1 /* 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public Licens 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 16 * 17 */ 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/bio.h> 21 #include <linux/blkdev.h> 22 #include <linux/uio.h> 23 #include <linux/iocontext.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/kernel.h> 27 #include <linux/export.h> 28 #include <linux/mempool.h> 29 #include <linux/workqueue.h> 30 #include <linux/cgroup.h> 31 32 #include <trace/events/block.h> 33 #include "blk.h" 34 35 /* 36 * Test patch to inline a certain number of bi_io_vec's inside the bio 37 * itself, to shrink a bio data allocation from two mempool calls to one 38 */ 39 #define BIO_INLINE_VECS 4 40 41 /* 42 * if you change this list, also change bvec_alloc or things will 43 * break badly! cannot be bigger than what you can fit into an 44 * unsigned short 45 */ 46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } 47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { 48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), 49 }; 50 #undef BV 51 52 /* 53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 54 * IO code that does not need private memory pools. 55 */ 56 struct bio_set *fs_bio_set; 57 EXPORT_SYMBOL(fs_bio_set); 58 59 /* 60 * Our slab pool management 61 */ 62 struct bio_slab { 63 struct kmem_cache *slab; 64 unsigned int slab_ref; 65 unsigned int slab_size; 66 char name[8]; 67 }; 68 static DEFINE_MUTEX(bio_slab_lock); 69 static struct bio_slab *bio_slabs; 70 static unsigned int bio_slab_nr, bio_slab_max; 71 72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 73 { 74 unsigned int sz = sizeof(struct bio) + extra_size; 75 struct kmem_cache *slab = NULL; 76 struct bio_slab *bslab, *new_bio_slabs; 77 unsigned int new_bio_slab_max; 78 unsigned int i, entry = -1; 79 80 mutex_lock(&bio_slab_lock); 81 82 i = 0; 83 while (i < bio_slab_nr) { 84 bslab = &bio_slabs[i]; 85 86 if (!bslab->slab && entry == -1) 87 entry = i; 88 else if (bslab->slab_size == sz) { 89 slab = bslab->slab; 90 bslab->slab_ref++; 91 break; 92 } 93 i++; 94 } 95 96 if (slab) 97 goto out_unlock; 98 99 if (bio_slab_nr == bio_slab_max && entry == -1) { 100 new_bio_slab_max = bio_slab_max << 1; 101 new_bio_slabs = krealloc(bio_slabs, 102 new_bio_slab_max * sizeof(struct bio_slab), 103 GFP_KERNEL); 104 if (!new_bio_slabs) 105 goto out_unlock; 106 bio_slab_max = new_bio_slab_max; 107 bio_slabs = new_bio_slabs; 108 } 109 if (entry == -1) 110 entry = bio_slab_nr++; 111 112 bslab = &bio_slabs[entry]; 113 114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, 116 SLAB_HWCACHE_ALIGN, NULL); 117 if (!slab) 118 goto out_unlock; 119 120 bslab->slab = slab; 121 bslab->slab_ref = 1; 122 bslab->slab_size = sz; 123 out_unlock: 124 mutex_unlock(&bio_slab_lock); 125 return slab; 126 } 127 128 static void bio_put_slab(struct bio_set *bs) 129 { 130 struct bio_slab *bslab = NULL; 131 unsigned int i; 132 133 mutex_lock(&bio_slab_lock); 134 135 for (i = 0; i < bio_slab_nr; i++) { 136 if (bs->bio_slab == bio_slabs[i].slab) { 137 bslab = &bio_slabs[i]; 138 break; 139 } 140 } 141 142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 143 goto out; 144 145 WARN_ON(!bslab->slab_ref); 146 147 if (--bslab->slab_ref) 148 goto out; 149 150 kmem_cache_destroy(bslab->slab); 151 bslab->slab = NULL; 152 153 out: 154 mutex_unlock(&bio_slab_lock); 155 } 156 157 unsigned int bvec_nr_vecs(unsigned short idx) 158 { 159 return bvec_slabs[idx].nr_vecs; 160 } 161 162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 163 { 164 if (!idx) 165 return; 166 idx--; 167 168 BIO_BUG_ON(idx >= BVEC_POOL_NR); 169 170 if (idx == BVEC_POOL_MAX) { 171 mempool_free(bv, pool); 172 } else { 173 struct biovec_slab *bvs = bvec_slabs + idx; 174 175 kmem_cache_free(bvs->slab, bv); 176 } 177 } 178 179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 180 mempool_t *pool) 181 { 182 struct bio_vec *bvl; 183 184 /* 185 * see comment near bvec_array define! 186 */ 187 switch (nr) { 188 case 1: 189 *idx = 0; 190 break; 191 case 2 ... 4: 192 *idx = 1; 193 break; 194 case 5 ... 16: 195 *idx = 2; 196 break; 197 case 17 ... 64: 198 *idx = 3; 199 break; 200 case 65 ... 128: 201 *idx = 4; 202 break; 203 case 129 ... BIO_MAX_PAGES: 204 *idx = 5; 205 break; 206 default: 207 return NULL; 208 } 209 210 /* 211 * idx now points to the pool we want to allocate from. only the 212 * 1-vec entry pool is mempool backed. 213 */ 214 if (*idx == BVEC_POOL_MAX) { 215 fallback: 216 bvl = mempool_alloc(pool, gfp_mask); 217 } else { 218 struct biovec_slab *bvs = bvec_slabs + *idx; 219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); 220 221 /* 222 * Make this allocation restricted and don't dump info on 223 * allocation failures, since we'll fallback to the mempool 224 * in case of failure. 225 */ 226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 227 228 /* 229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM 230 * is set, retry with the 1-entry mempool 231 */ 232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { 234 *idx = BVEC_POOL_MAX; 235 goto fallback; 236 } 237 } 238 239 (*idx)++; 240 return bvl; 241 } 242 243 void bio_uninit(struct bio *bio) 244 { 245 bio_disassociate_task(bio); 246 } 247 EXPORT_SYMBOL(bio_uninit); 248 249 static void bio_free(struct bio *bio) 250 { 251 struct bio_set *bs = bio->bi_pool; 252 void *p; 253 254 bio_uninit(bio); 255 256 if (bs) { 257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); 258 259 /* 260 * If we have front padding, adjust the bio pointer before freeing 261 */ 262 p = bio; 263 p -= bs->front_pad; 264 265 mempool_free(p, bs->bio_pool); 266 } else { 267 /* Bio was allocated by bio_kmalloc() */ 268 kfree(bio); 269 } 270 } 271 272 /* 273 * Users of this function have their own bio allocation. Subsequently, 274 * they must remember to pair any call to bio_init() with bio_uninit() 275 * when IO has completed, or when the bio is released. 276 */ 277 void bio_init(struct bio *bio, struct bio_vec *table, 278 unsigned short max_vecs) 279 { 280 memset(bio, 0, sizeof(*bio)); 281 atomic_set(&bio->__bi_remaining, 1); 282 atomic_set(&bio->__bi_cnt, 1); 283 284 bio->bi_io_vec = table; 285 bio->bi_max_vecs = max_vecs; 286 } 287 EXPORT_SYMBOL(bio_init); 288 289 /** 290 * bio_reset - reinitialize a bio 291 * @bio: bio to reset 292 * 293 * Description: 294 * After calling bio_reset(), @bio will be in the same state as a freshly 295 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 296 * preserved are the ones that are initialized by bio_alloc_bioset(). See 297 * comment in struct bio. 298 */ 299 void bio_reset(struct bio *bio) 300 { 301 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 302 303 bio_uninit(bio); 304 305 memset(bio, 0, BIO_RESET_BYTES); 306 bio->bi_flags = flags; 307 atomic_set(&bio->__bi_remaining, 1); 308 } 309 EXPORT_SYMBOL(bio_reset); 310 311 static struct bio *__bio_chain_endio(struct bio *bio) 312 { 313 struct bio *parent = bio->bi_private; 314 315 if (!parent->bi_status) 316 parent->bi_status = bio->bi_status; 317 bio_put(bio); 318 return parent; 319 } 320 321 static void bio_chain_endio(struct bio *bio) 322 { 323 bio_endio(__bio_chain_endio(bio)); 324 } 325 326 /** 327 * bio_chain - chain bio completions 328 * @bio: the target bio 329 * @parent: the @bio's parent bio 330 * 331 * The caller won't have a bi_end_io called when @bio completes - instead, 332 * @parent's bi_end_io won't be called until both @parent and @bio have 333 * completed; the chained bio will also be freed when it completes. 334 * 335 * The caller must not set bi_private or bi_end_io in @bio. 336 */ 337 void bio_chain(struct bio *bio, struct bio *parent) 338 { 339 BUG_ON(bio->bi_private || bio->bi_end_io); 340 341 bio->bi_private = parent; 342 bio->bi_end_io = bio_chain_endio; 343 bio_inc_remaining(parent); 344 } 345 EXPORT_SYMBOL(bio_chain); 346 347 static void bio_alloc_rescue(struct work_struct *work) 348 { 349 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 350 struct bio *bio; 351 352 while (1) { 353 spin_lock(&bs->rescue_lock); 354 bio = bio_list_pop(&bs->rescue_list); 355 spin_unlock(&bs->rescue_lock); 356 357 if (!bio) 358 break; 359 360 generic_make_request(bio); 361 } 362 } 363 364 static void punt_bios_to_rescuer(struct bio_set *bs) 365 { 366 struct bio_list punt, nopunt; 367 struct bio *bio; 368 369 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 370 return; 371 /* 372 * In order to guarantee forward progress we must punt only bios that 373 * were allocated from this bio_set; otherwise, if there was a bio on 374 * there for a stacking driver higher up in the stack, processing it 375 * could require allocating bios from this bio_set, and doing that from 376 * our own rescuer would be bad. 377 * 378 * Since bio lists are singly linked, pop them all instead of trying to 379 * remove from the middle of the list: 380 */ 381 382 bio_list_init(&punt); 383 bio_list_init(&nopunt); 384 385 while ((bio = bio_list_pop(¤t->bio_list[0]))) 386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 387 current->bio_list[0] = nopunt; 388 389 bio_list_init(&nopunt); 390 while ((bio = bio_list_pop(¤t->bio_list[1]))) 391 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 392 current->bio_list[1] = nopunt; 393 394 spin_lock(&bs->rescue_lock); 395 bio_list_merge(&bs->rescue_list, &punt); 396 spin_unlock(&bs->rescue_lock); 397 398 queue_work(bs->rescue_workqueue, &bs->rescue_work); 399 } 400 401 /** 402 * bio_alloc_bioset - allocate a bio for I/O 403 * @gfp_mask: the GFP_ mask given to the slab allocator 404 * @nr_iovecs: number of iovecs to pre-allocate 405 * @bs: the bio_set to allocate from. 406 * 407 * Description: 408 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 409 * backed by the @bs's mempool. 410 * 411 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will 412 * always be able to allocate a bio. This is due to the mempool guarantees. 413 * To make this work, callers must never allocate more than 1 bio at a time 414 * from this pool. Callers that need to allocate more than 1 bio must always 415 * submit the previously allocated bio for IO before attempting to allocate 416 * a new one. Failure to do so can cause deadlocks under memory pressure. 417 * 418 * Note that when running under generic_make_request() (i.e. any block 419 * driver), bios are not submitted until after you return - see the code in 420 * generic_make_request() that converts recursion into iteration, to prevent 421 * stack overflows. 422 * 423 * This would normally mean allocating multiple bios under 424 * generic_make_request() would be susceptible to deadlocks, but we have 425 * deadlock avoidance code that resubmits any blocked bios from a rescuer 426 * thread. 427 * 428 * However, we do not guarantee forward progress for allocations from other 429 * mempools. Doing multiple allocations from the same mempool under 430 * generic_make_request() should be avoided - instead, use bio_set's front_pad 431 * for per bio allocations. 432 * 433 * RETURNS: 434 * Pointer to new bio on success, NULL on failure. 435 */ 436 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs, 437 struct bio_set *bs) 438 { 439 gfp_t saved_gfp = gfp_mask; 440 unsigned front_pad; 441 unsigned inline_vecs; 442 struct bio_vec *bvl = NULL; 443 struct bio *bio; 444 void *p; 445 446 if (!bs) { 447 if (nr_iovecs > UIO_MAXIOV) 448 return NULL; 449 450 p = kmalloc(sizeof(struct bio) + 451 nr_iovecs * sizeof(struct bio_vec), 452 gfp_mask); 453 front_pad = 0; 454 inline_vecs = nr_iovecs; 455 } else { 456 /* should not use nobvec bioset for nr_iovecs > 0 */ 457 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0)) 458 return NULL; 459 /* 460 * generic_make_request() converts recursion to iteration; this 461 * means if we're running beneath it, any bios we allocate and 462 * submit will not be submitted (and thus freed) until after we 463 * return. 464 * 465 * This exposes us to a potential deadlock if we allocate 466 * multiple bios from the same bio_set() while running 467 * underneath generic_make_request(). If we were to allocate 468 * multiple bios (say a stacking block driver that was splitting 469 * bios), we would deadlock if we exhausted the mempool's 470 * reserve. 471 * 472 * We solve this, and guarantee forward progress, with a rescuer 473 * workqueue per bio_set. If we go to allocate and there are 474 * bios on current->bio_list, we first try the allocation 475 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those 476 * bios we would be blocking to the rescuer workqueue before 477 * we retry with the original gfp_flags. 478 */ 479 480 if (current->bio_list && 481 (!bio_list_empty(¤t->bio_list[0]) || 482 !bio_list_empty(¤t->bio_list[1])) && 483 bs->rescue_workqueue) 484 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 485 486 p = mempool_alloc(bs->bio_pool, gfp_mask); 487 if (!p && gfp_mask != saved_gfp) { 488 punt_bios_to_rescuer(bs); 489 gfp_mask = saved_gfp; 490 p = mempool_alloc(bs->bio_pool, gfp_mask); 491 } 492 493 front_pad = bs->front_pad; 494 inline_vecs = BIO_INLINE_VECS; 495 } 496 497 if (unlikely(!p)) 498 return NULL; 499 500 bio = p + front_pad; 501 bio_init(bio, NULL, 0); 502 503 if (nr_iovecs > inline_vecs) { 504 unsigned long idx = 0; 505 506 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 507 if (!bvl && gfp_mask != saved_gfp) { 508 punt_bios_to_rescuer(bs); 509 gfp_mask = saved_gfp; 510 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 511 } 512 513 if (unlikely(!bvl)) 514 goto err_free; 515 516 bio->bi_flags |= idx << BVEC_POOL_OFFSET; 517 } else if (nr_iovecs) { 518 bvl = bio->bi_inline_vecs; 519 } 520 521 bio->bi_pool = bs; 522 bio->bi_max_vecs = nr_iovecs; 523 bio->bi_io_vec = bvl; 524 return bio; 525 526 err_free: 527 mempool_free(p, bs->bio_pool); 528 return NULL; 529 } 530 EXPORT_SYMBOL(bio_alloc_bioset); 531 532 void zero_fill_bio(struct bio *bio) 533 { 534 unsigned long flags; 535 struct bio_vec bv; 536 struct bvec_iter iter; 537 538 bio_for_each_segment(bv, bio, iter) { 539 char *data = bvec_kmap_irq(&bv, &flags); 540 memset(data, 0, bv.bv_len); 541 flush_dcache_page(bv.bv_page); 542 bvec_kunmap_irq(data, &flags); 543 } 544 } 545 EXPORT_SYMBOL(zero_fill_bio); 546 547 /** 548 * bio_put - release a reference to a bio 549 * @bio: bio to release reference to 550 * 551 * Description: 552 * Put a reference to a &struct bio, either one you have gotten with 553 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 554 **/ 555 void bio_put(struct bio *bio) 556 { 557 if (!bio_flagged(bio, BIO_REFFED)) 558 bio_free(bio); 559 else { 560 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 561 562 /* 563 * last put frees it 564 */ 565 if (atomic_dec_and_test(&bio->__bi_cnt)) 566 bio_free(bio); 567 } 568 } 569 EXPORT_SYMBOL(bio_put); 570 571 inline int bio_phys_segments(struct request_queue *q, struct bio *bio) 572 { 573 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) 574 blk_recount_segments(q, bio); 575 576 return bio->bi_phys_segments; 577 } 578 EXPORT_SYMBOL(bio_phys_segments); 579 580 /** 581 * __bio_clone_fast - clone a bio that shares the original bio's biovec 582 * @bio: destination bio 583 * @bio_src: bio to clone 584 * 585 * Clone a &bio. Caller will own the returned bio, but not 586 * the actual data it points to. Reference count of returned 587 * bio will be one. 588 * 589 * Caller must ensure that @bio_src is not freed before @bio. 590 */ 591 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 592 { 593 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); 594 595 /* 596 * most users will be overriding ->bi_bdev with a new target, 597 * so we don't set nor calculate new physical/hw segment counts here 598 */ 599 bio->bi_bdev = bio_src->bi_bdev; 600 bio_set_flag(bio, BIO_CLONED); 601 bio->bi_opf = bio_src->bi_opf; 602 bio->bi_write_hint = bio_src->bi_write_hint; 603 bio->bi_iter = bio_src->bi_iter; 604 bio->bi_io_vec = bio_src->bi_io_vec; 605 606 bio_clone_blkcg_association(bio, bio_src); 607 } 608 EXPORT_SYMBOL(__bio_clone_fast); 609 610 /** 611 * bio_clone_fast - clone a bio that shares the original bio's biovec 612 * @bio: bio to clone 613 * @gfp_mask: allocation priority 614 * @bs: bio_set to allocate from 615 * 616 * Like __bio_clone_fast, only also allocates the returned bio 617 */ 618 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 619 { 620 struct bio *b; 621 622 b = bio_alloc_bioset(gfp_mask, 0, bs); 623 if (!b) 624 return NULL; 625 626 __bio_clone_fast(b, bio); 627 628 if (bio_integrity(bio)) { 629 int ret; 630 631 ret = bio_integrity_clone(b, bio, gfp_mask); 632 633 if (ret < 0) { 634 bio_put(b); 635 return NULL; 636 } 637 } 638 639 return b; 640 } 641 EXPORT_SYMBOL(bio_clone_fast); 642 643 /** 644 * bio_clone_bioset - clone a bio 645 * @bio_src: bio to clone 646 * @gfp_mask: allocation priority 647 * @bs: bio_set to allocate from 648 * 649 * Clone bio. Caller will own the returned bio, but not the actual data it 650 * points to. Reference count of returned bio will be one. 651 */ 652 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, 653 struct bio_set *bs) 654 { 655 struct bvec_iter iter; 656 struct bio_vec bv; 657 struct bio *bio; 658 659 /* 660 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from 661 * bio_src->bi_io_vec to bio->bi_io_vec. 662 * 663 * We can't do that anymore, because: 664 * 665 * - The point of cloning the biovec is to produce a bio with a biovec 666 * the caller can modify: bi_idx and bi_bvec_done should be 0. 667 * 668 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if 669 * we tried to clone the whole thing bio_alloc_bioset() would fail. 670 * But the clone should succeed as long as the number of biovecs we 671 * actually need to allocate is fewer than BIO_MAX_PAGES. 672 * 673 * - Lastly, bi_vcnt should not be looked at or relied upon by code 674 * that does not own the bio - reason being drivers don't use it for 675 * iterating over the biovec anymore, so expecting it to be kept up 676 * to date (i.e. for clones that share the parent biovec) is just 677 * asking for trouble and would force extra work on 678 * __bio_clone_fast() anyways. 679 */ 680 681 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs); 682 if (!bio) 683 return NULL; 684 bio->bi_bdev = bio_src->bi_bdev; 685 bio->bi_opf = bio_src->bi_opf; 686 bio->bi_write_hint = bio_src->bi_write_hint; 687 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; 688 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; 689 690 switch (bio_op(bio)) { 691 case REQ_OP_DISCARD: 692 case REQ_OP_SECURE_ERASE: 693 case REQ_OP_WRITE_ZEROES: 694 break; 695 case REQ_OP_WRITE_SAME: 696 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0]; 697 break; 698 default: 699 bio_for_each_segment(bv, bio_src, iter) 700 bio->bi_io_vec[bio->bi_vcnt++] = bv; 701 break; 702 } 703 704 if (bio_integrity(bio_src)) { 705 int ret; 706 707 ret = bio_integrity_clone(bio, bio_src, gfp_mask); 708 if (ret < 0) { 709 bio_put(bio); 710 return NULL; 711 } 712 } 713 714 bio_clone_blkcg_association(bio, bio_src); 715 716 return bio; 717 } 718 EXPORT_SYMBOL(bio_clone_bioset); 719 720 /** 721 * bio_add_pc_page - attempt to add page to bio 722 * @q: the target queue 723 * @bio: destination bio 724 * @page: page to add 725 * @len: vec entry length 726 * @offset: vec entry offset 727 * 728 * Attempt to add a page to the bio_vec maplist. This can fail for a 729 * number of reasons, such as the bio being full or target block device 730 * limitations. The target block device must allow bio's up to PAGE_SIZE, 731 * so it is always possible to add a single page to an empty bio. 732 * 733 * This should only be used by REQ_PC bios. 734 */ 735 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page 736 *page, unsigned int len, unsigned int offset) 737 { 738 int retried_segments = 0; 739 struct bio_vec *bvec; 740 741 /* 742 * cloned bio must not modify vec list 743 */ 744 if (unlikely(bio_flagged(bio, BIO_CLONED))) 745 return 0; 746 747 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q)) 748 return 0; 749 750 /* 751 * For filesystems with a blocksize smaller than the pagesize 752 * we will often be called with the same page as last time and 753 * a consecutive offset. Optimize this special case. 754 */ 755 if (bio->bi_vcnt > 0) { 756 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 757 758 if (page == prev->bv_page && 759 offset == prev->bv_offset + prev->bv_len) { 760 prev->bv_len += len; 761 bio->bi_iter.bi_size += len; 762 goto done; 763 } 764 765 /* 766 * If the queue doesn't support SG gaps and adding this 767 * offset would create a gap, disallow it. 768 */ 769 if (bvec_gap_to_prev(q, prev, offset)) 770 return 0; 771 } 772 773 if (bio->bi_vcnt >= bio->bi_max_vecs) 774 return 0; 775 776 /* 777 * setup the new entry, we might clear it again later if we 778 * cannot add the page 779 */ 780 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 781 bvec->bv_page = page; 782 bvec->bv_len = len; 783 bvec->bv_offset = offset; 784 bio->bi_vcnt++; 785 bio->bi_phys_segments++; 786 bio->bi_iter.bi_size += len; 787 788 /* 789 * Perform a recount if the number of segments is greater 790 * than queue_max_segments(q). 791 */ 792 793 while (bio->bi_phys_segments > queue_max_segments(q)) { 794 795 if (retried_segments) 796 goto failed; 797 798 retried_segments = 1; 799 blk_recount_segments(q, bio); 800 } 801 802 /* If we may be able to merge these biovecs, force a recount */ 803 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) 804 bio_clear_flag(bio, BIO_SEG_VALID); 805 806 done: 807 return len; 808 809 failed: 810 bvec->bv_page = NULL; 811 bvec->bv_len = 0; 812 bvec->bv_offset = 0; 813 bio->bi_vcnt--; 814 bio->bi_iter.bi_size -= len; 815 blk_recount_segments(q, bio); 816 return 0; 817 } 818 EXPORT_SYMBOL(bio_add_pc_page); 819 820 /** 821 * bio_add_page - attempt to add page to bio 822 * @bio: destination bio 823 * @page: page to add 824 * @len: vec entry length 825 * @offset: vec entry offset 826 * 827 * Attempt to add a page to the bio_vec maplist. This will only fail 828 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 829 */ 830 int bio_add_page(struct bio *bio, struct page *page, 831 unsigned int len, unsigned int offset) 832 { 833 struct bio_vec *bv; 834 835 /* 836 * cloned bio must not modify vec list 837 */ 838 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 839 return 0; 840 841 /* 842 * For filesystems with a blocksize smaller than the pagesize 843 * we will often be called with the same page as last time and 844 * a consecutive offset. Optimize this special case. 845 */ 846 if (bio->bi_vcnt > 0) { 847 bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 848 849 if (page == bv->bv_page && 850 offset == bv->bv_offset + bv->bv_len) { 851 bv->bv_len += len; 852 goto done; 853 } 854 } 855 856 if (bio->bi_vcnt >= bio->bi_max_vecs) 857 return 0; 858 859 bv = &bio->bi_io_vec[bio->bi_vcnt]; 860 bv->bv_page = page; 861 bv->bv_len = len; 862 bv->bv_offset = offset; 863 864 bio->bi_vcnt++; 865 done: 866 bio->bi_iter.bi_size += len; 867 return len; 868 } 869 EXPORT_SYMBOL(bio_add_page); 870 871 /** 872 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 873 * @bio: bio to add pages to 874 * @iter: iov iterator describing the region to be mapped 875 * 876 * Pins as many pages from *iter and appends them to @bio's bvec array. The 877 * pages will have to be released using put_page() when done. 878 */ 879 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 880 { 881 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 882 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 883 struct page **pages = (struct page **)bv; 884 size_t offset, diff; 885 ssize_t size; 886 887 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 888 if (unlikely(size <= 0)) 889 return size ? size : -EFAULT; 890 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE; 891 892 /* 893 * Deep magic below: We need to walk the pinned pages backwards 894 * because we are abusing the space allocated for the bio_vecs 895 * for the page array. Because the bio_vecs are larger than the 896 * page pointers by definition this will always work. But it also 897 * means we can't use bio_add_page, so any changes to it's semantics 898 * need to be reflected here as well. 899 */ 900 bio->bi_iter.bi_size += size; 901 bio->bi_vcnt += nr_pages; 902 903 diff = (nr_pages * PAGE_SIZE - offset) - size; 904 while (nr_pages--) { 905 bv[nr_pages].bv_page = pages[nr_pages]; 906 bv[nr_pages].bv_len = PAGE_SIZE; 907 bv[nr_pages].bv_offset = 0; 908 } 909 910 bv[0].bv_offset += offset; 911 bv[0].bv_len -= offset; 912 if (diff) 913 bv[bio->bi_vcnt - 1].bv_len -= diff; 914 915 iov_iter_advance(iter, size); 916 return 0; 917 } 918 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 919 920 struct submit_bio_ret { 921 struct completion event; 922 int error; 923 }; 924 925 static void submit_bio_wait_endio(struct bio *bio) 926 { 927 struct submit_bio_ret *ret = bio->bi_private; 928 929 ret->error = blk_status_to_errno(bio->bi_status); 930 complete(&ret->event); 931 } 932 933 /** 934 * submit_bio_wait - submit a bio, and wait until it completes 935 * @bio: The &struct bio which describes the I/O 936 * 937 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 938 * bio_endio() on failure. 939 */ 940 int submit_bio_wait(struct bio *bio) 941 { 942 struct submit_bio_ret ret; 943 944 init_completion(&ret.event); 945 bio->bi_private = &ret; 946 bio->bi_end_io = submit_bio_wait_endio; 947 bio->bi_opf |= REQ_SYNC; 948 submit_bio(bio); 949 wait_for_completion_io(&ret.event); 950 951 return ret.error; 952 } 953 EXPORT_SYMBOL(submit_bio_wait); 954 955 /** 956 * bio_advance - increment/complete a bio by some number of bytes 957 * @bio: bio to advance 958 * @bytes: number of bytes to complete 959 * 960 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 961 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 962 * be updated on the last bvec as well. 963 * 964 * @bio will then represent the remaining, uncompleted portion of the io. 965 */ 966 void bio_advance(struct bio *bio, unsigned bytes) 967 { 968 if (bio_integrity(bio)) 969 bio_integrity_advance(bio, bytes); 970 971 bio_advance_iter(bio, &bio->bi_iter, bytes); 972 } 973 EXPORT_SYMBOL(bio_advance); 974 975 /** 976 * bio_alloc_pages - allocates a single page for each bvec in a bio 977 * @bio: bio to allocate pages for 978 * @gfp_mask: flags for allocation 979 * 980 * Allocates pages up to @bio->bi_vcnt. 981 * 982 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are 983 * freed. 984 */ 985 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask) 986 { 987 int i; 988 struct bio_vec *bv; 989 990 bio_for_each_segment_all(bv, bio, i) { 991 bv->bv_page = alloc_page(gfp_mask); 992 if (!bv->bv_page) { 993 while (--bv >= bio->bi_io_vec) 994 __free_page(bv->bv_page); 995 return -ENOMEM; 996 } 997 } 998 999 return 0; 1000 } 1001 EXPORT_SYMBOL(bio_alloc_pages); 1002 1003 /** 1004 * bio_copy_data - copy contents of data buffers from one chain of bios to 1005 * another 1006 * @src: source bio list 1007 * @dst: destination bio list 1008 * 1009 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats 1010 * @src and @dst as linked lists of bios. 1011 * 1012 * Stops when it reaches the end of either @src or @dst - that is, copies 1013 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1014 */ 1015 void bio_copy_data(struct bio *dst, struct bio *src) 1016 { 1017 struct bvec_iter src_iter, dst_iter; 1018 struct bio_vec src_bv, dst_bv; 1019 void *src_p, *dst_p; 1020 unsigned bytes; 1021 1022 src_iter = src->bi_iter; 1023 dst_iter = dst->bi_iter; 1024 1025 while (1) { 1026 if (!src_iter.bi_size) { 1027 src = src->bi_next; 1028 if (!src) 1029 break; 1030 1031 src_iter = src->bi_iter; 1032 } 1033 1034 if (!dst_iter.bi_size) { 1035 dst = dst->bi_next; 1036 if (!dst) 1037 break; 1038 1039 dst_iter = dst->bi_iter; 1040 } 1041 1042 src_bv = bio_iter_iovec(src, src_iter); 1043 dst_bv = bio_iter_iovec(dst, dst_iter); 1044 1045 bytes = min(src_bv.bv_len, dst_bv.bv_len); 1046 1047 src_p = kmap_atomic(src_bv.bv_page); 1048 dst_p = kmap_atomic(dst_bv.bv_page); 1049 1050 memcpy(dst_p + dst_bv.bv_offset, 1051 src_p + src_bv.bv_offset, 1052 bytes); 1053 1054 kunmap_atomic(dst_p); 1055 kunmap_atomic(src_p); 1056 1057 bio_advance_iter(src, &src_iter, bytes); 1058 bio_advance_iter(dst, &dst_iter, bytes); 1059 } 1060 } 1061 EXPORT_SYMBOL(bio_copy_data); 1062 1063 struct bio_map_data { 1064 int is_our_pages; 1065 struct iov_iter iter; 1066 struct iovec iov[]; 1067 }; 1068 1069 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count, 1070 gfp_t gfp_mask) 1071 { 1072 if (iov_count > UIO_MAXIOV) 1073 return NULL; 1074 1075 return kmalloc(sizeof(struct bio_map_data) + 1076 sizeof(struct iovec) * iov_count, gfp_mask); 1077 } 1078 1079 /** 1080 * bio_copy_from_iter - copy all pages from iov_iter to bio 1081 * @bio: The &struct bio which describes the I/O as destination 1082 * @iter: iov_iter as source 1083 * 1084 * Copy all pages from iov_iter to bio. 1085 * Returns 0 on success, or error on failure. 1086 */ 1087 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter) 1088 { 1089 int i; 1090 struct bio_vec *bvec; 1091 1092 bio_for_each_segment_all(bvec, bio, i) { 1093 ssize_t ret; 1094 1095 ret = copy_page_from_iter(bvec->bv_page, 1096 bvec->bv_offset, 1097 bvec->bv_len, 1098 &iter); 1099 1100 if (!iov_iter_count(&iter)) 1101 break; 1102 1103 if (ret < bvec->bv_len) 1104 return -EFAULT; 1105 } 1106 1107 return 0; 1108 } 1109 1110 /** 1111 * bio_copy_to_iter - copy all pages from bio to iov_iter 1112 * @bio: The &struct bio which describes the I/O as source 1113 * @iter: iov_iter as destination 1114 * 1115 * Copy all pages from bio to iov_iter. 1116 * Returns 0 on success, or error on failure. 1117 */ 1118 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 1119 { 1120 int i; 1121 struct bio_vec *bvec; 1122 1123 bio_for_each_segment_all(bvec, bio, i) { 1124 ssize_t ret; 1125 1126 ret = copy_page_to_iter(bvec->bv_page, 1127 bvec->bv_offset, 1128 bvec->bv_len, 1129 &iter); 1130 1131 if (!iov_iter_count(&iter)) 1132 break; 1133 1134 if (ret < bvec->bv_len) 1135 return -EFAULT; 1136 } 1137 1138 return 0; 1139 } 1140 1141 void bio_free_pages(struct bio *bio) 1142 { 1143 struct bio_vec *bvec; 1144 int i; 1145 1146 bio_for_each_segment_all(bvec, bio, i) 1147 __free_page(bvec->bv_page); 1148 } 1149 EXPORT_SYMBOL(bio_free_pages); 1150 1151 /** 1152 * bio_uncopy_user - finish previously mapped bio 1153 * @bio: bio being terminated 1154 * 1155 * Free pages allocated from bio_copy_user_iov() and write back data 1156 * to user space in case of a read. 1157 */ 1158 int bio_uncopy_user(struct bio *bio) 1159 { 1160 struct bio_map_data *bmd = bio->bi_private; 1161 int ret = 0; 1162 1163 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1164 /* 1165 * if we're in a workqueue, the request is orphaned, so 1166 * don't copy into a random user address space, just free 1167 * and return -EINTR so user space doesn't expect any data. 1168 */ 1169 if (!current->mm) 1170 ret = -EINTR; 1171 else if (bio_data_dir(bio) == READ) 1172 ret = bio_copy_to_iter(bio, bmd->iter); 1173 if (bmd->is_our_pages) 1174 bio_free_pages(bio); 1175 } 1176 kfree(bmd); 1177 bio_put(bio); 1178 return ret; 1179 } 1180 1181 /** 1182 * bio_copy_user_iov - copy user data to bio 1183 * @q: destination block queue 1184 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1185 * @iter: iovec iterator 1186 * @gfp_mask: memory allocation flags 1187 * 1188 * Prepares and returns a bio for indirect user io, bouncing data 1189 * to/from kernel pages as necessary. Must be paired with 1190 * call bio_uncopy_user() on io completion. 1191 */ 1192 struct bio *bio_copy_user_iov(struct request_queue *q, 1193 struct rq_map_data *map_data, 1194 const struct iov_iter *iter, 1195 gfp_t gfp_mask) 1196 { 1197 struct bio_map_data *bmd; 1198 struct page *page; 1199 struct bio *bio; 1200 int i, ret; 1201 int nr_pages = 0; 1202 unsigned int len = iter->count; 1203 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 1204 1205 for (i = 0; i < iter->nr_segs; i++) { 1206 unsigned long uaddr; 1207 unsigned long end; 1208 unsigned long start; 1209 1210 uaddr = (unsigned long) iter->iov[i].iov_base; 1211 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1) 1212 >> PAGE_SHIFT; 1213 start = uaddr >> PAGE_SHIFT; 1214 1215 /* 1216 * Overflow, abort 1217 */ 1218 if (end < start) 1219 return ERR_PTR(-EINVAL); 1220 1221 nr_pages += end - start; 1222 } 1223 1224 if (offset) 1225 nr_pages++; 1226 1227 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask); 1228 if (!bmd) 1229 return ERR_PTR(-ENOMEM); 1230 1231 /* 1232 * We need to do a deep copy of the iov_iter including the iovecs. 1233 * The caller provided iov might point to an on-stack or otherwise 1234 * shortlived one. 1235 */ 1236 bmd->is_our_pages = map_data ? 0 : 1; 1237 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs); 1238 iov_iter_init(&bmd->iter, iter->type, bmd->iov, 1239 iter->nr_segs, iter->count); 1240 1241 ret = -ENOMEM; 1242 bio = bio_kmalloc(gfp_mask, nr_pages); 1243 if (!bio) 1244 goto out_bmd; 1245 1246 ret = 0; 1247 1248 if (map_data) { 1249 nr_pages = 1 << map_data->page_order; 1250 i = map_data->offset / PAGE_SIZE; 1251 } 1252 while (len) { 1253 unsigned int bytes = PAGE_SIZE; 1254 1255 bytes -= offset; 1256 1257 if (bytes > len) 1258 bytes = len; 1259 1260 if (map_data) { 1261 if (i == map_data->nr_entries * nr_pages) { 1262 ret = -ENOMEM; 1263 break; 1264 } 1265 1266 page = map_data->pages[i / nr_pages]; 1267 page += (i % nr_pages); 1268 1269 i++; 1270 } else { 1271 page = alloc_page(q->bounce_gfp | gfp_mask); 1272 if (!page) { 1273 ret = -ENOMEM; 1274 break; 1275 } 1276 } 1277 1278 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) 1279 break; 1280 1281 len -= bytes; 1282 offset = 0; 1283 } 1284 1285 if (ret) 1286 goto cleanup; 1287 1288 /* 1289 * success 1290 */ 1291 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) || 1292 (map_data && map_data->from_user)) { 1293 ret = bio_copy_from_iter(bio, *iter); 1294 if (ret) 1295 goto cleanup; 1296 } 1297 1298 bio->bi_private = bmd; 1299 return bio; 1300 cleanup: 1301 if (!map_data) 1302 bio_free_pages(bio); 1303 bio_put(bio); 1304 out_bmd: 1305 kfree(bmd); 1306 return ERR_PTR(ret); 1307 } 1308 1309 /** 1310 * bio_map_user_iov - map user iovec into bio 1311 * @q: the struct request_queue for the bio 1312 * @iter: iovec iterator 1313 * @gfp_mask: memory allocation flags 1314 * 1315 * Map the user space address into a bio suitable for io to a block 1316 * device. Returns an error pointer in case of error. 1317 */ 1318 struct bio *bio_map_user_iov(struct request_queue *q, 1319 const struct iov_iter *iter, 1320 gfp_t gfp_mask) 1321 { 1322 int j; 1323 int nr_pages = 0; 1324 struct page **pages; 1325 struct bio *bio; 1326 int cur_page = 0; 1327 int ret, offset; 1328 struct iov_iter i; 1329 struct iovec iov; 1330 1331 iov_for_each(iov, i, *iter) { 1332 unsigned long uaddr = (unsigned long) iov.iov_base; 1333 unsigned long len = iov.iov_len; 1334 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1335 unsigned long start = uaddr >> PAGE_SHIFT; 1336 1337 /* 1338 * Overflow, abort 1339 */ 1340 if (end < start) 1341 return ERR_PTR(-EINVAL); 1342 1343 nr_pages += end - start; 1344 /* 1345 * buffer must be aligned to at least logical block size for now 1346 */ 1347 if (uaddr & queue_dma_alignment(q)) 1348 return ERR_PTR(-EINVAL); 1349 } 1350 1351 if (!nr_pages) 1352 return ERR_PTR(-EINVAL); 1353 1354 bio = bio_kmalloc(gfp_mask, nr_pages); 1355 if (!bio) 1356 return ERR_PTR(-ENOMEM); 1357 1358 ret = -ENOMEM; 1359 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); 1360 if (!pages) 1361 goto out; 1362 1363 iov_for_each(iov, i, *iter) { 1364 unsigned long uaddr = (unsigned long) iov.iov_base; 1365 unsigned long len = iov.iov_len; 1366 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1367 unsigned long start = uaddr >> PAGE_SHIFT; 1368 const int local_nr_pages = end - start; 1369 const int page_limit = cur_page + local_nr_pages; 1370 1371 ret = get_user_pages_fast(uaddr, local_nr_pages, 1372 (iter->type & WRITE) != WRITE, 1373 &pages[cur_page]); 1374 if (ret < local_nr_pages) { 1375 ret = -EFAULT; 1376 goto out_unmap; 1377 } 1378 1379 offset = offset_in_page(uaddr); 1380 for (j = cur_page; j < page_limit; j++) { 1381 unsigned int bytes = PAGE_SIZE - offset; 1382 1383 if (len <= 0) 1384 break; 1385 1386 if (bytes > len) 1387 bytes = len; 1388 1389 /* 1390 * sorry... 1391 */ 1392 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < 1393 bytes) 1394 break; 1395 1396 len -= bytes; 1397 offset = 0; 1398 } 1399 1400 cur_page = j; 1401 /* 1402 * release the pages we didn't map into the bio, if any 1403 */ 1404 while (j < page_limit) 1405 put_page(pages[j++]); 1406 } 1407 1408 kfree(pages); 1409 1410 bio_set_flag(bio, BIO_USER_MAPPED); 1411 1412 /* 1413 * subtle -- if bio_map_user_iov() ended up bouncing a bio, 1414 * it would normally disappear when its bi_end_io is run. 1415 * however, we need it for the unmap, so grab an extra 1416 * reference to it 1417 */ 1418 bio_get(bio); 1419 return bio; 1420 1421 out_unmap: 1422 for (j = 0; j < nr_pages; j++) { 1423 if (!pages[j]) 1424 break; 1425 put_page(pages[j]); 1426 } 1427 out: 1428 kfree(pages); 1429 bio_put(bio); 1430 return ERR_PTR(ret); 1431 } 1432 1433 static void __bio_unmap_user(struct bio *bio) 1434 { 1435 struct bio_vec *bvec; 1436 int i; 1437 1438 /* 1439 * make sure we dirty pages we wrote to 1440 */ 1441 bio_for_each_segment_all(bvec, bio, i) { 1442 if (bio_data_dir(bio) == READ) 1443 set_page_dirty_lock(bvec->bv_page); 1444 1445 put_page(bvec->bv_page); 1446 } 1447 1448 bio_put(bio); 1449 } 1450 1451 /** 1452 * bio_unmap_user - unmap a bio 1453 * @bio: the bio being unmapped 1454 * 1455 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from 1456 * process context. 1457 * 1458 * bio_unmap_user() may sleep. 1459 */ 1460 void bio_unmap_user(struct bio *bio) 1461 { 1462 __bio_unmap_user(bio); 1463 bio_put(bio); 1464 } 1465 1466 static void bio_map_kern_endio(struct bio *bio) 1467 { 1468 bio_put(bio); 1469 } 1470 1471 /** 1472 * bio_map_kern - map kernel address into bio 1473 * @q: the struct request_queue for the bio 1474 * @data: pointer to buffer to map 1475 * @len: length in bytes 1476 * @gfp_mask: allocation flags for bio allocation 1477 * 1478 * Map the kernel address into a bio suitable for io to a block 1479 * device. Returns an error pointer in case of error. 1480 */ 1481 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1482 gfp_t gfp_mask) 1483 { 1484 unsigned long kaddr = (unsigned long)data; 1485 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1486 unsigned long start = kaddr >> PAGE_SHIFT; 1487 const int nr_pages = end - start; 1488 int offset, i; 1489 struct bio *bio; 1490 1491 bio = bio_kmalloc(gfp_mask, nr_pages); 1492 if (!bio) 1493 return ERR_PTR(-ENOMEM); 1494 1495 offset = offset_in_page(kaddr); 1496 for (i = 0; i < nr_pages; i++) { 1497 unsigned int bytes = PAGE_SIZE - offset; 1498 1499 if (len <= 0) 1500 break; 1501 1502 if (bytes > len) 1503 bytes = len; 1504 1505 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, 1506 offset) < bytes) { 1507 /* we don't support partial mappings */ 1508 bio_put(bio); 1509 return ERR_PTR(-EINVAL); 1510 } 1511 1512 data += bytes; 1513 len -= bytes; 1514 offset = 0; 1515 } 1516 1517 bio->bi_end_io = bio_map_kern_endio; 1518 return bio; 1519 } 1520 EXPORT_SYMBOL(bio_map_kern); 1521 1522 static void bio_copy_kern_endio(struct bio *bio) 1523 { 1524 bio_free_pages(bio); 1525 bio_put(bio); 1526 } 1527 1528 static void bio_copy_kern_endio_read(struct bio *bio) 1529 { 1530 char *p = bio->bi_private; 1531 struct bio_vec *bvec; 1532 int i; 1533 1534 bio_for_each_segment_all(bvec, bio, i) { 1535 memcpy(p, page_address(bvec->bv_page), bvec->bv_len); 1536 p += bvec->bv_len; 1537 } 1538 1539 bio_copy_kern_endio(bio); 1540 } 1541 1542 /** 1543 * bio_copy_kern - copy kernel address into bio 1544 * @q: the struct request_queue for the bio 1545 * @data: pointer to buffer to copy 1546 * @len: length in bytes 1547 * @gfp_mask: allocation flags for bio and page allocation 1548 * @reading: data direction is READ 1549 * 1550 * copy the kernel address into a bio suitable for io to a block 1551 * device. Returns an error pointer in case of error. 1552 */ 1553 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1554 gfp_t gfp_mask, int reading) 1555 { 1556 unsigned long kaddr = (unsigned long)data; 1557 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1558 unsigned long start = kaddr >> PAGE_SHIFT; 1559 struct bio *bio; 1560 void *p = data; 1561 int nr_pages = 0; 1562 1563 /* 1564 * Overflow, abort 1565 */ 1566 if (end < start) 1567 return ERR_PTR(-EINVAL); 1568 1569 nr_pages = end - start; 1570 bio = bio_kmalloc(gfp_mask, nr_pages); 1571 if (!bio) 1572 return ERR_PTR(-ENOMEM); 1573 1574 while (len) { 1575 struct page *page; 1576 unsigned int bytes = PAGE_SIZE; 1577 1578 if (bytes > len) 1579 bytes = len; 1580 1581 page = alloc_page(q->bounce_gfp | gfp_mask); 1582 if (!page) 1583 goto cleanup; 1584 1585 if (!reading) 1586 memcpy(page_address(page), p, bytes); 1587 1588 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 1589 break; 1590 1591 len -= bytes; 1592 p += bytes; 1593 } 1594 1595 if (reading) { 1596 bio->bi_end_io = bio_copy_kern_endio_read; 1597 bio->bi_private = data; 1598 } else { 1599 bio->bi_end_io = bio_copy_kern_endio; 1600 } 1601 1602 return bio; 1603 1604 cleanup: 1605 bio_free_pages(bio); 1606 bio_put(bio); 1607 return ERR_PTR(-ENOMEM); 1608 } 1609 1610 /* 1611 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1612 * for performing direct-IO in BIOs. 1613 * 1614 * The problem is that we cannot run set_page_dirty() from interrupt context 1615 * because the required locks are not interrupt-safe. So what we can do is to 1616 * mark the pages dirty _before_ performing IO. And in interrupt context, 1617 * check that the pages are still dirty. If so, fine. If not, redirty them 1618 * in process context. 1619 * 1620 * We special-case compound pages here: normally this means reads into hugetlb 1621 * pages. The logic in here doesn't really work right for compound pages 1622 * because the VM does not uniformly chase down the head page in all cases. 1623 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1624 * handle them at all. So we skip compound pages here at an early stage. 1625 * 1626 * Note that this code is very hard to test under normal circumstances because 1627 * direct-io pins the pages with get_user_pages(). This makes 1628 * is_page_cache_freeable return false, and the VM will not clean the pages. 1629 * But other code (eg, flusher threads) could clean the pages if they are mapped 1630 * pagecache. 1631 * 1632 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1633 * deferred bio dirtying paths. 1634 */ 1635 1636 /* 1637 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1638 */ 1639 void bio_set_pages_dirty(struct bio *bio) 1640 { 1641 struct bio_vec *bvec; 1642 int i; 1643 1644 bio_for_each_segment_all(bvec, bio, i) { 1645 struct page *page = bvec->bv_page; 1646 1647 if (page && !PageCompound(page)) 1648 set_page_dirty_lock(page); 1649 } 1650 } 1651 1652 static void bio_release_pages(struct bio *bio) 1653 { 1654 struct bio_vec *bvec; 1655 int i; 1656 1657 bio_for_each_segment_all(bvec, bio, i) { 1658 struct page *page = bvec->bv_page; 1659 1660 if (page) 1661 put_page(page); 1662 } 1663 } 1664 1665 /* 1666 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1667 * If they are, then fine. If, however, some pages are clean then they must 1668 * have been written out during the direct-IO read. So we take another ref on 1669 * the BIO and the offending pages and re-dirty the pages in process context. 1670 * 1671 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1672 * here on. It will run one put_page() against each page and will run one 1673 * bio_put() against the BIO. 1674 */ 1675 1676 static void bio_dirty_fn(struct work_struct *work); 1677 1678 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1679 static DEFINE_SPINLOCK(bio_dirty_lock); 1680 static struct bio *bio_dirty_list; 1681 1682 /* 1683 * This runs in process context 1684 */ 1685 static void bio_dirty_fn(struct work_struct *work) 1686 { 1687 unsigned long flags; 1688 struct bio *bio; 1689 1690 spin_lock_irqsave(&bio_dirty_lock, flags); 1691 bio = bio_dirty_list; 1692 bio_dirty_list = NULL; 1693 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1694 1695 while (bio) { 1696 struct bio *next = bio->bi_private; 1697 1698 bio_set_pages_dirty(bio); 1699 bio_release_pages(bio); 1700 bio_put(bio); 1701 bio = next; 1702 } 1703 } 1704 1705 void bio_check_pages_dirty(struct bio *bio) 1706 { 1707 struct bio_vec *bvec; 1708 int nr_clean_pages = 0; 1709 int i; 1710 1711 bio_for_each_segment_all(bvec, bio, i) { 1712 struct page *page = bvec->bv_page; 1713 1714 if (PageDirty(page) || PageCompound(page)) { 1715 put_page(page); 1716 bvec->bv_page = NULL; 1717 } else { 1718 nr_clean_pages++; 1719 } 1720 } 1721 1722 if (nr_clean_pages) { 1723 unsigned long flags; 1724 1725 spin_lock_irqsave(&bio_dirty_lock, flags); 1726 bio->bi_private = bio_dirty_list; 1727 bio_dirty_list = bio; 1728 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1729 schedule_work(&bio_dirty_work); 1730 } else { 1731 bio_put(bio); 1732 } 1733 } 1734 1735 void generic_start_io_acct(int rw, unsigned long sectors, 1736 struct hd_struct *part) 1737 { 1738 int cpu = part_stat_lock(); 1739 1740 part_round_stats(cpu, part); 1741 part_stat_inc(cpu, part, ios[rw]); 1742 part_stat_add(cpu, part, sectors[rw], sectors); 1743 part_inc_in_flight(part, rw); 1744 1745 part_stat_unlock(); 1746 } 1747 EXPORT_SYMBOL(generic_start_io_acct); 1748 1749 void generic_end_io_acct(int rw, struct hd_struct *part, 1750 unsigned long start_time) 1751 { 1752 unsigned long duration = jiffies - start_time; 1753 int cpu = part_stat_lock(); 1754 1755 part_stat_add(cpu, part, ticks[rw], duration); 1756 part_round_stats(cpu, part); 1757 part_dec_in_flight(part, rw); 1758 1759 part_stat_unlock(); 1760 } 1761 EXPORT_SYMBOL(generic_end_io_acct); 1762 1763 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1764 void bio_flush_dcache_pages(struct bio *bi) 1765 { 1766 struct bio_vec bvec; 1767 struct bvec_iter iter; 1768 1769 bio_for_each_segment(bvec, bi, iter) 1770 flush_dcache_page(bvec.bv_page); 1771 } 1772 EXPORT_SYMBOL(bio_flush_dcache_pages); 1773 #endif 1774 1775 static inline bool bio_remaining_done(struct bio *bio) 1776 { 1777 /* 1778 * If we're not chaining, then ->__bi_remaining is always 1 and 1779 * we always end io on the first invocation. 1780 */ 1781 if (!bio_flagged(bio, BIO_CHAIN)) 1782 return true; 1783 1784 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1785 1786 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1787 bio_clear_flag(bio, BIO_CHAIN); 1788 return true; 1789 } 1790 1791 return false; 1792 } 1793 1794 /** 1795 * bio_endio - end I/O on a bio 1796 * @bio: bio 1797 * 1798 * Description: 1799 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1800 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1801 * bio unless they own it and thus know that it has an end_io function. 1802 * 1803 * bio_endio() can be called several times on a bio that has been chained 1804 * using bio_chain(). The ->bi_end_io() function will only be called the 1805 * last time. At this point the BLK_TA_COMPLETE tracing event will be 1806 * generated if BIO_TRACE_COMPLETION is set. 1807 **/ 1808 void bio_endio(struct bio *bio) 1809 { 1810 again: 1811 if (!bio_remaining_done(bio)) 1812 return; 1813 if (!bio_integrity_endio(bio)) 1814 return; 1815 1816 /* 1817 * Need to have a real endio function for chained bios, otherwise 1818 * various corner cases will break (like stacking block devices that 1819 * save/restore bi_end_io) - however, we want to avoid unbounded 1820 * recursion and blowing the stack. Tail call optimization would 1821 * handle this, but compiling with frame pointers also disables 1822 * gcc's sibling call optimization. 1823 */ 1824 if (bio->bi_end_io == bio_chain_endio) { 1825 bio = __bio_chain_endio(bio); 1826 goto again; 1827 } 1828 1829 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1830 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio, 1831 blk_status_to_errno(bio->bi_status)); 1832 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1833 } 1834 1835 blk_throtl_bio_endio(bio); 1836 /* release cgroup info */ 1837 bio_uninit(bio); 1838 if (bio->bi_end_io) 1839 bio->bi_end_io(bio); 1840 } 1841 EXPORT_SYMBOL(bio_endio); 1842 1843 /** 1844 * bio_split - split a bio 1845 * @bio: bio to split 1846 * @sectors: number of sectors to split from the front of @bio 1847 * @gfp: gfp mask 1848 * @bs: bio set to allocate from 1849 * 1850 * Allocates and returns a new bio which represents @sectors from the start of 1851 * @bio, and updates @bio to represent the remaining sectors. 1852 * 1853 * Unless this is a discard request the newly allocated bio will point 1854 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that 1855 * @bio is not freed before the split. 1856 */ 1857 struct bio *bio_split(struct bio *bio, int sectors, 1858 gfp_t gfp, struct bio_set *bs) 1859 { 1860 struct bio *split = NULL; 1861 1862 BUG_ON(sectors <= 0); 1863 BUG_ON(sectors >= bio_sectors(bio)); 1864 1865 split = bio_clone_fast(bio, gfp, bs); 1866 if (!split) 1867 return NULL; 1868 1869 split->bi_iter.bi_size = sectors << 9; 1870 1871 if (bio_integrity(split)) 1872 bio_integrity_trim(split); 1873 1874 bio_advance(bio, split->bi_iter.bi_size); 1875 1876 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1877 bio_set_flag(bio, BIO_TRACE_COMPLETION); 1878 1879 return split; 1880 } 1881 EXPORT_SYMBOL(bio_split); 1882 1883 /** 1884 * bio_trim - trim a bio 1885 * @bio: bio to trim 1886 * @offset: number of sectors to trim from the front of @bio 1887 * @size: size we want to trim @bio to, in sectors 1888 */ 1889 void bio_trim(struct bio *bio, int offset, int size) 1890 { 1891 /* 'bio' is a cloned bio which we need to trim to match 1892 * the given offset and size. 1893 */ 1894 1895 size <<= 9; 1896 if (offset == 0 && size == bio->bi_iter.bi_size) 1897 return; 1898 1899 bio_clear_flag(bio, BIO_SEG_VALID); 1900 1901 bio_advance(bio, offset << 9); 1902 1903 bio->bi_iter.bi_size = size; 1904 1905 if (bio_integrity(bio)) 1906 bio_integrity_trim(bio); 1907 1908 } 1909 EXPORT_SYMBOL_GPL(bio_trim); 1910 1911 /* 1912 * create memory pools for biovec's in a bio_set. 1913 * use the global biovec slabs created for general use. 1914 */ 1915 mempool_t *biovec_create_pool(int pool_entries) 1916 { 1917 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; 1918 1919 return mempool_create_slab_pool(pool_entries, bp->slab); 1920 } 1921 1922 void bioset_free(struct bio_set *bs) 1923 { 1924 if (bs->rescue_workqueue) 1925 destroy_workqueue(bs->rescue_workqueue); 1926 1927 if (bs->bio_pool) 1928 mempool_destroy(bs->bio_pool); 1929 1930 if (bs->bvec_pool) 1931 mempool_destroy(bs->bvec_pool); 1932 1933 bioset_integrity_free(bs); 1934 bio_put_slab(bs); 1935 1936 kfree(bs); 1937 } 1938 EXPORT_SYMBOL(bioset_free); 1939 1940 /** 1941 * bioset_create - Create a bio_set 1942 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1943 * @front_pad: Number of bytes to allocate in front of the returned bio 1944 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1945 * and %BIOSET_NEED_RESCUER 1946 * 1947 * Description: 1948 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1949 * to ask for a number of bytes to be allocated in front of the bio. 1950 * Front pad allocation is useful for embedding the bio inside 1951 * another structure, to avoid allocating extra data to go with the bio. 1952 * Note that the bio must be embedded at the END of that structure always, 1953 * or things will break badly. 1954 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1955 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast(). 1956 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to 1957 * dispatch queued requests when the mempool runs out of space. 1958 * 1959 */ 1960 struct bio_set *bioset_create(unsigned int pool_size, 1961 unsigned int front_pad, 1962 int flags) 1963 { 1964 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1965 struct bio_set *bs; 1966 1967 bs = kzalloc(sizeof(*bs), GFP_KERNEL); 1968 if (!bs) 1969 return NULL; 1970 1971 bs->front_pad = front_pad; 1972 1973 spin_lock_init(&bs->rescue_lock); 1974 bio_list_init(&bs->rescue_list); 1975 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1976 1977 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1978 if (!bs->bio_slab) { 1979 kfree(bs); 1980 return NULL; 1981 } 1982 1983 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); 1984 if (!bs->bio_pool) 1985 goto bad; 1986 1987 if (flags & BIOSET_NEED_BVECS) { 1988 bs->bvec_pool = biovec_create_pool(pool_size); 1989 if (!bs->bvec_pool) 1990 goto bad; 1991 } 1992 1993 if (!(flags & BIOSET_NEED_RESCUER)) 1994 return bs; 1995 1996 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1997 if (!bs->rescue_workqueue) 1998 goto bad; 1999 2000 return bs; 2001 bad: 2002 bioset_free(bs); 2003 return NULL; 2004 } 2005 EXPORT_SYMBOL(bioset_create); 2006 2007 #ifdef CONFIG_BLK_CGROUP 2008 2009 /** 2010 * bio_associate_blkcg - associate a bio with the specified blkcg 2011 * @bio: target bio 2012 * @blkcg_css: css of the blkcg to associate 2013 * 2014 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will 2015 * treat @bio as if it were issued by a task which belongs to the blkcg. 2016 * 2017 * This function takes an extra reference of @blkcg_css which will be put 2018 * when @bio is released. The caller must own @bio and is responsible for 2019 * synchronizing calls to this function. 2020 */ 2021 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css) 2022 { 2023 if (unlikely(bio->bi_css)) 2024 return -EBUSY; 2025 css_get(blkcg_css); 2026 bio->bi_css = blkcg_css; 2027 return 0; 2028 } 2029 EXPORT_SYMBOL_GPL(bio_associate_blkcg); 2030 2031 /** 2032 * bio_associate_current - associate a bio with %current 2033 * @bio: target bio 2034 * 2035 * Associate @bio with %current if it hasn't been associated yet. Block 2036 * layer will treat @bio as if it were issued by %current no matter which 2037 * task actually issues it. 2038 * 2039 * This function takes an extra reference of @task's io_context and blkcg 2040 * which will be put when @bio is released. The caller must own @bio, 2041 * ensure %current->io_context exists, and is responsible for synchronizing 2042 * calls to this function. 2043 */ 2044 int bio_associate_current(struct bio *bio) 2045 { 2046 struct io_context *ioc; 2047 2048 if (bio->bi_css) 2049 return -EBUSY; 2050 2051 ioc = current->io_context; 2052 if (!ioc) 2053 return -ENOENT; 2054 2055 get_io_context_active(ioc); 2056 bio->bi_ioc = ioc; 2057 bio->bi_css = task_get_css(current, io_cgrp_id); 2058 return 0; 2059 } 2060 EXPORT_SYMBOL_GPL(bio_associate_current); 2061 2062 /** 2063 * bio_disassociate_task - undo bio_associate_current() 2064 * @bio: target bio 2065 */ 2066 void bio_disassociate_task(struct bio *bio) 2067 { 2068 if (bio->bi_ioc) { 2069 put_io_context(bio->bi_ioc); 2070 bio->bi_ioc = NULL; 2071 } 2072 if (bio->bi_css) { 2073 css_put(bio->bi_css); 2074 bio->bi_css = NULL; 2075 } 2076 } 2077 2078 /** 2079 * bio_clone_blkcg_association - clone blkcg association from src to dst bio 2080 * @dst: destination bio 2081 * @src: source bio 2082 */ 2083 void bio_clone_blkcg_association(struct bio *dst, struct bio *src) 2084 { 2085 if (src->bi_css) 2086 WARN_ON(bio_associate_blkcg(dst, src->bi_css)); 2087 } 2088 2089 #endif /* CONFIG_BLK_CGROUP */ 2090 2091 static void __init biovec_init_slabs(void) 2092 { 2093 int i; 2094 2095 for (i = 0; i < BVEC_POOL_NR; i++) { 2096 int size; 2097 struct biovec_slab *bvs = bvec_slabs + i; 2098 2099 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2100 bvs->slab = NULL; 2101 continue; 2102 } 2103 2104 size = bvs->nr_vecs * sizeof(struct bio_vec); 2105 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2106 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2107 } 2108 } 2109 2110 static int __init init_bio(void) 2111 { 2112 bio_slab_max = 2; 2113 bio_slab_nr = 0; 2114 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); 2115 if (!bio_slabs) 2116 panic("bio: can't allocate bios\n"); 2117 2118 bio_integrity_init(); 2119 biovec_init_slabs(); 2120 2121 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 2122 if (!fs_bio_set) 2123 panic("bio: can't allocate bios\n"); 2124 2125 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) 2126 panic("bio: can't create integrity pool\n"); 2127 2128 return 0; 2129 } 2130 subsys_initcall(init_bio); 2131