xref: /openbmc/linux/block/bio.c (revision 6dfcd296)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 
32 #include <trace/events/block.h>
33 
34 /*
35  * Test patch to inline a certain number of bi_io_vec's inside the bio
36  * itself, to shrink a bio data allocation from two mempool calls to one
37  */
38 #define BIO_INLINE_VECS		4
39 
40 /*
41  * if you change this list, also change bvec_alloc or things will
42  * break badly! cannot be bigger than what you can fit into an
43  * unsigned short
44  */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
47 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50 
51 /*
52  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53  * IO code that does not need private memory pools.
54  */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57 
58 /*
59  * Our slab pool management
60  */
61 struct bio_slab {
62 	struct kmem_cache *slab;
63 	unsigned int slab_ref;
64 	unsigned int slab_size;
65 	char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70 
71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 	unsigned int sz = sizeof(struct bio) + extra_size;
74 	struct kmem_cache *slab = NULL;
75 	struct bio_slab *bslab, *new_bio_slabs;
76 	unsigned int new_bio_slab_max;
77 	unsigned int i, entry = -1;
78 
79 	mutex_lock(&bio_slab_lock);
80 
81 	i = 0;
82 	while (i < bio_slab_nr) {
83 		bslab = &bio_slabs[i];
84 
85 		if (!bslab->slab && entry == -1)
86 			entry = i;
87 		else if (bslab->slab_size == sz) {
88 			slab = bslab->slab;
89 			bslab->slab_ref++;
90 			break;
91 		}
92 		i++;
93 	}
94 
95 	if (slab)
96 		goto out_unlock;
97 
98 	if (bio_slab_nr == bio_slab_max && entry == -1) {
99 		new_bio_slab_max = bio_slab_max << 1;
100 		new_bio_slabs = krealloc(bio_slabs,
101 					 new_bio_slab_max * sizeof(struct bio_slab),
102 					 GFP_KERNEL);
103 		if (!new_bio_slabs)
104 			goto out_unlock;
105 		bio_slab_max = new_bio_slab_max;
106 		bio_slabs = new_bio_slabs;
107 	}
108 	if (entry == -1)
109 		entry = bio_slab_nr++;
110 
111 	bslab = &bio_slabs[entry];
112 
113 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 				 SLAB_HWCACHE_ALIGN, NULL);
116 	if (!slab)
117 		goto out_unlock;
118 
119 	bslab->slab = slab;
120 	bslab->slab_ref = 1;
121 	bslab->slab_size = sz;
122 out_unlock:
123 	mutex_unlock(&bio_slab_lock);
124 	return slab;
125 }
126 
127 static void bio_put_slab(struct bio_set *bs)
128 {
129 	struct bio_slab *bslab = NULL;
130 	unsigned int i;
131 
132 	mutex_lock(&bio_slab_lock);
133 
134 	for (i = 0; i < bio_slab_nr; i++) {
135 		if (bs->bio_slab == bio_slabs[i].slab) {
136 			bslab = &bio_slabs[i];
137 			break;
138 		}
139 	}
140 
141 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 		goto out;
143 
144 	WARN_ON(!bslab->slab_ref);
145 
146 	if (--bslab->slab_ref)
147 		goto out;
148 
149 	kmem_cache_destroy(bslab->slab);
150 	bslab->slab = NULL;
151 
152 out:
153 	mutex_unlock(&bio_slab_lock);
154 }
155 
156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 	return bvec_slabs[idx].nr_vecs;
159 }
160 
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 	if (!idx)
164 		return;
165 	idx--;
166 
167 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
168 
169 	if (idx == BVEC_POOL_MAX) {
170 		mempool_free(bv, pool);
171 	} else {
172 		struct biovec_slab *bvs = bvec_slabs + idx;
173 
174 		kmem_cache_free(bvs->slab, bv);
175 	}
176 }
177 
178 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
179 			   mempool_t *pool)
180 {
181 	struct bio_vec *bvl;
182 
183 	/*
184 	 * see comment near bvec_array define!
185 	 */
186 	switch (nr) {
187 	case 1:
188 		*idx = 0;
189 		break;
190 	case 2 ... 4:
191 		*idx = 1;
192 		break;
193 	case 5 ... 16:
194 		*idx = 2;
195 		break;
196 	case 17 ... 64:
197 		*idx = 3;
198 		break;
199 	case 65 ... 128:
200 		*idx = 4;
201 		break;
202 	case 129 ... BIO_MAX_PAGES:
203 		*idx = 5;
204 		break;
205 	default:
206 		return NULL;
207 	}
208 
209 	/*
210 	 * idx now points to the pool we want to allocate from. only the
211 	 * 1-vec entry pool is mempool backed.
212 	 */
213 	if (*idx == BVEC_POOL_MAX) {
214 fallback:
215 		bvl = mempool_alloc(pool, gfp_mask);
216 	} else {
217 		struct biovec_slab *bvs = bvec_slabs + *idx;
218 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
219 
220 		/*
221 		 * Make this allocation restricted and don't dump info on
222 		 * allocation failures, since we'll fallback to the mempool
223 		 * in case of failure.
224 		 */
225 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
226 
227 		/*
228 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
229 		 * is set, retry with the 1-entry mempool
230 		 */
231 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
232 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
233 			*idx = BVEC_POOL_MAX;
234 			goto fallback;
235 		}
236 	}
237 
238 	(*idx)++;
239 	return bvl;
240 }
241 
242 static void __bio_free(struct bio *bio)
243 {
244 	bio_disassociate_task(bio);
245 
246 	if (bio_integrity(bio))
247 		bio_integrity_free(bio);
248 }
249 
250 static void bio_free(struct bio *bio)
251 {
252 	struct bio_set *bs = bio->bi_pool;
253 	void *p;
254 
255 	__bio_free(bio);
256 
257 	if (bs) {
258 		bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
259 
260 		/*
261 		 * If we have front padding, adjust the bio pointer before freeing
262 		 */
263 		p = bio;
264 		p -= bs->front_pad;
265 
266 		mempool_free(p, bs->bio_pool);
267 	} else {
268 		/* Bio was allocated by bio_kmalloc() */
269 		kfree(bio);
270 	}
271 }
272 
273 void bio_init(struct bio *bio)
274 {
275 	memset(bio, 0, sizeof(*bio));
276 	atomic_set(&bio->__bi_remaining, 1);
277 	atomic_set(&bio->__bi_cnt, 1);
278 }
279 EXPORT_SYMBOL(bio_init);
280 
281 /**
282  * bio_reset - reinitialize a bio
283  * @bio:	bio to reset
284  *
285  * Description:
286  *   After calling bio_reset(), @bio will be in the same state as a freshly
287  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
288  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
289  *   comment in struct bio.
290  */
291 void bio_reset(struct bio *bio)
292 {
293 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
294 
295 	__bio_free(bio);
296 
297 	memset(bio, 0, BIO_RESET_BYTES);
298 	bio->bi_flags = flags;
299 	atomic_set(&bio->__bi_remaining, 1);
300 }
301 EXPORT_SYMBOL(bio_reset);
302 
303 static struct bio *__bio_chain_endio(struct bio *bio)
304 {
305 	struct bio *parent = bio->bi_private;
306 
307 	if (!parent->bi_error)
308 		parent->bi_error = bio->bi_error;
309 	bio_put(bio);
310 	return parent;
311 }
312 
313 static void bio_chain_endio(struct bio *bio)
314 {
315 	bio_endio(__bio_chain_endio(bio));
316 }
317 
318 /**
319  * bio_chain - chain bio completions
320  * @bio: the target bio
321  * @parent: the @bio's parent bio
322  *
323  * The caller won't have a bi_end_io called when @bio completes - instead,
324  * @parent's bi_end_io won't be called until both @parent and @bio have
325  * completed; the chained bio will also be freed when it completes.
326  *
327  * The caller must not set bi_private or bi_end_io in @bio.
328  */
329 void bio_chain(struct bio *bio, struct bio *parent)
330 {
331 	BUG_ON(bio->bi_private || bio->bi_end_io);
332 
333 	bio->bi_private = parent;
334 	bio->bi_end_io	= bio_chain_endio;
335 	bio_inc_remaining(parent);
336 }
337 EXPORT_SYMBOL(bio_chain);
338 
339 static void bio_alloc_rescue(struct work_struct *work)
340 {
341 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
342 	struct bio *bio;
343 
344 	while (1) {
345 		spin_lock(&bs->rescue_lock);
346 		bio = bio_list_pop(&bs->rescue_list);
347 		spin_unlock(&bs->rescue_lock);
348 
349 		if (!bio)
350 			break;
351 
352 		generic_make_request(bio);
353 	}
354 }
355 
356 static void punt_bios_to_rescuer(struct bio_set *bs)
357 {
358 	struct bio_list punt, nopunt;
359 	struct bio *bio;
360 
361 	/*
362 	 * In order to guarantee forward progress we must punt only bios that
363 	 * were allocated from this bio_set; otherwise, if there was a bio on
364 	 * there for a stacking driver higher up in the stack, processing it
365 	 * could require allocating bios from this bio_set, and doing that from
366 	 * our own rescuer would be bad.
367 	 *
368 	 * Since bio lists are singly linked, pop them all instead of trying to
369 	 * remove from the middle of the list:
370 	 */
371 
372 	bio_list_init(&punt);
373 	bio_list_init(&nopunt);
374 
375 	while ((bio = bio_list_pop(current->bio_list)))
376 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
377 
378 	*current->bio_list = nopunt;
379 
380 	spin_lock(&bs->rescue_lock);
381 	bio_list_merge(&bs->rescue_list, &punt);
382 	spin_unlock(&bs->rescue_lock);
383 
384 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
385 }
386 
387 /**
388  * bio_alloc_bioset - allocate a bio for I/O
389  * @gfp_mask:   the GFP_ mask given to the slab allocator
390  * @nr_iovecs:	number of iovecs to pre-allocate
391  * @bs:		the bio_set to allocate from.
392  *
393  * Description:
394  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
395  *   backed by the @bs's mempool.
396  *
397  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
398  *   always be able to allocate a bio. This is due to the mempool guarantees.
399  *   To make this work, callers must never allocate more than 1 bio at a time
400  *   from this pool. Callers that need to allocate more than 1 bio must always
401  *   submit the previously allocated bio for IO before attempting to allocate
402  *   a new one. Failure to do so can cause deadlocks under memory pressure.
403  *
404  *   Note that when running under generic_make_request() (i.e. any block
405  *   driver), bios are not submitted until after you return - see the code in
406  *   generic_make_request() that converts recursion into iteration, to prevent
407  *   stack overflows.
408  *
409  *   This would normally mean allocating multiple bios under
410  *   generic_make_request() would be susceptible to deadlocks, but we have
411  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
412  *   thread.
413  *
414  *   However, we do not guarantee forward progress for allocations from other
415  *   mempools. Doing multiple allocations from the same mempool under
416  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
417  *   for per bio allocations.
418  *
419  *   RETURNS:
420  *   Pointer to new bio on success, NULL on failure.
421  */
422 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
423 {
424 	gfp_t saved_gfp = gfp_mask;
425 	unsigned front_pad;
426 	unsigned inline_vecs;
427 	struct bio_vec *bvl = NULL;
428 	struct bio *bio;
429 	void *p;
430 
431 	if (!bs) {
432 		if (nr_iovecs > UIO_MAXIOV)
433 			return NULL;
434 
435 		p = kmalloc(sizeof(struct bio) +
436 			    nr_iovecs * sizeof(struct bio_vec),
437 			    gfp_mask);
438 		front_pad = 0;
439 		inline_vecs = nr_iovecs;
440 	} else {
441 		/* should not use nobvec bioset for nr_iovecs > 0 */
442 		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
443 			return NULL;
444 		/*
445 		 * generic_make_request() converts recursion to iteration; this
446 		 * means if we're running beneath it, any bios we allocate and
447 		 * submit will not be submitted (and thus freed) until after we
448 		 * return.
449 		 *
450 		 * This exposes us to a potential deadlock if we allocate
451 		 * multiple bios from the same bio_set() while running
452 		 * underneath generic_make_request(). If we were to allocate
453 		 * multiple bios (say a stacking block driver that was splitting
454 		 * bios), we would deadlock if we exhausted the mempool's
455 		 * reserve.
456 		 *
457 		 * We solve this, and guarantee forward progress, with a rescuer
458 		 * workqueue per bio_set. If we go to allocate and there are
459 		 * bios on current->bio_list, we first try the allocation
460 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
461 		 * bios we would be blocking to the rescuer workqueue before
462 		 * we retry with the original gfp_flags.
463 		 */
464 
465 		if (current->bio_list && !bio_list_empty(current->bio_list))
466 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
467 
468 		p = mempool_alloc(bs->bio_pool, gfp_mask);
469 		if (!p && gfp_mask != saved_gfp) {
470 			punt_bios_to_rescuer(bs);
471 			gfp_mask = saved_gfp;
472 			p = mempool_alloc(bs->bio_pool, gfp_mask);
473 		}
474 
475 		front_pad = bs->front_pad;
476 		inline_vecs = BIO_INLINE_VECS;
477 	}
478 
479 	if (unlikely(!p))
480 		return NULL;
481 
482 	bio = p + front_pad;
483 	bio_init(bio);
484 
485 	if (nr_iovecs > inline_vecs) {
486 		unsigned long idx = 0;
487 
488 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
489 		if (!bvl && gfp_mask != saved_gfp) {
490 			punt_bios_to_rescuer(bs);
491 			gfp_mask = saved_gfp;
492 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
493 		}
494 
495 		if (unlikely(!bvl))
496 			goto err_free;
497 
498 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
499 	} else if (nr_iovecs) {
500 		bvl = bio->bi_inline_vecs;
501 	}
502 
503 	bio->bi_pool = bs;
504 	bio->bi_max_vecs = nr_iovecs;
505 	bio->bi_io_vec = bvl;
506 	return bio;
507 
508 err_free:
509 	mempool_free(p, bs->bio_pool);
510 	return NULL;
511 }
512 EXPORT_SYMBOL(bio_alloc_bioset);
513 
514 void zero_fill_bio(struct bio *bio)
515 {
516 	unsigned long flags;
517 	struct bio_vec bv;
518 	struct bvec_iter iter;
519 
520 	bio_for_each_segment(bv, bio, iter) {
521 		char *data = bvec_kmap_irq(&bv, &flags);
522 		memset(data, 0, bv.bv_len);
523 		flush_dcache_page(bv.bv_page);
524 		bvec_kunmap_irq(data, &flags);
525 	}
526 }
527 EXPORT_SYMBOL(zero_fill_bio);
528 
529 /**
530  * bio_put - release a reference to a bio
531  * @bio:   bio to release reference to
532  *
533  * Description:
534  *   Put a reference to a &struct bio, either one you have gotten with
535  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
536  **/
537 void bio_put(struct bio *bio)
538 {
539 	if (!bio_flagged(bio, BIO_REFFED))
540 		bio_free(bio);
541 	else {
542 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
543 
544 		/*
545 		 * last put frees it
546 		 */
547 		if (atomic_dec_and_test(&bio->__bi_cnt))
548 			bio_free(bio);
549 	}
550 }
551 EXPORT_SYMBOL(bio_put);
552 
553 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
554 {
555 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
556 		blk_recount_segments(q, bio);
557 
558 	return bio->bi_phys_segments;
559 }
560 EXPORT_SYMBOL(bio_phys_segments);
561 
562 /**
563  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
564  * 	@bio: destination bio
565  * 	@bio_src: bio to clone
566  *
567  *	Clone a &bio. Caller will own the returned bio, but not
568  *	the actual data it points to. Reference count of returned
569  * 	bio will be one.
570  *
571  * 	Caller must ensure that @bio_src is not freed before @bio.
572  */
573 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
574 {
575 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
576 
577 	/*
578 	 * most users will be overriding ->bi_bdev with a new target,
579 	 * so we don't set nor calculate new physical/hw segment counts here
580 	 */
581 	bio->bi_bdev = bio_src->bi_bdev;
582 	bio_set_flag(bio, BIO_CLONED);
583 	bio->bi_opf = bio_src->bi_opf;
584 	bio->bi_iter = bio_src->bi_iter;
585 	bio->bi_io_vec = bio_src->bi_io_vec;
586 
587 	bio_clone_blkcg_association(bio, bio_src);
588 }
589 EXPORT_SYMBOL(__bio_clone_fast);
590 
591 /**
592  *	bio_clone_fast - clone a bio that shares the original bio's biovec
593  *	@bio: bio to clone
594  *	@gfp_mask: allocation priority
595  *	@bs: bio_set to allocate from
596  *
597  * 	Like __bio_clone_fast, only also allocates the returned bio
598  */
599 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
600 {
601 	struct bio *b;
602 
603 	b = bio_alloc_bioset(gfp_mask, 0, bs);
604 	if (!b)
605 		return NULL;
606 
607 	__bio_clone_fast(b, bio);
608 
609 	if (bio_integrity(bio)) {
610 		int ret;
611 
612 		ret = bio_integrity_clone(b, bio, gfp_mask);
613 
614 		if (ret < 0) {
615 			bio_put(b);
616 			return NULL;
617 		}
618 	}
619 
620 	return b;
621 }
622 EXPORT_SYMBOL(bio_clone_fast);
623 
624 /**
625  * 	bio_clone_bioset - clone a bio
626  * 	@bio_src: bio to clone
627  *	@gfp_mask: allocation priority
628  *	@bs: bio_set to allocate from
629  *
630  *	Clone bio. Caller will own the returned bio, but not the actual data it
631  *	points to. Reference count of returned bio will be one.
632  */
633 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
634 			     struct bio_set *bs)
635 {
636 	struct bvec_iter iter;
637 	struct bio_vec bv;
638 	struct bio *bio;
639 
640 	/*
641 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
642 	 * bio_src->bi_io_vec to bio->bi_io_vec.
643 	 *
644 	 * We can't do that anymore, because:
645 	 *
646 	 *  - The point of cloning the biovec is to produce a bio with a biovec
647 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
648 	 *
649 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
650 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
651 	 *    But the clone should succeed as long as the number of biovecs we
652 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
653 	 *
654 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
655 	 *    that does not own the bio - reason being drivers don't use it for
656 	 *    iterating over the biovec anymore, so expecting it to be kept up
657 	 *    to date (i.e. for clones that share the parent biovec) is just
658 	 *    asking for trouble and would force extra work on
659 	 *    __bio_clone_fast() anyways.
660 	 */
661 
662 	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
663 	if (!bio)
664 		return NULL;
665 	bio->bi_bdev		= bio_src->bi_bdev;
666 	bio->bi_opf		= bio_src->bi_opf;
667 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
668 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
669 
670 	switch (bio_op(bio)) {
671 	case REQ_OP_DISCARD:
672 	case REQ_OP_SECURE_ERASE:
673 		break;
674 	case REQ_OP_WRITE_SAME:
675 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
676 		break;
677 	default:
678 		bio_for_each_segment(bv, bio_src, iter)
679 			bio->bi_io_vec[bio->bi_vcnt++] = bv;
680 		break;
681 	}
682 
683 	if (bio_integrity(bio_src)) {
684 		int ret;
685 
686 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
687 		if (ret < 0) {
688 			bio_put(bio);
689 			return NULL;
690 		}
691 	}
692 
693 	bio_clone_blkcg_association(bio, bio_src);
694 
695 	return bio;
696 }
697 EXPORT_SYMBOL(bio_clone_bioset);
698 
699 /**
700  *	bio_add_pc_page	-	attempt to add page to bio
701  *	@q: the target queue
702  *	@bio: destination bio
703  *	@page: page to add
704  *	@len: vec entry length
705  *	@offset: vec entry offset
706  *
707  *	Attempt to add a page to the bio_vec maplist. This can fail for a
708  *	number of reasons, such as the bio being full or target block device
709  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
710  *	so it is always possible to add a single page to an empty bio.
711  *
712  *	This should only be used by REQ_PC bios.
713  */
714 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
715 		    *page, unsigned int len, unsigned int offset)
716 {
717 	int retried_segments = 0;
718 	struct bio_vec *bvec;
719 
720 	/*
721 	 * cloned bio must not modify vec list
722 	 */
723 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
724 		return 0;
725 
726 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
727 		return 0;
728 
729 	/*
730 	 * For filesystems with a blocksize smaller than the pagesize
731 	 * we will often be called with the same page as last time and
732 	 * a consecutive offset.  Optimize this special case.
733 	 */
734 	if (bio->bi_vcnt > 0) {
735 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
736 
737 		if (page == prev->bv_page &&
738 		    offset == prev->bv_offset + prev->bv_len) {
739 			prev->bv_len += len;
740 			bio->bi_iter.bi_size += len;
741 			goto done;
742 		}
743 
744 		/*
745 		 * If the queue doesn't support SG gaps and adding this
746 		 * offset would create a gap, disallow it.
747 		 */
748 		if (bvec_gap_to_prev(q, prev, offset))
749 			return 0;
750 	}
751 
752 	if (bio->bi_vcnt >= bio->bi_max_vecs)
753 		return 0;
754 
755 	/*
756 	 * setup the new entry, we might clear it again later if we
757 	 * cannot add the page
758 	 */
759 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
760 	bvec->bv_page = page;
761 	bvec->bv_len = len;
762 	bvec->bv_offset = offset;
763 	bio->bi_vcnt++;
764 	bio->bi_phys_segments++;
765 	bio->bi_iter.bi_size += len;
766 
767 	/*
768 	 * Perform a recount if the number of segments is greater
769 	 * than queue_max_segments(q).
770 	 */
771 
772 	while (bio->bi_phys_segments > queue_max_segments(q)) {
773 
774 		if (retried_segments)
775 			goto failed;
776 
777 		retried_segments = 1;
778 		blk_recount_segments(q, bio);
779 	}
780 
781 	/* If we may be able to merge these biovecs, force a recount */
782 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
783 		bio_clear_flag(bio, BIO_SEG_VALID);
784 
785  done:
786 	return len;
787 
788  failed:
789 	bvec->bv_page = NULL;
790 	bvec->bv_len = 0;
791 	bvec->bv_offset = 0;
792 	bio->bi_vcnt--;
793 	bio->bi_iter.bi_size -= len;
794 	blk_recount_segments(q, bio);
795 	return 0;
796 }
797 EXPORT_SYMBOL(bio_add_pc_page);
798 
799 /**
800  *	bio_add_page	-	attempt to add page to bio
801  *	@bio: destination bio
802  *	@page: page to add
803  *	@len: vec entry length
804  *	@offset: vec entry offset
805  *
806  *	Attempt to add a page to the bio_vec maplist. This will only fail
807  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
808  */
809 int bio_add_page(struct bio *bio, struct page *page,
810 		 unsigned int len, unsigned int offset)
811 {
812 	struct bio_vec *bv;
813 
814 	/*
815 	 * cloned bio must not modify vec list
816 	 */
817 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
818 		return 0;
819 
820 	/*
821 	 * For filesystems with a blocksize smaller than the pagesize
822 	 * we will often be called with the same page as last time and
823 	 * a consecutive offset.  Optimize this special case.
824 	 */
825 	if (bio->bi_vcnt > 0) {
826 		bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
827 
828 		if (page == bv->bv_page &&
829 		    offset == bv->bv_offset + bv->bv_len) {
830 			bv->bv_len += len;
831 			goto done;
832 		}
833 	}
834 
835 	if (bio->bi_vcnt >= bio->bi_max_vecs)
836 		return 0;
837 
838 	bv		= &bio->bi_io_vec[bio->bi_vcnt];
839 	bv->bv_page	= page;
840 	bv->bv_len	= len;
841 	bv->bv_offset	= offset;
842 
843 	bio->bi_vcnt++;
844 done:
845 	bio->bi_iter.bi_size += len;
846 	return len;
847 }
848 EXPORT_SYMBOL(bio_add_page);
849 
850 struct submit_bio_ret {
851 	struct completion event;
852 	int error;
853 };
854 
855 static void submit_bio_wait_endio(struct bio *bio)
856 {
857 	struct submit_bio_ret *ret = bio->bi_private;
858 
859 	ret->error = bio->bi_error;
860 	complete(&ret->event);
861 }
862 
863 /**
864  * submit_bio_wait - submit a bio, and wait until it completes
865  * @bio: The &struct bio which describes the I/O
866  *
867  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
868  * bio_endio() on failure.
869  */
870 int submit_bio_wait(struct bio *bio)
871 {
872 	struct submit_bio_ret ret;
873 
874 	init_completion(&ret.event);
875 	bio->bi_private = &ret;
876 	bio->bi_end_io = submit_bio_wait_endio;
877 	bio->bi_opf |= REQ_SYNC;
878 	submit_bio(bio);
879 	wait_for_completion_io(&ret.event);
880 
881 	return ret.error;
882 }
883 EXPORT_SYMBOL(submit_bio_wait);
884 
885 /**
886  * bio_advance - increment/complete a bio by some number of bytes
887  * @bio:	bio to advance
888  * @bytes:	number of bytes to complete
889  *
890  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
891  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
892  * be updated on the last bvec as well.
893  *
894  * @bio will then represent the remaining, uncompleted portion of the io.
895  */
896 void bio_advance(struct bio *bio, unsigned bytes)
897 {
898 	if (bio_integrity(bio))
899 		bio_integrity_advance(bio, bytes);
900 
901 	bio_advance_iter(bio, &bio->bi_iter, bytes);
902 }
903 EXPORT_SYMBOL(bio_advance);
904 
905 /**
906  * bio_alloc_pages - allocates a single page for each bvec in a bio
907  * @bio: bio to allocate pages for
908  * @gfp_mask: flags for allocation
909  *
910  * Allocates pages up to @bio->bi_vcnt.
911  *
912  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
913  * freed.
914  */
915 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
916 {
917 	int i;
918 	struct bio_vec *bv;
919 
920 	bio_for_each_segment_all(bv, bio, i) {
921 		bv->bv_page = alloc_page(gfp_mask);
922 		if (!bv->bv_page) {
923 			while (--bv >= bio->bi_io_vec)
924 				__free_page(bv->bv_page);
925 			return -ENOMEM;
926 		}
927 	}
928 
929 	return 0;
930 }
931 EXPORT_SYMBOL(bio_alloc_pages);
932 
933 /**
934  * bio_copy_data - copy contents of data buffers from one chain of bios to
935  * another
936  * @src: source bio list
937  * @dst: destination bio list
938  *
939  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
940  * @src and @dst as linked lists of bios.
941  *
942  * Stops when it reaches the end of either @src or @dst - that is, copies
943  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
944  */
945 void bio_copy_data(struct bio *dst, struct bio *src)
946 {
947 	struct bvec_iter src_iter, dst_iter;
948 	struct bio_vec src_bv, dst_bv;
949 	void *src_p, *dst_p;
950 	unsigned bytes;
951 
952 	src_iter = src->bi_iter;
953 	dst_iter = dst->bi_iter;
954 
955 	while (1) {
956 		if (!src_iter.bi_size) {
957 			src = src->bi_next;
958 			if (!src)
959 				break;
960 
961 			src_iter = src->bi_iter;
962 		}
963 
964 		if (!dst_iter.bi_size) {
965 			dst = dst->bi_next;
966 			if (!dst)
967 				break;
968 
969 			dst_iter = dst->bi_iter;
970 		}
971 
972 		src_bv = bio_iter_iovec(src, src_iter);
973 		dst_bv = bio_iter_iovec(dst, dst_iter);
974 
975 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
976 
977 		src_p = kmap_atomic(src_bv.bv_page);
978 		dst_p = kmap_atomic(dst_bv.bv_page);
979 
980 		memcpy(dst_p + dst_bv.bv_offset,
981 		       src_p + src_bv.bv_offset,
982 		       bytes);
983 
984 		kunmap_atomic(dst_p);
985 		kunmap_atomic(src_p);
986 
987 		bio_advance_iter(src, &src_iter, bytes);
988 		bio_advance_iter(dst, &dst_iter, bytes);
989 	}
990 }
991 EXPORT_SYMBOL(bio_copy_data);
992 
993 struct bio_map_data {
994 	int is_our_pages;
995 	struct iov_iter iter;
996 	struct iovec iov[];
997 };
998 
999 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1000 					       gfp_t gfp_mask)
1001 {
1002 	if (iov_count > UIO_MAXIOV)
1003 		return NULL;
1004 
1005 	return kmalloc(sizeof(struct bio_map_data) +
1006 		       sizeof(struct iovec) * iov_count, gfp_mask);
1007 }
1008 
1009 /**
1010  * bio_copy_from_iter - copy all pages from iov_iter to bio
1011  * @bio: The &struct bio which describes the I/O as destination
1012  * @iter: iov_iter as source
1013  *
1014  * Copy all pages from iov_iter to bio.
1015  * Returns 0 on success, or error on failure.
1016  */
1017 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1018 {
1019 	int i;
1020 	struct bio_vec *bvec;
1021 
1022 	bio_for_each_segment_all(bvec, bio, i) {
1023 		ssize_t ret;
1024 
1025 		ret = copy_page_from_iter(bvec->bv_page,
1026 					  bvec->bv_offset,
1027 					  bvec->bv_len,
1028 					  &iter);
1029 
1030 		if (!iov_iter_count(&iter))
1031 			break;
1032 
1033 		if (ret < bvec->bv_len)
1034 			return -EFAULT;
1035 	}
1036 
1037 	return 0;
1038 }
1039 
1040 /**
1041  * bio_copy_to_iter - copy all pages from bio to iov_iter
1042  * @bio: The &struct bio which describes the I/O as source
1043  * @iter: iov_iter as destination
1044  *
1045  * Copy all pages from bio to iov_iter.
1046  * Returns 0 on success, or error on failure.
1047  */
1048 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1049 {
1050 	int i;
1051 	struct bio_vec *bvec;
1052 
1053 	bio_for_each_segment_all(bvec, bio, i) {
1054 		ssize_t ret;
1055 
1056 		ret = copy_page_to_iter(bvec->bv_page,
1057 					bvec->bv_offset,
1058 					bvec->bv_len,
1059 					&iter);
1060 
1061 		if (!iov_iter_count(&iter))
1062 			break;
1063 
1064 		if (ret < bvec->bv_len)
1065 			return -EFAULT;
1066 	}
1067 
1068 	return 0;
1069 }
1070 
1071 void bio_free_pages(struct bio *bio)
1072 {
1073 	struct bio_vec *bvec;
1074 	int i;
1075 
1076 	bio_for_each_segment_all(bvec, bio, i)
1077 		__free_page(bvec->bv_page);
1078 }
1079 EXPORT_SYMBOL(bio_free_pages);
1080 
1081 /**
1082  *	bio_uncopy_user	-	finish previously mapped bio
1083  *	@bio: bio being terminated
1084  *
1085  *	Free pages allocated from bio_copy_user_iov() and write back data
1086  *	to user space in case of a read.
1087  */
1088 int bio_uncopy_user(struct bio *bio)
1089 {
1090 	struct bio_map_data *bmd = bio->bi_private;
1091 	int ret = 0;
1092 
1093 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1094 		/*
1095 		 * if we're in a workqueue, the request is orphaned, so
1096 		 * don't copy into a random user address space, just free
1097 		 * and return -EINTR so user space doesn't expect any data.
1098 		 */
1099 		if (!current->mm)
1100 			ret = -EINTR;
1101 		else if (bio_data_dir(bio) == READ)
1102 			ret = bio_copy_to_iter(bio, bmd->iter);
1103 		if (bmd->is_our_pages)
1104 			bio_free_pages(bio);
1105 	}
1106 	kfree(bmd);
1107 	bio_put(bio);
1108 	return ret;
1109 }
1110 
1111 /**
1112  *	bio_copy_user_iov	-	copy user data to bio
1113  *	@q:		destination block queue
1114  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1115  *	@iter:		iovec iterator
1116  *	@gfp_mask:	memory allocation flags
1117  *
1118  *	Prepares and returns a bio for indirect user io, bouncing data
1119  *	to/from kernel pages as necessary. Must be paired with
1120  *	call bio_uncopy_user() on io completion.
1121  */
1122 struct bio *bio_copy_user_iov(struct request_queue *q,
1123 			      struct rq_map_data *map_data,
1124 			      const struct iov_iter *iter,
1125 			      gfp_t gfp_mask)
1126 {
1127 	struct bio_map_data *bmd;
1128 	struct page *page;
1129 	struct bio *bio;
1130 	int i, ret;
1131 	int nr_pages = 0;
1132 	unsigned int len = iter->count;
1133 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1134 
1135 	for (i = 0; i < iter->nr_segs; i++) {
1136 		unsigned long uaddr;
1137 		unsigned long end;
1138 		unsigned long start;
1139 
1140 		uaddr = (unsigned long) iter->iov[i].iov_base;
1141 		end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1142 			>> PAGE_SHIFT;
1143 		start = uaddr >> PAGE_SHIFT;
1144 
1145 		/*
1146 		 * Overflow, abort
1147 		 */
1148 		if (end < start)
1149 			return ERR_PTR(-EINVAL);
1150 
1151 		nr_pages += end - start;
1152 	}
1153 
1154 	if (offset)
1155 		nr_pages++;
1156 
1157 	bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1158 	if (!bmd)
1159 		return ERR_PTR(-ENOMEM);
1160 
1161 	/*
1162 	 * We need to do a deep copy of the iov_iter including the iovecs.
1163 	 * The caller provided iov might point to an on-stack or otherwise
1164 	 * shortlived one.
1165 	 */
1166 	bmd->is_our_pages = map_data ? 0 : 1;
1167 	memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1168 	iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1169 			iter->nr_segs, iter->count);
1170 
1171 	ret = -ENOMEM;
1172 	bio = bio_kmalloc(gfp_mask, nr_pages);
1173 	if (!bio)
1174 		goto out_bmd;
1175 
1176 	if (iter->type & WRITE)
1177 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1178 
1179 	ret = 0;
1180 
1181 	if (map_data) {
1182 		nr_pages = 1 << map_data->page_order;
1183 		i = map_data->offset / PAGE_SIZE;
1184 	}
1185 	while (len) {
1186 		unsigned int bytes = PAGE_SIZE;
1187 
1188 		bytes -= offset;
1189 
1190 		if (bytes > len)
1191 			bytes = len;
1192 
1193 		if (map_data) {
1194 			if (i == map_data->nr_entries * nr_pages) {
1195 				ret = -ENOMEM;
1196 				break;
1197 			}
1198 
1199 			page = map_data->pages[i / nr_pages];
1200 			page += (i % nr_pages);
1201 
1202 			i++;
1203 		} else {
1204 			page = alloc_page(q->bounce_gfp | gfp_mask);
1205 			if (!page) {
1206 				ret = -ENOMEM;
1207 				break;
1208 			}
1209 		}
1210 
1211 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1212 			break;
1213 
1214 		len -= bytes;
1215 		offset = 0;
1216 	}
1217 
1218 	if (ret)
1219 		goto cleanup;
1220 
1221 	/*
1222 	 * success
1223 	 */
1224 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1225 	    (map_data && map_data->from_user)) {
1226 		ret = bio_copy_from_iter(bio, *iter);
1227 		if (ret)
1228 			goto cleanup;
1229 	}
1230 
1231 	bio->bi_private = bmd;
1232 	return bio;
1233 cleanup:
1234 	if (!map_data)
1235 		bio_free_pages(bio);
1236 	bio_put(bio);
1237 out_bmd:
1238 	kfree(bmd);
1239 	return ERR_PTR(ret);
1240 }
1241 
1242 /**
1243  *	bio_map_user_iov - map user iovec into bio
1244  *	@q:		the struct request_queue for the bio
1245  *	@iter:		iovec iterator
1246  *	@gfp_mask:	memory allocation flags
1247  *
1248  *	Map the user space address into a bio suitable for io to a block
1249  *	device. Returns an error pointer in case of error.
1250  */
1251 struct bio *bio_map_user_iov(struct request_queue *q,
1252 			     const struct iov_iter *iter,
1253 			     gfp_t gfp_mask)
1254 {
1255 	int j;
1256 	int nr_pages = 0;
1257 	struct page **pages;
1258 	struct bio *bio;
1259 	int cur_page = 0;
1260 	int ret, offset;
1261 	struct iov_iter i;
1262 	struct iovec iov;
1263 
1264 	iov_for_each(iov, i, *iter) {
1265 		unsigned long uaddr = (unsigned long) iov.iov_base;
1266 		unsigned long len = iov.iov_len;
1267 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1268 		unsigned long start = uaddr >> PAGE_SHIFT;
1269 
1270 		/*
1271 		 * Overflow, abort
1272 		 */
1273 		if (end < start)
1274 			return ERR_PTR(-EINVAL);
1275 
1276 		nr_pages += end - start;
1277 		/*
1278 		 * buffer must be aligned to at least logical block size for now
1279 		 */
1280 		if (uaddr & queue_dma_alignment(q))
1281 			return ERR_PTR(-EINVAL);
1282 	}
1283 
1284 	if (!nr_pages)
1285 		return ERR_PTR(-EINVAL);
1286 
1287 	bio = bio_kmalloc(gfp_mask, nr_pages);
1288 	if (!bio)
1289 		return ERR_PTR(-ENOMEM);
1290 
1291 	ret = -ENOMEM;
1292 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1293 	if (!pages)
1294 		goto out;
1295 
1296 	iov_for_each(iov, i, *iter) {
1297 		unsigned long uaddr = (unsigned long) iov.iov_base;
1298 		unsigned long len = iov.iov_len;
1299 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1300 		unsigned long start = uaddr >> PAGE_SHIFT;
1301 		const int local_nr_pages = end - start;
1302 		const int page_limit = cur_page + local_nr_pages;
1303 
1304 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1305 				(iter->type & WRITE) != WRITE,
1306 				&pages[cur_page]);
1307 		if (ret < local_nr_pages) {
1308 			ret = -EFAULT;
1309 			goto out_unmap;
1310 		}
1311 
1312 		offset = offset_in_page(uaddr);
1313 		for (j = cur_page; j < page_limit; j++) {
1314 			unsigned int bytes = PAGE_SIZE - offset;
1315 
1316 			if (len <= 0)
1317 				break;
1318 
1319 			if (bytes > len)
1320 				bytes = len;
1321 
1322 			/*
1323 			 * sorry...
1324 			 */
1325 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1326 					    bytes)
1327 				break;
1328 
1329 			len -= bytes;
1330 			offset = 0;
1331 		}
1332 
1333 		cur_page = j;
1334 		/*
1335 		 * release the pages we didn't map into the bio, if any
1336 		 */
1337 		while (j < page_limit)
1338 			put_page(pages[j++]);
1339 	}
1340 
1341 	kfree(pages);
1342 
1343 	/*
1344 	 * set data direction, and check if mapped pages need bouncing
1345 	 */
1346 	if (iter->type & WRITE)
1347 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1348 
1349 	bio_set_flag(bio, BIO_USER_MAPPED);
1350 
1351 	/*
1352 	 * subtle -- if __bio_map_user() ended up bouncing a bio,
1353 	 * it would normally disappear when its bi_end_io is run.
1354 	 * however, we need it for the unmap, so grab an extra
1355 	 * reference to it
1356 	 */
1357 	bio_get(bio);
1358 	return bio;
1359 
1360  out_unmap:
1361 	for (j = 0; j < nr_pages; j++) {
1362 		if (!pages[j])
1363 			break;
1364 		put_page(pages[j]);
1365 	}
1366  out:
1367 	kfree(pages);
1368 	bio_put(bio);
1369 	return ERR_PTR(ret);
1370 }
1371 
1372 static void __bio_unmap_user(struct bio *bio)
1373 {
1374 	struct bio_vec *bvec;
1375 	int i;
1376 
1377 	/*
1378 	 * make sure we dirty pages we wrote to
1379 	 */
1380 	bio_for_each_segment_all(bvec, bio, i) {
1381 		if (bio_data_dir(bio) == READ)
1382 			set_page_dirty_lock(bvec->bv_page);
1383 
1384 		put_page(bvec->bv_page);
1385 	}
1386 
1387 	bio_put(bio);
1388 }
1389 
1390 /**
1391  *	bio_unmap_user	-	unmap a bio
1392  *	@bio:		the bio being unmapped
1393  *
1394  *	Unmap a bio previously mapped by bio_map_user(). Must be called with
1395  *	a process context.
1396  *
1397  *	bio_unmap_user() may sleep.
1398  */
1399 void bio_unmap_user(struct bio *bio)
1400 {
1401 	__bio_unmap_user(bio);
1402 	bio_put(bio);
1403 }
1404 
1405 static void bio_map_kern_endio(struct bio *bio)
1406 {
1407 	bio_put(bio);
1408 }
1409 
1410 /**
1411  *	bio_map_kern	-	map kernel address into bio
1412  *	@q: the struct request_queue for the bio
1413  *	@data: pointer to buffer to map
1414  *	@len: length in bytes
1415  *	@gfp_mask: allocation flags for bio allocation
1416  *
1417  *	Map the kernel address into a bio suitable for io to a block
1418  *	device. Returns an error pointer in case of error.
1419  */
1420 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1421 			 gfp_t gfp_mask)
1422 {
1423 	unsigned long kaddr = (unsigned long)data;
1424 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1425 	unsigned long start = kaddr >> PAGE_SHIFT;
1426 	const int nr_pages = end - start;
1427 	int offset, i;
1428 	struct bio *bio;
1429 
1430 	bio = bio_kmalloc(gfp_mask, nr_pages);
1431 	if (!bio)
1432 		return ERR_PTR(-ENOMEM);
1433 
1434 	offset = offset_in_page(kaddr);
1435 	for (i = 0; i < nr_pages; i++) {
1436 		unsigned int bytes = PAGE_SIZE - offset;
1437 
1438 		if (len <= 0)
1439 			break;
1440 
1441 		if (bytes > len)
1442 			bytes = len;
1443 
1444 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1445 				    offset) < bytes) {
1446 			/* we don't support partial mappings */
1447 			bio_put(bio);
1448 			return ERR_PTR(-EINVAL);
1449 		}
1450 
1451 		data += bytes;
1452 		len -= bytes;
1453 		offset = 0;
1454 	}
1455 
1456 	bio->bi_end_io = bio_map_kern_endio;
1457 	return bio;
1458 }
1459 EXPORT_SYMBOL(bio_map_kern);
1460 
1461 static void bio_copy_kern_endio(struct bio *bio)
1462 {
1463 	bio_free_pages(bio);
1464 	bio_put(bio);
1465 }
1466 
1467 static void bio_copy_kern_endio_read(struct bio *bio)
1468 {
1469 	char *p = bio->bi_private;
1470 	struct bio_vec *bvec;
1471 	int i;
1472 
1473 	bio_for_each_segment_all(bvec, bio, i) {
1474 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1475 		p += bvec->bv_len;
1476 	}
1477 
1478 	bio_copy_kern_endio(bio);
1479 }
1480 
1481 /**
1482  *	bio_copy_kern	-	copy kernel address into bio
1483  *	@q: the struct request_queue for the bio
1484  *	@data: pointer to buffer to copy
1485  *	@len: length in bytes
1486  *	@gfp_mask: allocation flags for bio and page allocation
1487  *	@reading: data direction is READ
1488  *
1489  *	copy the kernel address into a bio suitable for io to a block
1490  *	device. Returns an error pointer in case of error.
1491  */
1492 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1493 			  gfp_t gfp_mask, int reading)
1494 {
1495 	unsigned long kaddr = (unsigned long)data;
1496 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1497 	unsigned long start = kaddr >> PAGE_SHIFT;
1498 	struct bio *bio;
1499 	void *p = data;
1500 	int nr_pages = 0;
1501 
1502 	/*
1503 	 * Overflow, abort
1504 	 */
1505 	if (end < start)
1506 		return ERR_PTR(-EINVAL);
1507 
1508 	nr_pages = end - start;
1509 	bio = bio_kmalloc(gfp_mask, nr_pages);
1510 	if (!bio)
1511 		return ERR_PTR(-ENOMEM);
1512 
1513 	while (len) {
1514 		struct page *page;
1515 		unsigned int bytes = PAGE_SIZE;
1516 
1517 		if (bytes > len)
1518 			bytes = len;
1519 
1520 		page = alloc_page(q->bounce_gfp | gfp_mask);
1521 		if (!page)
1522 			goto cleanup;
1523 
1524 		if (!reading)
1525 			memcpy(page_address(page), p, bytes);
1526 
1527 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1528 			break;
1529 
1530 		len -= bytes;
1531 		p += bytes;
1532 	}
1533 
1534 	if (reading) {
1535 		bio->bi_end_io = bio_copy_kern_endio_read;
1536 		bio->bi_private = data;
1537 	} else {
1538 		bio->bi_end_io = bio_copy_kern_endio;
1539 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1540 	}
1541 
1542 	return bio;
1543 
1544 cleanup:
1545 	bio_free_pages(bio);
1546 	bio_put(bio);
1547 	return ERR_PTR(-ENOMEM);
1548 }
1549 
1550 /*
1551  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1552  * for performing direct-IO in BIOs.
1553  *
1554  * The problem is that we cannot run set_page_dirty() from interrupt context
1555  * because the required locks are not interrupt-safe.  So what we can do is to
1556  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1557  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1558  * in process context.
1559  *
1560  * We special-case compound pages here: normally this means reads into hugetlb
1561  * pages.  The logic in here doesn't really work right for compound pages
1562  * because the VM does not uniformly chase down the head page in all cases.
1563  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1564  * handle them at all.  So we skip compound pages here at an early stage.
1565  *
1566  * Note that this code is very hard to test under normal circumstances because
1567  * direct-io pins the pages with get_user_pages().  This makes
1568  * is_page_cache_freeable return false, and the VM will not clean the pages.
1569  * But other code (eg, flusher threads) could clean the pages if they are mapped
1570  * pagecache.
1571  *
1572  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1573  * deferred bio dirtying paths.
1574  */
1575 
1576 /*
1577  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1578  */
1579 void bio_set_pages_dirty(struct bio *bio)
1580 {
1581 	struct bio_vec *bvec;
1582 	int i;
1583 
1584 	bio_for_each_segment_all(bvec, bio, i) {
1585 		struct page *page = bvec->bv_page;
1586 
1587 		if (page && !PageCompound(page))
1588 			set_page_dirty_lock(page);
1589 	}
1590 }
1591 
1592 static void bio_release_pages(struct bio *bio)
1593 {
1594 	struct bio_vec *bvec;
1595 	int i;
1596 
1597 	bio_for_each_segment_all(bvec, bio, i) {
1598 		struct page *page = bvec->bv_page;
1599 
1600 		if (page)
1601 			put_page(page);
1602 	}
1603 }
1604 
1605 /*
1606  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1607  * If they are, then fine.  If, however, some pages are clean then they must
1608  * have been written out during the direct-IO read.  So we take another ref on
1609  * the BIO and the offending pages and re-dirty the pages in process context.
1610  *
1611  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1612  * here on.  It will run one put_page() against each page and will run one
1613  * bio_put() against the BIO.
1614  */
1615 
1616 static void bio_dirty_fn(struct work_struct *work);
1617 
1618 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1619 static DEFINE_SPINLOCK(bio_dirty_lock);
1620 static struct bio *bio_dirty_list;
1621 
1622 /*
1623  * This runs in process context
1624  */
1625 static void bio_dirty_fn(struct work_struct *work)
1626 {
1627 	unsigned long flags;
1628 	struct bio *bio;
1629 
1630 	spin_lock_irqsave(&bio_dirty_lock, flags);
1631 	bio = bio_dirty_list;
1632 	bio_dirty_list = NULL;
1633 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1634 
1635 	while (bio) {
1636 		struct bio *next = bio->bi_private;
1637 
1638 		bio_set_pages_dirty(bio);
1639 		bio_release_pages(bio);
1640 		bio_put(bio);
1641 		bio = next;
1642 	}
1643 }
1644 
1645 void bio_check_pages_dirty(struct bio *bio)
1646 {
1647 	struct bio_vec *bvec;
1648 	int nr_clean_pages = 0;
1649 	int i;
1650 
1651 	bio_for_each_segment_all(bvec, bio, i) {
1652 		struct page *page = bvec->bv_page;
1653 
1654 		if (PageDirty(page) || PageCompound(page)) {
1655 			put_page(page);
1656 			bvec->bv_page = NULL;
1657 		} else {
1658 			nr_clean_pages++;
1659 		}
1660 	}
1661 
1662 	if (nr_clean_pages) {
1663 		unsigned long flags;
1664 
1665 		spin_lock_irqsave(&bio_dirty_lock, flags);
1666 		bio->bi_private = bio_dirty_list;
1667 		bio_dirty_list = bio;
1668 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1669 		schedule_work(&bio_dirty_work);
1670 	} else {
1671 		bio_put(bio);
1672 	}
1673 }
1674 
1675 void generic_start_io_acct(int rw, unsigned long sectors,
1676 			   struct hd_struct *part)
1677 {
1678 	int cpu = part_stat_lock();
1679 
1680 	part_round_stats(cpu, part);
1681 	part_stat_inc(cpu, part, ios[rw]);
1682 	part_stat_add(cpu, part, sectors[rw], sectors);
1683 	part_inc_in_flight(part, rw);
1684 
1685 	part_stat_unlock();
1686 }
1687 EXPORT_SYMBOL(generic_start_io_acct);
1688 
1689 void generic_end_io_acct(int rw, struct hd_struct *part,
1690 			 unsigned long start_time)
1691 {
1692 	unsigned long duration = jiffies - start_time;
1693 	int cpu = part_stat_lock();
1694 
1695 	part_stat_add(cpu, part, ticks[rw], duration);
1696 	part_round_stats(cpu, part);
1697 	part_dec_in_flight(part, rw);
1698 
1699 	part_stat_unlock();
1700 }
1701 EXPORT_SYMBOL(generic_end_io_acct);
1702 
1703 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1704 void bio_flush_dcache_pages(struct bio *bi)
1705 {
1706 	struct bio_vec bvec;
1707 	struct bvec_iter iter;
1708 
1709 	bio_for_each_segment(bvec, bi, iter)
1710 		flush_dcache_page(bvec.bv_page);
1711 }
1712 EXPORT_SYMBOL(bio_flush_dcache_pages);
1713 #endif
1714 
1715 static inline bool bio_remaining_done(struct bio *bio)
1716 {
1717 	/*
1718 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1719 	 * we always end io on the first invocation.
1720 	 */
1721 	if (!bio_flagged(bio, BIO_CHAIN))
1722 		return true;
1723 
1724 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1725 
1726 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1727 		bio_clear_flag(bio, BIO_CHAIN);
1728 		return true;
1729 	}
1730 
1731 	return false;
1732 }
1733 
1734 /**
1735  * bio_endio - end I/O on a bio
1736  * @bio:	bio
1737  *
1738  * Description:
1739  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1740  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1741  *   bio unless they own it and thus know that it has an end_io function.
1742  **/
1743 void bio_endio(struct bio *bio)
1744 {
1745 again:
1746 	if (!bio_remaining_done(bio))
1747 		return;
1748 
1749 	/*
1750 	 * Need to have a real endio function for chained bios, otherwise
1751 	 * various corner cases will break (like stacking block devices that
1752 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1753 	 * recursion and blowing the stack. Tail call optimization would
1754 	 * handle this, but compiling with frame pointers also disables
1755 	 * gcc's sibling call optimization.
1756 	 */
1757 	if (bio->bi_end_io == bio_chain_endio) {
1758 		bio = __bio_chain_endio(bio);
1759 		goto again;
1760 	}
1761 
1762 	if (bio->bi_end_io)
1763 		bio->bi_end_io(bio);
1764 }
1765 EXPORT_SYMBOL(bio_endio);
1766 
1767 /**
1768  * bio_split - split a bio
1769  * @bio:	bio to split
1770  * @sectors:	number of sectors to split from the front of @bio
1771  * @gfp:	gfp mask
1772  * @bs:		bio set to allocate from
1773  *
1774  * Allocates and returns a new bio which represents @sectors from the start of
1775  * @bio, and updates @bio to represent the remaining sectors.
1776  *
1777  * Unless this is a discard request the newly allocated bio will point
1778  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1779  * @bio is not freed before the split.
1780  */
1781 struct bio *bio_split(struct bio *bio, int sectors,
1782 		      gfp_t gfp, struct bio_set *bs)
1783 {
1784 	struct bio *split = NULL;
1785 
1786 	BUG_ON(sectors <= 0);
1787 	BUG_ON(sectors >= bio_sectors(bio));
1788 
1789 	/*
1790 	 * Discards need a mutable bio_vec to accommodate the payload
1791 	 * required by the DSM TRIM and UNMAP commands.
1792 	 */
1793 	if (bio_op(bio) == REQ_OP_DISCARD || bio_op(bio) == REQ_OP_SECURE_ERASE)
1794 		split = bio_clone_bioset(bio, gfp, bs);
1795 	else
1796 		split = bio_clone_fast(bio, gfp, bs);
1797 
1798 	if (!split)
1799 		return NULL;
1800 
1801 	split->bi_iter.bi_size = sectors << 9;
1802 
1803 	if (bio_integrity(split))
1804 		bio_integrity_trim(split, 0, sectors);
1805 
1806 	bio_advance(bio, split->bi_iter.bi_size);
1807 
1808 	return split;
1809 }
1810 EXPORT_SYMBOL(bio_split);
1811 
1812 /**
1813  * bio_trim - trim a bio
1814  * @bio:	bio to trim
1815  * @offset:	number of sectors to trim from the front of @bio
1816  * @size:	size we want to trim @bio to, in sectors
1817  */
1818 void bio_trim(struct bio *bio, int offset, int size)
1819 {
1820 	/* 'bio' is a cloned bio which we need to trim to match
1821 	 * the given offset and size.
1822 	 */
1823 
1824 	size <<= 9;
1825 	if (offset == 0 && size == bio->bi_iter.bi_size)
1826 		return;
1827 
1828 	bio_clear_flag(bio, BIO_SEG_VALID);
1829 
1830 	bio_advance(bio, offset << 9);
1831 
1832 	bio->bi_iter.bi_size = size;
1833 }
1834 EXPORT_SYMBOL_GPL(bio_trim);
1835 
1836 /*
1837  * create memory pools for biovec's in a bio_set.
1838  * use the global biovec slabs created for general use.
1839  */
1840 mempool_t *biovec_create_pool(int pool_entries)
1841 {
1842 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1843 
1844 	return mempool_create_slab_pool(pool_entries, bp->slab);
1845 }
1846 
1847 void bioset_free(struct bio_set *bs)
1848 {
1849 	if (bs->rescue_workqueue)
1850 		destroy_workqueue(bs->rescue_workqueue);
1851 
1852 	if (bs->bio_pool)
1853 		mempool_destroy(bs->bio_pool);
1854 
1855 	if (bs->bvec_pool)
1856 		mempool_destroy(bs->bvec_pool);
1857 
1858 	bioset_integrity_free(bs);
1859 	bio_put_slab(bs);
1860 
1861 	kfree(bs);
1862 }
1863 EXPORT_SYMBOL(bioset_free);
1864 
1865 static struct bio_set *__bioset_create(unsigned int pool_size,
1866 				       unsigned int front_pad,
1867 				       bool create_bvec_pool)
1868 {
1869 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1870 	struct bio_set *bs;
1871 
1872 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1873 	if (!bs)
1874 		return NULL;
1875 
1876 	bs->front_pad = front_pad;
1877 
1878 	spin_lock_init(&bs->rescue_lock);
1879 	bio_list_init(&bs->rescue_list);
1880 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1881 
1882 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1883 	if (!bs->bio_slab) {
1884 		kfree(bs);
1885 		return NULL;
1886 	}
1887 
1888 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1889 	if (!bs->bio_pool)
1890 		goto bad;
1891 
1892 	if (create_bvec_pool) {
1893 		bs->bvec_pool = biovec_create_pool(pool_size);
1894 		if (!bs->bvec_pool)
1895 			goto bad;
1896 	}
1897 
1898 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1899 	if (!bs->rescue_workqueue)
1900 		goto bad;
1901 
1902 	return bs;
1903 bad:
1904 	bioset_free(bs);
1905 	return NULL;
1906 }
1907 
1908 /**
1909  * bioset_create  - Create a bio_set
1910  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1911  * @front_pad:	Number of bytes to allocate in front of the returned bio
1912  *
1913  * Description:
1914  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1915  *    to ask for a number of bytes to be allocated in front of the bio.
1916  *    Front pad allocation is useful for embedding the bio inside
1917  *    another structure, to avoid allocating extra data to go with the bio.
1918  *    Note that the bio must be embedded at the END of that structure always,
1919  *    or things will break badly.
1920  */
1921 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1922 {
1923 	return __bioset_create(pool_size, front_pad, true);
1924 }
1925 EXPORT_SYMBOL(bioset_create);
1926 
1927 /**
1928  * bioset_create_nobvec  - Create a bio_set without bio_vec mempool
1929  * @pool_size:	Number of bio to cache in the mempool
1930  * @front_pad:	Number of bytes to allocate in front of the returned bio
1931  *
1932  * Description:
1933  *    Same functionality as bioset_create() except that mempool is not
1934  *    created for bio_vecs. Saving some memory for bio_clone_fast() users.
1935  */
1936 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1937 {
1938 	return __bioset_create(pool_size, front_pad, false);
1939 }
1940 EXPORT_SYMBOL(bioset_create_nobvec);
1941 
1942 #ifdef CONFIG_BLK_CGROUP
1943 
1944 /**
1945  * bio_associate_blkcg - associate a bio with the specified blkcg
1946  * @bio: target bio
1947  * @blkcg_css: css of the blkcg to associate
1948  *
1949  * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
1950  * treat @bio as if it were issued by a task which belongs to the blkcg.
1951  *
1952  * This function takes an extra reference of @blkcg_css which will be put
1953  * when @bio is released.  The caller must own @bio and is responsible for
1954  * synchronizing calls to this function.
1955  */
1956 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1957 {
1958 	if (unlikely(bio->bi_css))
1959 		return -EBUSY;
1960 	css_get(blkcg_css);
1961 	bio->bi_css = blkcg_css;
1962 	return 0;
1963 }
1964 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1965 
1966 /**
1967  * bio_associate_current - associate a bio with %current
1968  * @bio: target bio
1969  *
1970  * Associate @bio with %current if it hasn't been associated yet.  Block
1971  * layer will treat @bio as if it were issued by %current no matter which
1972  * task actually issues it.
1973  *
1974  * This function takes an extra reference of @task's io_context and blkcg
1975  * which will be put when @bio is released.  The caller must own @bio,
1976  * ensure %current->io_context exists, and is responsible for synchronizing
1977  * calls to this function.
1978  */
1979 int bio_associate_current(struct bio *bio)
1980 {
1981 	struct io_context *ioc;
1982 
1983 	if (bio->bi_css)
1984 		return -EBUSY;
1985 
1986 	ioc = current->io_context;
1987 	if (!ioc)
1988 		return -ENOENT;
1989 
1990 	get_io_context_active(ioc);
1991 	bio->bi_ioc = ioc;
1992 	bio->bi_css = task_get_css(current, io_cgrp_id);
1993 	return 0;
1994 }
1995 EXPORT_SYMBOL_GPL(bio_associate_current);
1996 
1997 /**
1998  * bio_disassociate_task - undo bio_associate_current()
1999  * @bio: target bio
2000  */
2001 void bio_disassociate_task(struct bio *bio)
2002 {
2003 	if (bio->bi_ioc) {
2004 		put_io_context(bio->bi_ioc);
2005 		bio->bi_ioc = NULL;
2006 	}
2007 	if (bio->bi_css) {
2008 		css_put(bio->bi_css);
2009 		bio->bi_css = NULL;
2010 	}
2011 }
2012 
2013 /**
2014  * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2015  * @dst: destination bio
2016  * @src: source bio
2017  */
2018 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2019 {
2020 	if (src->bi_css)
2021 		WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2022 }
2023 
2024 #endif /* CONFIG_BLK_CGROUP */
2025 
2026 static void __init biovec_init_slabs(void)
2027 {
2028 	int i;
2029 
2030 	for (i = 0; i < BVEC_POOL_NR; i++) {
2031 		int size;
2032 		struct biovec_slab *bvs = bvec_slabs + i;
2033 
2034 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2035 			bvs->slab = NULL;
2036 			continue;
2037 		}
2038 
2039 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2040 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2041                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2042 	}
2043 }
2044 
2045 static int __init init_bio(void)
2046 {
2047 	bio_slab_max = 2;
2048 	bio_slab_nr = 0;
2049 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2050 	if (!bio_slabs)
2051 		panic("bio: can't allocate bios\n");
2052 
2053 	bio_integrity_init();
2054 	biovec_init_slabs();
2055 
2056 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2057 	if (!fs_bio_set)
2058 		panic("bio: can't allocate bios\n");
2059 
2060 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2061 		panic("bio: can't create integrity pool\n");
2062 
2063 	return 0;
2064 }
2065 subsys_initcall(init_bio);
2066