xref: /openbmc/linux/block/bio.c (revision 6a6d6681ac1add9655b7ab5dd0b46b54aeb1b44f)
1  /*
2   * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3   *
4   * This program is free software; you can redistribute it and/or modify
5   * it under the terms of the GNU General Public License version 2 as
6   * published by the Free Software Foundation.
7   *
8   * This program is distributed in the hope that it will be useful,
9   * but WITHOUT ANY WARRANTY; without even the implied warranty of
10   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11   * GNU General Public License for more details.
12   *
13   * You should have received a copy of the GNU General Public Licens
14   * along with this program; if not, write to the Free Software
15   * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16   *
17   */
18  #include <linux/mm.h>
19  #include <linux/swap.h>
20  #include <linux/bio.h>
21  #include <linux/blkdev.h>
22  #include <linux/uio.h>
23  #include <linux/iocontext.h>
24  #include <linux/slab.h>
25  #include <linux/init.h>
26  #include <linux/kernel.h>
27  #include <linux/export.h>
28  #include <linux/mempool.h>
29  #include <linux/workqueue.h>
30  #include <linux/cgroup.h>
31  #include <linux/blk-cgroup.h>
32  
33  #include <trace/events/block.h>
34  #include "blk.h"
35  #include "blk-rq-qos.h"
36  
37  /*
38   * Test patch to inline a certain number of bi_io_vec's inside the bio
39   * itself, to shrink a bio data allocation from two mempool calls to one
40   */
41  #define BIO_INLINE_VECS		4
42  
43  /*
44   * if you change this list, also change bvec_alloc or things will
45   * break badly! cannot be bigger than what you can fit into an
46   * unsigned short
47   */
48  #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
49  static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
50  	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
51  };
52  #undef BV
53  
54  /*
55   * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56   * IO code that does not need private memory pools.
57   */
58  struct bio_set fs_bio_set;
59  EXPORT_SYMBOL(fs_bio_set);
60  
61  /*
62   * Our slab pool management
63   */
64  struct bio_slab {
65  	struct kmem_cache *slab;
66  	unsigned int slab_ref;
67  	unsigned int slab_size;
68  	char name[8];
69  };
70  static DEFINE_MUTEX(bio_slab_lock);
71  static struct bio_slab *bio_slabs;
72  static unsigned int bio_slab_nr, bio_slab_max;
73  
74  static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75  {
76  	unsigned int sz = sizeof(struct bio) + extra_size;
77  	struct kmem_cache *slab = NULL;
78  	struct bio_slab *bslab, *new_bio_slabs;
79  	unsigned int new_bio_slab_max;
80  	unsigned int i, entry = -1;
81  
82  	mutex_lock(&bio_slab_lock);
83  
84  	i = 0;
85  	while (i < bio_slab_nr) {
86  		bslab = &bio_slabs[i];
87  
88  		if (!bslab->slab && entry == -1)
89  			entry = i;
90  		else if (bslab->slab_size == sz) {
91  			slab = bslab->slab;
92  			bslab->slab_ref++;
93  			break;
94  		}
95  		i++;
96  	}
97  
98  	if (slab)
99  		goto out_unlock;
100  
101  	if (bio_slab_nr == bio_slab_max && entry == -1) {
102  		new_bio_slab_max = bio_slab_max << 1;
103  		new_bio_slabs = krealloc(bio_slabs,
104  					 new_bio_slab_max * sizeof(struct bio_slab),
105  					 GFP_KERNEL);
106  		if (!new_bio_slabs)
107  			goto out_unlock;
108  		bio_slab_max = new_bio_slab_max;
109  		bio_slabs = new_bio_slabs;
110  	}
111  	if (entry == -1)
112  		entry = bio_slab_nr++;
113  
114  	bslab = &bio_slabs[entry];
115  
116  	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
117  	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
118  				 SLAB_HWCACHE_ALIGN, NULL);
119  	if (!slab)
120  		goto out_unlock;
121  
122  	bslab->slab = slab;
123  	bslab->slab_ref = 1;
124  	bslab->slab_size = sz;
125  out_unlock:
126  	mutex_unlock(&bio_slab_lock);
127  	return slab;
128  }
129  
130  static void bio_put_slab(struct bio_set *bs)
131  {
132  	struct bio_slab *bslab = NULL;
133  	unsigned int i;
134  
135  	mutex_lock(&bio_slab_lock);
136  
137  	for (i = 0; i < bio_slab_nr; i++) {
138  		if (bs->bio_slab == bio_slabs[i].slab) {
139  			bslab = &bio_slabs[i];
140  			break;
141  		}
142  	}
143  
144  	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145  		goto out;
146  
147  	WARN_ON(!bslab->slab_ref);
148  
149  	if (--bslab->slab_ref)
150  		goto out;
151  
152  	kmem_cache_destroy(bslab->slab);
153  	bslab->slab = NULL;
154  
155  out:
156  	mutex_unlock(&bio_slab_lock);
157  }
158  
159  unsigned int bvec_nr_vecs(unsigned short idx)
160  {
161  	return bvec_slabs[--idx].nr_vecs;
162  }
163  
164  void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
165  {
166  	if (!idx)
167  		return;
168  	idx--;
169  
170  	BIO_BUG_ON(idx >= BVEC_POOL_NR);
171  
172  	if (idx == BVEC_POOL_MAX) {
173  		mempool_free(bv, pool);
174  	} else {
175  		struct biovec_slab *bvs = bvec_slabs + idx;
176  
177  		kmem_cache_free(bvs->slab, bv);
178  	}
179  }
180  
181  struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
182  			   mempool_t *pool)
183  {
184  	struct bio_vec *bvl;
185  
186  	/*
187  	 * see comment near bvec_array define!
188  	 */
189  	switch (nr) {
190  	case 1:
191  		*idx = 0;
192  		break;
193  	case 2 ... 4:
194  		*idx = 1;
195  		break;
196  	case 5 ... 16:
197  		*idx = 2;
198  		break;
199  	case 17 ... 64:
200  		*idx = 3;
201  		break;
202  	case 65 ... 128:
203  		*idx = 4;
204  		break;
205  	case 129 ... BIO_MAX_PAGES:
206  		*idx = 5;
207  		break;
208  	default:
209  		return NULL;
210  	}
211  
212  	/*
213  	 * idx now points to the pool we want to allocate from. only the
214  	 * 1-vec entry pool is mempool backed.
215  	 */
216  	if (*idx == BVEC_POOL_MAX) {
217  fallback:
218  		bvl = mempool_alloc(pool, gfp_mask);
219  	} else {
220  		struct biovec_slab *bvs = bvec_slabs + *idx;
221  		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
222  
223  		/*
224  		 * Make this allocation restricted and don't dump info on
225  		 * allocation failures, since we'll fallback to the mempool
226  		 * in case of failure.
227  		 */
228  		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
229  
230  		/*
231  		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
232  		 * is set, retry with the 1-entry mempool
233  		 */
234  		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
235  		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
236  			*idx = BVEC_POOL_MAX;
237  			goto fallback;
238  		}
239  	}
240  
241  	(*idx)++;
242  	return bvl;
243  }
244  
245  void bio_uninit(struct bio *bio)
246  {
247  	bio_disassociate_task(bio);
248  }
249  EXPORT_SYMBOL(bio_uninit);
250  
251  static void bio_free(struct bio *bio)
252  {
253  	struct bio_set *bs = bio->bi_pool;
254  	void *p;
255  
256  	bio_uninit(bio);
257  
258  	if (bs) {
259  		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
260  
261  		/*
262  		 * If we have front padding, adjust the bio pointer before freeing
263  		 */
264  		p = bio;
265  		p -= bs->front_pad;
266  
267  		mempool_free(p, &bs->bio_pool);
268  	} else {
269  		/* Bio was allocated by bio_kmalloc() */
270  		kfree(bio);
271  	}
272  }
273  
274  /*
275   * Users of this function have their own bio allocation. Subsequently,
276   * they must remember to pair any call to bio_init() with bio_uninit()
277   * when IO has completed, or when the bio is released.
278   */
279  void bio_init(struct bio *bio, struct bio_vec *table,
280  	      unsigned short max_vecs)
281  {
282  	memset(bio, 0, sizeof(*bio));
283  	atomic_set(&bio->__bi_remaining, 1);
284  	atomic_set(&bio->__bi_cnt, 1);
285  
286  	bio->bi_io_vec = table;
287  	bio->bi_max_vecs = max_vecs;
288  }
289  EXPORT_SYMBOL(bio_init);
290  
291  /**
292   * bio_reset - reinitialize a bio
293   * @bio:	bio to reset
294   *
295   * Description:
296   *   After calling bio_reset(), @bio will be in the same state as a freshly
297   *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
298   *   preserved are the ones that are initialized by bio_alloc_bioset(). See
299   *   comment in struct bio.
300   */
301  void bio_reset(struct bio *bio)
302  {
303  	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
304  
305  	bio_uninit(bio);
306  
307  	memset(bio, 0, BIO_RESET_BYTES);
308  	bio->bi_flags = flags;
309  	atomic_set(&bio->__bi_remaining, 1);
310  }
311  EXPORT_SYMBOL(bio_reset);
312  
313  static struct bio *__bio_chain_endio(struct bio *bio)
314  {
315  	struct bio *parent = bio->bi_private;
316  
317  	if (!parent->bi_status)
318  		parent->bi_status = bio->bi_status;
319  	bio_put(bio);
320  	return parent;
321  }
322  
323  static void bio_chain_endio(struct bio *bio)
324  {
325  	bio_endio(__bio_chain_endio(bio));
326  }
327  
328  /**
329   * bio_chain - chain bio completions
330   * @bio: the target bio
331   * @parent: the @bio's parent bio
332   *
333   * The caller won't have a bi_end_io called when @bio completes - instead,
334   * @parent's bi_end_io won't be called until both @parent and @bio have
335   * completed; the chained bio will also be freed when it completes.
336   *
337   * The caller must not set bi_private or bi_end_io in @bio.
338   */
339  void bio_chain(struct bio *bio, struct bio *parent)
340  {
341  	BUG_ON(bio->bi_private || bio->bi_end_io);
342  
343  	bio->bi_private = parent;
344  	bio->bi_end_io	= bio_chain_endio;
345  	bio_inc_remaining(parent);
346  }
347  EXPORT_SYMBOL(bio_chain);
348  
349  static void bio_alloc_rescue(struct work_struct *work)
350  {
351  	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
352  	struct bio *bio;
353  
354  	while (1) {
355  		spin_lock(&bs->rescue_lock);
356  		bio = bio_list_pop(&bs->rescue_list);
357  		spin_unlock(&bs->rescue_lock);
358  
359  		if (!bio)
360  			break;
361  
362  		generic_make_request(bio);
363  	}
364  }
365  
366  static void punt_bios_to_rescuer(struct bio_set *bs)
367  {
368  	struct bio_list punt, nopunt;
369  	struct bio *bio;
370  
371  	if (WARN_ON_ONCE(!bs->rescue_workqueue))
372  		return;
373  	/*
374  	 * In order to guarantee forward progress we must punt only bios that
375  	 * were allocated from this bio_set; otherwise, if there was a bio on
376  	 * there for a stacking driver higher up in the stack, processing it
377  	 * could require allocating bios from this bio_set, and doing that from
378  	 * our own rescuer would be bad.
379  	 *
380  	 * Since bio lists are singly linked, pop them all instead of trying to
381  	 * remove from the middle of the list:
382  	 */
383  
384  	bio_list_init(&punt);
385  	bio_list_init(&nopunt);
386  
387  	while ((bio = bio_list_pop(&current->bio_list[0])))
388  		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
389  	current->bio_list[0] = nopunt;
390  
391  	bio_list_init(&nopunt);
392  	while ((bio = bio_list_pop(&current->bio_list[1])))
393  		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
394  	current->bio_list[1] = nopunt;
395  
396  	spin_lock(&bs->rescue_lock);
397  	bio_list_merge(&bs->rescue_list, &punt);
398  	spin_unlock(&bs->rescue_lock);
399  
400  	queue_work(bs->rescue_workqueue, &bs->rescue_work);
401  }
402  
403  /**
404   * bio_alloc_bioset - allocate a bio for I/O
405   * @gfp_mask:   the GFP_* mask given to the slab allocator
406   * @nr_iovecs:	number of iovecs to pre-allocate
407   * @bs:		the bio_set to allocate from.
408   *
409   * Description:
410   *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
411   *   backed by the @bs's mempool.
412   *
413   *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
414   *   always be able to allocate a bio. This is due to the mempool guarantees.
415   *   To make this work, callers must never allocate more than 1 bio at a time
416   *   from this pool. Callers that need to allocate more than 1 bio must always
417   *   submit the previously allocated bio for IO before attempting to allocate
418   *   a new one. Failure to do so can cause deadlocks under memory pressure.
419   *
420   *   Note that when running under generic_make_request() (i.e. any block
421   *   driver), bios are not submitted until after you return - see the code in
422   *   generic_make_request() that converts recursion into iteration, to prevent
423   *   stack overflows.
424   *
425   *   This would normally mean allocating multiple bios under
426   *   generic_make_request() would be susceptible to deadlocks, but we have
427   *   deadlock avoidance code that resubmits any blocked bios from a rescuer
428   *   thread.
429   *
430   *   However, we do not guarantee forward progress for allocations from other
431   *   mempools. Doing multiple allocations from the same mempool under
432   *   generic_make_request() should be avoided - instead, use bio_set's front_pad
433   *   for per bio allocations.
434   *
435   *   RETURNS:
436   *   Pointer to new bio on success, NULL on failure.
437   */
438  struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
439  			     struct bio_set *bs)
440  {
441  	gfp_t saved_gfp = gfp_mask;
442  	unsigned front_pad;
443  	unsigned inline_vecs;
444  	struct bio_vec *bvl = NULL;
445  	struct bio *bio;
446  	void *p;
447  
448  	if (!bs) {
449  		if (nr_iovecs > UIO_MAXIOV)
450  			return NULL;
451  
452  		p = kmalloc(sizeof(struct bio) +
453  			    nr_iovecs * sizeof(struct bio_vec),
454  			    gfp_mask);
455  		front_pad = 0;
456  		inline_vecs = nr_iovecs;
457  	} else {
458  		/* should not use nobvec bioset for nr_iovecs > 0 */
459  		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
460  				 nr_iovecs > 0))
461  			return NULL;
462  		/*
463  		 * generic_make_request() converts recursion to iteration; this
464  		 * means if we're running beneath it, any bios we allocate and
465  		 * submit will not be submitted (and thus freed) until after we
466  		 * return.
467  		 *
468  		 * This exposes us to a potential deadlock if we allocate
469  		 * multiple bios from the same bio_set() while running
470  		 * underneath generic_make_request(). If we were to allocate
471  		 * multiple bios (say a stacking block driver that was splitting
472  		 * bios), we would deadlock if we exhausted the mempool's
473  		 * reserve.
474  		 *
475  		 * We solve this, and guarantee forward progress, with a rescuer
476  		 * workqueue per bio_set. If we go to allocate and there are
477  		 * bios on current->bio_list, we first try the allocation
478  		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
479  		 * bios we would be blocking to the rescuer workqueue before
480  		 * we retry with the original gfp_flags.
481  		 */
482  
483  		if (current->bio_list &&
484  		    (!bio_list_empty(&current->bio_list[0]) ||
485  		     !bio_list_empty(&current->bio_list[1])) &&
486  		    bs->rescue_workqueue)
487  			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
488  
489  		p = mempool_alloc(&bs->bio_pool, gfp_mask);
490  		if (!p && gfp_mask != saved_gfp) {
491  			punt_bios_to_rescuer(bs);
492  			gfp_mask = saved_gfp;
493  			p = mempool_alloc(&bs->bio_pool, gfp_mask);
494  		}
495  
496  		front_pad = bs->front_pad;
497  		inline_vecs = BIO_INLINE_VECS;
498  	}
499  
500  	if (unlikely(!p))
501  		return NULL;
502  
503  	bio = p + front_pad;
504  	bio_init(bio, NULL, 0);
505  
506  	if (nr_iovecs > inline_vecs) {
507  		unsigned long idx = 0;
508  
509  		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
510  		if (!bvl && gfp_mask != saved_gfp) {
511  			punt_bios_to_rescuer(bs);
512  			gfp_mask = saved_gfp;
513  			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
514  		}
515  
516  		if (unlikely(!bvl))
517  			goto err_free;
518  
519  		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
520  	} else if (nr_iovecs) {
521  		bvl = bio->bi_inline_vecs;
522  	}
523  
524  	bio->bi_pool = bs;
525  	bio->bi_max_vecs = nr_iovecs;
526  	bio->bi_io_vec = bvl;
527  	return bio;
528  
529  err_free:
530  	mempool_free(p, &bs->bio_pool);
531  	return NULL;
532  }
533  EXPORT_SYMBOL(bio_alloc_bioset);
534  
535  void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
536  {
537  	unsigned long flags;
538  	struct bio_vec bv;
539  	struct bvec_iter iter;
540  
541  	__bio_for_each_segment(bv, bio, iter, start) {
542  		char *data = bvec_kmap_irq(&bv, &flags);
543  		memset(data, 0, bv.bv_len);
544  		flush_dcache_page(bv.bv_page);
545  		bvec_kunmap_irq(data, &flags);
546  	}
547  }
548  EXPORT_SYMBOL(zero_fill_bio_iter);
549  
550  /**
551   * bio_put - release a reference to a bio
552   * @bio:   bio to release reference to
553   *
554   * Description:
555   *   Put a reference to a &struct bio, either one you have gotten with
556   *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
557   **/
558  void bio_put(struct bio *bio)
559  {
560  	if (!bio_flagged(bio, BIO_REFFED))
561  		bio_free(bio);
562  	else {
563  		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
564  
565  		/*
566  		 * last put frees it
567  		 */
568  		if (atomic_dec_and_test(&bio->__bi_cnt))
569  			bio_free(bio);
570  	}
571  }
572  EXPORT_SYMBOL(bio_put);
573  
574  inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
575  {
576  	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
577  		blk_recount_segments(q, bio);
578  
579  	return bio->bi_phys_segments;
580  }
581  EXPORT_SYMBOL(bio_phys_segments);
582  
583  /**
584   * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
585   * 	@bio: destination bio
586   * 	@bio_src: bio to clone
587   *
588   *	Clone a &bio. Caller will own the returned bio, but not
589   *	the actual data it points to. Reference count of returned
590   * 	bio will be one.
591   *
592   * 	Caller must ensure that @bio_src is not freed before @bio.
593   */
594  void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
595  {
596  	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
597  
598  	/*
599  	 * most users will be overriding ->bi_disk with a new target,
600  	 * so we don't set nor calculate new physical/hw segment counts here
601  	 */
602  	bio->bi_disk = bio_src->bi_disk;
603  	bio->bi_partno = bio_src->bi_partno;
604  	bio_set_flag(bio, BIO_CLONED);
605  	if (bio_flagged(bio_src, BIO_THROTTLED))
606  		bio_set_flag(bio, BIO_THROTTLED);
607  	bio->bi_opf = bio_src->bi_opf;
608  	bio->bi_ioprio = bio_src->bi_ioprio;
609  	bio->bi_write_hint = bio_src->bi_write_hint;
610  	bio->bi_iter = bio_src->bi_iter;
611  	bio->bi_io_vec = bio_src->bi_io_vec;
612  
613  	bio_clone_blkcg_association(bio, bio_src);
614  }
615  EXPORT_SYMBOL(__bio_clone_fast);
616  
617  /**
618   *	bio_clone_fast - clone a bio that shares the original bio's biovec
619   *	@bio: bio to clone
620   *	@gfp_mask: allocation priority
621   *	@bs: bio_set to allocate from
622   *
623   * 	Like __bio_clone_fast, only also allocates the returned bio
624   */
625  struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
626  {
627  	struct bio *b;
628  
629  	b = bio_alloc_bioset(gfp_mask, 0, bs);
630  	if (!b)
631  		return NULL;
632  
633  	__bio_clone_fast(b, bio);
634  
635  	if (bio_integrity(bio)) {
636  		int ret;
637  
638  		ret = bio_integrity_clone(b, bio, gfp_mask);
639  
640  		if (ret < 0) {
641  			bio_put(b);
642  			return NULL;
643  		}
644  	}
645  
646  	return b;
647  }
648  EXPORT_SYMBOL(bio_clone_fast);
649  
650  /**
651   *	bio_add_pc_page	-	attempt to add page to bio
652   *	@q: the target queue
653   *	@bio: destination bio
654   *	@page: page to add
655   *	@len: vec entry length
656   *	@offset: vec entry offset
657   *
658   *	Attempt to add a page to the bio_vec maplist. This can fail for a
659   *	number of reasons, such as the bio being full or target block device
660   *	limitations. The target block device must allow bio's up to PAGE_SIZE,
661   *	so it is always possible to add a single page to an empty bio.
662   *
663   *	This should only be used by REQ_PC bios.
664   */
665  int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
666  		    *page, unsigned int len, unsigned int offset)
667  {
668  	int retried_segments = 0;
669  	struct bio_vec *bvec;
670  
671  	/*
672  	 * cloned bio must not modify vec list
673  	 */
674  	if (unlikely(bio_flagged(bio, BIO_CLONED)))
675  		return 0;
676  
677  	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
678  		return 0;
679  
680  	/*
681  	 * For filesystems with a blocksize smaller than the pagesize
682  	 * we will often be called with the same page as last time and
683  	 * a consecutive offset.  Optimize this special case.
684  	 */
685  	if (bio->bi_vcnt > 0) {
686  		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
687  
688  		if (page == prev->bv_page &&
689  		    offset == prev->bv_offset + prev->bv_len) {
690  			prev->bv_len += len;
691  			bio->bi_iter.bi_size += len;
692  			goto done;
693  		}
694  
695  		/*
696  		 * If the queue doesn't support SG gaps and adding this
697  		 * offset would create a gap, disallow it.
698  		 */
699  		if (bvec_gap_to_prev(q, prev, offset))
700  			return 0;
701  	}
702  
703  	if (bio_full(bio))
704  		return 0;
705  
706  	/*
707  	 * setup the new entry, we might clear it again later if we
708  	 * cannot add the page
709  	 */
710  	bvec = &bio->bi_io_vec[bio->bi_vcnt];
711  	bvec->bv_page = page;
712  	bvec->bv_len = len;
713  	bvec->bv_offset = offset;
714  	bio->bi_vcnt++;
715  	bio->bi_phys_segments++;
716  	bio->bi_iter.bi_size += len;
717  
718  	/*
719  	 * Perform a recount if the number of segments is greater
720  	 * than queue_max_segments(q).
721  	 */
722  
723  	while (bio->bi_phys_segments > queue_max_segments(q)) {
724  
725  		if (retried_segments)
726  			goto failed;
727  
728  		retried_segments = 1;
729  		blk_recount_segments(q, bio);
730  	}
731  
732  	/* If we may be able to merge these biovecs, force a recount */
733  	if (bio->bi_vcnt > 1 && biovec_phys_mergeable(q, bvec - 1, bvec))
734  		bio_clear_flag(bio, BIO_SEG_VALID);
735  
736   done:
737  	return len;
738  
739   failed:
740  	bvec->bv_page = NULL;
741  	bvec->bv_len = 0;
742  	bvec->bv_offset = 0;
743  	bio->bi_vcnt--;
744  	bio->bi_iter.bi_size -= len;
745  	blk_recount_segments(q, bio);
746  	return 0;
747  }
748  EXPORT_SYMBOL(bio_add_pc_page);
749  
750  /**
751   * __bio_try_merge_page - try appending data to an existing bvec.
752   * @bio: destination bio
753   * @page: page to add
754   * @len: length of the data to add
755   * @off: offset of the data in @page
756   *
757   * Try to add the data at @page + @off to the last bvec of @bio.  This is a
758   * a useful optimisation for file systems with a block size smaller than the
759   * page size.
760   *
761   * Return %true on success or %false on failure.
762   */
763  bool __bio_try_merge_page(struct bio *bio, struct page *page,
764  		unsigned int len, unsigned int off)
765  {
766  	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
767  		return false;
768  
769  	if (bio->bi_vcnt > 0) {
770  		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
771  
772  		if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) {
773  			bv->bv_len += len;
774  			bio->bi_iter.bi_size += len;
775  			return true;
776  		}
777  	}
778  	return false;
779  }
780  EXPORT_SYMBOL_GPL(__bio_try_merge_page);
781  
782  /**
783   * __bio_add_page - add page to a bio in a new segment
784   * @bio: destination bio
785   * @page: page to add
786   * @len: length of the data to add
787   * @off: offset of the data in @page
788   *
789   * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
790   * that @bio has space for another bvec.
791   */
792  void __bio_add_page(struct bio *bio, struct page *page,
793  		unsigned int len, unsigned int off)
794  {
795  	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
796  
797  	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
798  	WARN_ON_ONCE(bio_full(bio));
799  
800  	bv->bv_page = page;
801  	bv->bv_offset = off;
802  	bv->bv_len = len;
803  
804  	bio->bi_iter.bi_size += len;
805  	bio->bi_vcnt++;
806  }
807  EXPORT_SYMBOL_GPL(__bio_add_page);
808  
809  /**
810   *	bio_add_page	-	attempt to add page to bio
811   *	@bio: destination bio
812   *	@page: page to add
813   *	@len: vec entry length
814   *	@offset: vec entry offset
815   *
816   *	Attempt to add a page to the bio_vec maplist. This will only fail
817   *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
818   */
819  int bio_add_page(struct bio *bio, struct page *page,
820  		 unsigned int len, unsigned int offset)
821  {
822  	if (!__bio_try_merge_page(bio, page, len, offset)) {
823  		if (bio_full(bio))
824  			return 0;
825  		__bio_add_page(bio, page, len, offset);
826  	}
827  	return len;
828  }
829  EXPORT_SYMBOL(bio_add_page);
830  
831  #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
832  
833  /**
834   * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
835   * @bio: bio to add pages to
836   * @iter: iov iterator describing the region to be mapped
837   *
838   * Pins pages from *iter and appends them to @bio's bvec array. The
839   * pages will have to be released using put_page() when done.
840   * For multi-segment *iter, this function only adds pages from the
841   * the next non-empty segment of the iov iterator.
842   */
843  static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
844  {
845  	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
846  	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
847  	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
848  	struct page **pages = (struct page **)bv;
849  	ssize_t size, left;
850  	unsigned len, i;
851  	size_t offset;
852  
853  	/*
854  	 * Move page array up in the allocated memory for the bio vecs as far as
855  	 * possible so that we can start filling biovecs from the beginning
856  	 * without overwriting the temporary page array.
857  	*/
858  	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
859  	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
860  
861  	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
862  	if (unlikely(size <= 0))
863  		return size ? size : -EFAULT;
864  
865  	for (left = size, i = 0; left > 0; left -= len, i++) {
866  		struct page *page = pages[i];
867  
868  		len = min_t(size_t, PAGE_SIZE - offset, left);
869  		if (WARN_ON_ONCE(bio_add_page(bio, page, len, offset) != len))
870  			return -EINVAL;
871  		offset = 0;
872  	}
873  
874  	iov_iter_advance(iter, size);
875  	return 0;
876  }
877  
878  /**
879   * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
880   * @bio: bio to add pages to
881   * @iter: iov iterator describing the region to be mapped
882   *
883   * Pins pages from *iter and appends them to @bio's bvec array. The
884   * pages will have to be released using put_page() when done.
885   * The function tries, but does not guarantee, to pin as many pages as
886   * fit into the bio, or are requested in *iter, whatever is smaller.
887   * If MM encounters an error pinning the requested pages, it stops.
888   * Error is returned only if 0 pages could be pinned.
889   */
890  int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
891  {
892  	unsigned short orig_vcnt = bio->bi_vcnt;
893  
894  	do {
895  		int ret = __bio_iov_iter_get_pages(bio, iter);
896  
897  		if (unlikely(ret))
898  			return bio->bi_vcnt > orig_vcnt ? 0 : ret;
899  
900  	} while (iov_iter_count(iter) && !bio_full(bio));
901  
902  	return 0;
903  }
904  EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
905  
906  static void submit_bio_wait_endio(struct bio *bio)
907  {
908  	complete(bio->bi_private);
909  }
910  
911  /**
912   * submit_bio_wait - submit a bio, and wait until it completes
913   * @bio: The &struct bio which describes the I/O
914   *
915   * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
916   * bio_endio() on failure.
917   *
918   * WARNING: Unlike to how submit_bio() is usually used, this function does not
919   * result in bio reference to be consumed. The caller must drop the reference
920   * on his own.
921   */
922  int submit_bio_wait(struct bio *bio)
923  {
924  	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
925  
926  	bio->bi_private = &done;
927  	bio->bi_end_io = submit_bio_wait_endio;
928  	bio->bi_opf |= REQ_SYNC;
929  	submit_bio(bio);
930  	wait_for_completion_io(&done);
931  
932  	return blk_status_to_errno(bio->bi_status);
933  }
934  EXPORT_SYMBOL(submit_bio_wait);
935  
936  /**
937   * bio_advance - increment/complete a bio by some number of bytes
938   * @bio:	bio to advance
939   * @bytes:	number of bytes to complete
940   *
941   * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
942   * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
943   * be updated on the last bvec as well.
944   *
945   * @bio will then represent the remaining, uncompleted portion of the io.
946   */
947  void bio_advance(struct bio *bio, unsigned bytes)
948  {
949  	if (bio_integrity(bio))
950  		bio_integrity_advance(bio, bytes);
951  
952  	bio_advance_iter(bio, &bio->bi_iter, bytes);
953  }
954  EXPORT_SYMBOL(bio_advance);
955  
956  void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
957  			struct bio *src, struct bvec_iter *src_iter)
958  {
959  	struct bio_vec src_bv, dst_bv;
960  	void *src_p, *dst_p;
961  	unsigned bytes;
962  
963  	while (src_iter->bi_size && dst_iter->bi_size) {
964  		src_bv = bio_iter_iovec(src, *src_iter);
965  		dst_bv = bio_iter_iovec(dst, *dst_iter);
966  
967  		bytes = min(src_bv.bv_len, dst_bv.bv_len);
968  
969  		src_p = kmap_atomic(src_bv.bv_page);
970  		dst_p = kmap_atomic(dst_bv.bv_page);
971  
972  		memcpy(dst_p + dst_bv.bv_offset,
973  		       src_p + src_bv.bv_offset,
974  		       bytes);
975  
976  		kunmap_atomic(dst_p);
977  		kunmap_atomic(src_p);
978  
979  		flush_dcache_page(dst_bv.bv_page);
980  
981  		bio_advance_iter(src, src_iter, bytes);
982  		bio_advance_iter(dst, dst_iter, bytes);
983  	}
984  }
985  EXPORT_SYMBOL(bio_copy_data_iter);
986  
987  /**
988   * bio_copy_data - copy contents of data buffers from one bio to another
989   * @src: source bio
990   * @dst: destination bio
991   *
992   * Stops when it reaches the end of either @src or @dst - that is, copies
993   * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
994   */
995  void bio_copy_data(struct bio *dst, struct bio *src)
996  {
997  	struct bvec_iter src_iter = src->bi_iter;
998  	struct bvec_iter dst_iter = dst->bi_iter;
999  
1000  	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1001  }
1002  EXPORT_SYMBOL(bio_copy_data);
1003  
1004  /**
1005   * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1006   * another
1007   * @src: source bio list
1008   * @dst: destination bio list
1009   *
1010   * Stops when it reaches the end of either the @src list or @dst list - that is,
1011   * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1012   * bios).
1013   */
1014  void bio_list_copy_data(struct bio *dst, struct bio *src)
1015  {
1016  	struct bvec_iter src_iter = src->bi_iter;
1017  	struct bvec_iter dst_iter = dst->bi_iter;
1018  
1019  	while (1) {
1020  		if (!src_iter.bi_size) {
1021  			src = src->bi_next;
1022  			if (!src)
1023  				break;
1024  
1025  			src_iter = src->bi_iter;
1026  		}
1027  
1028  		if (!dst_iter.bi_size) {
1029  			dst = dst->bi_next;
1030  			if (!dst)
1031  				break;
1032  
1033  			dst_iter = dst->bi_iter;
1034  		}
1035  
1036  		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1037  	}
1038  }
1039  EXPORT_SYMBOL(bio_list_copy_data);
1040  
1041  struct bio_map_data {
1042  	int is_our_pages;
1043  	struct iov_iter iter;
1044  	struct iovec iov[];
1045  };
1046  
1047  static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1048  					       gfp_t gfp_mask)
1049  {
1050  	struct bio_map_data *bmd;
1051  	if (data->nr_segs > UIO_MAXIOV)
1052  		return NULL;
1053  
1054  	bmd = kmalloc(sizeof(struct bio_map_data) +
1055  		       sizeof(struct iovec) * data->nr_segs, gfp_mask);
1056  	if (!bmd)
1057  		return NULL;
1058  	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1059  	bmd->iter = *data;
1060  	bmd->iter.iov = bmd->iov;
1061  	return bmd;
1062  }
1063  
1064  /**
1065   * bio_copy_from_iter - copy all pages from iov_iter to bio
1066   * @bio: The &struct bio which describes the I/O as destination
1067   * @iter: iov_iter as source
1068   *
1069   * Copy all pages from iov_iter to bio.
1070   * Returns 0 on success, or error on failure.
1071   */
1072  static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1073  {
1074  	int i;
1075  	struct bio_vec *bvec;
1076  
1077  	bio_for_each_segment_all(bvec, bio, i) {
1078  		ssize_t ret;
1079  
1080  		ret = copy_page_from_iter(bvec->bv_page,
1081  					  bvec->bv_offset,
1082  					  bvec->bv_len,
1083  					  iter);
1084  
1085  		if (!iov_iter_count(iter))
1086  			break;
1087  
1088  		if (ret < bvec->bv_len)
1089  			return -EFAULT;
1090  	}
1091  
1092  	return 0;
1093  }
1094  
1095  /**
1096   * bio_copy_to_iter - copy all pages from bio to iov_iter
1097   * @bio: The &struct bio which describes the I/O as source
1098   * @iter: iov_iter as destination
1099   *
1100   * Copy all pages from bio to iov_iter.
1101   * Returns 0 on success, or error on failure.
1102   */
1103  static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1104  {
1105  	int i;
1106  	struct bio_vec *bvec;
1107  
1108  	bio_for_each_segment_all(bvec, bio, i) {
1109  		ssize_t ret;
1110  
1111  		ret = copy_page_to_iter(bvec->bv_page,
1112  					bvec->bv_offset,
1113  					bvec->bv_len,
1114  					&iter);
1115  
1116  		if (!iov_iter_count(&iter))
1117  			break;
1118  
1119  		if (ret < bvec->bv_len)
1120  			return -EFAULT;
1121  	}
1122  
1123  	return 0;
1124  }
1125  
1126  void bio_free_pages(struct bio *bio)
1127  {
1128  	struct bio_vec *bvec;
1129  	int i;
1130  
1131  	bio_for_each_segment_all(bvec, bio, i)
1132  		__free_page(bvec->bv_page);
1133  }
1134  EXPORT_SYMBOL(bio_free_pages);
1135  
1136  /**
1137   *	bio_uncopy_user	-	finish previously mapped bio
1138   *	@bio: bio being terminated
1139   *
1140   *	Free pages allocated from bio_copy_user_iov() and write back data
1141   *	to user space in case of a read.
1142   */
1143  int bio_uncopy_user(struct bio *bio)
1144  {
1145  	struct bio_map_data *bmd = bio->bi_private;
1146  	int ret = 0;
1147  
1148  	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1149  		/*
1150  		 * if we're in a workqueue, the request is orphaned, so
1151  		 * don't copy into a random user address space, just free
1152  		 * and return -EINTR so user space doesn't expect any data.
1153  		 */
1154  		if (!current->mm)
1155  			ret = -EINTR;
1156  		else if (bio_data_dir(bio) == READ)
1157  			ret = bio_copy_to_iter(bio, bmd->iter);
1158  		if (bmd->is_our_pages)
1159  			bio_free_pages(bio);
1160  	}
1161  	kfree(bmd);
1162  	bio_put(bio);
1163  	return ret;
1164  }
1165  
1166  /**
1167   *	bio_copy_user_iov	-	copy user data to bio
1168   *	@q:		destination block queue
1169   *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1170   *	@iter:		iovec iterator
1171   *	@gfp_mask:	memory allocation flags
1172   *
1173   *	Prepares and returns a bio for indirect user io, bouncing data
1174   *	to/from kernel pages as necessary. Must be paired with
1175   *	call bio_uncopy_user() on io completion.
1176   */
1177  struct bio *bio_copy_user_iov(struct request_queue *q,
1178  			      struct rq_map_data *map_data,
1179  			      struct iov_iter *iter,
1180  			      gfp_t gfp_mask)
1181  {
1182  	struct bio_map_data *bmd;
1183  	struct page *page;
1184  	struct bio *bio;
1185  	int i = 0, ret;
1186  	int nr_pages;
1187  	unsigned int len = iter->count;
1188  	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1189  
1190  	bmd = bio_alloc_map_data(iter, gfp_mask);
1191  	if (!bmd)
1192  		return ERR_PTR(-ENOMEM);
1193  
1194  	/*
1195  	 * We need to do a deep copy of the iov_iter including the iovecs.
1196  	 * The caller provided iov might point to an on-stack or otherwise
1197  	 * shortlived one.
1198  	 */
1199  	bmd->is_our_pages = map_data ? 0 : 1;
1200  
1201  	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1202  	if (nr_pages > BIO_MAX_PAGES)
1203  		nr_pages = BIO_MAX_PAGES;
1204  
1205  	ret = -ENOMEM;
1206  	bio = bio_kmalloc(gfp_mask, nr_pages);
1207  	if (!bio)
1208  		goto out_bmd;
1209  
1210  	ret = 0;
1211  
1212  	if (map_data) {
1213  		nr_pages = 1 << map_data->page_order;
1214  		i = map_data->offset / PAGE_SIZE;
1215  	}
1216  	while (len) {
1217  		unsigned int bytes = PAGE_SIZE;
1218  
1219  		bytes -= offset;
1220  
1221  		if (bytes > len)
1222  			bytes = len;
1223  
1224  		if (map_data) {
1225  			if (i == map_data->nr_entries * nr_pages) {
1226  				ret = -ENOMEM;
1227  				break;
1228  			}
1229  
1230  			page = map_data->pages[i / nr_pages];
1231  			page += (i % nr_pages);
1232  
1233  			i++;
1234  		} else {
1235  			page = alloc_page(q->bounce_gfp | gfp_mask);
1236  			if (!page) {
1237  				ret = -ENOMEM;
1238  				break;
1239  			}
1240  		}
1241  
1242  		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1243  			break;
1244  
1245  		len -= bytes;
1246  		offset = 0;
1247  	}
1248  
1249  	if (ret)
1250  		goto cleanup;
1251  
1252  	if (map_data)
1253  		map_data->offset += bio->bi_iter.bi_size;
1254  
1255  	/*
1256  	 * success
1257  	 */
1258  	if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1259  	    (map_data && map_data->from_user)) {
1260  		ret = bio_copy_from_iter(bio, iter);
1261  		if (ret)
1262  			goto cleanup;
1263  	} else {
1264  		zero_fill_bio(bio);
1265  		iov_iter_advance(iter, bio->bi_iter.bi_size);
1266  	}
1267  
1268  	bio->bi_private = bmd;
1269  	if (map_data && map_data->null_mapped)
1270  		bio_set_flag(bio, BIO_NULL_MAPPED);
1271  	return bio;
1272  cleanup:
1273  	if (!map_data)
1274  		bio_free_pages(bio);
1275  	bio_put(bio);
1276  out_bmd:
1277  	kfree(bmd);
1278  	return ERR_PTR(ret);
1279  }
1280  
1281  /**
1282   *	bio_map_user_iov - map user iovec into bio
1283   *	@q:		the struct request_queue for the bio
1284   *	@iter:		iovec iterator
1285   *	@gfp_mask:	memory allocation flags
1286   *
1287   *	Map the user space address into a bio suitable for io to a block
1288   *	device. Returns an error pointer in case of error.
1289   */
1290  struct bio *bio_map_user_iov(struct request_queue *q,
1291  			     struct iov_iter *iter,
1292  			     gfp_t gfp_mask)
1293  {
1294  	int j;
1295  	struct bio *bio;
1296  	int ret;
1297  	struct bio_vec *bvec;
1298  
1299  	if (!iov_iter_count(iter))
1300  		return ERR_PTR(-EINVAL);
1301  
1302  	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1303  	if (!bio)
1304  		return ERR_PTR(-ENOMEM);
1305  
1306  	while (iov_iter_count(iter)) {
1307  		struct page **pages;
1308  		ssize_t bytes;
1309  		size_t offs, added = 0;
1310  		int npages;
1311  
1312  		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1313  		if (unlikely(bytes <= 0)) {
1314  			ret = bytes ? bytes : -EFAULT;
1315  			goto out_unmap;
1316  		}
1317  
1318  		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1319  
1320  		if (unlikely(offs & queue_dma_alignment(q))) {
1321  			ret = -EINVAL;
1322  			j = 0;
1323  		} else {
1324  			for (j = 0; j < npages; j++) {
1325  				struct page *page = pages[j];
1326  				unsigned int n = PAGE_SIZE - offs;
1327  				unsigned short prev_bi_vcnt = bio->bi_vcnt;
1328  
1329  				if (n > bytes)
1330  					n = bytes;
1331  
1332  				if (!bio_add_pc_page(q, bio, page, n, offs))
1333  					break;
1334  
1335  				/*
1336  				 * check if vector was merged with previous
1337  				 * drop page reference if needed
1338  				 */
1339  				if (bio->bi_vcnt == prev_bi_vcnt)
1340  					put_page(page);
1341  
1342  				added += n;
1343  				bytes -= n;
1344  				offs = 0;
1345  			}
1346  			iov_iter_advance(iter, added);
1347  		}
1348  		/*
1349  		 * release the pages we didn't map into the bio, if any
1350  		 */
1351  		while (j < npages)
1352  			put_page(pages[j++]);
1353  		kvfree(pages);
1354  		/* couldn't stuff something into bio? */
1355  		if (bytes)
1356  			break;
1357  	}
1358  
1359  	bio_set_flag(bio, BIO_USER_MAPPED);
1360  
1361  	/*
1362  	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1363  	 * it would normally disappear when its bi_end_io is run.
1364  	 * however, we need it for the unmap, so grab an extra
1365  	 * reference to it
1366  	 */
1367  	bio_get(bio);
1368  	return bio;
1369  
1370   out_unmap:
1371  	bio_for_each_segment_all(bvec, bio, j) {
1372  		put_page(bvec->bv_page);
1373  	}
1374  	bio_put(bio);
1375  	return ERR_PTR(ret);
1376  }
1377  
1378  static void __bio_unmap_user(struct bio *bio)
1379  {
1380  	struct bio_vec *bvec;
1381  	int i;
1382  
1383  	/*
1384  	 * make sure we dirty pages we wrote to
1385  	 */
1386  	bio_for_each_segment_all(bvec, bio, i) {
1387  		if (bio_data_dir(bio) == READ)
1388  			set_page_dirty_lock(bvec->bv_page);
1389  
1390  		put_page(bvec->bv_page);
1391  	}
1392  
1393  	bio_put(bio);
1394  }
1395  
1396  /**
1397   *	bio_unmap_user	-	unmap a bio
1398   *	@bio:		the bio being unmapped
1399   *
1400   *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1401   *	process context.
1402   *
1403   *	bio_unmap_user() may sleep.
1404   */
1405  void bio_unmap_user(struct bio *bio)
1406  {
1407  	__bio_unmap_user(bio);
1408  	bio_put(bio);
1409  }
1410  
1411  static void bio_map_kern_endio(struct bio *bio)
1412  {
1413  	bio_put(bio);
1414  }
1415  
1416  /**
1417   *	bio_map_kern	-	map kernel address into bio
1418   *	@q: the struct request_queue for the bio
1419   *	@data: pointer to buffer to map
1420   *	@len: length in bytes
1421   *	@gfp_mask: allocation flags for bio allocation
1422   *
1423   *	Map the kernel address into a bio suitable for io to a block
1424   *	device. Returns an error pointer in case of error.
1425   */
1426  struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1427  			 gfp_t gfp_mask)
1428  {
1429  	unsigned long kaddr = (unsigned long)data;
1430  	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1431  	unsigned long start = kaddr >> PAGE_SHIFT;
1432  	const int nr_pages = end - start;
1433  	int offset, i;
1434  	struct bio *bio;
1435  
1436  	bio = bio_kmalloc(gfp_mask, nr_pages);
1437  	if (!bio)
1438  		return ERR_PTR(-ENOMEM);
1439  
1440  	offset = offset_in_page(kaddr);
1441  	for (i = 0; i < nr_pages; i++) {
1442  		unsigned int bytes = PAGE_SIZE - offset;
1443  
1444  		if (len <= 0)
1445  			break;
1446  
1447  		if (bytes > len)
1448  			bytes = len;
1449  
1450  		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1451  				    offset) < bytes) {
1452  			/* we don't support partial mappings */
1453  			bio_put(bio);
1454  			return ERR_PTR(-EINVAL);
1455  		}
1456  
1457  		data += bytes;
1458  		len -= bytes;
1459  		offset = 0;
1460  	}
1461  
1462  	bio->bi_end_io = bio_map_kern_endio;
1463  	return bio;
1464  }
1465  EXPORT_SYMBOL(bio_map_kern);
1466  
1467  static void bio_copy_kern_endio(struct bio *bio)
1468  {
1469  	bio_free_pages(bio);
1470  	bio_put(bio);
1471  }
1472  
1473  static void bio_copy_kern_endio_read(struct bio *bio)
1474  {
1475  	char *p = bio->bi_private;
1476  	struct bio_vec *bvec;
1477  	int i;
1478  
1479  	bio_for_each_segment_all(bvec, bio, i) {
1480  		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1481  		p += bvec->bv_len;
1482  	}
1483  
1484  	bio_copy_kern_endio(bio);
1485  }
1486  
1487  /**
1488   *	bio_copy_kern	-	copy kernel address into bio
1489   *	@q: the struct request_queue for the bio
1490   *	@data: pointer to buffer to copy
1491   *	@len: length in bytes
1492   *	@gfp_mask: allocation flags for bio and page allocation
1493   *	@reading: data direction is READ
1494   *
1495   *	copy the kernel address into a bio suitable for io to a block
1496   *	device. Returns an error pointer in case of error.
1497   */
1498  struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1499  			  gfp_t gfp_mask, int reading)
1500  {
1501  	unsigned long kaddr = (unsigned long)data;
1502  	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1503  	unsigned long start = kaddr >> PAGE_SHIFT;
1504  	struct bio *bio;
1505  	void *p = data;
1506  	int nr_pages = 0;
1507  
1508  	/*
1509  	 * Overflow, abort
1510  	 */
1511  	if (end < start)
1512  		return ERR_PTR(-EINVAL);
1513  
1514  	nr_pages = end - start;
1515  	bio = bio_kmalloc(gfp_mask, nr_pages);
1516  	if (!bio)
1517  		return ERR_PTR(-ENOMEM);
1518  
1519  	while (len) {
1520  		struct page *page;
1521  		unsigned int bytes = PAGE_SIZE;
1522  
1523  		if (bytes > len)
1524  			bytes = len;
1525  
1526  		page = alloc_page(q->bounce_gfp | gfp_mask);
1527  		if (!page)
1528  			goto cleanup;
1529  
1530  		if (!reading)
1531  			memcpy(page_address(page), p, bytes);
1532  
1533  		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1534  			break;
1535  
1536  		len -= bytes;
1537  		p += bytes;
1538  	}
1539  
1540  	if (reading) {
1541  		bio->bi_end_io = bio_copy_kern_endio_read;
1542  		bio->bi_private = data;
1543  	} else {
1544  		bio->bi_end_io = bio_copy_kern_endio;
1545  	}
1546  
1547  	return bio;
1548  
1549  cleanup:
1550  	bio_free_pages(bio);
1551  	bio_put(bio);
1552  	return ERR_PTR(-ENOMEM);
1553  }
1554  
1555  /*
1556   * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1557   * for performing direct-IO in BIOs.
1558   *
1559   * The problem is that we cannot run set_page_dirty() from interrupt context
1560   * because the required locks are not interrupt-safe.  So what we can do is to
1561   * mark the pages dirty _before_ performing IO.  And in interrupt context,
1562   * check that the pages are still dirty.   If so, fine.  If not, redirty them
1563   * in process context.
1564   *
1565   * We special-case compound pages here: normally this means reads into hugetlb
1566   * pages.  The logic in here doesn't really work right for compound pages
1567   * because the VM does not uniformly chase down the head page in all cases.
1568   * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1569   * handle them at all.  So we skip compound pages here at an early stage.
1570   *
1571   * Note that this code is very hard to test under normal circumstances because
1572   * direct-io pins the pages with get_user_pages().  This makes
1573   * is_page_cache_freeable return false, and the VM will not clean the pages.
1574   * But other code (eg, flusher threads) could clean the pages if they are mapped
1575   * pagecache.
1576   *
1577   * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1578   * deferred bio dirtying paths.
1579   */
1580  
1581  /*
1582   * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1583   */
1584  void bio_set_pages_dirty(struct bio *bio)
1585  {
1586  	struct bio_vec *bvec;
1587  	int i;
1588  
1589  	bio_for_each_segment_all(bvec, bio, i) {
1590  		if (!PageCompound(bvec->bv_page))
1591  			set_page_dirty_lock(bvec->bv_page);
1592  	}
1593  }
1594  EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1595  
1596  static void bio_release_pages(struct bio *bio)
1597  {
1598  	struct bio_vec *bvec;
1599  	int i;
1600  
1601  	bio_for_each_segment_all(bvec, bio, i)
1602  		put_page(bvec->bv_page);
1603  }
1604  
1605  /*
1606   * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1607   * If they are, then fine.  If, however, some pages are clean then they must
1608   * have been written out during the direct-IO read.  So we take another ref on
1609   * the BIO and re-dirty the pages in process context.
1610   *
1611   * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1612   * here on.  It will run one put_page() against each page and will run one
1613   * bio_put() against the BIO.
1614   */
1615  
1616  static void bio_dirty_fn(struct work_struct *work);
1617  
1618  static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1619  static DEFINE_SPINLOCK(bio_dirty_lock);
1620  static struct bio *bio_dirty_list;
1621  
1622  /*
1623   * This runs in process context
1624   */
1625  static void bio_dirty_fn(struct work_struct *work)
1626  {
1627  	struct bio *bio, *next;
1628  
1629  	spin_lock_irq(&bio_dirty_lock);
1630  	next = bio_dirty_list;
1631  	bio_dirty_list = NULL;
1632  	spin_unlock_irq(&bio_dirty_lock);
1633  
1634  	while ((bio = next) != NULL) {
1635  		next = bio->bi_private;
1636  
1637  		bio_set_pages_dirty(bio);
1638  		bio_release_pages(bio);
1639  		bio_put(bio);
1640  	}
1641  }
1642  
1643  void bio_check_pages_dirty(struct bio *bio)
1644  {
1645  	struct bio_vec *bvec;
1646  	unsigned long flags;
1647  	int i;
1648  
1649  	bio_for_each_segment_all(bvec, bio, i) {
1650  		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1651  			goto defer;
1652  	}
1653  
1654  	bio_release_pages(bio);
1655  	bio_put(bio);
1656  	return;
1657  defer:
1658  	spin_lock_irqsave(&bio_dirty_lock, flags);
1659  	bio->bi_private = bio_dirty_list;
1660  	bio_dirty_list = bio;
1661  	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1662  	schedule_work(&bio_dirty_work);
1663  }
1664  EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1665  
1666  void generic_start_io_acct(struct request_queue *q, int op,
1667  			   unsigned long sectors, struct hd_struct *part)
1668  {
1669  	const int sgrp = op_stat_group(op);
1670  	int cpu = part_stat_lock();
1671  
1672  	part_round_stats(q, cpu, part);
1673  	part_stat_inc(cpu, part, ios[sgrp]);
1674  	part_stat_add(cpu, part, sectors[sgrp], sectors);
1675  	part_inc_in_flight(q, part, op_is_write(op));
1676  
1677  	part_stat_unlock();
1678  }
1679  EXPORT_SYMBOL(generic_start_io_acct);
1680  
1681  void generic_end_io_acct(struct request_queue *q, int req_op,
1682  			 struct hd_struct *part, unsigned long start_time)
1683  {
1684  	unsigned long duration = jiffies - start_time;
1685  	const int sgrp = op_stat_group(req_op);
1686  	int cpu = part_stat_lock();
1687  
1688  	part_stat_add(cpu, part, nsecs[sgrp], jiffies_to_nsecs(duration));
1689  	part_round_stats(q, cpu, part);
1690  	part_dec_in_flight(q, part, op_is_write(req_op));
1691  
1692  	part_stat_unlock();
1693  }
1694  EXPORT_SYMBOL(generic_end_io_acct);
1695  
1696  #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1697  void bio_flush_dcache_pages(struct bio *bi)
1698  {
1699  	struct bio_vec bvec;
1700  	struct bvec_iter iter;
1701  
1702  	bio_for_each_segment(bvec, bi, iter)
1703  		flush_dcache_page(bvec.bv_page);
1704  }
1705  EXPORT_SYMBOL(bio_flush_dcache_pages);
1706  #endif
1707  
1708  static inline bool bio_remaining_done(struct bio *bio)
1709  {
1710  	/*
1711  	 * If we're not chaining, then ->__bi_remaining is always 1 and
1712  	 * we always end io on the first invocation.
1713  	 */
1714  	if (!bio_flagged(bio, BIO_CHAIN))
1715  		return true;
1716  
1717  	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1718  
1719  	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1720  		bio_clear_flag(bio, BIO_CHAIN);
1721  		return true;
1722  	}
1723  
1724  	return false;
1725  }
1726  
1727  /**
1728   * bio_endio - end I/O on a bio
1729   * @bio:	bio
1730   *
1731   * Description:
1732   *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1733   *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1734   *   bio unless they own it and thus know that it has an end_io function.
1735   *
1736   *   bio_endio() can be called several times on a bio that has been chained
1737   *   using bio_chain().  The ->bi_end_io() function will only be called the
1738   *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1739   *   generated if BIO_TRACE_COMPLETION is set.
1740   **/
1741  void bio_endio(struct bio *bio)
1742  {
1743  again:
1744  	if (!bio_remaining_done(bio))
1745  		return;
1746  	if (!bio_integrity_endio(bio))
1747  		return;
1748  
1749  	if (bio->bi_disk)
1750  		rq_qos_done_bio(bio->bi_disk->queue, bio);
1751  
1752  	/*
1753  	 * Need to have a real endio function for chained bios, otherwise
1754  	 * various corner cases will break (like stacking block devices that
1755  	 * save/restore bi_end_io) - however, we want to avoid unbounded
1756  	 * recursion and blowing the stack. Tail call optimization would
1757  	 * handle this, but compiling with frame pointers also disables
1758  	 * gcc's sibling call optimization.
1759  	 */
1760  	if (bio->bi_end_io == bio_chain_endio) {
1761  		bio = __bio_chain_endio(bio);
1762  		goto again;
1763  	}
1764  
1765  	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1766  		trace_block_bio_complete(bio->bi_disk->queue, bio,
1767  					 blk_status_to_errno(bio->bi_status));
1768  		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1769  	}
1770  
1771  	blk_throtl_bio_endio(bio);
1772  	/* release cgroup info */
1773  	bio_uninit(bio);
1774  	if (bio->bi_end_io)
1775  		bio->bi_end_io(bio);
1776  }
1777  EXPORT_SYMBOL(bio_endio);
1778  
1779  /**
1780   * bio_split - split a bio
1781   * @bio:	bio to split
1782   * @sectors:	number of sectors to split from the front of @bio
1783   * @gfp:	gfp mask
1784   * @bs:		bio set to allocate from
1785   *
1786   * Allocates and returns a new bio which represents @sectors from the start of
1787   * @bio, and updates @bio to represent the remaining sectors.
1788   *
1789   * Unless this is a discard request the newly allocated bio will point
1790   * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1791   * @bio is not freed before the split.
1792   */
1793  struct bio *bio_split(struct bio *bio, int sectors,
1794  		      gfp_t gfp, struct bio_set *bs)
1795  {
1796  	struct bio *split;
1797  
1798  	BUG_ON(sectors <= 0);
1799  	BUG_ON(sectors >= bio_sectors(bio));
1800  
1801  	split = bio_clone_fast(bio, gfp, bs);
1802  	if (!split)
1803  		return NULL;
1804  
1805  	split->bi_iter.bi_size = sectors << 9;
1806  
1807  	if (bio_integrity(split))
1808  		bio_integrity_trim(split);
1809  
1810  	bio_advance(bio, split->bi_iter.bi_size);
1811  
1812  	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1813  		bio_set_flag(split, BIO_TRACE_COMPLETION);
1814  
1815  	return split;
1816  }
1817  EXPORT_SYMBOL(bio_split);
1818  
1819  /**
1820   * bio_trim - trim a bio
1821   * @bio:	bio to trim
1822   * @offset:	number of sectors to trim from the front of @bio
1823   * @size:	size we want to trim @bio to, in sectors
1824   */
1825  void bio_trim(struct bio *bio, int offset, int size)
1826  {
1827  	/* 'bio' is a cloned bio which we need to trim to match
1828  	 * the given offset and size.
1829  	 */
1830  
1831  	size <<= 9;
1832  	if (offset == 0 && size == bio->bi_iter.bi_size)
1833  		return;
1834  
1835  	bio_clear_flag(bio, BIO_SEG_VALID);
1836  
1837  	bio_advance(bio, offset << 9);
1838  
1839  	bio->bi_iter.bi_size = size;
1840  
1841  	if (bio_integrity(bio))
1842  		bio_integrity_trim(bio);
1843  
1844  }
1845  EXPORT_SYMBOL_GPL(bio_trim);
1846  
1847  /*
1848   * create memory pools for biovec's in a bio_set.
1849   * use the global biovec slabs created for general use.
1850   */
1851  int biovec_init_pool(mempool_t *pool, int pool_entries)
1852  {
1853  	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1854  
1855  	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1856  }
1857  
1858  /*
1859   * bioset_exit - exit a bioset initialized with bioset_init()
1860   *
1861   * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1862   * kzalloc()).
1863   */
1864  void bioset_exit(struct bio_set *bs)
1865  {
1866  	if (bs->rescue_workqueue)
1867  		destroy_workqueue(bs->rescue_workqueue);
1868  	bs->rescue_workqueue = NULL;
1869  
1870  	mempool_exit(&bs->bio_pool);
1871  	mempool_exit(&bs->bvec_pool);
1872  
1873  	bioset_integrity_free(bs);
1874  	if (bs->bio_slab)
1875  		bio_put_slab(bs);
1876  	bs->bio_slab = NULL;
1877  }
1878  EXPORT_SYMBOL(bioset_exit);
1879  
1880  /**
1881   * bioset_init - Initialize a bio_set
1882   * @bs:		pool to initialize
1883   * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1884   * @front_pad:	Number of bytes to allocate in front of the returned bio
1885   * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1886   *              and %BIOSET_NEED_RESCUER
1887   *
1888   * Description:
1889   *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1890   *    to ask for a number of bytes to be allocated in front of the bio.
1891   *    Front pad allocation is useful for embedding the bio inside
1892   *    another structure, to avoid allocating extra data to go with the bio.
1893   *    Note that the bio must be embedded at the END of that structure always,
1894   *    or things will break badly.
1895   *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1896   *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1897   *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1898   *    dispatch queued requests when the mempool runs out of space.
1899   *
1900   */
1901  int bioset_init(struct bio_set *bs,
1902  		unsigned int pool_size,
1903  		unsigned int front_pad,
1904  		int flags)
1905  {
1906  	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1907  
1908  	bs->front_pad = front_pad;
1909  
1910  	spin_lock_init(&bs->rescue_lock);
1911  	bio_list_init(&bs->rescue_list);
1912  	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1913  
1914  	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1915  	if (!bs->bio_slab)
1916  		return -ENOMEM;
1917  
1918  	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1919  		goto bad;
1920  
1921  	if ((flags & BIOSET_NEED_BVECS) &&
1922  	    biovec_init_pool(&bs->bvec_pool, pool_size))
1923  		goto bad;
1924  
1925  	if (!(flags & BIOSET_NEED_RESCUER))
1926  		return 0;
1927  
1928  	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1929  	if (!bs->rescue_workqueue)
1930  		goto bad;
1931  
1932  	return 0;
1933  bad:
1934  	bioset_exit(bs);
1935  	return -ENOMEM;
1936  }
1937  EXPORT_SYMBOL(bioset_init);
1938  
1939  /*
1940   * Initialize and setup a new bio_set, based on the settings from
1941   * another bio_set.
1942   */
1943  int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1944  {
1945  	int flags;
1946  
1947  	flags = 0;
1948  	if (src->bvec_pool.min_nr)
1949  		flags |= BIOSET_NEED_BVECS;
1950  	if (src->rescue_workqueue)
1951  		flags |= BIOSET_NEED_RESCUER;
1952  
1953  	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1954  }
1955  EXPORT_SYMBOL(bioset_init_from_src);
1956  
1957  #ifdef CONFIG_BLK_CGROUP
1958  
1959  #ifdef CONFIG_MEMCG
1960  /**
1961   * bio_associate_blkcg_from_page - associate a bio with the page's blkcg
1962   * @bio: target bio
1963   * @page: the page to lookup the blkcg from
1964   *
1965   * Associate @bio with the blkcg from @page's owning memcg.  This works like
1966   * every other associate function wrt references.
1967   */
1968  int bio_associate_blkcg_from_page(struct bio *bio, struct page *page)
1969  {
1970  	struct cgroup_subsys_state *blkcg_css;
1971  
1972  	if (unlikely(bio->bi_css))
1973  		return -EBUSY;
1974  	if (!page->mem_cgroup)
1975  		return 0;
1976  	blkcg_css = cgroup_get_e_css(page->mem_cgroup->css.cgroup,
1977  				     &io_cgrp_subsys);
1978  	bio->bi_css = blkcg_css;
1979  	return 0;
1980  }
1981  #endif /* CONFIG_MEMCG */
1982  
1983  /**
1984   * bio_associate_blkcg - associate a bio with the specified blkcg
1985   * @bio: target bio
1986   * @blkcg_css: css of the blkcg to associate
1987   *
1988   * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
1989   * treat @bio as if it were issued by a task which belongs to the blkcg.
1990   *
1991   * This function takes an extra reference of @blkcg_css which will be put
1992   * when @bio is released.  The caller must own @bio and is responsible for
1993   * synchronizing calls to this function.
1994   */
1995  int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1996  {
1997  	if (unlikely(bio->bi_css))
1998  		return -EBUSY;
1999  	css_get(blkcg_css);
2000  	bio->bi_css = blkcg_css;
2001  	return 0;
2002  }
2003  EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2004  
2005  /**
2006   * bio_associate_blkg - associate a bio with the specified blkg
2007   * @bio: target bio
2008   * @blkg: the blkg to associate
2009   *
2010   * Associate @bio with the blkg specified by @blkg.  This is the queue specific
2011   * blkcg information associated with the @bio, a reference will be taken on the
2012   * @blkg and will be freed when the bio is freed.
2013   */
2014  int bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2015  {
2016  	if (unlikely(bio->bi_blkg))
2017  		return -EBUSY;
2018  	if (!blkg_try_get(blkg))
2019  		return -ENODEV;
2020  	bio->bi_blkg = blkg;
2021  	return 0;
2022  }
2023  
2024  /**
2025   * bio_disassociate_task - undo bio_associate_current()
2026   * @bio: target bio
2027   */
2028  void bio_disassociate_task(struct bio *bio)
2029  {
2030  	if (bio->bi_ioc) {
2031  		put_io_context(bio->bi_ioc);
2032  		bio->bi_ioc = NULL;
2033  	}
2034  	if (bio->bi_css) {
2035  		css_put(bio->bi_css);
2036  		bio->bi_css = NULL;
2037  	}
2038  	if (bio->bi_blkg) {
2039  		blkg_put(bio->bi_blkg);
2040  		bio->bi_blkg = NULL;
2041  	}
2042  }
2043  
2044  /**
2045   * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2046   * @dst: destination bio
2047   * @src: source bio
2048   */
2049  void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2050  {
2051  	if (src->bi_css)
2052  		WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2053  }
2054  EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
2055  #endif /* CONFIG_BLK_CGROUP */
2056  
2057  static void __init biovec_init_slabs(void)
2058  {
2059  	int i;
2060  
2061  	for (i = 0; i < BVEC_POOL_NR; i++) {
2062  		int size;
2063  		struct biovec_slab *bvs = bvec_slabs + i;
2064  
2065  		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2066  			bvs->slab = NULL;
2067  			continue;
2068  		}
2069  
2070  		size = bvs->nr_vecs * sizeof(struct bio_vec);
2071  		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2072                                  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2073  	}
2074  }
2075  
2076  static int __init init_bio(void)
2077  {
2078  	bio_slab_max = 2;
2079  	bio_slab_nr = 0;
2080  	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2081  			    GFP_KERNEL);
2082  	if (!bio_slabs)
2083  		panic("bio: can't allocate bios\n");
2084  
2085  	bio_integrity_init();
2086  	biovec_init_slabs();
2087  
2088  	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2089  		panic("bio: can't allocate bios\n");
2090  
2091  	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2092  		panic("bio: can't create integrity pool\n");
2093  
2094  	return 0;
2095  }
2096  subsys_initcall(init_bio);
2097