_vecs)
765 		return 0;
766 
767 	/*
768 	 * setup the new entry, we might clear it again later if we
769 	 * cannot add the page
770 	 */
771 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
772 	bvec->bv_page = page;
773 	bvec->bv_len = len;
774 	bvec->bv_offset = offset;
775 	bio->bi_vcnt++;
776 	bio->bi_phys_segments++;
777 	bio->bi_iter.bi_size += len;
778 
779 	/*
780 	 * Perform a recount if the number of segments is greater
781 	 * than queue_max_segments(q).
782 	 */
783 
784 	while (bio->bi_phys_segments > queue_max_segments(q)) {
785 
786 		if (retried_segments)
787 			goto failed;
788 
789 		retried_segments = 1;
790 		blk_recount_segments(q, bio);
791 	}
792 
793 	/*
794 	 * if queue has other restrictions (eg varying max sector size
795 	 * depending on offset), it can specify a merge_bvec_fn in the
796 	 * queue to get further control
797 	 */
798 	if (q->merge_bvec_fn) {
799 		struct bvec_merge_data bvm = {
800 			.bi_bdev = bio->bi_bdev,
801 			.bi_sector = bio->bi_iter.bi_sector,
802 			.bi_size = bio->bi_iter.bi_size - len,
803 			.bi_rw = bio->bi_rw,
804 		};
805 
806 		/*
807 		 * merge_bvec_fn() returns number of bytes it can accept
808 		 * at this offset
809 		 */
810 		if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len)
811 			goto failed;
812 	}
813 
814 	/* If we may be able to merge these biovecs, force a recount */
815 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
816 		bio->bi_flags &= ~(1 << BIO_SEG_VALID);
817 
818  done:
819 	return len;
820 
821  failed:
822 	bvec->bv_page = NULL;
823 	bvec->bv_len = 0;
824 	bvec->bv_offset = 0;
825 	bio->bi_vcnt--;
826 	bio->bi_iter.bi_size -= len;
827 	blk_recount_segments(q, bio);
828 	return 0;
829 }
830 
831 /**
832  *	bio_add_pc_page	-	attempt to add page to bio
833  *	@q: the target queue
834  *	@bio: destination bio
835  *	@page: page to add
836  *	@len: vec entry length
837  *	@offset: vec entry offset
838  *
839  *	Attempt to add a page to the bio_vec maplist. This can fail for a
840  *	number of reasons, such as the bio being full or target block device
841  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
842  *	so it is always possible to add a single page to an empty bio.
843  *
844  *	This should only be used by REQ_PC bios.
845  */
846 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
847 		    unsigned int len, unsigned int offset)
848 {
849 	return __bio_add_page(q, bio, page, len, offset,
850 			      queue_max_hw_sectors(q));
851 }
852 EXPORT_SYMBOL(bio_add_pc_page);
853 
854 /**
855  *	bio_add_page	-	attempt to add page to bio
856  *	@bio: destination bio
857  *	@page: page to add
858  *	@len: vec entry length
859  *	@offset: vec entry offset
860  *
861  *	Attempt to add a page to the bio_vec maplist. This can fail for a
862  *	number of reasons, such as the bio being full or target block device
863  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
864  *	so it is always possible to add a single page to an empty bio.
865  */
866 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
867 		 unsigned int offset)
868 {
869 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
870 	unsigned int max_sectors;
871 
872 	max_sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
873 	if ((max_sectors < (len >> 9)) && !bio->bi_iter.bi_size)
874 		max_sectors = len >> 9;
875 
876 	return __bio_add_page(q, bio, page, len, offset, max_sectors);
877 }
878 EXPORT_SYMBOL(bio_add_page);
879 
880 struct submit_bio_ret {
881 	struct completion event;
882 	int error;
883 };
884 
885 static void submit_bio_wait_endio(struct bio *bio, int error)
886 {
887 	struct submit_bio_ret *ret = bio->bi_private;
888 
889 	ret->error = error;
890 	complete(&ret->event);
891 }
892 
893 /**
894  * submit_bio_wait - submit a bio, and wait until it completes
895  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
896  * @bio: The &struct bio which describes the I/O
897  *
898  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
899  * bio_endio() on failure.
900  */
901 int submit_bio_wait(int rw, struct bio *bio)
902 {
903 	struct submit_bio_ret ret;
904 
905 	rw |= REQ_SYNC;
906 	init_completion(&ret.event);
907 	bio->bi_private = &ret;
908 	bio->bi_end_io = submit_bio_wait_endio;
909 	submit_bio(rw, bio);
910 	wait_for_completion(&ret.event);
911 
912 	return ret.error;
913 }
914 EXPORT_SYMBOL(submit_bio_wait);
915 
916 /**
917  * bio_advance - increment/complete a bio by some number of bytes
918  * @bio:	bio to advance
919  * @bytes:	number of bytes to complete
920  *
921  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
922  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
923  * be updated on the last bvec as well.
924  *
925  * @bio will then represent the remaining, uncompleted portion of the io.
926  */
927 void bio_advance(struct bio *bio, unsigned bytes)
928 {
929 	if (bio_integrity(bio))
930 		bio_integrity_advance(bio, bytes);
931 
932 	bio_advance_iter(bio, &bio->bi_iter, bytes);
933 }
934 EXPORT_SYMBOL(bio_advance);
935 
936 /**
937  * bio_alloc_pages - allocates a single page for each bvec in a bio
938  * @bio: bio to allocate pages for
939  * @gfp_mask: flags for allocation
940  *
941  * Allocates pages up to @bio->bi_vcnt.
942  *
943  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
944  * freed.
945  */
946 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
947 {
948 	int i;
949 	struct bio_vec *bv;
950 
951 	bio_for_each_segment_all(bv, bio, i) {
952 		bv->bv_page = alloc_page(gfp_mask);
953 		if (!bv->bv_page) {
954 			while (--bv >= bio->bi_io_vec)
955 				__free_page(bv->bv_page);
956 			return -ENOMEM;
957 		}
958 	}
959 
960 	return 0;
961 }
962 EXPORT_SYMBOL(bio_alloc_pages);
963 
964 /**
965  * bio_copy_data - copy contents of data buffers from one chain of bios to
966  * another
967  * @src: source bio list
968  * @dst: destination bio list
969  *
970  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
971  * @src and @dst as linked lists of bios.
972  *
973  * Stops when it reaches the end of either @src or @dst - that is, copies
974  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
975  */
976 void bio_copy_data(struct bio *dst, struct bio *src)
977 {
978 	struct bvec_iter src_iter, dst_iter;
979 	struct bio_vec src_bv, dst_bv;
980 	void *src_p, *dst_p;
981 	unsigned bytes;
982 
983 	src_iter = src->bi_iter;
984 	dst_iter = dst->bi_iter;
985 
986 	while (1) {
987 		if (!src_iter.bi_size) {
988 			src = src->bi_next;
989 			if (!src)
990 				break;
991 
992 			src_iter = src->bi_iter;
993 		}
994 
995 		if (!dst_iter.bi_size) {
996 			dst = dst->bi_next;
997 			if (!dst)
998 				break;
999 
1000 			dst_iter = dst->bi_iter;
1001 		}
1002 
1003 		src_bv = bio_iter_iovec(src, src_iter);
1004 		dst_bv = bio_iter_iovec(dst, dst_iter);
1005 
1006 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1007 
1008 		src_p = kmap_atomic(src_bv.bv_page);
1009 		dst_p = kmap_atomic(dst_bv.bv_page);
1010 
1011 		memcpy(dst_p + dst_bv.bv_offset,
1012 		       src_p + src_bv.bv_offset,
1013 		       bytes);
1014 
1015 		kunmap_atomic(dst_p);
1016 		kunmap_atomic(src_p);
1017 
1018 		bio_advance_iter(src, &src_iter, bytes);
1019 		bio_advance_iter(dst, &dst_iter, bytes);
1020 	}
1021 }
1022 EXPORT_SYMBOL(bio_copy_data);
1023 
1024 struct bio_map_data {
1025 	int nr_sgvecs;
1026 	int is_our_pages;
1027 	struct sg_iovec sgvecs[];
1028 };
1029 
1030 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
1031 			     const struct sg_iovec *iov, int iov_count,
1032 			     int is_our_pages)
1033 {
1034 	memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
1035 	bmd->nr_sgvecs = iov_count;
1036 	bmd->is_our_pages = is_our_pages;
1037 	bio->bi_private = bmd;
1038 }
1039 
1040 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1041 					       gfp_t gfp_mask)
1042 {
1043 	if (iov_count > UIO_MAXIOV)
1044 		return NULL;
1045 
1046 	return kmalloc(sizeof(struct bio_map_data) +
1047 		       sizeof(struct sg_iovec) * iov_count, gfp_mask);
1048 }
1049 
1050 static int __bio_copy_iov(struct bio *bio, const struct sg_iovec *iov, int iov_count,
1051 			  int to_user, int from_user, int do_free_page)
1052 {
1053 	int ret = 0, i;
1054 	struct bio_vec *bvec;
1055 	int iov_idx = 0;
1056 	unsigned int iov_off = 0;
1057 
1058 	bio_for_each_segment_all(bvec, bio, i) {
1059 		char *bv_addr = page_address(bvec->bv_page);
1060 		unsigned int bv_len = bvec->bv_len;
1061 
1062 		while (bv_len && iov_idx < iov_count) {
1063 			unsigned int bytes;
1064 			char __user *iov_addr;
1065 
1066 			bytes = min_t(unsigned int,
1067 				      iov[iov_idx].iov_len - iov_off, bv_len);
1068 			iov_addr = iov[iov_idx].iov_base + iov_off;
1069 
1070 			if (!ret) {
1071 				if (to_user)
1072 					ret = copy_to_user(iov_addr, bv_addr,
1073 							   bytes);
1074 
1075 				if (from_user)
1076 					ret = copy_from_user(bv_addr, iov_addr,
1077 							     bytes);
1078 
1079 				if (ret)
1080 					ret = -EFAULT;
1081 			}
1082 
1083 			bv_len -= bytes;
1084 			bv_addr += bytes;
1085 			iov_addr += bytes;
1086 			iov_off += bytes;
1087 
1088 			if (iov[iov_idx].iov_len == iov_off) {
1089 				iov_idx++;
1090 				iov_off = 0;
1091 			}
1092 		}
1093 
1094 		if (do_free_page)
1095 			__free_page(bvec->bv_page);
1096 	}
1097 
1098 	return ret;
1099 }
1100 
1101 /**
1102  *	bio_uncopy_user	-	finish previously mapped bio
1103  *	@bio: bio being terminated
1104  *
1105  *	Free pages allocated from bio_copy_user() and write back data
1106  *	to user space in case of a read.
1107  */
1108 int bio_uncopy_user(struct bio *bio)
1109 {
1110 	struct bio_map_data *bmd = bio->bi_private;
1111 	struct bio_vec *bvec;
1112 	int ret = 0, i;
1113 
1114 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1115 		/*
1116 		 * if we're in a workqueue, the request is orphaned, so
1117 		 * don't copy into a random user address space, just free.
1118 		 */
1119 		if (current->mm)
1120 			ret = __bio_copy_iov(bio, bmd->sgvecs, bmd->nr_sgvecs,
1121 					     bio_data_dir(bio) == READ,
1122 					     0, bmd->is_our_pages);
1123 		else if (bmd->is_our_pages)
1124 			bio_for_each_segment_all(bvec, bio, i)
1125 				__free_page(bvec->bv_page);
1126 	}
1127 	kfree(bmd);
1128 	bio_put(bio);
1129 	return ret;
1130 }
1131 EXPORT_SYMBOL(bio_uncopy_user);
1132 
1133 /**
1134  *	bio_copy_user_iov	-	copy user data to bio
1135  *	@q: destination block queue
1136  *	@map_data: pointer to the rq_map_data holding pages (if necessary)
1137  *	@iov:	the iovec.
1138  *	@iov_count: number of elements in the iovec
1139  *	@write_to_vm: bool indicating writing to pages or not
1140  *	@gfp_mask: memory allocation flags
1141  *
1142  *	Prepares and returns a bio for indirect user io, bouncing data
1143  *	to/from kernel pages as necessary. Must be paired with
1144  *	call bio_uncopy_user() on io completion.
1145  */
1146 struct bio *bio_copy_user_iov(struct request_queue *q,
1147 			      struct rq_map_data *map_data,
1148 			      const struct sg_iovec *iov, int iov_count,
1149 			      int write_to_vm, gfp_t gfp_mask)
1150 {
1151 	struct bio_map_data *bmd;
1152 	struct bio_vec *bvec;
1153 	struct page *page;
1154 	struct bio *bio;
1155 	int i, ret;
1156 	int nr_pages = 0;
1157 	unsigned int len = 0;
1158 	unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1159 
1160 	for (i = 0; i < iov_count; i++) {
1161 		unsigned long uaddr;
1162 		unsigned long end;
1163 		unsigned long start;
1164 
1165 		uaddr = (unsigned long)iov[i].iov_base;
1166 		end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1167 		start = uaddr >> PAGE_SHIFT;
1168 
1169 		/*
1170 		 * Overflow, abort
1171 		 */
1172 		if (end < start)
1173 			return ERR_PTR(-EINVAL);
1174 
1175 		nr_pages += end - start;
1176 		len += iov[i].iov_len;
1177 	}
1178 
1179 	if (offset)
1180 		nr_pages++;
1181 
1182 	bmd = bio_alloc_map_data(iov_count, gfp_mask);
1183 	if (!bmd)
1184 		return ERR_PTR(-ENOMEM);
1185 
1186 	ret = -ENOMEM;
1187 	bio = bio_kmalloc(gfp_mask, nr_pages);
1188 	if (!bio)
1189 		goto out_bmd;
1190 
1191 	if (!write_to_vm)
1192 		bio->bi_rw |= REQ_WRITE;
1193 
1194 	ret = 0;
1195 
1196 	if (map_data) {
1197 		nr_pages = 1 << map_data->page_order;
1198 		i = map_data->offset / PAGE_SIZE;
1199 	}
1200 	while (len) {
1201 		unsigned int bytes = PAGE_SIZE;
1202 
1203 		bytes -= offset;
1204 
1205 		if (bytes > len)
1206 			bytes = len;
1207 
1208 		if (map_data) {
1209 			if (i == map_data->nr_entries * nr_pages) {
1210 				ret = -ENOMEM;
1211 				break;
1212 			}
1213 
1214 			page = map_data->pages[i / nr_pages];
1215 			page += (i % nr_pages);
1216 
1217 			i++;
1218 		} else {
1219 			page = alloc_page(q->bounce_gfp | gfp_mask);
1220 			if (!page) {
1221 				ret = -ENOMEM;
1222 				break;
1223 			}
1224 		}
1225 
1226 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1227 			break;
1228 
1229 		len -= bytes;
1230 		offset = 0;
1231 	}
1232 
1233 	if (ret)
1234 		goto cleanup;
1235 
1236 	/*
1237 	 * success
1238 	 */
1239 	if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1240 	    (map_data && map_data->from_user)) {
1241 		ret = __bio_copy_iov(bio, iov, iov_count, 0, 1, 0);
1242 		if (ret)
1243 			goto cleanup;
1244 	}
1245 
1246 	bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1247 	return bio;
1248 cleanup:
1249 	if (!map_data)
1250 		bio_for_each_segment_all(bvec, bio, i)
1251 			__free_page(bvec->bv_page);
1252 
1253 	bio_put(bio);
1254 out_bmd:
1255 	kfree(bmd);
1256 	return ERR_PTR(ret);
1257 }
1258 
1259 /**
1260  *	bio_copy_user	-	copy user data to bio
1261  *	@q: destination block queue
1262  *	@map_data: pointer to the rq_map_data holding pages (if necessary)
1263  *	@uaddr: start of user address
1264  *	@len: length in bytes
1265  *	@write_to_vm: bool indicating writing to pages or not
1266  *	@gfp_mask: memory allocation flags
1267  *
1268  *	Prepares and returns a bio for indirect user io, bouncing data
1269  *	to/from kernel pages as necessary. Must be paired with
1270  *	call bio_uncopy_user() on io completion.
1271  */
1272 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1273 			  unsigned long uaddr, unsigned int len,
1274 			  int write_to_vm, gfp_t gfp_mask)
1275 {
1276 	struct sg_iovec iov;
1277 
1278 	iov.iov_base = (void __user *)uaddr;
1279 	iov.iov_len = len;
1280 
1281 	return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
1282 }
1283 EXPORT_SYMBOL(bio_copy_user);
1284 
1285 static struct bio *__bio_map_user_iov(struct request_queue *q,
1286 				      struct block_device *bdev,
1287 				      const struct sg_iovec *iov, int iov_count,
1288 				      int write_to_vm, gfp_t gfp_mask)
1289 {
1290 	int i, j;
1291 	int nr_pages = 0;
1292 	struct page **pages;
1293 	struct bio *bio;
1294 	int cur_page = 0;
1295 	int ret, offset;
1296 
1297 	for (i = 0; i < iov_count; i++) {
1298 		unsigned long uaddr = (unsigned long)iov[i].iov_base;
1299 		unsigned long len = iov[i].iov_len;
1300 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1301 		unsigned long start = uaddr >> PAGE_SHIFT;
1302 
1303 		/*
1304 		 * Overflow, abort
1305 		 */
1306 		if (end < start)
1307 			return ERR_PTR(-EINVAL);
1308 
1309 		nr_pages += end - start;
1310 		/*
1311 		 * buffer must be aligned to at least hardsector size for now
1312 		 */
1313 		if (uaddr & queue_dma_alignment(q))
1314 			return ERR_PTR(-EINVAL);
1315 	}
1316 
1317 	if (!nr_pages)
1318 		return ERR_PTR(-EINVAL);
1319 
1320 	bio = bio_kmalloc(gfp_mask, nr_pages);
1321 	if (!bio)
1322 		return ERR_PTR(-ENOMEM);
1323 
1324 	ret = -ENOMEM;
1325 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1326 	if (!pages)
1327 		goto out;
1328 
1329 	for (i = 0; i < iov_count; i++) {
1330 		unsigned long uaddr = (unsigned long)iov[i].iov_base;
1331 		unsigned long len = iov[i].iov_len;
1332 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1333 		unsigned long start = uaddr >> PAGE_SHIFT;
1334 		const int local_nr_pages = end - start;
1335 		const int page_limit = cur_page + local_nr_pages;
1336 
1337 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1338 				write_to_vm, &pages[cur_page]);
1339 		if (ret < local_nr_pages) {
1340 			ret = -EFAULT;
1341 			goto out_unmap;
1342 		}
1343 
1344 		offset = uaddr & ~PAGE_MASK;
1345 		for (j = cur_page; j < page_limit; j++) {
1346 			unsigned int bytes = PAGE_SIZE - offset;
1347 
1348 			if (len <= 0)
1349 				break;
1350 
1351 			if (bytes > len)
1352 				bytes = len;
1353 
1354 			/*
1355 			 * sorry...
1356 			 */
1357 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1358 					    bytes)
1359 				break;
1360 
1361 			len -= bytes;
1362 			offset = 0;
1363 		}
1364 
1365 		cur_page = j;
1366 		/*
1367 		 * release the pages we didn't map into the bio, if any
1368 		 */
1369 		while (j < page_limit)
1370 			page_cache_release(pages[j++]);
1371 	}
1372 
1373 	kfree(pages);
1374 
1375 	/*
1376 	 * set data direction, and check if mapped pages need bouncing
1377 	 */
1378 	if (!write_to_vm)
1379 		bio->bi_rw |= REQ_WRITE;
1380 
1381 	bio->bi_bdev = bdev;
1382 	bio->bi_flags |= (1 << BIO_USER_MAPPED);
1383 	return bio;
1384 
1385  out_unmap:
1386 	for (i = 0; i < nr_pages; i++) {
1387 		if(!pages[i])
1388 			break;
1389 		page_cache_release(pages[i]);
1390 	}
1391  out:
1392 	kfree(pages);
1393 	bio_put(bio);
1394 	return ERR_PTR(ret);
1395 }
1396 
1397 /**
1398  *	bio_map_user	-	map user address into bio
1399  *	@q: the struct request_queue for the bio
1400  *	@bdev: destination block device
1401  *	@uaddr: start of user address
1402  *	@len: length in bytes
1403  *	@write_to_vm: bool indicating writing to pages or not
1404  *	@gfp_mask: memory allocation flags
1405  *
1406  *	Map the user space address into a bio suitable for io to a block
1407  *	device. Returns an error pointer in case of error.
1408  */
1409 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1410 			 unsigned long uaddr, unsigned int len, int write_to_vm,
1411 			 gfp_t gfp_mask)
1412 {
1413 	struct sg_iovec iov;
1414 
1415 	iov.iov_base = (void __user *)uaddr;
1416 	iov.iov_len = len;
1417 
1418 	return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1419 }
1420 EXPORT_SYMBOL(bio_map_user);
1421 
1422 /**
1423  *	bio_map_user_iov - map user sg_iovec table into bio
1424  *	@q: the struct request_queue for the bio
1425  *	@bdev: destination block device
1426  *	@iov:	the iovec.
1427  *	@iov_count: number of elements in the iovec
1428  *	@write_to_vm: bool indicating writing to pages or not
1429  *	@gfp_mask: memory allocation flags
1430  *
1431  *	Map the user space address into a bio suitable for io to a block
1432  *	device. Returns an error pointer in case of error.
1433  */
1434 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1435 			     const struct sg_iovec *iov, int iov_count,
1436 			     int write_to_vm, gfp_t gfp_mask)
1437 {
1438 	struct bio *bio;
1439 
1440 	bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1441 				 gfp_mask);
1442 	if (IS_ERR(bio))
1443 		return bio;
1444 
1445 	/*
1446 	 * subtle -- if __bio_map_user() ended up bouncing a bio,
1447 	 * it would normally disappear when its bi_end_io is run.
1448 	 * however, we need it for the unmap, so grab an extra
1449 	 * reference to it
1450 	 */
1451 	bio_get(bio);
1452 
1453 	return bio;
1454 }
1455 
1456 static void __bio_unmap_user(struct bio *bio)
1457 {
1458 	struct bio_vec *bvec;
1459 	int i;
1460 
1461 	/*
1462 	 * make sure we dirty pages we wrote to
1463 	 */
1464 	bio_for_each_segment_all(bvec, bio, i) {
1465 		if (bio_data_dir(bio) == READ)
1466 			set_page_dirty_lock(bvec->bv_page);
1467 
1468 		page_cache_release(bvec->bv_page);
1469 	}
1470 
1471 	bio_put(bio);
1472 }
1473 
1474 /**
1475  *	bio_unmap_user	-	unmap a bio
1476  *	@bio:		the bio being unmapped
1477  *
1478  *	Unmap a bio previously mapped by bio_map_user(). Must be called with
1479  *	a process context.
1480  *
1481  *	bio_unmap_user() may sleep.
1482  */
1483 void bio_unmap_user(struct bio *bio)
1484 {
1485 	__bio_unmap_user(bio);
1486 	bio_put(bio);
1487 }
1488 EXPORT_SYMBOL(bio_unmap_user);
1489 
1490 static void bio_map_kern_endio(struct bio *bio, int err)
1491 {
1492 	bio_put(bio);
1493 }
1494 
1495 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1496 				  unsigned int len, gfp_t gfp_mask)
1497 {
1498 	unsigned long kaddr = (unsigned long)data;
1499 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1500 	unsigned long start = kaddr >> PAGE_SHIFT;
1501 	const int nr_pages = end - start;
1502 	int offset, i;
1503 	struct bio *bio;
1504 
1505 	bio = bio_kmalloc(gfp_mask, nr_pages);
1506 	if (!bio)
1507 		return ERR_PTR(-ENOMEM);
1508 
1509 	offset = offset_in_page(kaddr);
1510 	for (i = 0; i < nr_pages; i++) {
1511 		unsigned int bytes = PAGE_SIZE - offset;
1512 
1513 		if (len <= 0)
1514 			break;
1515 
1516 		if (bytes > len)
1517 			bytes = len;
1518 
1519 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1520 				    offset) < bytes)
1521 			break;
1522 
1523 		data += bytes;
1524 		len -= bytes;
1525 		offset = 0;
1526 	}
1527 
1528 	bio->bi_end_io = bio_map_kern_endio;
1529 	return bio;
1530 }
1531 
1532 /**
1533  *	bio_map_kern	-	map kernel address into bio
1534  *	@q: the struct request_queue for the bio
1535  *	@data: pointer to buffer to map
1536  *	@len: length in bytes
1537  *	@gfp_mask: allocation flags for bio allocation
1538  *
1539  *	Map the kernel address into a bio suitable for io to a block
1540  *	device. Returns an error pointer in case of error.
1541  */
1542 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1543 			 gfp_t gfp_mask)
1544 {
1545 	struct bio *bio;
1546 
1547 	bio = __bio_map_kern(q, data, len, gfp_mask);
1548 	if (IS_ERR(bio))
1549 		return bio;
1550 
1551 	if (bio->bi_iter.bi_size == len)
1552 		return bio;
1553 
1554 	/*
1555 	 * Don't support partial mappings.
1556 	 */
1557 	bio_put(bio);
1558 	return ERR_PTR(-EINVAL);
1559 }
1560 EXPORT_SYMBOL(bio_map_kern);
1561 
1562 static void bio_copy_kern_endio(struct bio *bio, int err)
1563 {
1564 	struct bio_vec *bvec;
1565 	const int read = bio_data_dir(bio) == READ;
1566 	struct bio_map_data *bmd = bio->bi_private;
1567 	int i;
1568 	char *p = bmd->sgvecs[0].iov_base;
1569 
1570 	bio_for_each_segment_all(bvec, bio, i) {
1571 		char *addr = page_address(bvec->bv_page);
1572 
1573 		if (read)
1574 			memcpy(p, addr, bvec->bv_len);
1575 
1576 		__free_page(bvec->bv_page);
1577 		p += bvec->bv_len;
1578 	}
1579 
1580 	kfree(bmd);
1581 	bio_put(bio);
1582 }
1583 
1584 /**
1585  *	bio_copy_kern	-	copy kernel address into bio
1586  *	@q: the struct request_queue for the bio
1587  *	@data: pointer to buffer to copy
1588  *	@len: length in bytes
1589  *	@gfp_mask: allocation flags for bio and page allocation
1590  *	@reading: data direction is READ
1591  *
1592  *	copy the kernel address into a bio suitable for io to a block
1593  *	device. Returns an error pointer in case of error.
1594  */
1595 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1596 			  gfp_t gfp_mask, int reading)
1597 {
1598 	struct bio *bio;
1599 	struct bio_vec *bvec;
1600 	int i;
1601 
1602 	bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1603 	if (IS_ERR(bio))
1604 		return bio;
1605 
1606 	if (!reading) {
1607 		void *p = data;
1608 
1609 		bio_for_each_segment_all(bvec, bio, i) {
1610 			char *addr = page_address(bvec->bv_page);
1611 
1612 			memcpy(addr, p, bvec->bv_len);
1613 			p += bvec->bv_len;
1614 		}
1615 	}
1616 
1617 	bio->bi_end_io = bio_copy_kern_endio;
1618 
1619 	return bio;
1620 }
1621 EXPORT_SYMBOL(bio_copy_kern);
1622 
1623 /*
1624  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1625  * for performing direct-IO in BIOs.
1626  *
1627  * The problem is that we cannot run set_page_dirty() from interrupt context
1628  * because the required locks are not interrupt-safe.  So what we can do is to
1629  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1630  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1631  * in process context.
1632  *
1633  * We special-case compound pages here: normally this means reads into hugetlb
1634  * pages.  The logic in here doesn't really work right for compound pages
1635  * because the VM does not uniformly chase down the head page in all cases.
1636  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1637  * handle them at all.  So we skip compound pages here at an early stage.
1638  *
1639  * Note that this code is very hard to test under normal circumstances because
1640  * direct-io pins the pages with get_user_pages().  This makes
1641  * is_page_cache_freeable return false, and the VM will not clean the pages.
1642  * But other code (eg, flusher threads) could clean the pages if they are mapped
1643  * pagecache.
1644  *
1645  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1646  * deferred bio dirtying paths.
1647  */
1648 
1649 /*
1650  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1651  */
1652 void bio_set_pages_dirty(struct bio *bio)
1653 {
1654 	struct bio_vec *bvec;
1655 	int i;
1656 
1657 	bio_for_each_segment_all(bvec, bio, i) {
1658 		struct page *page = bvec->bv_page;
1659 
1660 		if (page && !PageCompound(page))
1661 			set_page_dirty_lock(page);
1662 	}
1663 }
1664 
1665 static void bio_release_pages(struct bio *bio)
1666 {
1667 	struct bio_vec *bvec;
1668 	int i;
1669 
1670 	bio_for_each_segment_all(bvec, bio, i) {
1671 		struct page *page = bvec->bv_page;
1672 
1673 		if (page)
1674 			put_page(page);
1675 	}
1676 }
1677 
1678 /*
1679  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1680  * If they are, then fine.  If, however, some pages are clean then they must
1681  * have been written out during the direct-IO read.  So we take another ref on
1682  * the BIO and the offending pages and re-dirty the pages in process context.
1683  *
1684  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1685  * here on.  It will run one page_cache_release() against each page and will
1686  * run one bio_put() against the BIO.
1687  */
1688 
1689 static void bio_dirty_fn(struct work_struct *work);
1690 
1691 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1692 static DEFINE_SPINLOCK(bio_dirty_lock);
1693 static struct bio *bio_dirty_list;
1694 
1695 /*
1696  * This runs in process context
1697  */
1698 static void bio_dirty_fn(struct work_struct *work)
1699 {
1700 	unsigned long flags;
1701 	struct bio *bio;
1702 
1703 	spin_lock_irqsave(&bio_dirty_lock, flags);
1704 	bio = bio_dirty_list;
1705 	bio_dirty_list = NULL;
1706 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1707 
1708 	while (bio) {
1709 		struct bio *next = bio->bi_private;
1710 
1711 		bio_set_pages_dirty(bio);
1712 		bio_release_pages(bio);
1713 		bio_put(bio);
1714 		bio = next;
1715 	}
1716 }
1717 
1718 void bio_check_pages_dirty(struct bio *bio)
1719 {
1720 	struct bio_vec *bvec;
1721 	int nr_clean_pages = 0;
1722 	int i;
1723 
1724 	bio_for_each_segment_all(bvec, bio, i) {
1725 		struct page *page = bvec->bv_page;
1726 
1727 		if (PageDirty(page) || PageCompound(page)) {
1728 			page_cache_release(page);
1729 			bvec->bv_page = NULL;
1730 		} else {
1731 			nr_clean_pages++;
1732 		}
1733 	}
1734 
1735 	if (nr_clean_pages) {
1736 		unsigned long flags;
1737 
1738 		spin_lock_irqsave(&bio_dirty_lock, flags);
1739 		bio->bi_private = bio_dirty_list;
1740 		bio_dirty_list = bio;
1741 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1742 		schedule_work(&bio_dirty_work);
1743 	} else {
1744 		bio_put(bio);
1745 	}
1746 }
1747 
1748 void generic_start_io_acct(int rw, unsigned long sectors,
1749 			   struct hd_struct *part)
1750 {
1751 	int cpu = part_stat_lock();
1752 
1753 	part_round_stats(cpu, part);
1754 	part_stat_inc(cpu, part, ios[rw]);
1755 	part_stat_add(cpu, part, sectors[rw], sectors);
1756 	part_inc_in_flight(part, rw);
1757 
1758 	part_stat_unlock();
1759 }
1760 EXPORT_SYMBOL(generic_start_io_acct);
1761 
1762 void generic_end_io_acct(int rw, struct hd_struct *part,
1763 			 unsigned long start_time)
1764 {
1765 	unsigned long duration = jiffies - start_time;
1766 	int cpu = part_stat_lock();
1767 
1768 	part_stat_add(cpu, part, ticks[rw], duration);
1769 	part_round_stats(cpu, part);
1770 	part_dec_in_flight(part, rw);
1771 
1772 	part_stat_unlock();
1773 }
1774 EXPORT_SYMBOL(generic_end_io_acct);
1775 
1776 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1777 void bio_flush_dcache_pages(struct bio *bi)
1778 {
1779 	struct bio_vec bvec;
1780 	struct bvec_iter iter;
1781 
1782 	bio_for_each_segment(bvec, bi, iter)
1783 		flush_dcache_page(bvec.bv_page);
1784 }
1785 EXPORT_SYMBOL(bio_flush_dcache_pages);
1786 #endif
1787 
1788 /**
1789  * bio_endio - end I/O on a bio
1790  * @bio:	bio
1791  * @error:	error, if any
1792  *
1793  * Description:
1794  *   bio_endio() will end I/O on the whole bio. bio_endio() is the
1795  *   preferred way to end I/O on a bio, it takes care of clearing
1796  *   BIO_UPTODATE on error. @error is 0 on success, and and one of the
1797  *   established -Exxxx (-EIO, for instance) error values in case
1798  *   something went wrong. No one should call bi_end_io() directly on a
1799  *   bio unless they own it and thus know that it has an end_io
1800  *   function.
1801  **/
1802 void bio_endio(struct bio *bio, int error)
1803 {
1804 	while (bio) {
1805 		BUG_ON(atomic_read(&bio->bi_remaining) <= 0);
1806 
1807 		if (error)
1808 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
1809 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1810 			error = -EIO;
1811 
1812 		if (!atomic_dec_and_test(&bio->bi_remaining))
1813 			return;
1814 
1815 		/*
1816 		 * Need to have a real endio function for chained bios,
1817 		 * otherwise various corner cases will break (like stacking
1818 		 * block devices that save/restore bi_end_io) - however, we want
1819 		 * to avoid unbounded recursion and blowing the stack. Tail call
1820 		 * optimization would handle this, but compiling with frame
1821 		 * pointers also disables gcc's sibling call optimization.
1822 		 */
1823 		if (bio->bi_end_io == bio_chain_endio) {
1824 			struct bio *parent = bio->bi_private;
1825 			bio_put(bio);
1826 			bio = parent;
1827 		} else {
1828 			if (bio->bi_end_io)
1829 				bio->bi_end_io(bio, error);
1830 			bio = NULL;
1831 		}
1832 	}
1833 }
1834 EXPORT_SYMBOL(bio_endio);
1835 
1836 /**
1837  * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining
1838  * @bio:	bio
1839  * @error:	error, if any
1840  *
1841  * For code that has saved and restored bi_end_io; thing hard before using this
1842  * function, probably you should've cloned the entire bio.
1843  **/
1844 void bio_endio_nodec(struct bio *bio, int error)
1845 {
1846 	atomic_inc(&bio->bi_remaining);
1847 	bio_endio(bio, error);
1848 }
1849 EXPORT_SYMBOL(bio_endio_nodec);
1850 
1851 /**
1852  * bio_split - split a bio
1853  * @bio:	bio to split
1854  * @sectors:	number of sectors to split from the front of @bio
1855  * @gfp:	gfp mask
1856  * @bs:		bio set to allocate from
1857  *
1858  * Allocates and returns a new bio which represents @sectors from the start of
1859  * @bio, and updates @bio to represent the remaining sectors.
1860  *
1861  * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
1862  * responsibility to ensure that @bio is not freed before the split.
1863  */
1864 struct bio *bio_split(struct bio *bio, int sectors,
1865 		      gfp_t gfp, struct bio_set *bs)
1866 {
1867 	struct bio *split = NULL;
1868 
1869 	BUG_ON(sectors <= 0);
1870 	BUG_ON(sectors >= bio_sectors(bio));
1871 
1872 	split = bio_clone_fast(bio, gfp, bs);
1873 	if (!split)
1874 		return NULL;
1875 
1876 	split->bi_iter.bi_size = sectors << 9;
1877 
1878 	if (bio_integrity(split))
1879 		bio_integrity_trim(split, 0, sectors);
1880 
1881 	bio_advance(bio, split->bi_iter.bi_size);
1882 
1883 	return split;
1884 }
1885 EXPORT_SYMBOL(bio_split);
1886 
1887 /**
1888  * bio_trim - trim a bio
1889  * @bio:	bio to trim
1890  * @offset:	number of sectors to trim from the front of @bio
1891  * @size:	size we want to trim @bio to, in sectors
1892  */
1893 void bio_trim(struct bio *bio, int offset, int size)
1894 {
1895 	/* 'bio' is a cloned bio which we need to trim to match
1896 	 * the given offset and size.
1897 	 */
1898 
1899 	size <<= 9;
1900 	if (offset == 0 && size == bio->bi_iter.bi_size)
1901 		return;
1902 
1903 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1904 
1905 	bio_advance(bio, offset << 9);
1906 
1907 	bio->bi_iter.bi_size = size;
1908 }
1909 EXPORT_SYMBOL_GPL(bio_trim);
1910 
1911 /*
1912  * create memory pools for biovec's in a bio_set.
1913  * use the global biovec slabs created for general use.
1914  */
1915 mempool_t *biovec_create_pool(int pool_entries)
1916 {
1917 	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1918 
1919 	return mempool_create_slab_pool(pool_entries, bp->slab);
1920 }
1921 
1922 void bioset_free(struct bio_set *bs)
1923 {
1924 	if (bs->rescue_workqueue)
1925 		destroy_workqueue(bs->rescue_workqueue);
1926 
1927 	if (bs->bio_pool)
1928 		mempool_destroy(bs->bio_pool);
1929 
1930 	if (bs->bvec_pool)
1931 		mempool_destroy(bs->bvec_pool);
1932 
1933 	bioset_integrity_free(bs);
1934 	bio_put_slab(bs);
1935 
1936 	kfree(bs);
1937 }
1938 EXPORT_SYMBOL(bioset_free);
1939 
1940 static struct bio_set *__bioset_create(unsigned int pool_size,
1941 				       unsigned int front_pad,
1942 				       bool create_bvec_pool)
1943 {
1944 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1945 	struct bio_set *bs;
1946 
1947 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1948 	if (!bs)
1949 		return NULL;
1950 
1951 	bs->front_pad = front_pad;
1952 
1953 	spin_lock_init(&bs->rescue_lock);
1954 	bio_list_init(&bs->rescue_list);
1955 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1956 
1957 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1958 	if (!bs->bio_slab) {
1959 		kfree(bs);
1960 		return NULL;
1961 	}
1962 
1963 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1964 	if (!bs->bio_pool)
1965 		goto bad;
1966 
1967 	if (create_bvec_pool) {
1968 		bs->bvec_pool = biovec_create_pool(pool_size);
1969 		if (!bs->bvec_pool)
1970 			goto bad;
1971 	}
1972 
1973 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1974 	if (!bs->rescue_workqueue)
1975 		goto bad;
1976 
1977 	return bs;
1978 bad:
1979 	bioset_free(bs);
1980 	return NULL;
1981 }
1982 
1983 /**
1984  * bioset_create  - Create a bio_set
1985  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1986  * @front_pad:	Number of bytes to allocate in front of the returned bio
1987  *
1988  * Description:
1989  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1990  *    to ask for a number of bytes to be allocated in front of the bio.
1991  *    Front pad allocation is useful for embedding the bio inside
1992  *    another structure, to avoid allocating extra data to go with the bio.
1993  *    Note that the bio must be embedded at the END of that structure always,
1994  *    or things will break badly.
1995  */
1996 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1997 {
1998 	return __bioset_create(pool_size, front_pad, true);
1999 }
2000 EXPORT_SYMBOL(bioset_create);
2001 
2002 /**
2003  * bioset_create_nobvec  - Create a bio_set without bio_vec mempool
2004  * @pool_size:	Number of bio to cache in the mempool
2005  * @front_pad:	Number of bytes to allocate in front of the returned bio
2006  *
2007  * Description:
2008  *    Same functionality as bioset_create() except that mempool is not
2009  *    created for bio_vecs. Saving some memory for bio_clone_fast() users.
2010  */
2011 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
2012 {
2013 	return __bioset_create(pool_size, front_pad, false);
2014 }
2015 EXPORT_SYMBOL(bioset_create_nobvec);
2016 
2017 #ifdef CONFIG_BLK_CGROUP
2018 /**
2019  * bio_associate_current - associate a bio with %current
2020  * @bio: target bio
2021  *
2022  * Associate @bio with %current if it hasn't been associated yet.  Block
2023  * layer will treat @bio as if it were issued by %current no matter which
2024  * task actually issues it.
2025  *
2026  * This function takes an extra reference of @task's io_context and blkcg
2027  * which will be put when @bio is released.  The caller must own @bio,
2028  * ensure %current->io_context exists, and is responsible for synchronizing
2029  * calls to this function.
2030  */
2031 int bio_associate_current(struct bio *bio)
2032 {
2033 	struct io_context *ioc;
2034 	struct cgroup_subsys_state *css;
2035 
2036 	if (bio->bi_ioc)
2037 		return -EBUSY;
2038 
2039 	ioc = current->io_context;
2040 	if (!ioc)
2041 		return -ENOENT;
2042 
2043 	/* acquire active ref on @ioc and associate */
2044 	get_io_context_active(ioc);
2045 	bio->bi_ioc = ioc;
2046 
2047 	/* associate blkcg if exists */
2048 	rcu_read_lock();
2049 	css = task_css(current, blkio_cgrp_id);
2050 	if (css && css_tryget_online(css))
2051 		bio->bi_css = css;
2052 	rcu_read_unlock();
2053 
2054 	return 0;
2055 }
2056 
2057 /**
2058  * bio_disassociate_task - undo bio_associate_current()
2059  * @bio: target bio
2060  */
2061 void bio_disassociate_task(struct bio *bio)
2062 {
2063 	if (bio->bi_ioc) {
2064 		put_io_context(bio->bi_ioc);
2065 		bio->bi_ioc = NULL;
2066 	}
2067 	if (bio->bi_css) {
2068 		css_put(bio->bi_css);
2069 		bio->bi_css = NULL;
2070 	}
2071 }
2072 
2073 #endif /* CONFIG_BLK_CGROUP */
2074 
2075 static void __init biovec_init_slabs(void)
2076 {
2077 	int i;
2078 
2079 	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2080 		int size;
2081 		struct biovec_slab *bvs = bvec_slabs + i;
2082 
2083 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2084 			bvs->slab = NULL;
2085 			continue;
2086 		}
2087 
2088 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2089 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2090                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2091 	}
2092 }
2093 
2094 static int __init init_bio(void)
2095 {
2096 	bio_slab_max = 2;
2097 	bio_slab_nr = 0;
2098 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2099 	if (!bio_slabs)
2100 		panic("bio: can't allocate bios\n");
2101 
2102 	bio_integrity_init();
2103 	biovec_init_slabs();
2104 
2105 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2106 	if (!fs_bio_set)
2107 		panic("bio: can't allocate bios\n");
2108 
2109 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2110 		panic("bio: can't create integrity pool\n");
2111 
2112 	return 0;
2113 }
2114 subsys_initcall(init_bio);
2115