xref: /openbmc/linux/block/bio.c (revision 77a87824)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 
32 #include <trace/events/block.h>
33 
34 /*
35  * Test patch to inline a certain number of bi_io_vec's inside the bio
36  * itself, to shrink a bio data allocation from two mempool calls to one
37  */
38 #define BIO_INLINE_VECS		4
39 
40 /*
41  * if you change this list, also change bvec_alloc or things will
42  * break badly! cannot be bigger than what you can fit into an
43  * unsigned short
44  */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
47 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50 
51 /*
52  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53  * IO code that does not need private memory pools.
54  */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57 
58 /*
59  * Our slab pool management
60  */
61 struct bio_slab {
62 	struct kmem_cache *slab;
63 	unsigned int slab_ref;
64 	unsigned int slab_size;
65 	char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70 
71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 	unsigned int sz = sizeof(struct bio) + extra_size;
74 	struct kmem_cache *slab = NULL;
75 	struct bio_slab *bslab, *new_bio_slabs;
76 	unsigned int new_bio_slab_max;
77 	unsigned int i, entry = -1;
78 
79 	mutex_lock(&bio_slab_lock);
80 
81 	i = 0;
82 	while (i < bio_slab_nr) {
83 		bslab = &bio_slabs[i];
84 
85 		if (!bslab->slab && entry == -1)
86 			entry = i;
87 		else if (bslab->slab_size == sz) {
88 			slab = bslab->slab;
89 			bslab->slab_ref++;
90 			break;
91 		}
92 		i++;
93 	}
94 
95 	if (slab)
96 		goto out_unlock;
97 
98 	if (bio_slab_nr == bio_slab_max && entry == -1) {
99 		new_bio_slab_max = bio_slab_max << 1;
100 		new_bio_slabs = krealloc(bio_slabs,
101 					 new_bio_slab_max * sizeof(struct bio_slab),
102 					 GFP_KERNEL);
103 		if (!new_bio_slabs)
104 			goto out_unlock;
105 		bio_slab_max = new_bio_slab_max;
106 		bio_slabs = new_bio_slabs;
107 	}
108 	if (entry == -1)
109 		entry = bio_slab_nr++;
110 
111 	bslab = &bio_slabs[entry];
112 
113 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 				 SLAB_HWCACHE_ALIGN, NULL);
116 	if (!slab)
117 		goto out_unlock;
118 
119 	bslab->slab = slab;
120 	bslab->slab_ref = 1;
121 	bslab->slab_size = sz;
122 out_unlock:
123 	mutex_unlock(&bio_slab_lock);
124 	return slab;
125 }
126 
127 static void bio_put_slab(struct bio_set *bs)
128 {
129 	struct bio_slab *bslab = NULL;
130 	unsigned int i;
131 
132 	mutex_lock(&bio_slab_lock);
133 
134 	for (i = 0; i < bio_slab_nr; i++) {
135 		if (bs->bio_slab == bio_slabs[i].slab) {
136 			bslab = &bio_slabs[i];
137 			break;
138 		}
139 	}
140 
141 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 		goto out;
143 
144 	WARN_ON(!bslab->slab_ref);
145 
146 	if (--bslab->slab_ref)
147 		goto out;
148 
149 	kmem_cache_destroy(bslab->slab);
150 	bslab->slab = NULL;
151 
152 out:
153 	mutex_unlock(&bio_slab_lock);
154 }
155 
156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 	return bvec_slabs[idx].nr_vecs;
159 }
160 
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 	if (!idx)
164 		return;
165 	idx--;
166 
167 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
168 
169 	if (idx == BVEC_POOL_MAX) {
170 		mempool_free(bv, pool);
171 	} else {
172 		struct biovec_slab *bvs = bvec_slabs + idx;
173 
174 		kmem_cache_free(bvs->slab, bv);
175 	}
176 }
177 
178 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
179 			   mempool_t *pool)
180 {
181 	struct bio_vec *bvl;
182 
183 	/*
184 	 * see comment near bvec_array define!
185 	 */
186 	switch (nr) {
187 	case 1:
188 		*idx = 0;
189 		break;
190 	case 2 ... 4:
191 		*idx = 1;
192 		break;
193 	case 5 ... 16:
194 		*idx = 2;
195 		break;
196 	case 17 ... 64:
197 		*idx = 3;
198 		break;
199 	case 65 ... 128:
200 		*idx = 4;
201 		break;
202 	case 129 ... BIO_MAX_PAGES:
203 		*idx = 5;
204 		break;
205 	default:
206 		return NULL;
207 	}
208 
209 	/*
210 	 * idx now points to the pool we want to allocate from. only the
211 	 * 1-vec entry pool is mempool backed.
212 	 */
213 	if (*idx == BVEC_POOL_MAX) {
214 fallback:
215 		bvl = mempool_alloc(pool, gfp_mask);
216 	} else {
217 		struct biovec_slab *bvs = bvec_slabs + *idx;
218 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
219 
220 		/*
221 		 * Make this allocation restricted and don't dump info on
222 		 * allocation failures, since we'll fallback to the mempool
223 		 * in case of failure.
224 		 */
225 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
226 
227 		/*
228 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
229 		 * is set, retry with the 1-entry mempool
230 		 */
231 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
232 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
233 			*idx = BVEC_POOL_MAX;
234 			goto fallback;
235 		}
236 	}
237 
238 	(*idx)++;
239 	return bvl;
240 }
241 
242 static void __bio_free(struct bio *bio)
243 {
244 	bio_disassociate_task(bio);
245 
246 	if (bio_integrity(bio))
247 		bio_integrity_free(bio);
248 }
249 
250 static void bio_free(struct bio *bio)
251 {
252 	struct bio_set *bs = bio->bi_pool;
253 	void *p;
254 
255 	__bio_free(bio);
256 
257 	if (bs) {
258 		bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
259 
260 		/*
261 		 * If we have front padding, adjust the bio pointer before freeing
262 		 */
263 		p = bio;
264 		p -= bs->front_pad;
265 
266 		mempool_free(p, bs->bio_pool);
267 	} else {
268 		/* Bio was allocated by bio_kmalloc() */
269 		kfree(bio);
270 	}
271 }
272 
273 void bio_init(struct bio *bio)
274 {
275 	memset(bio, 0, sizeof(*bio));
276 	atomic_set(&bio->__bi_remaining, 1);
277 	atomic_set(&bio->__bi_cnt, 1);
278 }
279 EXPORT_SYMBOL(bio_init);
280 
281 /**
282  * bio_reset - reinitialize a bio
283  * @bio:	bio to reset
284  *
285  * Description:
286  *   After calling bio_reset(), @bio will be in the same state as a freshly
287  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
288  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
289  *   comment in struct bio.
290  */
291 void bio_reset(struct bio *bio)
292 {
293 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
294 
295 	__bio_free(bio);
296 
297 	memset(bio, 0, BIO_RESET_BYTES);
298 	bio->bi_flags = flags;
299 	atomic_set(&bio->__bi_remaining, 1);
300 }
301 EXPORT_SYMBOL(bio_reset);
302 
303 static struct bio *__bio_chain_endio(struct bio *bio)
304 {
305 	struct bio *parent = bio->bi_private;
306 
307 	if (!parent->bi_error)
308 		parent->bi_error = bio->bi_error;
309 	bio_put(bio);
310 	return parent;
311 }
312 
313 static void bio_chain_endio(struct bio *bio)
314 {
315 	bio_endio(__bio_chain_endio(bio));
316 }
317 
318 /**
319  * bio_chain - chain bio completions
320  * @bio: the target bio
321  * @parent: the @bio's parent bio
322  *
323  * The caller won't have a bi_end_io called when @bio completes - instead,
324  * @parent's bi_end_io won't be called until both @parent and @bio have
325  * completed; the chained bio will also be freed when it completes.
326  *
327  * The caller must not set bi_private or bi_end_io in @bio.
328  */
329 void bio_chain(struct bio *bio, struct bio *parent)
330 {
331 	BUG_ON(bio->bi_private || bio->bi_end_io);
332 
333 	bio->bi_private = parent;
334 	bio->bi_end_io	= bio_chain_endio;
335 	bio_inc_remaining(parent);
336 }
337 EXPORT_SYMBOL(bio_chain);
338 
339 static void bio_alloc_rescue(struct work_struct *work)
340 {
341 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
342 	struct bio *bio;
343 
344 	while (1) {
345 		spin_lock(&bs->rescue_lock);
346 		bio = bio_list_pop(&bs->rescue_list);
347 		spin_unlock(&bs->rescue_lock);
348 
349 		if (!bio)
350 			break;
351 
352 		generic_make_request(bio);
353 	}
354 }
355 
356 static void punt_bios_to_rescuer(struct bio_set *bs)
357 {
358 	struct bio_list punt, nopunt;
359 	struct bio *bio;
360 
361 	/*
362 	 * In order to guarantee forward progress we must punt only bios that
363 	 * were allocated from this bio_set; otherwise, if there was a bio on
364 	 * there for a stacking driver higher up in the stack, processing it
365 	 * could require allocating bios from this bio_set, and doing that from
366 	 * our own rescuer would be bad.
367 	 *
368 	 * Since bio lists are singly linked, pop them all instead of trying to
369 	 * remove from the middle of the list:
370 	 */
371 
372 	bio_list_init(&punt);
373 	bio_list_init(&nopunt);
374 
375 	while ((bio = bio_list_pop(current->bio_list)))
376 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
377 
378 	*current->bio_list = nopunt;
379 
380 	spin_lock(&bs->rescue_lock);
381 	bio_list_merge(&bs->rescue_list, &punt);
382 	spin_unlock(&bs->rescue_lock);
383 
384 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
385 }
386 
387 /**
388  * bio_alloc_bioset - allocate a bio for I/O
389  * @gfp_mask:   the GFP_ mask given to the slab allocator
390  * @nr_iovecs:	number of iovecs to pre-allocate
391  * @bs:		the bio_set to allocate from.
392  *
393  * Description:
394  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
395  *   backed by the @bs's mempool.
396  *
397  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
398  *   always be able to allocate a bio. This is due to the mempool guarantees.
399  *   To make this work, callers must never allocate more than 1 bio at a time
400  *   from this pool. Callers that need to allocate more than 1 bio must always
401  *   submit the previously allocated bio for IO before attempting to allocate
402  *   a new one. Failure to do so can cause deadlocks under memory pressure.
403  *
404  *   Note that when running under generic_make_request() (i.e. any block
405  *   driver), bios are not submitted until after you return - see the code in
406  *   generic_make_request() that converts recursion into iteration, to prevent
407  *   stack overflows.
408  *
409  *   This would normally mean allocating multiple bios under
410  *   generic_make_request() would be susceptible to deadlocks, but we have
411  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
412  *   thread.
413  *
414  *   However, we do not guarantee forward progress for allocations from other
415  *   mempools. Doing multiple allocations from the same mempool under
416  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
417  *   for per bio allocations.
418  *
419  *   RETURNS:
420  *   Pointer to new bio on success, NULL on failure.
421  */
422 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
423 {
424 	gfp_t saved_gfp = gfp_mask;
425 	unsigned front_pad;
426 	unsigned inline_vecs;
427 	struct bio_vec *bvl = NULL;
428 	struct bio *bio;
429 	void *p;
430 
431 	if (!bs) {
432 		if (nr_iovecs > UIO_MAXIOV)
433 			return NULL;
434 
435 		p = kmalloc(sizeof(struct bio) +
436 			    nr_iovecs * sizeof(struct bio_vec),
437 			    gfp_mask);
438 		front_pad = 0;
439 		inline_vecs = nr_iovecs;
440 	} else {
441 		/* should not use nobvec bioset for nr_iovecs > 0 */
442 		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
443 			return NULL;
444 		/*
445 		 * generic_make_request() converts recursion to iteration; this
446 		 * means if we're running beneath it, any bios we allocate and
447 		 * submit will not be submitted (and thus freed) until after we
448 		 * return.
449 		 *
450 		 * This exposes us to a potential deadlock if we allocate
451 		 * multiple bios from the same bio_set() while running
452 		 * underneath generic_make_request(). If we were to allocate
453 		 * multiple bios (say a stacking block driver that was splitting
454 		 * bios), we would deadlock if we exhausted the mempool's
455 		 * reserve.
456 		 *
457 		 * We solve this, and guarantee forward progress, with a rescuer
458 		 * workqueue per bio_set. If we go to allocate and there are
459 		 * bios on current->bio_list, we first try the allocation
460 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
461 		 * bios we would be blocking to the rescuer workqueue before
462 		 * we retry with the original gfp_flags.
463 		 */
464 
465 		if (current->bio_list && !bio_list_empty(current->bio_list))
466 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
467 
468 		p = mempool_alloc(bs->bio_pool, gfp_mask);
469 		if (!p && gfp_mask != saved_gfp) {
470 			punt_bios_to_rescuer(bs);
471 			gfp_mask = saved_gfp;
472 			p = mempool_alloc(bs->bio_pool, gfp_mask);
473 		}
474 
475 		front_pad = bs->front_pad;
476 		inline_vecs = BIO_INLINE_VECS;
477 	}
478 
479 	if (unlikely(!p))
480 		return NULL;
481 
482 	bio = p + front_pad;
483 	bio_init(bio);
484 
485 	if (nr_iovecs > inline_vecs) {
486 		unsigned long idx = 0;
487 
488 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
489 		if (!bvl && gfp_mask != saved_gfp) {
490 			punt_bios_to_rescuer(bs);
491 			gfp_mask = saved_gfp;
492 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
493 		}
494 
495 		if (unlikely(!bvl))
496 			goto err_free;
497 
498 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
499 	} else if (nr_iovecs) {
500 		bvl = bio->bi_inline_vecs;
501 	}
502 
503 	bio->bi_pool = bs;
504 	bio->bi_max_vecs = nr_iovecs;
505 	bio->bi_io_vec = bvl;
506 	return bio;
507 
508 err_free:
509 	mempool_free(p, bs->bio_pool);
510 	return NULL;
511 }
512 EXPORT_SYMBOL(bio_alloc_bioset);
513 
514 void zero_fill_bio(struct bio *bio)
515 {
516 	unsigned long flags;
517 	struct bio_vec bv;
518 	struct bvec_iter iter;
519 
520 	bio_for_each_segment(bv, bio, iter) {
521 		char *data = bvec_kmap_irq(&bv, &flags);
522 		memset(data, 0, bv.bv_len);
523 		flush_dcache_page(bv.bv_page);
524 		bvec_kunmap_irq(data, &flags);
525 	}
526 }
527 EXPORT_SYMBOL(zero_fill_bio);
528 
529 /**
530  * bio_put - release a reference to a bio
531  * @bio:   bio to release reference to
532  *
533  * Description:
534  *   Put a reference to a &struct bio, either one you have gotten with
535  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
536  **/
537 void bio_put(struct bio *bio)
538 {
539 	if (!bio_flagged(bio, BIO_REFFED))
540 		bio_free(bio);
541 	else {
542 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
543 
544 		/*
545 		 * last put frees it
546 		 */
547 		if (atomic_dec_and_test(&bio->__bi_cnt))
548 			bio_free(bio);
549 	}
550 }
551 EXPORT_SYMBOL(bio_put);
552 
553 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
554 {
555 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
556 		blk_recount_segments(q, bio);
557 
558 	return bio->bi_phys_segments;
559 }
560 EXPORT_SYMBOL(bio_phys_segments);
561 
562 /**
563  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
564  * 	@bio: destination bio
565  * 	@bio_src: bio to clone
566  *
567  *	Clone a &bio. Caller will own the returned bio, but not
568  *	the actual data it points to. Reference count of returned
569  * 	bio will be one.
570  *
571  * 	Caller must ensure that @bio_src is not freed before @bio.
572  */
573 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
574 {
575 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
576 
577 	/*
578 	 * most users will be overriding ->bi_bdev with a new target,
579 	 * so we don't set nor calculate new physical/hw segment counts here
580 	 */
581 	bio->bi_bdev = bio_src->bi_bdev;
582 	bio_set_flag(bio, BIO_CLONED);
583 	bio->bi_rw = bio_src->bi_rw;
584 	bio->bi_iter = bio_src->bi_iter;
585 	bio->bi_io_vec = bio_src->bi_io_vec;
586 }
587 EXPORT_SYMBOL(__bio_clone_fast);
588 
589 /**
590  *	bio_clone_fast - clone a bio that shares the original bio's biovec
591  *	@bio: bio to clone
592  *	@gfp_mask: allocation priority
593  *	@bs: bio_set to allocate from
594  *
595  * 	Like __bio_clone_fast, only also allocates the returned bio
596  */
597 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
598 {
599 	struct bio *b;
600 
601 	b = bio_alloc_bioset(gfp_mask, 0, bs);
602 	if (!b)
603 		return NULL;
604 
605 	__bio_clone_fast(b, bio);
606 
607 	if (bio_integrity(bio)) {
608 		int ret;
609 
610 		ret = bio_integrity_clone(b, bio, gfp_mask);
611 
612 		if (ret < 0) {
613 			bio_put(b);
614 			return NULL;
615 		}
616 	}
617 
618 	return b;
619 }
620 EXPORT_SYMBOL(bio_clone_fast);
621 
622 /**
623  * 	bio_clone_bioset - clone a bio
624  * 	@bio_src: bio to clone
625  *	@gfp_mask: allocation priority
626  *	@bs: bio_set to allocate from
627  *
628  *	Clone bio. Caller will own the returned bio, but not the actual data it
629  *	points to. Reference count of returned bio will be one.
630  */
631 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
632 			     struct bio_set *bs)
633 {
634 	struct bvec_iter iter;
635 	struct bio_vec bv;
636 	struct bio *bio;
637 
638 	/*
639 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
640 	 * bio_src->bi_io_vec to bio->bi_io_vec.
641 	 *
642 	 * We can't do that anymore, because:
643 	 *
644 	 *  - The point of cloning the biovec is to produce a bio with a biovec
645 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
646 	 *
647 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
648 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
649 	 *    But the clone should succeed as long as the number of biovecs we
650 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
651 	 *
652 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
653 	 *    that does not own the bio - reason being drivers don't use it for
654 	 *    iterating over the biovec anymore, so expecting it to be kept up
655 	 *    to date (i.e. for clones that share the parent biovec) is just
656 	 *    asking for trouble and would force extra work on
657 	 *    __bio_clone_fast() anyways.
658 	 */
659 
660 	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
661 	if (!bio)
662 		return NULL;
663 	bio->bi_bdev		= bio_src->bi_bdev;
664 	bio->bi_rw		= bio_src->bi_rw;
665 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
666 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
667 
668 	if (bio_op(bio) == REQ_OP_DISCARD)
669 		goto integrity_clone;
670 
671 	if (bio_op(bio) == REQ_OP_WRITE_SAME) {
672 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
673 		goto integrity_clone;
674 	}
675 
676 	bio_for_each_segment(bv, bio_src, iter)
677 		bio->bi_io_vec[bio->bi_vcnt++] = bv;
678 
679 integrity_clone:
680 	if (bio_integrity(bio_src)) {
681 		int ret;
682 
683 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
684 		if (ret < 0) {
685 			bio_put(bio);
686 			return NULL;
687 		}
688 	}
689 
690 	return bio;
691 }
692 EXPORT_SYMBOL(bio_clone_bioset);
693 
694 /**
695  *	bio_add_pc_page	-	attempt to add page to bio
696  *	@q: the target queue
697  *	@bio: destination bio
698  *	@page: page to add
699  *	@len: vec entry length
700  *	@offset: vec entry offset
701  *
702  *	Attempt to add a page to the bio_vec maplist. This can fail for a
703  *	number of reasons, such as the bio being full or target block device
704  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
705  *	so it is always possible to add a single page to an empty bio.
706  *
707  *	This should only be used by REQ_PC bios.
708  */
709 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
710 		    *page, unsigned int len, unsigned int offset)
711 {
712 	int retried_segments = 0;
713 	struct bio_vec *bvec;
714 
715 	/*
716 	 * cloned bio must not modify vec list
717 	 */
718 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
719 		return 0;
720 
721 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
722 		return 0;
723 
724 	/*
725 	 * For filesystems with a blocksize smaller than the pagesize
726 	 * we will often be called with the same page as last time and
727 	 * a consecutive offset.  Optimize this special case.
728 	 */
729 	if (bio->bi_vcnt > 0) {
730 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
731 
732 		if (page == prev->bv_page &&
733 		    offset == prev->bv_offset + prev->bv_len) {
734 			prev->bv_len += len;
735 			bio->bi_iter.bi_size += len;
736 			goto done;
737 		}
738 
739 		/*
740 		 * If the queue doesn't support SG gaps and adding this
741 		 * offset would create a gap, disallow it.
742 		 */
743 		if (bvec_gap_to_prev(q, prev, offset))
744 			return 0;
745 	}
746 
747 	if (bio->bi_vcnt >= bio->bi_max_vecs)
748 		return 0;
749 
750 	/*
751 	 * setup the new entry, we might clear it again later if we
752 	 * cannot add the page
753 	 */
754 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
755 	bvec->bv_page = page;
756 	bvec->bv_len = len;
757 	bvec->bv_offset = offset;
758 	bio->bi_vcnt++;
759 	bio->bi_phys_segments++;
760 	bio->bi_iter.bi_size += len;
761 
762 	/*
763 	 * Perform a recount if the number of segments is greater
764 	 * than queue_max_segments(q).
765 	 */
766 
767 	while (bio->bi_phys_segments > queue_max_segments(q)) {
768 
769 		if (retried_segments)
770 			goto failed;
771 
772 		retried_segments = 1;
773 		blk_recount_segments(q, bio);
774 	}
775 
776 	/* If we may be able to merge these biovecs, force a recount */
777 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
778 		bio_clear_flag(bio, BIO_SEG_VALID);
779 
780  done:
781 	return len;
782 
783  failed:
784 	bvec->bv_page = NULL;
785 	bvec->bv_len = 0;
786 	bvec->bv_offset = 0;
787 	bio->bi_vcnt--;
788 	bio->bi_iter.bi_size -= len;
789 	blk_recount_segments(q, bio);
790 	return 0;
791 }
792 EXPORT_SYMBOL(bio_add_pc_page);
793 
794 /**
795  *	bio_add_page	-	attempt to add page to bio
796  *	@bio: destination bio
797  *	@page: page to add
798  *	@len: vec entry length
799  *	@offset: vec entry offset
800  *
801  *	Attempt to add a page to the bio_vec maplist. This will only fail
802  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
803  */
804 int bio_add_page(struct bio *bio, struct page *page,
805 		 unsigned int len, unsigned int offset)
806 {
807 	struct bio_vec *bv;
808 
809 	/*
810 	 * cloned bio must not modify vec list
811 	 */
812 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
813 		return 0;
814 
815 	/*
816 	 * For filesystems with a blocksize smaller than the pagesize
817 	 * we will often be called with the same page as last time and
818 	 * a consecutive offset.  Optimize this special case.
819 	 */
820 	if (bio->bi_vcnt > 0) {
821 		bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
822 
823 		if (page == bv->bv_page &&
824 		    offset == bv->bv_offset + bv->bv_len) {
825 			bv->bv_len += len;
826 			goto done;
827 		}
828 	}
829 
830 	if (bio->bi_vcnt >= bio->bi_max_vecs)
831 		return 0;
832 
833 	bv		= &bio->bi_io_vec[bio->bi_vcnt];
834 	bv->bv_page	= page;
835 	bv->bv_len	= len;
836 	bv->bv_offset	= offset;
837 
838 	bio->bi_vcnt++;
839 done:
840 	bio->bi_iter.bi_size += len;
841 	return len;
842 }
843 EXPORT_SYMBOL(bio_add_page);
844 
845 struct submit_bio_ret {
846 	struct completion event;
847 	int error;
848 };
849 
850 static void submit_bio_wait_endio(struct bio *bio)
851 {
852 	struct submit_bio_ret *ret = bio->bi_private;
853 
854 	ret->error = bio->bi_error;
855 	complete(&ret->event);
856 }
857 
858 /**
859  * submit_bio_wait - submit a bio, and wait until it completes
860  * @bio: The &struct bio which describes the I/O
861  *
862  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
863  * bio_endio() on failure.
864  */
865 int submit_bio_wait(struct bio *bio)
866 {
867 	struct submit_bio_ret ret;
868 
869 	init_completion(&ret.event);
870 	bio->bi_private = &ret;
871 	bio->bi_end_io = submit_bio_wait_endio;
872 	bio->bi_rw |= REQ_SYNC;
873 	submit_bio(bio);
874 	wait_for_completion_io(&ret.event);
875 
876 	return ret.error;
877 }
878 EXPORT_SYMBOL(submit_bio_wait);
879 
880 /**
881  * bio_advance - increment/complete a bio by some number of bytes
882  * @bio:	bio to advance
883  * @bytes:	number of bytes to complete
884  *
885  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
886  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
887  * be updated on the last bvec as well.
888  *
889  * @bio will then represent the remaining, uncompleted portion of the io.
890  */
891 void bio_advance(struct bio *bio, unsigned bytes)
892 {
893 	if (bio_integrity(bio))
894 		bio_integrity_advance(bio, bytes);
895 
896 	bio_advance_iter(bio, &bio->bi_iter, bytes);
897 }
898 EXPORT_SYMBOL(bio_advance);
899 
900 /**
901  * bio_alloc_pages - allocates a single page for each bvec in a bio
902  * @bio: bio to allocate pages for
903  * @gfp_mask: flags for allocation
904  *
905  * Allocates pages up to @bio->bi_vcnt.
906  *
907  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
908  * freed.
909  */
910 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
911 {
912 	int i;
913 	struct bio_vec *bv;
914 
915 	bio_for_each_segment_all(bv, bio, i) {
916 		bv->bv_page = alloc_page(gfp_mask);
917 		if (!bv->bv_page) {
918 			while (--bv >= bio->bi_io_vec)
919 				__free_page(bv->bv_page);
920 			return -ENOMEM;
921 		}
922 	}
923 
924 	return 0;
925 }
926 EXPORT_SYMBOL(bio_alloc_pages);
927 
928 /**
929  * bio_copy_data - copy contents of data buffers from one chain of bios to
930  * another
931  * @src: source bio list
932  * @dst: destination bio list
933  *
934  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
935  * @src and @dst as linked lists of bios.
936  *
937  * Stops when it reaches the end of either @src or @dst - that is, copies
938  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
939  */
940 void bio_copy_data(struct bio *dst, struct bio *src)
941 {
942 	struct bvec_iter src_iter, dst_iter;
943 	struct bio_vec src_bv, dst_bv;
944 	void *src_p, *dst_p;
945 	unsigned bytes;
946 
947 	src_iter = src->bi_iter;
948 	dst_iter = dst->bi_iter;
949 
950 	while (1) {
951 		if (!src_iter.bi_size) {
952 			src = src->bi_next;
953 			if (!src)
954 				break;
955 
956 			src_iter = src->bi_iter;
957 		}
958 
959 		if (!dst_iter.bi_size) {
960 			dst = dst->bi_next;
961 			if (!dst)
962 				break;
963 
964 			dst_iter = dst->bi_iter;
965 		}
966 
967 		src_bv = bio_iter_iovec(src, src_iter);
968 		dst_bv = bio_iter_iovec(dst, dst_iter);
969 
970 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
971 
972 		src_p = kmap_atomic(src_bv.bv_page);
973 		dst_p = kmap_atomic(dst_bv.bv_page);
974 
975 		memcpy(dst_p + dst_bv.bv_offset,
976 		       src_p + src_bv.bv_offset,
977 		       bytes);
978 
979 		kunmap_atomic(dst_p);
980 		kunmap_atomic(src_p);
981 
982 		bio_advance_iter(src, &src_iter, bytes);
983 		bio_advance_iter(dst, &dst_iter, bytes);
984 	}
985 }
986 EXPORT_SYMBOL(bio_copy_data);
987 
988 struct bio_map_data {
989 	int is_our_pages;
990 	struct iov_iter iter;
991 	struct iovec iov[];
992 };
993 
994 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
995 					       gfp_t gfp_mask)
996 {
997 	if (iov_count > UIO_MAXIOV)
998 		return NULL;
999 
1000 	return kmalloc(sizeof(struct bio_map_data) +
1001 		       sizeof(struct iovec) * iov_count, gfp_mask);
1002 }
1003 
1004 /**
1005  * bio_copy_from_iter - copy all pages from iov_iter to bio
1006  * @bio: The &struct bio which describes the I/O as destination
1007  * @iter: iov_iter as source
1008  *
1009  * Copy all pages from iov_iter to bio.
1010  * Returns 0 on success, or error on failure.
1011  */
1012 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1013 {
1014 	int i;
1015 	struct bio_vec *bvec;
1016 
1017 	bio_for_each_segment_all(bvec, bio, i) {
1018 		ssize_t ret;
1019 
1020 		ret = copy_page_from_iter(bvec->bv_page,
1021 					  bvec->bv_offset,
1022 					  bvec->bv_len,
1023 					  &iter);
1024 
1025 		if (!iov_iter_count(&iter))
1026 			break;
1027 
1028 		if (ret < bvec->bv_len)
1029 			return -EFAULT;
1030 	}
1031 
1032 	return 0;
1033 }
1034 
1035 /**
1036  * bio_copy_to_iter - copy all pages from bio to iov_iter
1037  * @bio: The &struct bio which describes the I/O as source
1038  * @iter: iov_iter as destination
1039  *
1040  * Copy all pages from bio to iov_iter.
1041  * Returns 0 on success, or error on failure.
1042  */
1043 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1044 {
1045 	int i;
1046 	struct bio_vec *bvec;
1047 
1048 	bio_for_each_segment_all(bvec, bio, i) {
1049 		ssize_t ret;
1050 
1051 		ret = copy_page_to_iter(bvec->bv_page,
1052 					bvec->bv_offset,
1053 					bvec->bv_len,
1054 					&iter);
1055 
1056 		if (!iov_iter_count(&iter))
1057 			break;
1058 
1059 		if (ret < bvec->bv_len)
1060 			return -EFAULT;
1061 	}
1062 
1063 	return 0;
1064 }
1065 
1066 static void bio_free_pages(struct bio *bio)
1067 {
1068 	struct bio_vec *bvec;
1069 	int i;
1070 
1071 	bio_for_each_segment_all(bvec, bio, i)
1072 		__free_page(bvec->bv_page);
1073 }
1074 
1075 /**
1076  *	bio_uncopy_user	-	finish previously mapped bio
1077  *	@bio: bio being terminated
1078  *
1079  *	Free pages allocated from bio_copy_user_iov() and write back data
1080  *	to user space in case of a read.
1081  */
1082 int bio_uncopy_user(struct bio *bio)
1083 {
1084 	struct bio_map_data *bmd = bio->bi_private;
1085 	int ret = 0;
1086 
1087 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1088 		/*
1089 		 * if we're in a workqueue, the request is orphaned, so
1090 		 * don't copy into a random user address space, just free
1091 		 * and return -EINTR so user space doesn't expect any data.
1092 		 */
1093 		if (!current->mm)
1094 			ret = -EINTR;
1095 		else if (bio_data_dir(bio) == READ)
1096 			ret = bio_copy_to_iter(bio, bmd->iter);
1097 		if (bmd->is_our_pages)
1098 			bio_free_pages(bio);
1099 	}
1100 	kfree(bmd);
1101 	bio_put(bio);
1102 	return ret;
1103 }
1104 
1105 /**
1106  *	bio_copy_user_iov	-	copy user data to bio
1107  *	@q:		destination block queue
1108  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1109  *	@iter:		iovec iterator
1110  *	@gfp_mask:	memory allocation flags
1111  *
1112  *	Prepares and returns a bio for indirect user io, bouncing data
1113  *	to/from kernel pages as necessary. Must be paired with
1114  *	call bio_uncopy_user() on io completion.
1115  */
1116 struct bio *bio_copy_user_iov(struct request_queue *q,
1117 			      struct rq_map_data *map_data,
1118 			      const struct iov_iter *iter,
1119 			      gfp_t gfp_mask)
1120 {
1121 	struct bio_map_data *bmd;
1122 	struct page *page;
1123 	struct bio *bio;
1124 	int i, ret;
1125 	int nr_pages = 0;
1126 	unsigned int len = iter->count;
1127 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1128 
1129 	for (i = 0; i < iter->nr_segs; i++) {
1130 		unsigned long uaddr;
1131 		unsigned long end;
1132 		unsigned long start;
1133 
1134 		uaddr = (unsigned long) iter->iov[i].iov_base;
1135 		end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1136 			>> PAGE_SHIFT;
1137 		start = uaddr >> PAGE_SHIFT;
1138 
1139 		/*
1140 		 * Overflow, abort
1141 		 */
1142 		if (end < start)
1143 			return ERR_PTR(-EINVAL);
1144 
1145 		nr_pages += end - start;
1146 	}
1147 
1148 	if (offset)
1149 		nr_pages++;
1150 
1151 	bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1152 	if (!bmd)
1153 		return ERR_PTR(-ENOMEM);
1154 
1155 	/*
1156 	 * We need to do a deep copy of the iov_iter including the iovecs.
1157 	 * The caller provided iov might point to an on-stack or otherwise
1158 	 * shortlived one.
1159 	 */
1160 	bmd->is_our_pages = map_data ? 0 : 1;
1161 	memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1162 	iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1163 			iter->nr_segs, iter->count);
1164 
1165 	ret = -ENOMEM;
1166 	bio = bio_kmalloc(gfp_mask, nr_pages);
1167 	if (!bio)
1168 		goto out_bmd;
1169 
1170 	if (iter->type & WRITE)
1171 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1172 
1173 	ret = 0;
1174 
1175 	if (map_data) {
1176 		nr_pages = 1 << map_data->page_order;
1177 		i = map_data->offset / PAGE_SIZE;
1178 	}
1179 	while (len) {
1180 		unsigned int bytes = PAGE_SIZE;
1181 
1182 		bytes -= offset;
1183 
1184 		if (bytes > len)
1185 			bytes = len;
1186 
1187 		if (map_data) {
1188 			if (i == map_data->nr_entries * nr_pages) {
1189 				ret = -ENOMEM;
1190 				break;
1191 			}
1192 
1193 			page = map_data->pages[i / nr_pages];
1194 			page += (i % nr_pages);
1195 
1196 			i++;
1197 		} else {
1198 			page = alloc_page(q->bounce_gfp | gfp_mask);
1199 			if (!page) {
1200 				ret = -ENOMEM;
1201 				break;
1202 			}
1203 		}
1204 
1205 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1206 			break;
1207 
1208 		len -= bytes;
1209 		offset = 0;
1210 	}
1211 
1212 	if (ret)
1213 		goto cleanup;
1214 
1215 	/*
1216 	 * success
1217 	 */
1218 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1219 	    (map_data && map_data->from_user)) {
1220 		ret = bio_copy_from_iter(bio, *iter);
1221 		if (ret)
1222 			goto cleanup;
1223 	}
1224 
1225 	bio->bi_private = bmd;
1226 	return bio;
1227 cleanup:
1228 	if (!map_data)
1229 		bio_free_pages(bio);
1230 	bio_put(bio);
1231 out_bmd:
1232 	kfree(bmd);
1233 	return ERR_PTR(ret);
1234 }
1235 
1236 /**
1237  *	bio_map_user_iov - map user iovec into bio
1238  *	@q:		the struct request_queue for the bio
1239  *	@iter:		iovec iterator
1240  *	@gfp_mask:	memory allocation flags
1241  *
1242  *	Map the user space address into a bio suitable for io to a block
1243  *	device. Returns an error pointer in case of error.
1244  */
1245 struct bio *bio_map_user_iov(struct request_queue *q,
1246 			     const struct iov_iter *iter,
1247 			     gfp_t gfp_mask)
1248 {
1249 	int j;
1250 	int nr_pages = 0;
1251 	struct page **pages;
1252 	struct bio *bio;
1253 	int cur_page = 0;
1254 	int ret, offset;
1255 	struct iov_iter i;
1256 	struct iovec iov;
1257 
1258 	iov_for_each(iov, i, *iter) {
1259 		unsigned long uaddr = (unsigned long) iov.iov_base;
1260 		unsigned long len = iov.iov_len;
1261 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1262 		unsigned long start = uaddr >> PAGE_SHIFT;
1263 
1264 		/*
1265 		 * Overflow, abort
1266 		 */
1267 		if (end < start)
1268 			return ERR_PTR(-EINVAL);
1269 
1270 		nr_pages += end - start;
1271 		/*
1272 		 * buffer must be aligned to at least hardsector size for now
1273 		 */
1274 		if (uaddr & queue_dma_alignment(q))
1275 			return ERR_PTR(-EINVAL);
1276 	}
1277 
1278 	if (!nr_pages)
1279 		return ERR_PTR(-EINVAL);
1280 
1281 	bio = bio_kmalloc(gfp_mask, nr_pages);
1282 	if (!bio)
1283 		return ERR_PTR(-ENOMEM);
1284 
1285 	ret = -ENOMEM;
1286 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1287 	if (!pages)
1288 		goto out;
1289 
1290 	iov_for_each(iov, i, *iter) {
1291 		unsigned long uaddr = (unsigned long) iov.iov_base;
1292 		unsigned long len = iov.iov_len;
1293 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1294 		unsigned long start = uaddr >> PAGE_SHIFT;
1295 		const int local_nr_pages = end - start;
1296 		const int page_limit = cur_page + local_nr_pages;
1297 
1298 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1299 				(iter->type & WRITE) != WRITE,
1300 				&pages[cur_page]);
1301 		if (ret < local_nr_pages) {
1302 			ret = -EFAULT;
1303 			goto out_unmap;
1304 		}
1305 
1306 		offset = offset_in_page(uaddr);
1307 		for (j = cur_page; j < page_limit; j++) {
1308 			unsigned int bytes = PAGE_SIZE - offset;
1309 
1310 			if (len <= 0)
1311 				break;
1312 
1313 			if (bytes > len)
1314 				bytes = len;
1315 
1316 			/*
1317 			 * sorry...
1318 			 */
1319 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1320 					    bytes)
1321 				break;
1322 
1323 			len -= bytes;
1324 			offset = 0;
1325 		}
1326 
1327 		cur_page = j;
1328 		/*
1329 		 * release the pages we didn't map into the bio, if any
1330 		 */
1331 		while (j < page_limit)
1332 			put_page(pages[j++]);
1333 	}
1334 
1335 	kfree(pages);
1336 
1337 	/*
1338 	 * set data direction, and check if mapped pages need bouncing
1339 	 */
1340 	if (iter->type & WRITE)
1341 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1342 
1343 	bio_set_flag(bio, BIO_USER_MAPPED);
1344 
1345 	/*
1346 	 * subtle -- if __bio_map_user() ended up bouncing a bio,
1347 	 * it would normally disappear when its bi_end_io is run.
1348 	 * however, we need it for the unmap, so grab an extra
1349 	 * reference to it
1350 	 */
1351 	bio_get(bio);
1352 	return bio;
1353 
1354  out_unmap:
1355 	for (j = 0; j < nr_pages; j++) {
1356 		if (!pages[j])
1357 			break;
1358 		put_page(pages[j]);
1359 	}
1360  out:
1361 	kfree(pages);
1362 	bio_put(bio);
1363 	return ERR_PTR(ret);
1364 }
1365 
1366 static void __bio_unmap_user(struct bio *bio)
1367 {
1368 	struct bio_vec *bvec;
1369 	int i;
1370 
1371 	/*
1372 	 * make sure we dirty pages we wrote to
1373 	 */
1374 	bio_for_each_segment_all(bvec, bio, i) {
1375 		if (bio_data_dir(bio) == READ)
1376 			set_page_dirty_lock(bvec->bv_page);
1377 
1378 		put_page(bvec->bv_page);
1379 	}
1380 
1381 	bio_put(bio);
1382 }
1383 
1384 /**
1385  *	bio_unmap_user	-	unmap a bio
1386  *	@bio:		the bio being unmapped
1387  *
1388  *	Unmap a bio previously mapped by bio_map_user(). Must be called with
1389  *	a process context.
1390  *
1391  *	bio_unmap_user() may sleep.
1392  */
1393 void bio_unmap_user(struct bio *bio)
1394 {
1395 	__bio_unmap_user(bio);
1396 	bio_put(bio);
1397 }
1398 
1399 static void bio_map_kern_endio(struct bio *bio)
1400 {
1401 	bio_put(bio);
1402 }
1403 
1404 /**
1405  *	bio_map_kern	-	map kernel address into bio
1406  *	@q: the struct request_queue for the bio
1407  *	@data: pointer to buffer to map
1408  *	@len: length in bytes
1409  *	@gfp_mask: allocation flags for bio allocation
1410  *
1411  *	Map the kernel address into a bio suitable for io to a block
1412  *	device. Returns an error pointer in case of error.
1413  */
1414 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1415 			 gfp_t gfp_mask)
1416 {
1417 	unsigned long kaddr = (unsigned long)data;
1418 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1419 	unsigned long start = kaddr >> PAGE_SHIFT;
1420 	const int nr_pages = end - start;
1421 	int offset, i;
1422 	struct bio *bio;
1423 
1424 	bio = bio_kmalloc(gfp_mask, nr_pages);
1425 	if (!bio)
1426 		return ERR_PTR(-ENOMEM);
1427 
1428 	offset = offset_in_page(kaddr);
1429 	for (i = 0; i < nr_pages; i++) {
1430 		unsigned int bytes = PAGE_SIZE - offset;
1431 
1432 		if (len <= 0)
1433 			break;
1434 
1435 		if (bytes > len)
1436 			bytes = len;
1437 
1438 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1439 				    offset) < bytes) {
1440 			/* we don't support partial mappings */
1441 			bio_put(bio);
1442 			return ERR_PTR(-EINVAL);
1443 		}
1444 
1445 		data += bytes;
1446 		len -= bytes;
1447 		offset = 0;
1448 	}
1449 
1450 	bio->bi_end_io = bio_map_kern_endio;
1451 	return bio;
1452 }
1453 EXPORT_SYMBOL(bio_map_kern);
1454 
1455 static void bio_copy_kern_endio(struct bio *bio)
1456 {
1457 	bio_free_pages(bio);
1458 	bio_put(bio);
1459 }
1460 
1461 static void bio_copy_kern_endio_read(struct bio *bio)
1462 {
1463 	char *p = bio->bi_private;
1464 	struct bio_vec *bvec;
1465 	int i;
1466 
1467 	bio_for_each_segment_all(bvec, bio, i) {
1468 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1469 		p += bvec->bv_len;
1470 	}
1471 
1472 	bio_copy_kern_endio(bio);
1473 }
1474 
1475 /**
1476  *	bio_copy_kern	-	copy kernel address into bio
1477  *	@q: the struct request_queue for the bio
1478  *	@data: pointer to buffer to copy
1479  *	@len: length in bytes
1480  *	@gfp_mask: allocation flags for bio and page allocation
1481  *	@reading: data direction is READ
1482  *
1483  *	copy the kernel address into a bio suitable for io to a block
1484  *	device. Returns an error pointer in case of error.
1485  */
1486 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1487 			  gfp_t gfp_mask, int reading)
1488 {
1489 	unsigned long kaddr = (unsigned long)data;
1490 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1491 	unsigned long start = kaddr >> PAGE_SHIFT;
1492 	struct bio *bio;
1493 	void *p = data;
1494 	int nr_pages = 0;
1495 
1496 	/*
1497 	 * Overflow, abort
1498 	 */
1499 	if (end < start)
1500 		return ERR_PTR(-EINVAL);
1501 
1502 	nr_pages = end - start;
1503 	bio = bio_kmalloc(gfp_mask, nr_pages);
1504 	if (!bio)
1505 		return ERR_PTR(-ENOMEM);
1506 
1507 	while (len) {
1508 		struct page *page;
1509 		unsigned int bytes = PAGE_SIZE;
1510 
1511 		if (bytes > len)
1512 			bytes = len;
1513 
1514 		page = alloc_page(q->bounce_gfp | gfp_mask);
1515 		if (!page)
1516 			goto cleanup;
1517 
1518 		if (!reading)
1519 			memcpy(page_address(page), p, bytes);
1520 
1521 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1522 			break;
1523 
1524 		len -= bytes;
1525 		p += bytes;
1526 	}
1527 
1528 	if (reading) {
1529 		bio->bi_end_io = bio_copy_kern_endio_read;
1530 		bio->bi_private = data;
1531 	} else {
1532 		bio->bi_end_io = bio_copy_kern_endio;
1533 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1534 	}
1535 
1536 	return bio;
1537 
1538 cleanup:
1539 	bio_free_pages(bio);
1540 	bio_put(bio);
1541 	return ERR_PTR(-ENOMEM);
1542 }
1543 
1544 /*
1545  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1546  * for performing direct-IO in BIOs.
1547  *
1548  * The problem is that we cannot run set_page_dirty() from interrupt context
1549  * because the required locks are not interrupt-safe.  So what we can do is to
1550  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1551  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1552  * in process context.
1553  *
1554  * We special-case compound pages here: normally this means reads into hugetlb
1555  * pages.  The logic in here doesn't really work right for compound pages
1556  * because the VM does not uniformly chase down the head page in all cases.
1557  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1558  * handle them at all.  So we skip compound pages here at an early stage.
1559  *
1560  * Note that this code is very hard to test under normal circumstances because
1561  * direct-io pins the pages with get_user_pages().  This makes
1562  * is_page_cache_freeable return false, and the VM will not clean the pages.
1563  * But other code (eg, flusher threads) could clean the pages if they are mapped
1564  * pagecache.
1565  *
1566  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1567  * deferred bio dirtying paths.
1568  */
1569 
1570 /*
1571  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1572  */
1573 void bio_set_pages_dirty(struct bio *bio)
1574 {
1575 	struct bio_vec *bvec;
1576 	int i;
1577 
1578 	bio_for_each_segment_all(bvec, bio, i) {
1579 		struct page *page = bvec->bv_page;
1580 
1581 		if (page && !PageCompound(page))
1582 			set_page_dirty_lock(page);
1583 	}
1584 }
1585 
1586 static void bio_release_pages(struct bio *bio)
1587 {
1588 	struct bio_vec *bvec;
1589 	int i;
1590 
1591 	bio_for_each_segment_all(bvec, bio, i) {
1592 		struct page *page = bvec->bv_page;
1593 
1594 		if (page)
1595 			put_page(page);
1596 	}
1597 }
1598 
1599 /*
1600  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1601  * If they are, then fine.  If, however, some pages are clean then they must
1602  * have been written out during the direct-IO read.  So we take another ref on
1603  * the BIO and the offending pages and re-dirty the pages in process context.
1604  *
1605  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1606  * here on.  It will run one put_page() against each page and will run one
1607  * bio_put() against the BIO.
1608  */
1609 
1610 static void bio_dirty_fn(struct work_struct *work);
1611 
1612 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1613 static DEFINE_SPINLOCK(bio_dirty_lock);
1614 static struct bio *bio_dirty_list;
1615 
1616 /*
1617  * This runs in process context
1618  */
1619 static void bio_dirty_fn(struct work_struct *work)
1620 {
1621 	unsigned long flags;
1622 	struct bio *bio;
1623 
1624 	spin_lock_irqsave(&bio_dirty_lock, flags);
1625 	bio = bio_dirty_list;
1626 	bio_dirty_list = NULL;
1627 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1628 
1629 	while (bio) {
1630 		struct bio *next = bio->bi_private;
1631 
1632 		bio_set_pages_dirty(bio);
1633 		bio_release_pages(bio);
1634 		bio_put(bio);
1635 		bio = next;
1636 	}
1637 }
1638 
1639 void bio_check_pages_dirty(struct bio *bio)
1640 {
1641 	struct bio_vec *bvec;
1642 	int nr_clean_pages = 0;
1643 	int i;
1644 
1645 	bio_for_each_segment_all(bvec, bio, i) {
1646 		struct page *page = bvec->bv_page;
1647 
1648 		if (PageDirty(page) || PageCompound(page)) {
1649 			put_page(page);
1650 			bvec->bv_page = NULL;
1651 		} else {
1652 			nr_clean_pages++;
1653 		}
1654 	}
1655 
1656 	if (nr_clean_pages) {
1657 		unsigned long flags;
1658 
1659 		spin_lock_irqsave(&bio_dirty_lock, flags);
1660 		bio->bi_private = bio_dirty_list;
1661 		bio_dirty_list = bio;
1662 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1663 		schedule_work(&bio_dirty_work);
1664 	} else {
1665 		bio_put(bio);
1666 	}
1667 }
1668 
1669 void generic_start_io_acct(int rw, unsigned long sectors,
1670 			   struct hd_struct *part)
1671 {
1672 	int cpu = part_stat_lock();
1673 
1674 	part_round_stats(cpu, part);
1675 	part_stat_inc(cpu, part, ios[rw]);
1676 	part_stat_add(cpu, part, sectors[rw], sectors);
1677 	part_inc_in_flight(part, rw);
1678 
1679 	part_stat_unlock();
1680 }
1681 EXPORT_SYMBOL(generic_start_io_acct);
1682 
1683 void generic_end_io_acct(int rw, struct hd_struct *part,
1684 			 unsigned long start_time)
1685 {
1686 	unsigned long duration = jiffies - start_time;
1687 	int cpu = part_stat_lock();
1688 
1689 	part_stat_add(cpu, part, ticks[rw], duration);
1690 	part_round_stats(cpu, part);
1691 	part_dec_in_flight(part, rw);
1692 
1693 	part_stat_unlock();
1694 }
1695 EXPORT_SYMBOL(generic_end_io_acct);
1696 
1697 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1698 void bio_flush_dcache_pages(struct bio *bi)
1699 {
1700 	struct bio_vec bvec;
1701 	struct bvec_iter iter;
1702 
1703 	bio_for_each_segment(bvec, bi, iter)
1704 		flush_dcache_page(bvec.bv_page);
1705 }
1706 EXPORT_SYMBOL(bio_flush_dcache_pages);
1707 #endif
1708 
1709 static inline bool bio_remaining_done(struct bio *bio)
1710 {
1711 	/*
1712 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1713 	 * we always end io on the first invocation.
1714 	 */
1715 	if (!bio_flagged(bio, BIO_CHAIN))
1716 		return true;
1717 
1718 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1719 
1720 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1721 		bio_clear_flag(bio, BIO_CHAIN);
1722 		return true;
1723 	}
1724 
1725 	return false;
1726 }
1727 
1728 /**
1729  * bio_endio - end I/O on a bio
1730  * @bio:	bio
1731  *
1732  * Description:
1733  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1734  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1735  *   bio unless they own it and thus know that it has an end_io function.
1736  **/
1737 void bio_endio(struct bio *bio)
1738 {
1739 again:
1740 	if (!bio_remaining_done(bio))
1741 		return;
1742 
1743 	/*
1744 	 * Need to have a real endio function for chained bios, otherwise
1745 	 * various corner cases will break (like stacking block devices that
1746 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1747 	 * recursion and blowing the stack. Tail call optimization would
1748 	 * handle this, but compiling with frame pointers also disables
1749 	 * gcc's sibling call optimization.
1750 	 */
1751 	if (bio->bi_end_io == bio_chain_endio) {
1752 		bio = __bio_chain_endio(bio);
1753 		goto again;
1754 	}
1755 
1756 	if (bio->bi_end_io)
1757 		bio->bi_end_io(bio);
1758 }
1759 EXPORT_SYMBOL(bio_endio);
1760 
1761 /**
1762  * bio_split - split a bio
1763  * @bio:	bio to split
1764  * @sectors:	number of sectors to split from the front of @bio
1765  * @gfp:	gfp mask
1766  * @bs:		bio set to allocate from
1767  *
1768  * Allocates and returns a new bio which represents @sectors from the start of
1769  * @bio, and updates @bio to represent the remaining sectors.
1770  *
1771  * Unless this is a discard request the newly allocated bio will point
1772  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1773  * @bio is not freed before the split.
1774  */
1775 struct bio *bio_split(struct bio *bio, int sectors,
1776 		      gfp_t gfp, struct bio_set *bs)
1777 {
1778 	struct bio *split = NULL;
1779 
1780 	BUG_ON(sectors <= 0);
1781 	BUG_ON(sectors >= bio_sectors(bio));
1782 
1783 	/*
1784 	 * Discards need a mutable bio_vec to accommodate the payload
1785 	 * required by the DSM TRIM and UNMAP commands.
1786 	 */
1787 	if (bio_op(bio) == REQ_OP_DISCARD)
1788 		split = bio_clone_bioset(bio, gfp, bs);
1789 	else
1790 		split = bio_clone_fast(bio, gfp, bs);
1791 
1792 	if (!split)
1793 		return NULL;
1794 
1795 	split->bi_iter.bi_size = sectors << 9;
1796 
1797 	if (bio_integrity(split))
1798 		bio_integrity_trim(split, 0, sectors);
1799 
1800 	bio_advance(bio, split->bi_iter.bi_size);
1801 
1802 	return split;
1803 }
1804 EXPORT_SYMBOL(bio_split);
1805 
1806 /**
1807  * bio_trim - trim a bio
1808  * @bio:	bio to trim
1809  * @offset:	number of sectors to trim from the front of @bio
1810  * @size:	size we want to trim @bio to, in sectors
1811  */
1812 void bio_trim(struct bio *bio, int offset, int size)
1813 {
1814 	/* 'bio' is a cloned bio which we need to trim to match
1815 	 * the given offset and size.
1816 	 */
1817 
1818 	size <<= 9;
1819 	if (offset == 0 && size == bio->bi_iter.bi_size)
1820 		return;
1821 
1822 	bio_clear_flag(bio, BIO_SEG_VALID);
1823 
1824 	bio_advance(bio, offset << 9);
1825 
1826 	bio->bi_iter.bi_size = size;
1827 }
1828 EXPORT_SYMBOL_GPL(bio_trim);
1829 
1830 /*
1831  * create memory pools for biovec's in a bio_set.
1832  * use the global biovec slabs created for general use.
1833  */
1834 mempool_t *biovec_create_pool(int pool_entries)
1835 {
1836 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1837 
1838 	return mempool_create_slab_pool(pool_entries, bp->slab);
1839 }
1840 
1841 void bioset_free(struct bio_set *bs)
1842 {
1843 	if (bs->rescue_workqueue)
1844 		destroy_workqueue(bs->rescue_workqueue);
1845 
1846 	if (bs->bio_pool)
1847 		mempool_destroy(bs->bio_pool);
1848 
1849 	if (bs->bvec_pool)
1850 		mempool_destroy(bs->bvec_pool);
1851 
1852 	bioset_integrity_free(bs);
1853 	bio_put_slab(bs);
1854 
1855 	kfree(bs);
1856 }
1857 EXPORT_SYMBOL(bioset_free);
1858 
1859 static struct bio_set *__bioset_create(unsigned int pool_size,
1860 				       unsigned int front_pad,
1861 				       bool create_bvec_pool)
1862 {
1863 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1864 	struct bio_set *bs;
1865 
1866 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1867 	if (!bs)
1868 		return NULL;
1869 
1870 	bs->front_pad = front_pad;
1871 
1872 	spin_lock_init(&bs->rescue_lock);
1873 	bio_list_init(&bs->rescue_list);
1874 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1875 
1876 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1877 	if (!bs->bio_slab) {
1878 		kfree(bs);
1879 		return NULL;
1880 	}
1881 
1882 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1883 	if (!bs->bio_pool)
1884 		goto bad;
1885 
1886 	if (create_bvec_pool) {
1887 		bs->bvec_pool = biovec_create_pool(pool_size);
1888 		if (!bs->bvec_pool)
1889 			goto bad;
1890 	}
1891 
1892 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1893 	if (!bs->rescue_workqueue)
1894 		goto bad;
1895 
1896 	return bs;
1897 bad:
1898 	bioset_free(bs);
1899 	return NULL;
1900 }
1901 
1902 /**
1903  * bioset_create  - Create a bio_set
1904  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1905  * @front_pad:	Number of bytes to allocate in front of the returned bio
1906  *
1907  * Description:
1908  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1909  *    to ask for a number of bytes to be allocated in front of the bio.
1910  *    Front pad allocation is useful for embedding the bio inside
1911  *    another structure, to avoid allocating extra data to go with the bio.
1912  *    Note that the bio must be embedded at the END of that structure always,
1913  *    or things will break badly.
1914  */
1915 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1916 {
1917 	return __bioset_create(pool_size, front_pad, true);
1918 }
1919 EXPORT_SYMBOL(bioset_create);
1920 
1921 /**
1922  * bioset_create_nobvec  - Create a bio_set without bio_vec mempool
1923  * @pool_size:	Number of bio to cache in the mempool
1924  * @front_pad:	Number of bytes to allocate in front of the returned bio
1925  *
1926  * Description:
1927  *    Same functionality as bioset_create() except that mempool is not
1928  *    created for bio_vecs. Saving some memory for bio_clone_fast() users.
1929  */
1930 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1931 {
1932 	return __bioset_create(pool_size, front_pad, false);
1933 }
1934 EXPORT_SYMBOL(bioset_create_nobvec);
1935 
1936 #ifdef CONFIG_BLK_CGROUP
1937 
1938 /**
1939  * bio_associate_blkcg - associate a bio with the specified blkcg
1940  * @bio: target bio
1941  * @blkcg_css: css of the blkcg to associate
1942  *
1943  * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
1944  * treat @bio as if it were issued by a task which belongs to the blkcg.
1945  *
1946  * This function takes an extra reference of @blkcg_css which will be put
1947  * when @bio is released.  The caller must own @bio and is responsible for
1948  * synchronizing calls to this function.
1949  */
1950 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1951 {
1952 	if (unlikely(bio->bi_css))
1953 		return -EBUSY;
1954 	css_get(blkcg_css);
1955 	bio->bi_css = blkcg_css;
1956 	return 0;
1957 }
1958 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1959 
1960 /**
1961  * bio_associate_current - associate a bio with %current
1962  * @bio: target bio
1963  *
1964  * Associate @bio with %current if it hasn't been associated yet.  Block
1965  * layer will treat @bio as if it were issued by %current no matter which
1966  * task actually issues it.
1967  *
1968  * This function takes an extra reference of @task's io_context and blkcg
1969  * which will be put when @bio is released.  The caller must own @bio,
1970  * ensure %current->io_context exists, and is responsible for synchronizing
1971  * calls to this function.
1972  */
1973 int bio_associate_current(struct bio *bio)
1974 {
1975 	struct io_context *ioc;
1976 
1977 	if (bio->bi_css)
1978 		return -EBUSY;
1979 
1980 	ioc = current->io_context;
1981 	if (!ioc)
1982 		return -ENOENT;
1983 
1984 	get_io_context_active(ioc);
1985 	bio->bi_ioc = ioc;
1986 	bio->bi_css = task_get_css(current, io_cgrp_id);
1987 	return 0;
1988 }
1989 EXPORT_SYMBOL_GPL(bio_associate_current);
1990 
1991 /**
1992  * bio_disassociate_task - undo bio_associate_current()
1993  * @bio: target bio
1994  */
1995 void bio_disassociate_task(struct bio *bio)
1996 {
1997 	if (bio->bi_ioc) {
1998 		put_io_context(bio->bi_ioc);
1999 		bio->bi_ioc = NULL;
2000 	}
2001 	if (bio->bi_css) {
2002 		css_put(bio->bi_css);
2003 		bio->bi_css = NULL;
2004 	}
2005 }
2006 
2007 #endif /* CONFIG_BLK_CGROUP */
2008 
2009 static void __init biovec_init_slabs(void)
2010 {
2011 	int i;
2012 
2013 	for (i = 0; i < BVEC_POOL_NR; i++) {
2014 		int size;
2015 		struct biovec_slab *bvs = bvec_slabs + i;
2016 
2017 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2018 			bvs->slab = NULL;
2019 			continue;
2020 		}
2021 
2022 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2023 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2024                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2025 	}
2026 }
2027 
2028 static int __init init_bio(void)
2029 {
2030 	bio_slab_max = 2;
2031 	bio_slab_nr = 0;
2032 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2033 	if (!bio_slabs)
2034 		panic("bio: can't allocate bios\n");
2035 
2036 	bio_integrity_init();
2037 	biovec_init_slabs();
2038 
2039 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2040 	if (!fs_bio_set)
2041 		panic("bio: can't allocate bios\n");
2042 
2043 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2044 		panic("bio: can't create integrity pool\n");
2045 
2046 	return 0;
2047 }
2048 subsys_initcall(init_bio);
2049