1 /* 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public Licens 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 16 * 17 */ 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/bio.h> 21 #include <linux/blkdev.h> 22 #include <linux/uio.h> 23 #include <linux/iocontext.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/kernel.h> 27 #include <linux/export.h> 28 #include <linux/mempool.h> 29 #include <linux/workqueue.h> 30 #include <linux/cgroup.h> 31 32 #include <trace/events/block.h> 33 34 /* 35 * Test patch to inline a certain number of bi_io_vec's inside the bio 36 * itself, to shrink a bio data allocation from two mempool calls to one 37 */ 38 #define BIO_INLINE_VECS 4 39 40 /* 41 * if you change this list, also change bvec_alloc or things will 42 * break badly! cannot be bigger than what you can fit into an 43 * unsigned short 44 */ 45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } 46 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = { 47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), 48 }; 49 #undef BV 50 51 /* 52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 53 * IO code that does not need private memory pools. 54 */ 55 struct bio_set *fs_bio_set; 56 EXPORT_SYMBOL(fs_bio_set); 57 58 /* 59 * Our slab pool management 60 */ 61 struct bio_slab { 62 struct kmem_cache *slab; 63 unsigned int slab_ref; 64 unsigned int slab_size; 65 char name[8]; 66 }; 67 static DEFINE_MUTEX(bio_slab_lock); 68 static struct bio_slab *bio_slabs; 69 static unsigned int bio_slab_nr, bio_slab_max; 70 71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 72 { 73 unsigned int sz = sizeof(struct bio) + extra_size; 74 struct kmem_cache *slab = NULL; 75 struct bio_slab *bslab, *new_bio_slabs; 76 unsigned int new_bio_slab_max; 77 unsigned int i, entry = -1; 78 79 mutex_lock(&bio_slab_lock); 80 81 i = 0; 82 while (i < bio_slab_nr) { 83 bslab = &bio_slabs[i]; 84 85 if (!bslab->slab && entry == -1) 86 entry = i; 87 else if (bslab->slab_size == sz) { 88 slab = bslab->slab; 89 bslab->slab_ref++; 90 break; 91 } 92 i++; 93 } 94 95 if (slab) 96 goto out_unlock; 97 98 if (bio_slab_nr == bio_slab_max && entry == -1) { 99 new_bio_slab_max = bio_slab_max << 1; 100 new_bio_slabs = krealloc(bio_slabs, 101 new_bio_slab_max * sizeof(struct bio_slab), 102 GFP_KERNEL); 103 if (!new_bio_slabs) 104 goto out_unlock; 105 bio_slab_max = new_bio_slab_max; 106 bio_slabs = new_bio_slabs; 107 } 108 if (entry == -1) 109 entry = bio_slab_nr++; 110 111 bslab = &bio_slabs[entry]; 112 113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, 115 SLAB_HWCACHE_ALIGN, NULL); 116 if (!slab) 117 goto out_unlock; 118 119 bslab->slab = slab; 120 bslab->slab_ref = 1; 121 bslab->slab_size = sz; 122 out_unlock: 123 mutex_unlock(&bio_slab_lock); 124 return slab; 125 } 126 127 static void bio_put_slab(struct bio_set *bs) 128 { 129 struct bio_slab *bslab = NULL; 130 unsigned int i; 131 132 mutex_lock(&bio_slab_lock); 133 134 for (i = 0; i < bio_slab_nr; i++) { 135 if (bs->bio_slab == bio_slabs[i].slab) { 136 bslab = &bio_slabs[i]; 137 break; 138 } 139 } 140 141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 142 goto out; 143 144 WARN_ON(!bslab->slab_ref); 145 146 if (--bslab->slab_ref) 147 goto out; 148 149 kmem_cache_destroy(bslab->slab); 150 bslab->slab = NULL; 151 152 out: 153 mutex_unlock(&bio_slab_lock); 154 } 155 156 unsigned int bvec_nr_vecs(unsigned short idx) 157 { 158 return bvec_slabs[idx].nr_vecs; 159 } 160 161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 162 { 163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS); 164 165 if (idx == BIOVEC_MAX_IDX) 166 mempool_free(bv, pool); 167 else { 168 struct biovec_slab *bvs = bvec_slabs + idx; 169 170 kmem_cache_free(bvs->slab, bv); 171 } 172 } 173 174 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 175 mempool_t *pool) 176 { 177 struct bio_vec *bvl; 178 179 /* 180 * see comment near bvec_array define! 181 */ 182 switch (nr) { 183 case 1: 184 *idx = 0; 185 break; 186 case 2 ... 4: 187 *idx = 1; 188 break; 189 case 5 ... 16: 190 *idx = 2; 191 break; 192 case 17 ... 64: 193 *idx = 3; 194 break; 195 case 65 ... 128: 196 *idx = 4; 197 break; 198 case 129 ... BIO_MAX_PAGES: 199 *idx = 5; 200 break; 201 default: 202 return NULL; 203 } 204 205 /* 206 * idx now points to the pool we want to allocate from. only the 207 * 1-vec entry pool is mempool backed. 208 */ 209 if (*idx == BIOVEC_MAX_IDX) { 210 fallback: 211 bvl = mempool_alloc(pool, gfp_mask); 212 } else { 213 struct biovec_slab *bvs = bvec_slabs + *idx; 214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO); 215 216 /* 217 * Make this allocation restricted and don't dump info on 218 * allocation failures, since we'll fallback to the mempool 219 * in case of failure. 220 */ 221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 222 223 /* 224 * Try a slab allocation. If this fails and __GFP_WAIT 225 * is set, retry with the 1-entry mempool 226 */ 227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 228 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) { 229 *idx = BIOVEC_MAX_IDX; 230 goto fallback; 231 } 232 } 233 234 return bvl; 235 } 236 237 static void __bio_free(struct bio *bio) 238 { 239 bio_disassociate_task(bio); 240 241 if (bio_integrity(bio)) 242 bio_integrity_free(bio); 243 } 244 245 static void bio_free(struct bio *bio) 246 { 247 struct bio_set *bs = bio->bi_pool; 248 void *p; 249 250 __bio_free(bio); 251 252 if (bs) { 253 if (bio_flagged(bio, BIO_OWNS_VEC)) 254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio)); 255 256 /* 257 * If we have front padding, adjust the bio pointer before freeing 258 */ 259 p = bio; 260 p -= bs->front_pad; 261 262 mempool_free(p, bs->bio_pool); 263 } else { 264 /* Bio was allocated by bio_kmalloc() */ 265 kfree(bio); 266 } 267 } 268 269 void bio_init(struct bio *bio) 270 { 271 memset(bio, 0, sizeof(*bio)); 272 bio->bi_flags = 1 << BIO_UPTODATE; 273 atomic_set(&bio->bi_remaining, 1); 274 atomic_set(&bio->bi_cnt, 1); 275 } 276 EXPORT_SYMBOL(bio_init); 277 278 /** 279 * bio_reset - reinitialize a bio 280 * @bio: bio to reset 281 * 282 * Description: 283 * After calling bio_reset(), @bio will be in the same state as a freshly 284 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 285 * preserved are the ones that are initialized by bio_alloc_bioset(). See 286 * comment in struct bio. 287 */ 288 void bio_reset(struct bio *bio) 289 { 290 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 291 292 __bio_free(bio); 293 294 memset(bio, 0, BIO_RESET_BYTES); 295 bio->bi_flags = flags|(1 << BIO_UPTODATE); 296 atomic_set(&bio->bi_remaining, 1); 297 } 298 EXPORT_SYMBOL(bio_reset); 299 300 static void bio_chain_endio(struct bio *bio, int error) 301 { 302 bio_endio(bio->bi_private, error); 303 bio_put(bio); 304 } 305 306 /** 307 * bio_chain - chain bio completions 308 * @bio: the target bio 309 * @parent: the @bio's parent bio 310 * 311 * The caller won't have a bi_end_io called when @bio completes - instead, 312 * @parent's bi_end_io won't be called until both @parent and @bio have 313 * completed; the chained bio will also be freed when it completes. 314 * 315 * The caller must not set bi_private or bi_end_io in @bio. 316 */ 317 void bio_chain(struct bio *bio, struct bio *parent) 318 { 319 BUG_ON(bio->bi_private || bio->bi_end_io); 320 321 bio->bi_private = parent; 322 bio->bi_end_io = bio_chain_endio; 323 atomic_inc(&parent->bi_remaining); 324 } 325 EXPORT_SYMBOL(bio_chain); 326 327 static void bio_alloc_rescue(struct work_struct *work) 328 { 329 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 330 struct bio *bio; 331 332 while (1) { 333 spin_lock(&bs->rescue_lock); 334 bio = bio_list_pop(&bs->rescue_list); 335 spin_unlock(&bs->rescue_lock); 336 337 if (!bio) 338 break; 339 340 generic_make_request(bio); 341 } 342 } 343 344 static void punt_bios_to_rescuer(struct bio_set *bs) 345 { 346 struct bio_list punt, nopunt; 347 struct bio *bio; 348 349 /* 350 * In order to guarantee forward progress we must punt only bios that 351 * were allocated from this bio_set; otherwise, if there was a bio on 352 * there for a stacking driver higher up in the stack, processing it 353 * could require allocating bios from this bio_set, and doing that from 354 * our own rescuer would be bad. 355 * 356 * Since bio lists are singly linked, pop them all instead of trying to 357 * remove from the middle of the list: 358 */ 359 360 bio_list_init(&punt); 361 bio_list_init(&nopunt); 362 363 while ((bio = bio_list_pop(current->bio_list))) 364 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 365 366 *current->bio_list = nopunt; 367 368 spin_lock(&bs->rescue_lock); 369 bio_list_merge(&bs->rescue_list, &punt); 370 spin_unlock(&bs->rescue_lock); 371 372 queue_work(bs->rescue_workqueue, &bs->rescue_work); 373 } 374 375 /** 376 * bio_alloc_bioset - allocate a bio for I/O 377 * @gfp_mask: the GFP_ mask given to the slab allocator 378 * @nr_iovecs: number of iovecs to pre-allocate 379 * @bs: the bio_set to allocate from. 380 * 381 * Description: 382 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 383 * backed by the @bs's mempool. 384 * 385 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be 386 * able to allocate a bio. This is due to the mempool guarantees. To make this 387 * work, callers must never allocate more than 1 bio at a time from this pool. 388 * Callers that need to allocate more than 1 bio must always submit the 389 * previously allocated bio for IO before attempting to allocate a new one. 390 * Failure to do so can cause deadlocks under memory pressure. 391 * 392 * Note that when running under generic_make_request() (i.e. any block 393 * driver), bios are not submitted until after you return - see the code in 394 * generic_make_request() that converts recursion into iteration, to prevent 395 * stack overflows. 396 * 397 * This would normally mean allocating multiple bios under 398 * generic_make_request() would be susceptible to deadlocks, but we have 399 * deadlock avoidance code that resubmits any blocked bios from a rescuer 400 * thread. 401 * 402 * However, we do not guarantee forward progress for allocations from other 403 * mempools. Doing multiple allocations from the same mempool under 404 * generic_make_request() should be avoided - instead, use bio_set's front_pad 405 * for per bio allocations. 406 * 407 * RETURNS: 408 * Pointer to new bio on success, NULL on failure. 409 */ 410 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) 411 { 412 gfp_t saved_gfp = gfp_mask; 413 unsigned front_pad; 414 unsigned inline_vecs; 415 unsigned long idx = BIO_POOL_NONE; 416 struct bio_vec *bvl = NULL; 417 struct bio *bio; 418 void *p; 419 420 if (!bs) { 421 if (nr_iovecs > UIO_MAXIOV) 422 return NULL; 423 424 p = kmalloc(sizeof(struct bio) + 425 nr_iovecs * sizeof(struct bio_vec), 426 gfp_mask); 427 front_pad = 0; 428 inline_vecs = nr_iovecs; 429 } else { 430 /* should not use nobvec bioset for nr_iovecs > 0 */ 431 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0)) 432 return NULL; 433 /* 434 * generic_make_request() converts recursion to iteration; this 435 * means if we're running beneath it, any bios we allocate and 436 * submit will not be submitted (and thus freed) until after we 437 * return. 438 * 439 * This exposes us to a potential deadlock if we allocate 440 * multiple bios from the same bio_set() while running 441 * underneath generic_make_request(). If we were to allocate 442 * multiple bios (say a stacking block driver that was splitting 443 * bios), we would deadlock if we exhausted the mempool's 444 * reserve. 445 * 446 * We solve this, and guarantee forward progress, with a rescuer 447 * workqueue per bio_set. If we go to allocate and there are 448 * bios on current->bio_list, we first try the allocation 449 * without __GFP_WAIT; if that fails, we punt those bios we 450 * would be blocking to the rescuer workqueue before we retry 451 * with the original gfp_flags. 452 */ 453 454 if (current->bio_list && !bio_list_empty(current->bio_list)) 455 gfp_mask &= ~__GFP_WAIT; 456 457 p = mempool_alloc(bs->bio_pool, gfp_mask); 458 if (!p && gfp_mask != saved_gfp) { 459 punt_bios_to_rescuer(bs); 460 gfp_mask = saved_gfp; 461 p = mempool_alloc(bs->bio_pool, gfp_mask); 462 } 463 464 front_pad = bs->front_pad; 465 inline_vecs = BIO_INLINE_VECS; 466 } 467 468 if (unlikely(!p)) 469 return NULL; 470 471 bio = p + front_pad; 472 bio_init(bio); 473 474 if (nr_iovecs > inline_vecs) { 475 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 476 if (!bvl && gfp_mask != saved_gfp) { 477 punt_bios_to_rescuer(bs); 478 gfp_mask = saved_gfp; 479 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 480 } 481 482 if (unlikely(!bvl)) 483 goto err_free; 484 485 bio->bi_flags |= 1 << BIO_OWNS_VEC; 486 } else if (nr_iovecs) { 487 bvl = bio->bi_inline_vecs; 488 } 489 490 bio->bi_pool = bs; 491 bio->bi_flags |= idx << BIO_POOL_OFFSET; 492 bio->bi_max_vecs = nr_iovecs; 493 bio->bi_io_vec = bvl; 494 return bio; 495 496 err_free: 497 mempool_free(p, bs->bio_pool); 498 return NULL; 499 } 500 EXPORT_SYMBOL(bio_alloc_bioset); 501 502 void zero_fill_bio(struct bio *bio) 503 { 504 unsigned long flags; 505 struct bio_vec bv; 506 struct bvec_iter iter; 507 508 bio_for_each_segment(bv, bio, iter) { 509 char *data = bvec_kmap_irq(&bv, &flags); 510 memset(data, 0, bv.bv_len); 511 flush_dcache_page(bv.bv_page); 512 bvec_kunmap_irq(data, &flags); 513 } 514 } 515 EXPORT_SYMBOL(zero_fill_bio); 516 517 /** 518 * bio_put - release a reference to a bio 519 * @bio: bio to release reference to 520 * 521 * Description: 522 * Put a reference to a &struct bio, either one you have gotten with 523 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it. 524 **/ 525 void bio_put(struct bio *bio) 526 { 527 BIO_BUG_ON(!atomic_read(&bio->bi_cnt)); 528 529 /* 530 * last put frees it 531 */ 532 if (atomic_dec_and_test(&bio->bi_cnt)) 533 bio_free(bio); 534 } 535 EXPORT_SYMBOL(bio_put); 536 537 inline int bio_phys_segments(struct request_queue *q, struct bio *bio) 538 { 539 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) 540 blk_recount_segments(q, bio); 541 542 return bio->bi_phys_segments; 543 } 544 EXPORT_SYMBOL(bio_phys_segments); 545 546 /** 547 * __bio_clone_fast - clone a bio that shares the original bio's biovec 548 * @bio: destination bio 549 * @bio_src: bio to clone 550 * 551 * Clone a &bio. Caller will own the returned bio, but not 552 * the actual data it points to. Reference count of returned 553 * bio will be one. 554 * 555 * Caller must ensure that @bio_src is not freed before @bio. 556 */ 557 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 558 { 559 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE); 560 561 /* 562 * most users will be overriding ->bi_bdev with a new target, 563 * so we don't set nor calculate new physical/hw segment counts here 564 */ 565 bio->bi_bdev = bio_src->bi_bdev; 566 bio->bi_flags |= 1 << BIO_CLONED; 567 bio->bi_rw = bio_src->bi_rw; 568 bio->bi_iter = bio_src->bi_iter; 569 bio->bi_io_vec = bio_src->bi_io_vec; 570 } 571 EXPORT_SYMBOL(__bio_clone_fast); 572 573 /** 574 * bio_clone_fast - clone a bio that shares the original bio's biovec 575 * @bio: bio to clone 576 * @gfp_mask: allocation priority 577 * @bs: bio_set to allocate from 578 * 579 * Like __bio_clone_fast, only also allocates the returned bio 580 */ 581 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 582 { 583 struct bio *b; 584 585 b = bio_alloc_bioset(gfp_mask, 0, bs); 586 if (!b) 587 return NULL; 588 589 __bio_clone_fast(b, bio); 590 591 if (bio_integrity(bio)) { 592 int ret; 593 594 ret = bio_integrity_clone(b, bio, gfp_mask); 595 596 if (ret < 0) { 597 bio_put(b); 598 return NULL; 599 } 600 } 601 602 return b; 603 } 604 EXPORT_SYMBOL(bio_clone_fast); 605 606 /** 607 * bio_clone_bioset - clone a bio 608 * @bio_src: bio to clone 609 * @gfp_mask: allocation priority 610 * @bs: bio_set to allocate from 611 * 612 * Clone bio. Caller will own the returned bio, but not the actual data it 613 * points to. Reference count of returned bio will be one. 614 */ 615 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, 616 struct bio_set *bs) 617 { 618 struct bvec_iter iter; 619 struct bio_vec bv; 620 struct bio *bio; 621 622 /* 623 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from 624 * bio_src->bi_io_vec to bio->bi_io_vec. 625 * 626 * We can't do that anymore, because: 627 * 628 * - The point of cloning the biovec is to produce a bio with a biovec 629 * the caller can modify: bi_idx and bi_bvec_done should be 0. 630 * 631 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if 632 * we tried to clone the whole thing bio_alloc_bioset() would fail. 633 * But the clone should succeed as long as the number of biovecs we 634 * actually need to allocate is fewer than BIO_MAX_PAGES. 635 * 636 * - Lastly, bi_vcnt should not be looked at or relied upon by code 637 * that does not own the bio - reason being drivers don't use it for 638 * iterating over the biovec anymore, so expecting it to be kept up 639 * to date (i.e. for clones that share the parent biovec) is just 640 * asking for trouble and would force extra work on 641 * __bio_clone_fast() anyways. 642 */ 643 644 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs); 645 if (!bio) 646 return NULL; 647 648 bio->bi_bdev = bio_src->bi_bdev; 649 bio->bi_rw = bio_src->bi_rw; 650 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; 651 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; 652 653 if (bio->bi_rw & REQ_DISCARD) 654 goto integrity_clone; 655 656 if (bio->bi_rw & REQ_WRITE_SAME) { 657 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0]; 658 goto integrity_clone; 659 } 660 661 bio_for_each_segment(bv, bio_src, iter) 662 bio->bi_io_vec[bio->bi_vcnt++] = bv; 663 664 integrity_clone: 665 if (bio_integrity(bio_src)) { 666 int ret; 667 668 ret = bio_integrity_clone(bio, bio_src, gfp_mask); 669 if (ret < 0) { 670 bio_put(bio); 671 return NULL; 672 } 673 } 674 675 return bio; 676 } 677 EXPORT_SYMBOL(bio_clone_bioset); 678 679 /** 680 * bio_get_nr_vecs - return approx number of vecs 681 * @bdev: I/O target 682 * 683 * Return the approximate number of pages we can send to this target. 684 * There's no guarantee that you will be able to fit this number of pages 685 * into a bio, it does not account for dynamic restrictions that vary 686 * on offset. 687 */ 688 int bio_get_nr_vecs(struct block_device *bdev) 689 { 690 struct request_queue *q = bdev_get_queue(bdev); 691 int nr_pages; 692 693 nr_pages = min_t(unsigned, 694 queue_max_segments(q), 695 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1); 696 697 return min_t(unsigned, nr_pages, BIO_MAX_PAGES); 698 699 } 700 EXPORT_SYMBOL(bio_get_nr_vecs); 701 702 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page 703 *page, unsigned int len, unsigned int offset, 704 unsigned int max_sectors) 705 { 706 int retried_segments = 0; 707 struct bio_vec *bvec; 708 709 /* 710 * cloned bio must not modify vec list 711 */ 712 if (unlikely(bio_flagged(bio, BIO_CLONED))) 713 return 0; 714 715 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors) 716 return 0; 717 718 /* 719 * For filesystems with a blocksize smaller than the pagesize 720 * we will often be called with the same page as last time and 721 * a consecutive offset. Optimize this special case. 722 */ 723 if (bio->bi_vcnt > 0) { 724 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 725 726 if (page == prev->bv_page && 727 offset == prev->bv_offset + prev->bv_len) { 728 unsigned int prev_bv_len = prev->bv_len; 729 prev->bv_len += len; 730 731 if (q->merge_bvec_fn) { 732 struct bvec_merge_data bvm = { 733 /* prev_bvec is already charged in 734 bi_size, discharge it in order to 735 simulate merging updated prev_bvec 736 as new bvec. */ 737 .bi_bdev = bio->bi_bdev, 738 .bi_sector = bio->bi_iter.bi_sector, 739 .bi_size = bio->bi_iter.bi_size - 740 prev_bv_len, 741 .bi_rw = bio->bi_rw, 742 }; 743 744 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) { 745 prev->bv_len -= len; 746 return 0; 747 } 748 } 749 750 bio->bi_iter.bi_size += len; 751 goto done; 752 } 753 754 /* 755 * If the queue doesn't support SG gaps and adding this 756 * offset would create a gap, disallow it. 757 */ 758 if (q->queue_flags & (1 << QUEUE_FLAG_SG_GAPS) && 759 bvec_gap_to_prev(prev, offset)) 760 return 0; 761 } 762 763 if (bio->bi_vcnt >= bio->bi_max_vecs) 764 return 0; 765 766 /* 767 * setup the new entry, we might clear it again later if we 768 * cannot add the page 769 */ 770 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 771 bvec->bv_page = page; 772 bvec->bv_len = len; 773 bvec->bv_offset = offset; 774 bio->bi_vcnt++; 775 bio->bi_phys_segments++; 776 bio->bi_iter.bi_size += len; 777 778 /* 779 * Perform a recount if the number of segments is greater 780 * than queue_max_segments(q). 781 */ 782 783 while (bio->bi_phys_segments > queue_max_segments(q)) { 784 785 if (retried_segments) 786 goto failed; 787 788 retried_segments = 1; 789 blk_recount_segments(q, bio); 790 } 791 792 /* 793 * if queue has other restrictions (eg varying max sector size 794 * depending on offset), it can specify a merge_bvec_fn in the 795 * queue to get further control 796 */ 797 if (q->merge_bvec_fn) { 798 struct bvec_merge_data bvm = { 799 .bi_bdev = bio->bi_bdev, 800 .bi_sector = bio->bi_iter.bi_sector, 801 .bi_size = bio->bi_iter.bi_size - len, 802 .bi_rw = bio->bi_rw, 803 }; 804 805 /* 806 * merge_bvec_fn() returns number of bytes it can accept 807 * at this offset 808 */ 809 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) 810 goto failed; 811 } 812 813 /* If we may be able to merge these biovecs, force a recount */ 814 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) 815 bio->bi_flags &= ~(1 << BIO_SEG_VALID); 816 817 done: 818 return len; 819 820 failed: 821 bvec->bv_page = NULL; 822 bvec->bv_len = 0; 823 bvec->bv_offset = 0; 824 bio->bi_vcnt--; 825 bio->bi_iter.bi_size -= len; 826 blk_recount_segments(q, bio); 827 return 0; 828 } 829 830 /** 831 * bio_add_pc_page - attempt to add page to bio 832 * @q: the target queue 833 * @bio: destination bio 834 * @page: page to add 835 * @len: vec entry length 836 * @offset: vec entry offset 837 * 838 * Attempt to add a page to the bio_vec maplist. This can fail for a 839 * number of reasons, such as the bio being full or target block device 840 * limitations. The target block device must allow bio's up to PAGE_SIZE, 841 * so it is always possible to add a single page to an empty bio. 842 * 843 * This should only be used by REQ_PC bios. 844 */ 845 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page, 846 unsigned int len, unsigned int offset) 847 { 848 return __bio_add_page(q, bio, page, len, offset, 849 queue_max_hw_sectors(q)); 850 } 851 EXPORT_SYMBOL(bio_add_pc_page); 852 853 /** 854 * bio_add_page - attempt to add page to bio 855 * @bio: destination bio 856 * @page: page to add 857 * @len: vec entry length 858 * @offset: vec entry offset 859 * 860 * Attempt to add a page to the bio_vec maplist. This can fail for a 861 * number of reasons, such as the bio being full or target block device 862 * limitations. The target block device must allow bio's up to PAGE_SIZE, 863 * so it is always possible to add a single page to an empty bio. 864 */ 865 int bio_add_page(struct bio *bio, struct page *page, unsigned int len, 866 unsigned int offset) 867 { 868 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 869 unsigned int max_sectors; 870 871 max_sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector); 872 if ((max_sectors < (len >> 9)) && !bio->bi_iter.bi_size) 873 max_sectors = len >> 9; 874 875 return __bio_add_page(q, bio, page, len, offset, max_sectors); 876 } 877 EXPORT_SYMBOL(bio_add_page); 878 879 struct submit_bio_ret { 880 struct completion event; 881 int error; 882 }; 883 884 static void submit_bio_wait_endio(struct bio *bio, int error) 885 { 886 struct submit_bio_ret *ret = bio->bi_private; 887 888 ret->error = error; 889 complete(&ret->event); 890 } 891 892 /** 893 * submit_bio_wait - submit a bio, and wait until it completes 894 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 895 * @bio: The &struct bio which describes the I/O 896 * 897 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 898 * bio_endio() on failure. 899 */ 900 int submit_bio_wait(int rw, struct bio *bio) 901 { 902 struct submit_bio_ret ret; 903 904 rw |= REQ_SYNC; 905 init_completion(&ret.event); 906 bio->bi_private = &ret; 907 bio->bi_end_io = submit_bio_wait_endio; 908 submit_bio(rw, bio); 909 wait_for_completion(&ret.event); 910 911 return ret.error; 912 } 913 EXPORT_SYMBOL(submit_bio_wait); 914 915 /** 916 * bio_advance - increment/complete a bio by some number of bytes 917 * @bio: bio to advance 918 * @bytes: number of bytes to complete 919 * 920 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 921 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 922 * be updated on the last bvec as well. 923 * 924 * @bio will then represent the remaining, uncompleted portion of the io. 925 */ 926 void bio_advance(struct bio *bio, unsigned bytes) 927 { 928 if (bio_integrity(bio)) 929 bio_integrity_advance(bio, bytes); 930 931 bio_advance_iter(bio, &bio->bi_iter, bytes); 932 } 933 EXPORT_SYMBOL(bio_advance); 934 935 /** 936 * bio_alloc_pages - allocates a single page for each bvec in a bio 937 * @bio: bio to allocate pages for 938 * @gfp_mask: flags for allocation 939 * 940 * Allocates pages up to @bio->bi_vcnt. 941 * 942 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are 943 * freed. 944 */ 945 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask) 946 { 947 int i; 948 struct bio_vec *bv; 949 950 bio_for_each_segment_all(bv, bio, i) { 951 bv->bv_page = alloc_page(gfp_mask); 952 if (!bv->bv_page) { 953 while (--bv >= bio->bi_io_vec) 954 __free_page(bv->bv_page); 955 return -ENOMEM; 956 } 957 } 958 959 return 0; 960 } 961 EXPORT_SYMBOL(bio_alloc_pages); 962 963 /** 964 * bio_copy_data - copy contents of data buffers from one chain of bios to 965 * another 966 * @src: source bio list 967 * @dst: destination bio list 968 * 969 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats 970 * @src and @dst as linked lists of bios. 971 * 972 * Stops when it reaches the end of either @src or @dst - that is, copies 973 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 974 */ 975 void bio_copy_data(struct bio *dst, struct bio *src) 976 { 977 struct bvec_iter src_iter, dst_iter; 978 struct bio_vec src_bv, dst_bv; 979 void *src_p, *dst_p; 980 unsigned bytes; 981 982 src_iter = src->bi_iter; 983 dst_iter = dst->bi_iter; 984 985 while (1) { 986 if (!src_iter.bi_size) { 987 src = src->bi_next; 988 if (!src) 989 break; 990 991 src_iter = src->bi_iter; 992 } 993 994 if (!dst_iter.bi_size) { 995 dst = dst->bi_next; 996 if (!dst) 997 break; 998 999 dst_iter = dst->bi_iter; 1000 } 1001 1002 src_bv = bio_iter_iovec(src, src_iter); 1003 dst_bv = bio_iter_iovec(dst, dst_iter); 1004 1005 bytes = min(src_bv.bv_len, dst_bv.bv_len); 1006 1007 src_p = kmap_atomic(src_bv.bv_page); 1008 dst_p = kmap_atomic(dst_bv.bv_page); 1009 1010 memcpy(dst_p + dst_bv.bv_offset, 1011 src_p + src_bv.bv_offset, 1012 bytes); 1013 1014 kunmap_atomic(dst_p); 1015 kunmap_atomic(src_p); 1016 1017 bio_advance_iter(src, &src_iter, bytes); 1018 bio_advance_iter(dst, &dst_iter, bytes); 1019 } 1020 } 1021 EXPORT_SYMBOL(bio_copy_data); 1022 1023 struct bio_map_data { 1024 int is_our_pages; 1025 struct iov_iter iter; 1026 struct iovec iov[]; 1027 }; 1028 1029 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count, 1030 gfp_t gfp_mask) 1031 { 1032 if (iov_count > UIO_MAXIOV) 1033 return NULL; 1034 1035 return kmalloc(sizeof(struct bio_map_data) + 1036 sizeof(struct iovec) * iov_count, gfp_mask); 1037 } 1038 1039 /** 1040 * bio_copy_from_iter - copy all pages from iov_iter to bio 1041 * @bio: The &struct bio which describes the I/O as destination 1042 * @iter: iov_iter as source 1043 * 1044 * Copy all pages from iov_iter to bio. 1045 * Returns 0 on success, or error on failure. 1046 */ 1047 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter) 1048 { 1049 int i; 1050 struct bio_vec *bvec; 1051 1052 bio_for_each_segment_all(bvec, bio, i) { 1053 ssize_t ret; 1054 1055 ret = copy_page_from_iter(bvec->bv_page, 1056 bvec->bv_offset, 1057 bvec->bv_len, 1058 &iter); 1059 1060 if (!iov_iter_count(&iter)) 1061 break; 1062 1063 if (ret < bvec->bv_len) 1064 return -EFAULT; 1065 } 1066 1067 return 0; 1068 } 1069 1070 /** 1071 * bio_copy_to_iter - copy all pages from bio to iov_iter 1072 * @bio: The &struct bio which describes the I/O as source 1073 * @iter: iov_iter as destination 1074 * 1075 * Copy all pages from bio to iov_iter. 1076 * Returns 0 on success, or error on failure. 1077 */ 1078 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 1079 { 1080 int i; 1081 struct bio_vec *bvec; 1082 1083 bio_for_each_segment_all(bvec, bio, i) { 1084 ssize_t ret; 1085 1086 ret = copy_page_to_iter(bvec->bv_page, 1087 bvec->bv_offset, 1088 bvec->bv_len, 1089 &iter); 1090 1091 if (!iov_iter_count(&iter)) 1092 break; 1093 1094 if (ret < bvec->bv_len) 1095 return -EFAULT; 1096 } 1097 1098 return 0; 1099 } 1100 1101 static void bio_free_pages(struct bio *bio) 1102 { 1103 struct bio_vec *bvec; 1104 int i; 1105 1106 bio_for_each_segment_all(bvec, bio, i) 1107 __free_page(bvec->bv_page); 1108 } 1109 1110 /** 1111 * bio_uncopy_user - finish previously mapped bio 1112 * @bio: bio being terminated 1113 * 1114 * Free pages allocated from bio_copy_user_iov() and write back data 1115 * to user space in case of a read. 1116 */ 1117 int bio_uncopy_user(struct bio *bio) 1118 { 1119 struct bio_map_data *bmd = bio->bi_private; 1120 int ret = 0; 1121 1122 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1123 /* 1124 * if we're in a workqueue, the request is orphaned, so 1125 * don't copy into a random user address space, just free. 1126 */ 1127 if (current->mm && bio_data_dir(bio) == READ) 1128 ret = bio_copy_to_iter(bio, bmd->iter); 1129 if (bmd->is_our_pages) 1130 bio_free_pages(bio); 1131 } 1132 kfree(bmd); 1133 bio_put(bio); 1134 return ret; 1135 } 1136 EXPORT_SYMBOL(bio_uncopy_user); 1137 1138 /** 1139 * bio_copy_user_iov - copy user data to bio 1140 * @q: destination block queue 1141 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1142 * @iter: iovec iterator 1143 * @gfp_mask: memory allocation flags 1144 * 1145 * Prepares and returns a bio for indirect user io, bouncing data 1146 * to/from kernel pages as necessary. Must be paired with 1147 * call bio_uncopy_user() on io completion. 1148 */ 1149 struct bio *bio_copy_user_iov(struct request_queue *q, 1150 struct rq_map_data *map_data, 1151 const struct iov_iter *iter, 1152 gfp_t gfp_mask) 1153 { 1154 struct bio_map_data *bmd; 1155 struct page *page; 1156 struct bio *bio; 1157 int i, ret; 1158 int nr_pages = 0; 1159 unsigned int len = iter->count; 1160 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0; 1161 1162 for (i = 0; i < iter->nr_segs; i++) { 1163 unsigned long uaddr; 1164 unsigned long end; 1165 unsigned long start; 1166 1167 uaddr = (unsigned long) iter->iov[i].iov_base; 1168 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1) 1169 >> PAGE_SHIFT; 1170 start = uaddr >> PAGE_SHIFT; 1171 1172 /* 1173 * Overflow, abort 1174 */ 1175 if (end < start) 1176 return ERR_PTR(-EINVAL); 1177 1178 nr_pages += end - start; 1179 } 1180 1181 if (offset) 1182 nr_pages++; 1183 1184 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask); 1185 if (!bmd) 1186 return ERR_PTR(-ENOMEM); 1187 1188 /* 1189 * We need to do a deep copy of the iov_iter including the iovecs. 1190 * The caller provided iov might point to an on-stack or otherwise 1191 * shortlived one. 1192 */ 1193 bmd->is_our_pages = map_data ? 0 : 1; 1194 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs); 1195 iov_iter_init(&bmd->iter, iter->type, bmd->iov, 1196 iter->nr_segs, iter->count); 1197 1198 ret = -ENOMEM; 1199 bio = bio_kmalloc(gfp_mask, nr_pages); 1200 if (!bio) 1201 goto out_bmd; 1202 1203 if (iter->type & WRITE) 1204 bio->bi_rw |= REQ_WRITE; 1205 1206 ret = 0; 1207 1208 if (map_data) { 1209 nr_pages = 1 << map_data->page_order; 1210 i = map_data->offset / PAGE_SIZE; 1211 } 1212 while (len) { 1213 unsigned int bytes = PAGE_SIZE; 1214 1215 bytes -= offset; 1216 1217 if (bytes > len) 1218 bytes = len; 1219 1220 if (map_data) { 1221 if (i == map_data->nr_entries * nr_pages) { 1222 ret = -ENOMEM; 1223 break; 1224 } 1225 1226 page = map_data->pages[i / nr_pages]; 1227 page += (i % nr_pages); 1228 1229 i++; 1230 } else { 1231 page = alloc_page(q->bounce_gfp | gfp_mask); 1232 if (!page) { 1233 ret = -ENOMEM; 1234 break; 1235 } 1236 } 1237 1238 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) 1239 break; 1240 1241 len -= bytes; 1242 offset = 0; 1243 } 1244 1245 if (ret) 1246 goto cleanup; 1247 1248 /* 1249 * success 1250 */ 1251 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) || 1252 (map_data && map_data->from_user)) { 1253 ret = bio_copy_from_iter(bio, *iter); 1254 if (ret) 1255 goto cleanup; 1256 } 1257 1258 bio->bi_private = bmd; 1259 return bio; 1260 cleanup: 1261 if (!map_data) 1262 bio_free_pages(bio); 1263 bio_put(bio); 1264 out_bmd: 1265 kfree(bmd); 1266 return ERR_PTR(ret); 1267 } 1268 1269 /** 1270 * bio_map_user_iov - map user iovec into bio 1271 * @q: the struct request_queue for the bio 1272 * @iter: iovec iterator 1273 * @gfp_mask: memory allocation flags 1274 * 1275 * Map the user space address into a bio suitable for io to a block 1276 * device. Returns an error pointer in case of error. 1277 */ 1278 struct bio *bio_map_user_iov(struct request_queue *q, 1279 const struct iov_iter *iter, 1280 gfp_t gfp_mask) 1281 { 1282 int j; 1283 int nr_pages = 0; 1284 struct page **pages; 1285 struct bio *bio; 1286 int cur_page = 0; 1287 int ret, offset; 1288 struct iov_iter i; 1289 struct iovec iov; 1290 1291 iov_for_each(iov, i, *iter) { 1292 unsigned long uaddr = (unsigned long) iov.iov_base; 1293 unsigned long len = iov.iov_len; 1294 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1295 unsigned long start = uaddr >> PAGE_SHIFT; 1296 1297 /* 1298 * Overflow, abort 1299 */ 1300 if (end < start) 1301 return ERR_PTR(-EINVAL); 1302 1303 nr_pages += end - start; 1304 /* 1305 * buffer must be aligned to at least hardsector size for now 1306 */ 1307 if (uaddr & queue_dma_alignment(q)) 1308 return ERR_PTR(-EINVAL); 1309 } 1310 1311 if (!nr_pages) 1312 return ERR_PTR(-EINVAL); 1313 1314 bio = bio_kmalloc(gfp_mask, nr_pages); 1315 if (!bio) 1316 return ERR_PTR(-ENOMEM); 1317 1318 ret = -ENOMEM; 1319 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); 1320 if (!pages) 1321 goto out; 1322 1323 iov_for_each(iov, i, *iter) { 1324 unsigned long uaddr = (unsigned long) iov.iov_base; 1325 unsigned long len = iov.iov_len; 1326 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1327 unsigned long start = uaddr >> PAGE_SHIFT; 1328 const int local_nr_pages = end - start; 1329 const int page_limit = cur_page + local_nr_pages; 1330 1331 ret = get_user_pages_fast(uaddr, local_nr_pages, 1332 (iter->type & WRITE) != WRITE, 1333 &pages[cur_page]); 1334 if (ret < local_nr_pages) { 1335 ret = -EFAULT; 1336 goto out_unmap; 1337 } 1338 1339 offset = uaddr & ~PAGE_MASK; 1340 for (j = cur_page; j < page_limit; j++) { 1341 unsigned int bytes = PAGE_SIZE - offset; 1342 1343 if (len <= 0) 1344 break; 1345 1346 if (bytes > len) 1347 bytes = len; 1348 1349 /* 1350 * sorry... 1351 */ 1352 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < 1353 bytes) 1354 break; 1355 1356 len -= bytes; 1357 offset = 0; 1358 } 1359 1360 cur_page = j; 1361 /* 1362 * release the pages we didn't map into the bio, if any 1363 */ 1364 while (j < page_limit) 1365 page_cache_release(pages[j++]); 1366 } 1367 1368 kfree(pages); 1369 1370 /* 1371 * set data direction, and check if mapped pages need bouncing 1372 */ 1373 if (iter->type & WRITE) 1374 bio->bi_rw |= REQ_WRITE; 1375 1376 bio->bi_flags |= (1 << BIO_USER_MAPPED); 1377 1378 /* 1379 * subtle -- if __bio_map_user() ended up bouncing a bio, 1380 * it would normally disappear when its bi_end_io is run. 1381 * however, we need it for the unmap, so grab an extra 1382 * reference to it 1383 */ 1384 bio_get(bio); 1385 return bio; 1386 1387 out_unmap: 1388 for (j = 0; j < nr_pages; j++) { 1389 if (!pages[j]) 1390 break; 1391 page_cache_release(pages[j]); 1392 } 1393 out: 1394 kfree(pages); 1395 bio_put(bio); 1396 return ERR_PTR(ret); 1397 } 1398 1399 static void __bio_unmap_user(struct bio *bio) 1400 { 1401 struct bio_vec *bvec; 1402 int i; 1403 1404 /* 1405 * make sure we dirty pages we wrote to 1406 */ 1407 bio_for_each_segment_all(bvec, bio, i) { 1408 if (bio_data_dir(bio) == READ) 1409 set_page_dirty_lock(bvec->bv_page); 1410 1411 page_cache_release(bvec->bv_page); 1412 } 1413 1414 bio_put(bio); 1415 } 1416 1417 /** 1418 * bio_unmap_user - unmap a bio 1419 * @bio: the bio being unmapped 1420 * 1421 * Unmap a bio previously mapped by bio_map_user(). Must be called with 1422 * a process context. 1423 * 1424 * bio_unmap_user() may sleep. 1425 */ 1426 void bio_unmap_user(struct bio *bio) 1427 { 1428 __bio_unmap_user(bio); 1429 bio_put(bio); 1430 } 1431 EXPORT_SYMBOL(bio_unmap_user); 1432 1433 static void bio_map_kern_endio(struct bio *bio, int err) 1434 { 1435 bio_put(bio); 1436 } 1437 1438 /** 1439 * bio_map_kern - map kernel address into bio 1440 * @q: the struct request_queue for the bio 1441 * @data: pointer to buffer to map 1442 * @len: length in bytes 1443 * @gfp_mask: allocation flags for bio allocation 1444 * 1445 * Map the kernel address into a bio suitable for io to a block 1446 * device. Returns an error pointer in case of error. 1447 */ 1448 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1449 gfp_t gfp_mask) 1450 { 1451 unsigned long kaddr = (unsigned long)data; 1452 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1453 unsigned long start = kaddr >> PAGE_SHIFT; 1454 const int nr_pages = end - start; 1455 int offset, i; 1456 struct bio *bio; 1457 1458 bio = bio_kmalloc(gfp_mask, nr_pages); 1459 if (!bio) 1460 return ERR_PTR(-ENOMEM); 1461 1462 offset = offset_in_page(kaddr); 1463 for (i = 0; i < nr_pages; i++) { 1464 unsigned int bytes = PAGE_SIZE - offset; 1465 1466 if (len <= 0) 1467 break; 1468 1469 if (bytes > len) 1470 bytes = len; 1471 1472 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, 1473 offset) < bytes) { 1474 /* we don't support partial mappings */ 1475 bio_put(bio); 1476 return ERR_PTR(-EINVAL); 1477 } 1478 1479 data += bytes; 1480 len -= bytes; 1481 offset = 0; 1482 } 1483 1484 bio->bi_end_io = bio_map_kern_endio; 1485 return bio; 1486 } 1487 EXPORT_SYMBOL(bio_map_kern); 1488 1489 static void bio_copy_kern_endio(struct bio *bio, int err) 1490 { 1491 bio_free_pages(bio); 1492 bio_put(bio); 1493 } 1494 1495 static void bio_copy_kern_endio_read(struct bio *bio, int err) 1496 { 1497 char *p = bio->bi_private; 1498 struct bio_vec *bvec; 1499 int i; 1500 1501 bio_for_each_segment_all(bvec, bio, i) { 1502 memcpy(p, page_address(bvec->bv_page), bvec->bv_len); 1503 p += bvec->bv_len; 1504 } 1505 1506 bio_copy_kern_endio(bio, err); 1507 } 1508 1509 /** 1510 * bio_copy_kern - copy kernel address into bio 1511 * @q: the struct request_queue for the bio 1512 * @data: pointer to buffer to copy 1513 * @len: length in bytes 1514 * @gfp_mask: allocation flags for bio and page allocation 1515 * @reading: data direction is READ 1516 * 1517 * copy the kernel address into a bio suitable for io to a block 1518 * device. Returns an error pointer in case of error. 1519 */ 1520 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1521 gfp_t gfp_mask, int reading) 1522 { 1523 unsigned long kaddr = (unsigned long)data; 1524 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1525 unsigned long start = kaddr >> PAGE_SHIFT; 1526 struct bio *bio; 1527 void *p = data; 1528 int nr_pages = 0; 1529 1530 /* 1531 * Overflow, abort 1532 */ 1533 if (end < start) 1534 return ERR_PTR(-EINVAL); 1535 1536 nr_pages = end - start; 1537 bio = bio_kmalloc(gfp_mask, nr_pages); 1538 if (!bio) 1539 return ERR_PTR(-ENOMEM); 1540 1541 while (len) { 1542 struct page *page; 1543 unsigned int bytes = PAGE_SIZE; 1544 1545 if (bytes > len) 1546 bytes = len; 1547 1548 page = alloc_page(q->bounce_gfp | gfp_mask); 1549 if (!page) 1550 goto cleanup; 1551 1552 if (!reading) 1553 memcpy(page_address(page), p, bytes); 1554 1555 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 1556 break; 1557 1558 len -= bytes; 1559 p += bytes; 1560 } 1561 1562 if (reading) { 1563 bio->bi_end_io = bio_copy_kern_endio_read; 1564 bio->bi_private = data; 1565 } else { 1566 bio->bi_end_io = bio_copy_kern_endio; 1567 bio->bi_rw |= REQ_WRITE; 1568 } 1569 1570 return bio; 1571 1572 cleanup: 1573 bio_free_pages(bio); 1574 bio_put(bio); 1575 return ERR_PTR(-ENOMEM); 1576 } 1577 EXPORT_SYMBOL(bio_copy_kern); 1578 1579 /* 1580 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1581 * for performing direct-IO in BIOs. 1582 * 1583 * The problem is that we cannot run set_page_dirty() from interrupt context 1584 * because the required locks are not interrupt-safe. So what we can do is to 1585 * mark the pages dirty _before_ performing IO. And in interrupt context, 1586 * check that the pages are still dirty. If so, fine. If not, redirty them 1587 * in process context. 1588 * 1589 * We special-case compound pages here: normally this means reads into hugetlb 1590 * pages. The logic in here doesn't really work right for compound pages 1591 * because the VM does not uniformly chase down the head page in all cases. 1592 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1593 * handle them at all. So we skip compound pages here at an early stage. 1594 * 1595 * Note that this code is very hard to test under normal circumstances because 1596 * direct-io pins the pages with get_user_pages(). This makes 1597 * is_page_cache_freeable return false, and the VM will not clean the pages. 1598 * But other code (eg, flusher threads) could clean the pages if they are mapped 1599 * pagecache. 1600 * 1601 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1602 * deferred bio dirtying paths. 1603 */ 1604 1605 /* 1606 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1607 */ 1608 void bio_set_pages_dirty(struct bio *bio) 1609 { 1610 struct bio_vec *bvec; 1611 int i; 1612 1613 bio_for_each_segment_all(bvec, bio, i) { 1614 struct page *page = bvec->bv_page; 1615 1616 if (page && !PageCompound(page)) 1617 set_page_dirty_lock(page); 1618 } 1619 } 1620 1621 static void bio_release_pages(struct bio *bio) 1622 { 1623 struct bio_vec *bvec; 1624 int i; 1625 1626 bio_for_each_segment_all(bvec, bio, i) { 1627 struct page *page = bvec->bv_page; 1628 1629 if (page) 1630 put_page(page); 1631 } 1632 } 1633 1634 /* 1635 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1636 * If they are, then fine. If, however, some pages are clean then they must 1637 * have been written out during the direct-IO read. So we take another ref on 1638 * the BIO and the offending pages and re-dirty the pages in process context. 1639 * 1640 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1641 * here on. It will run one page_cache_release() against each page and will 1642 * run one bio_put() against the BIO. 1643 */ 1644 1645 static void bio_dirty_fn(struct work_struct *work); 1646 1647 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1648 static DEFINE_SPINLOCK(bio_dirty_lock); 1649 static struct bio *bio_dirty_list; 1650 1651 /* 1652 * This runs in process context 1653 */ 1654 static void bio_dirty_fn(struct work_struct *work) 1655 { 1656 unsigned long flags; 1657 struct bio *bio; 1658 1659 spin_lock_irqsave(&bio_dirty_lock, flags); 1660 bio = bio_dirty_list; 1661 bio_dirty_list = NULL; 1662 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1663 1664 while (bio) { 1665 struct bio *next = bio->bi_private; 1666 1667 bio_set_pages_dirty(bio); 1668 bio_release_pages(bio); 1669 bio_put(bio); 1670 bio = next; 1671 } 1672 } 1673 1674 void bio_check_pages_dirty(struct bio *bio) 1675 { 1676 struct bio_vec *bvec; 1677 int nr_clean_pages = 0; 1678 int i; 1679 1680 bio_for_each_segment_all(bvec, bio, i) { 1681 struct page *page = bvec->bv_page; 1682 1683 if (PageDirty(page) || PageCompound(page)) { 1684 page_cache_release(page); 1685 bvec->bv_page = NULL; 1686 } else { 1687 nr_clean_pages++; 1688 } 1689 } 1690 1691 if (nr_clean_pages) { 1692 unsigned long flags; 1693 1694 spin_lock_irqsave(&bio_dirty_lock, flags); 1695 bio->bi_private = bio_dirty_list; 1696 bio_dirty_list = bio; 1697 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1698 schedule_work(&bio_dirty_work); 1699 } else { 1700 bio_put(bio); 1701 } 1702 } 1703 1704 void generic_start_io_acct(int rw, unsigned long sectors, 1705 struct hd_struct *part) 1706 { 1707 int cpu = part_stat_lock(); 1708 1709 part_round_stats(cpu, part); 1710 part_stat_inc(cpu, part, ios[rw]); 1711 part_stat_add(cpu, part, sectors[rw], sectors); 1712 part_inc_in_flight(part, rw); 1713 1714 part_stat_unlock(); 1715 } 1716 EXPORT_SYMBOL(generic_start_io_acct); 1717 1718 void generic_end_io_acct(int rw, struct hd_struct *part, 1719 unsigned long start_time) 1720 { 1721 unsigned long duration = jiffies - start_time; 1722 int cpu = part_stat_lock(); 1723 1724 part_stat_add(cpu, part, ticks[rw], duration); 1725 part_round_stats(cpu, part); 1726 part_dec_in_flight(part, rw); 1727 1728 part_stat_unlock(); 1729 } 1730 EXPORT_SYMBOL(generic_end_io_acct); 1731 1732 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1733 void bio_flush_dcache_pages(struct bio *bi) 1734 { 1735 struct bio_vec bvec; 1736 struct bvec_iter iter; 1737 1738 bio_for_each_segment(bvec, bi, iter) 1739 flush_dcache_page(bvec.bv_page); 1740 } 1741 EXPORT_SYMBOL(bio_flush_dcache_pages); 1742 #endif 1743 1744 /** 1745 * bio_endio - end I/O on a bio 1746 * @bio: bio 1747 * @error: error, if any 1748 * 1749 * Description: 1750 * bio_endio() will end I/O on the whole bio. bio_endio() is the 1751 * preferred way to end I/O on a bio, it takes care of clearing 1752 * BIO_UPTODATE on error. @error is 0 on success, and and one of the 1753 * established -Exxxx (-EIO, for instance) error values in case 1754 * something went wrong. No one should call bi_end_io() directly on a 1755 * bio unless they own it and thus know that it has an end_io 1756 * function. 1757 **/ 1758 void bio_endio(struct bio *bio, int error) 1759 { 1760 while (bio) { 1761 BUG_ON(atomic_read(&bio->bi_remaining) <= 0); 1762 1763 if (error) 1764 clear_bit(BIO_UPTODATE, &bio->bi_flags); 1765 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 1766 error = -EIO; 1767 1768 if (!atomic_dec_and_test(&bio->bi_remaining)) 1769 return; 1770 1771 /* 1772 * Need to have a real endio function for chained bios, 1773 * otherwise various corner cases will break (like stacking 1774 * block devices that save/restore bi_end_io) - however, we want 1775 * to avoid unbounded recursion and blowing the stack. Tail call 1776 * optimization would handle this, but compiling with frame 1777 * pointers also disables gcc's sibling call optimization. 1778 */ 1779 if (bio->bi_end_io == bio_chain_endio) { 1780 struct bio *parent = bio->bi_private; 1781 bio_put(bio); 1782 bio = parent; 1783 } else { 1784 if (bio->bi_end_io) 1785 bio->bi_end_io(bio, error); 1786 bio = NULL; 1787 } 1788 } 1789 } 1790 EXPORT_SYMBOL(bio_endio); 1791 1792 /** 1793 * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining 1794 * @bio: bio 1795 * @error: error, if any 1796 * 1797 * For code that has saved and restored bi_end_io; thing hard before using this 1798 * function, probably you should've cloned the entire bio. 1799 **/ 1800 void bio_endio_nodec(struct bio *bio, int error) 1801 { 1802 atomic_inc(&bio->bi_remaining); 1803 bio_endio(bio, error); 1804 } 1805 EXPORT_SYMBOL(bio_endio_nodec); 1806 1807 /** 1808 * bio_split - split a bio 1809 * @bio: bio to split 1810 * @sectors: number of sectors to split from the front of @bio 1811 * @gfp: gfp mask 1812 * @bs: bio set to allocate from 1813 * 1814 * Allocates and returns a new bio which represents @sectors from the start of 1815 * @bio, and updates @bio to represent the remaining sectors. 1816 * 1817 * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's 1818 * responsibility to ensure that @bio is not freed before the split. 1819 */ 1820 struct bio *bio_split(struct bio *bio, int sectors, 1821 gfp_t gfp, struct bio_set *bs) 1822 { 1823 struct bio *split = NULL; 1824 1825 BUG_ON(sectors <= 0); 1826 BUG_ON(sectors >= bio_sectors(bio)); 1827 1828 split = bio_clone_fast(bio, gfp, bs); 1829 if (!split) 1830 return NULL; 1831 1832 split->bi_iter.bi_size = sectors << 9; 1833 1834 if (bio_integrity(split)) 1835 bio_integrity_trim(split, 0, sectors); 1836 1837 bio_advance(bio, split->bi_iter.bi_size); 1838 1839 return split; 1840 } 1841 EXPORT_SYMBOL(bio_split); 1842 1843 /** 1844 * bio_trim - trim a bio 1845 * @bio: bio to trim 1846 * @offset: number of sectors to trim from the front of @bio 1847 * @size: size we want to trim @bio to, in sectors 1848 */ 1849 void bio_trim(struct bio *bio, int offset, int size) 1850 { 1851 /* 'bio' is a cloned bio which we need to trim to match 1852 * the given offset and size. 1853 */ 1854 1855 size <<= 9; 1856 if (offset == 0 && size == bio->bi_iter.bi_size) 1857 return; 1858 1859 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1860 1861 bio_advance(bio, offset << 9); 1862 1863 bio->bi_iter.bi_size = size; 1864 } 1865 EXPORT_SYMBOL_GPL(bio_trim); 1866 1867 /* 1868 * create memory pools for biovec's in a bio_set. 1869 * use the global biovec slabs created for general use. 1870 */ 1871 mempool_t *biovec_create_pool(int pool_entries) 1872 { 1873 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX; 1874 1875 return mempool_create_slab_pool(pool_entries, bp->slab); 1876 } 1877 1878 void bioset_free(struct bio_set *bs) 1879 { 1880 if (bs->rescue_workqueue) 1881 destroy_workqueue(bs->rescue_workqueue); 1882 1883 if (bs->bio_pool) 1884 mempool_destroy(bs->bio_pool); 1885 1886 if (bs->bvec_pool) 1887 mempool_destroy(bs->bvec_pool); 1888 1889 bioset_integrity_free(bs); 1890 bio_put_slab(bs); 1891 1892 kfree(bs); 1893 } 1894 EXPORT_SYMBOL(bioset_free); 1895 1896 static struct bio_set *__bioset_create(unsigned int pool_size, 1897 unsigned int front_pad, 1898 bool create_bvec_pool) 1899 { 1900 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1901 struct bio_set *bs; 1902 1903 bs = kzalloc(sizeof(*bs), GFP_KERNEL); 1904 if (!bs) 1905 return NULL; 1906 1907 bs->front_pad = front_pad; 1908 1909 spin_lock_init(&bs->rescue_lock); 1910 bio_list_init(&bs->rescue_list); 1911 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1912 1913 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1914 if (!bs->bio_slab) { 1915 kfree(bs); 1916 return NULL; 1917 } 1918 1919 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); 1920 if (!bs->bio_pool) 1921 goto bad; 1922 1923 if (create_bvec_pool) { 1924 bs->bvec_pool = biovec_create_pool(pool_size); 1925 if (!bs->bvec_pool) 1926 goto bad; 1927 } 1928 1929 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1930 if (!bs->rescue_workqueue) 1931 goto bad; 1932 1933 return bs; 1934 bad: 1935 bioset_free(bs); 1936 return NULL; 1937 } 1938 1939 /** 1940 * bioset_create - Create a bio_set 1941 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1942 * @front_pad: Number of bytes to allocate in front of the returned bio 1943 * 1944 * Description: 1945 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1946 * to ask for a number of bytes to be allocated in front of the bio. 1947 * Front pad allocation is useful for embedding the bio inside 1948 * another structure, to avoid allocating extra data to go with the bio. 1949 * Note that the bio must be embedded at the END of that structure always, 1950 * or things will break badly. 1951 */ 1952 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) 1953 { 1954 return __bioset_create(pool_size, front_pad, true); 1955 } 1956 EXPORT_SYMBOL(bioset_create); 1957 1958 /** 1959 * bioset_create_nobvec - Create a bio_set without bio_vec mempool 1960 * @pool_size: Number of bio to cache in the mempool 1961 * @front_pad: Number of bytes to allocate in front of the returned bio 1962 * 1963 * Description: 1964 * Same functionality as bioset_create() except that mempool is not 1965 * created for bio_vecs. Saving some memory for bio_clone_fast() users. 1966 */ 1967 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad) 1968 { 1969 return __bioset_create(pool_size, front_pad, false); 1970 } 1971 EXPORT_SYMBOL(bioset_create_nobvec); 1972 1973 #ifdef CONFIG_BLK_CGROUP 1974 /** 1975 * bio_associate_current - associate a bio with %current 1976 * @bio: target bio 1977 * 1978 * Associate @bio with %current if it hasn't been associated yet. Block 1979 * layer will treat @bio as if it were issued by %current no matter which 1980 * task actually issues it. 1981 * 1982 * This function takes an extra reference of @task's io_context and blkcg 1983 * which will be put when @bio is released. The caller must own @bio, 1984 * ensure %current->io_context exists, and is responsible for synchronizing 1985 * calls to this function. 1986 */ 1987 int bio_associate_current(struct bio *bio) 1988 { 1989 struct io_context *ioc; 1990 struct cgroup_subsys_state *css; 1991 1992 if (bio->bi_ioc) 1993 return -EBUSY; 1994 1995 ioc = current->io_context; 1996 if (!ioc) 1997 return -ENOENT; 1998 1999 /* acquire active ref on @ioc and associate */ 2000 get_io_context_active(ioc); 2001 bio->bi_ioc = ioc; 2002 2003 /* associate blkcg if exists */ 2004 rcu_read_lock(); 2005 css = task_css(current, blkio_cgrp_id); 2006 if (css && css_tryget_online(css)) 2007 bio->bi_css = css; 2008 rcu_read_unlock(); 2009 2010 return 0; 2011 } 2012 2013 /** 2014 * bio_disassociate_task - undo bio_associate_current() 2015 * @bio: target bio 2016 */ 2017 void bio_disassociate_task(struct bio *bio) 2018 { 2019 if (bio->bi_ioc) { 2020 put_io_context(bio->bi_ioc); 2021 bio->bi_ioc = NULL; 2022 } 2023 if (bio->bi_css) { 2024 css_put(bio->bi_css); 2025 bio->bi_css = NULL; 2026 } 2027 } 2028 2029 #endif /* CONFIG_BLK_CGROUP */ 2030 2031 static void __init biovec_init_slabs(void) 2032 { 2033 int i; 2034 2035 for (i = 0; i < BIOVEC_NR_POOLS; i++) { 2036 int size; 2037 struct biovec_slab *bvs = bvec_slabs + i; 2038 2039 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2040 bvs->slab = NULL; 2041 continue; 2042 } 2043 2044 size = bvs->nr_vecs * sizeof(struct bio_vec); 2045 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2046 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2047 } 2048 } 2049 2050 static int __init init_bio(void) 2051 { 2052 bio_slab_max = 2; 2053 bio_slab_nr = 0; 2054 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); 2055 if (!bio_slabs) 2056 panic("bio: can't allocate bios\n"); 2057 2058 bio_integrity_init(); 2059 biovec_init_slabs(); 2060 2061 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); 2062 if (!fs_bio_set) 2063 panic("bio: can't allocate bios\n"); 2064 2065 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) 2066 panic("bio: can't create integrity pool\n"); 2067 2068 return 0; 2069 } 2070 subsys_initcall(init_bio); 2071