1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 4 */ 5 #include <linux/mm.h> 6 #include <linux/swap.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/uio.h> 10 #include <linux/iocontext.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/mempool.h> 16 #include <linux/workqueue.h> 17 #include <linux/cgroup.h> 18 #include <linux/highmem.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/blk-crypto.h> 21 #include <linux/xarray.h> 22 23 #include <trace/events/block.h> 24 #include "blk.h" 25 #include "blk-rq-qos.h" 26 #include "blk-cgroup.h" 27 28 #define ALLOC_CACHE_THRESHOLD 16 29 #define ALLOC_CACHE_MAX 256 30 31 struct bio_alloc_cache { 32 struct bio *free_list; 33 struct bio *free_list_irq; 34 unsigned int nr; 35 unsigned int nr_irq; 36 }; 37 38 static struct biovec_slab { 39 int nr_vecs; 40 char *name; 41 struct kmem_cache *slab; 42 } bvec_slabs[] __read_mostly = { 43 { .nr_vecs = 16, .name = "biovec-16" }, 44 { .nr_vecs = 64, .name = "biovec-64" }, 45 { .nr_vecs = 128, .name = "biovec-128" }, 46 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" }, 47 }; 48 49 static struct biovec_slab *biovec_slab(unsigned short nr_vecs) 50 { 51 switch (nr_vecs) { 52 /* smaller bios use inline vecs */ 53 case 5 ... 16: 54 return &bvec_slabs[0]; 55 case 17 ... 64: 56 return &bvec_slabs[1]; 57 case 65 ... 128: 58 return &bvec_slabs[2]; 59 case 129 ... BIO_MAX_VECS: 60 return &bvec_slabs[3]; 61 default: 62 BUG(); 63 return NULL; 64 } 65 } 66 67 /* 68 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 69 * IO code that does not need private memory pools. 70 */ 71 struct bio_set fs_bio_set; 72 EXPORT_SYMBOL(fs_bio_set); 73 74 /* 75 * Our slab pool management 76 */ 77 struct bio_slab { 78 struct kmem_cache *slab; 79 unsigned int slab_ref; 80 unsigned int slab_size; 81 char name[8]; 82 }; 83 static DEFINE_MUTEX(bio_slab_lock); 84 static DEFINE_XARRAY(bio_slabs); 85 86 static struct bio_slab *create_bio_slab(unsigned int size) 87 { 88 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL); 89 90 if (!bslab) 91 return NULL; 92 93 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size); 94 bslab->slab = kmem_cache_create(bslab->name, size, 95 ARCH_KMALLOC_MINALIGN, 96 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL); 97 if (!bslab->slab) 98 goto fail_alloc_slab; 99 100 bslab->slab_ref = 1; 101 bslab->slab_size = size; 102 103 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL))) 104 return bslab; 105 106 kmem_cache_destroy(bslab->slab); 107 108 fail_alloc_slab: 109 kfree(bslab); 110 return NULL; 111 } 112 113 static inline unsigned int bs_bio_slab_size(struct bio_set *bs) 114 { 115 return bs->front_pad + sizeof(struct bio) + bs->back_pad; 116 } 117 118 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs) 119 { 120 unsigned int size = bs_bio_slab_size(bs); 121 struct bio_slab *bslab; 122 123 mutex_lock(&bio_slab_lock); 124 bslab = xa_load(&bio_slabs, size); 125 if (bslab) 126 bslab->slab_ref++; 127 else 128 bslab = create_bio_slab(size); 129 mutex_unlock(&bio_slab_lock); 130 131 if (bslab) 132 return bslab->slab; 133 return NULL; 134 } 135 136 static void bio_put_slab(struct bio_set *bs) 137 { 138 struct bio_slab *bslab = NULL; 139 unsigned int slab_size = bs_bio_slab_size(bs); 140 141 mutex_lock(&bio_slab_lock); 142 143 bslab = xa_load(&bio_slabs, slab_size); 144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 145 goto out; 146 147 WARN_ON_ONCE(bslab->slab != bs->bio_slab); 148 149 WARN_ON(!bslab->slab_ref); 150 151 if (--bslab->slab_ref) 152 goto out; 153 154 xa_erase(&bio_slabs, slab_size); 155 156 kmem_cache_destroy(bslab->slab); 157 kfree(bslab); 158 159 out: 160 mutex_unlock(&bio_slab_lock); 161 } 162 163 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs) 164 { 165 BUG_ON(nr_vecs > BIO_MAX_VECS); 166 167 if (nr_vecs == BIO_MAX_VECS) 168 mempool_free(bv, pool); 169 else if (nr_vecs > BIO_INLINE_VECS) 170 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv); 171 } 172 173 /* 174 * Make the first allocation restricted and don't dump info on allocation 175 * failures, since we'll fall back to the mempool in case of failure. 176 */ 177 static inline gfp_t bvec_alloc_gfp(gfp_t gfp) 178 { 179 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) | 180 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 181 } 182 183 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 184 gfp_t gfp_mask) 185 { 186 struct biovec_slab *bvs = biovec_slab(*nr_vecs); 187 188 if (WARN_ON_ONCE(!bvs)) 189 return NULL; 190 191 /* 192 * Upgrade the nr_vecs request to take full advantage of the allocation. 193 * We also rely on this in the bvec_free path. 194 */ 195 *nr_vecs = bvs->nr_vecs; 196 197 /* 198 * Try a slab allocation first for all smaller allocations. If that 199 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool. 200 * The mempool is sized to handle up to BIO_MAX_VECS entries. 201 */ 202 if (*nr_vecs < BIO_MAX_VECS) { 203 struct bio_vec *bvl; 204 205 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask)); 206 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 207 return bvl; 208 *nr_vecs = BIO_MAX_VECS; 209 } 210 211 return mempool_alloc(pool, gfp_mask); 212 } 213 214 void bio_uninit(struct bio *bio) 215 { 216 #ifdef CONFIG_BLK_CGROUP 217 if (bio->bi_blkg) { 218 blkg_put(bio->bi_blkg); 219 bio->bi_blkg = NULL; 220 } 221 #endif 222 if (bio_integrity(bio)) 223 bio_integrity_free(bio); 224 225 bio_crypt_free_ctx(bio); 226 } 227 EXPORT_SYMBOL(bio_uninit); 228 229 static void bio_free(struct bio *bio) 230 { 231 struct bio_set *bs = bio->bi_pool; 232 void *p = bio; 233 234 WARN_ON_ONCE(!bs); 235 236 bio_uninit(bio); 237 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs); 238 mempool_free(p - bs->front_pad, &bs->bio_pool); 239 } 240 241 /* 242 * Users of this function have their own bio allocation. Subsequently, 243 * they must remember to pair any call to bio_init() with bio_uninit() 244 * when IO has completed, or when the bio is released. 245 */ 246 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table, 247 unsigned short max_vecs, blk_opf_t opf) 248 { 249 bio->bi_next = NULL; 250 bio->bi_bdev = bdev; 251 bio->bi_opf = opf; 252 bio->bi_flags = 0; 253 bio->bi_ioprio = 0; 254 bio->bi_status = 0; 255 bio->bi_iter.bi_sector = 0; 256 bio->bi_iter.bi_size = 0; 257 bio->bi_iter.bi_idx = 0; 258 bio->bi_iter.bi_bvec_done = 0; 259 bio->bi_end_io = NULL; 260 bio->bi_private = NULL; 261 #ifdef CONFIG_BLK_CGROUP 262 bio->bi_blkg = NULL; 263 bio->bi_issue.value = 0; 264 if (bdev) 265 bio_associate_blkg(bio); 266 #ifdef CONFIG_BLK_CGROUP_IOCOST 267 bio->bi_iocost_cost = 0; 268 #endif 269 #endif 270 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 271 bio->bi_crypt_context = NULL; 272 #endif 273 #ifdef CONFIG_BLK_DEV_INTEGRITY 274 bio->bi_integrity = NULL; 275 #endif 276 bio->bi_vcnt = 0; 277 278 atomic_set(&bio->__bi_remaining, 1); 279 atomic_set(&bio->__bi_cnt, 1); 280 bio->bi_cookie = BLK_QC_T_NONE; 281 282 bio->bi_max_vecs = max_vecs; 283 bio->bi_io_vec = table; 284 bio->bi_pool = NULL; 285 } 286 EXPORT_SYMBOL(bio_init); 287 288 /** 289 * bio_reset - reinitialize a bio 290 * @bio: bio to reset 291 * @bdev: block device to use the bio for 292 * @opf: operation and flags for bio 293 * 294 * Description: 295 * After calling bio_reset(), @bio will be in the same state as a freshly 296 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 297 * preserved are the ones that are initialized by bio_alloc_bioset(). See 298 * comment in struct bio. 299 */ 300 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf) 301 { 302 bio_uninit(bio); 303 memset(bio, 0, BIO_RESET_BYTES); 304 atomic_set(&bio->__bi_remaining, 1); 305 bio->bi_bdev = bdev; 306 if (bio->bi_bdev) 307 bio_associate_blkg(bio); 308 bio->bi_opf = opf; 309 } 310 EXPORT_SYMBOL(bio_reset); 311 312 static struct bio *__bio_chain_endio(struct bio *bio) 313 { 314 struct bio *parent = bio->bi_private; 315 316 if (bio->bi_status && !parent->bi_status) 317 parent->bi_status = bio->bi_status; 318 bio_put(bio); 319 return parent; 320 } 321 322 static void bio_chain_endio(struct bio *bio) 323 { 324 bio_endio(__bio_chain_endio(bio)); 325 } 326 327 /** 328 * bio_chain - chain bio completions 329 * @bio: the target bio 330 * @parent: the parent bio of @bio 331 * 332 * The caller won't have a bi_end_io called when @bio completes - instead, 333 * @parent's bi_end_io won't be called until both @parent and @bio have 334 * completed; the chained bio will also be freed when it completes. 335 * 336 * The caller must not set bi_private or bi_end_io in @bio. 337 */ 338 void bio_chain(struct bio *bio, struct bio *parent) 339 { 340 BUG_ON(bio->bi_private || bio->bi_end_io); 341 342 bio->bi_private = parent; 343 bio->bi_end_io = bio_chain_endio; 344 bio_inc_remaining(parent); 345 } 346 EXPORT_SYMBOL(bio_chain); 347 348 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev, 349 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp) 350 { 351 struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp); 352 353 if (bio) { 354 bio_chain(bio, new); 355 submit_bio(bio); 356 } 357 358 return new; 359 } 360 EXPORT_SYMBOL_GPL(blk_next_bio); 361 362 static void bio_alloc_rescue(struct work_struct *work) 363 { 364 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 365 struct bio *bio; 366 367 while (1) { 368 spin_lock(&bs->rescue_lock); 369 bio = bio_list_pop(&bs->rescue_list); 370 spin_unlock(&bs->rescue_lock); 371 372 if (!bio) 373 break; 374 375 submit_bio_noacct(bio); 376 } 377 } 378 379 static void punt_bios_to_rescuer(struct bio_set *bs) 380 { 381 struct bio_list punt, nopunt; 382 struct bio *bio; 383 384 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 385 return; 386 /* 387 * In order to guarantee forward progress we must punt only bios that 388 * were allocated from this bio_set; otherwise, if there was a bio on 389 * there for a stacking driver higher up in the stack, processing it 390 * could require allocating bios from this bio_set, and doing that from 391 * our own rescuer would be bad. 392 * 393 * Since bio lists are singly linked, pop them all instead of trying to 394 * remove from the middle of the list: 395 */ 396 397 bio_list_init(&punt); 398 bio_list_init(&nopunt); 399 400 while ((bio = bio_list_pop(¤t->bio_list[0]))) 401 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 402 current->bio_list[0] = nopunt; 403 404 bio_list_init(&nopunt); 405 while ((bio = bio_list_pop(¤t->bio_list[1]))) 406 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 407 current->bio_list[1] = nopunt; 408 409 spin_lock(&bs->rescue_lock); 410 bio_list_merge(&bs->rescue_list, &punt); 411 spin_unlock(&bs->rescue_lock); 412 413 queue_work(bs->rescue_workqueue, &bs->rescue_work); 414 } 415 416 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache) 417 { 418 unsigned long flags; 419 420 /* cache->free_list must be empty */ 421 if (WARN_ON_ONCE(cache->free_list)) 422 return; 423 424 local_irq_save(flags); 425 cache->free_list = cache->free_list_irq; 426 cache->free_list_irq = NULL; 427 cache->nr += cache->nr_irq; 428 cache->nr_irq = 0; 429 local_irq_restore(flags); 430 } 431 432 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev, 433 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp, 434 struct bio_set *bs) 435 { 436 struct bio_alloc_cache *cache; 437 struct bio *bio; 438 439 cache = per_cpu_ptr(bs->cache, get_cpu()); 440 if (!cache->free_list) { 441 if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD) 442 bio_alloc_irq_cache_splice(cache); 443 if (!cache->free_list) { 444 put_cpu(); 445 return NULL; 446 } 447 } 448 bio = cache->free_list; 449 cache->free_list = bio->bi_next; 450 cache->nr--; 451 put_cpu(); 452 453 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf); 454 bio->bi_pool = bs; 455 return bio; 456 } 457 458 /** 459 * bio_alloc_bioset - allocate a bio for I/O 460 * @bdev: block device to allocate the bio for (can be %NULL) 461 * @nr_vecs: number of bvecs to pre-allocate 462 * @opf: operation and flags for bio 463 * @gfp_mask: the GFP_* mask given to the slab allocator 464 * @bs: the bio_set to allocate from. 465 * 466 * Allocate a bio from the mempools in @bs. 467 * 468 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to 469 * allocate a bio. This is due to the mempool guarantees. To make this work, 470 * callers must never allocate more than 1 bio at a time from the general pool. 471 * Callers that need to allocate more than 1 bio must always submit the 472 * previously allocated bio for IO before attempting to allocate a new one. 473 * Failure to do so can cause deadlocks under memory pressure. 474 * 475 * Note that when running under submit_bio_noacct() (i.e. any block driver), 476 * bios are not submitted until after you return - see the code in 477 * submit_bio_noacct() that converts recursion into iteration, to prevent 478 * stack overflows. 479 * 480 * This would normally mean allocating multiple bios under submit_bio_noacct() 481 * would be susceptible to deadlocks, but we have 482 * deadlock avoidance code that resubmits any blocked bios from a rescuer 483 * thread. 484 * 485 * However, we do not guarantee forward progress for allocations from other 486 * mempools. Doing multiple allocations from the same mempool under 487 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad 488 * for per bio allocations. 489 * 490 * Returns: Pointer to new bio on success, NULL on failure. 491 */ 492 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs, 493 blk_opf_t opf, gfp_t gfp_mask, 494 struct bio_set *bs) 495 { 496 gfp_t saved_gfp = gfp_mask; 497 struct bio *bio; 498 void *p; 499 500 /* should not use nobvec bioset for nr_vecs > 0 */ 501 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0)) 502 return NULL; 503 504 if (opf & REQ_ALLOC_CACHE) { 505 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) { 506 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf, 507 gfp_mask, bs); 508 if (bio) 509 return bio; 510 /* 511 * No cached bio available, bio returned below marked with 512 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache. 513 */ 514 } else { 515 opf &= ~REQ_ALLOC_CACHE; 516 } 517 } 518 519 /* 520 * submit_bio_noacct() converts recursion to iteration; this means if 521 * we're running beneath it, any bios we allocate and submit will not be 522 * submitted (and thus freed) until after we return. 523 * 524 * This exposes us to a potential deadlock if we allocate multiple bios 525 * from the same bio_set() while running underneath submit_bio_noacct(). 526 * If we were to allocate multiple bios (say a stacking block driver 527 * that was splitting bios), we would deadlock if we exhausted the 528 * mempool's reserve. 529 * 530 * We solve this, and guarantee forward progress, with a rescuer 531 * workqueue per bio_set. If we go to allocate and there are bios on 532 * current->bio_list, we first try the allocation without 533 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be 534 * blocking to the rescuer workqueue before we retry with the original 535 * gfp_flags. 536 */ 537 if (current->bio_list && 538 (!bio_list_empty(¤t->bio_list[0]) || 539 !bio_list_empty(¤t->bio_list[1])) && 540 bs->rescue_workqueue) 541 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 542 543 p = mempool_alloc(&bs->bio_pool, gfp_mask); 544 if (!p && gfp_mask != saved_gfp) { 545 punt_bios_to_rescuer(bs); 546 gfp_mask = saved_gfp; 547 p = mempool_alloc(&bs->bio_pool, gfp_mask); 548 } 549 if (unlikely(!p)) 550 return NULL; 551 if (!mempool_is_saturated(&bs->bio_pool)) 552 opf &= ~REQ_ALLOC_CACHE; 553 554 bio = p + bs->front_pad; 555 if (nr_vecs > BIO_INLINE_VECS) { 556 struct bio_vec *bvl = NULL; 557 558 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); 559 if (!bvl && gfp_mask != saved_gfp) { 560 punt_bios_to_rescuer(bs); 561 gfp_mask = saved_gfp; 562 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); 563 } 564 if (unlikely(!bvl)) 565 goto err_free; 566 567 bio_init(bio, bdev, bvl, nr_vecs, opf); 568 } else if (nr_vecs) { 569 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf); 570 } else { 571 bio_init(bio, bdev, NULL, 0, opf); 572 } 573 574 bio->bi_pool = bs; 575 return bio; 576 577 err_free: 578 mempool_free(p, &bs->bio_pool); 579 return NULL; 580 } 581 EXPORT_SYMBOL(bio_alloc_bioset); 582 583 /** 584 * bio_kmalloc - kmalloc a bio 585 * @nr_vecs: number of bio_vecs to allocate 586 * @gfp_mask: the GFP_* mask given to the slab allocator 587 * 588 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized 589 * using bio_init() before use. To free a bio returned from this function use 590 * kfree() after calling bio_uninit(). A bio returned from this function can 591 * be reused by calling bio_uninit() before calling bio_init() again. 592 * 593 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this 594 * function are not backed by a mempool can fail. Do not use this function 595 * for allocations in the file system I/O path. 596 * 597 * Returns: Pointer to new bio on success, NULL on failure. 598 */ 599 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask) 600 { 601 struct bio *bio; 602 603 if (nr_vecs > UIO_MAXIOV) 604 return NULL; 605 return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask); 606 } 607 EXPORT_SYMBOL(bio_kmalloc); 608 609 void zero_fill_bio(struct bio *bio) 610 { 611 struct bio_vec bv; 612 struct bvec_iter iter; 613 614 bio_for_each_segment(bv, bio, iter) 615 memzero_bvec(&bv); 616 } 617 EXPORT_SYMBOL(zero_fill_bio); 618 619 /** 620 * bio_truncate - truncate the bio to small size of @new_size 621 * @bio: the bio to be truncated 622 * @new_size: new size for truncating the bio 623 * 624 * Description: 625 * Truncate the bio to new size of @new_size. If bio_op(bio) is 626 * REQ_OP_READ, zero the truncated part. This function should only 627 * be used for handling corner cases, such as bio eod. 628 */ 629 static void bio_truncate(struct bio *bio, unsigned new_size) 630 { 631 struct bio_vec bv; 632 struct bvec_iter iter; 633 unsigned int done = 0; 634 bool truncated = false; 635 636 if (new_size >= bio->bi_iter.bi_size) 637 return; 638 639 if (bio_op(bio) != REQ_OP_READ) 640 goto exit; 641 642 bio_for_each_segment(bv, bio, iter) { 643 if (done + bv.bv_len > new_size) { 644 unsigned offset; 645 646 if (!truncated) 647 offset = new_size - done; 648 else 649 offset = 0; 650 zero_user(bv.bv_page, bv.bv_offset + offset, 651 bv.bv_len - offset); 652 truncated = true; 653 } 654 done += bv.bv_len; 655 } 656 657 exit: 658 /* 659 * Don't touch bvec table here and make it really immutable, since 660 * fs bio user has to retrieve all pages via bio_for_each_segment_all 661 * in its .end_bio() callback. 662 * 663 * It is enough to truncate bio by updating .bi_size since we can make 664 * correct bvec with the updated .bi_size for drivers. 665 */ 666 bio->bi_iter.bi_size = new_size; 667 } 668 669 /** 670 * guard_bio_eod - truncate a BIO to fit the block device 671 * @bio: bio to truncate 672 * 673 * This allows us to do IO even on the odd last sectors of a device, even if the 674 * block size is some multiple of the physical sector size. 675 * 676 * We'll just truncate the bio to the size of the device, and clear the end of 677 * the buffer head manually. Truly out-of-range accesses will turn into actual 678 * I/O errors, this only handles the "we need to be able to do I/O at the final 679 * sector" case. 680 */ 681 void guard_bio_eod(struct bio *bio) 682 { 683 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 684 685 if (!maxsector) 686 return; 687 688 /* 689 * If the *whole* IO is past the end of the device, 690 * let it through, and the IO layer will turn it into 691 * an EIO. 692 */ 693 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 694 return; 695 696 maxsector -= bio->bi_iter.bi_sector; 697 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 698 return; 699 700 bio_truncate(bio, maxsector << 9); 701 } 702 703 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache, 704 unsigned int nr) 705 { 706 unsigned int i = 0; 707 struct bio *bio; 708 709 while ((bio = cache->free_list) != NULL) { 710 cache->free_list = bio->bi_next; 711 cache->nr--; 712 bio_free(bio); 713 if (++i == nr) 714 break; 715 } 716 return i; 717 } 718 719 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache, 720 unsigned int nr) 721 { 722 nr -= __bio_alloc_cache_prune(cache, nr); 723 if (!READ_ONCE(cache->free_list)) { 724 bio_alloc_irq_cache_splice(cache); 725 __bio_alloc_cache_prune(cache, nr); 726 } 727 } 728 729 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node) 730 { 731 struct bio_set *bs; 732 733 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead); 734 if (bs->cache) { 735 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu); 736 737 bio_alloc_cache_prune(cache, -1U); 738 } 739 return 0; 740 } 741 742 static void bio_alloc_cache_destroy(struct bio_set *bs) 743 { 744 int cpu; 745 746 if (!bs->cache) 747 return; 748 749 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 750 for_each_possible_cpu(cpu) { 751 struct bio_alloc_cache *cache; 752 753 cache = per_cpu_ptr(bs->cache, cpu); 754 bio_alloc_cache_prune(cache, -1U); 755 } 756 free_percpu(bs->cache); 757 bs->cache = NULL; 758 } 759 760 static inline void bio_put_percpu_cache(struct bio *bio) 761 { 762 struct bio_alloc_cache *cache; 763 764 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu()); 765 if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX) { 766 put_cpu(); 767 bio_free(bio); 768 return; 769 } 770 771 bio_uninit(bio); 772 773 if ((bio->bi_opf & REQ_POLLED) && !WARN_ON_ONCE(in_interrupt())) { 774 bio->bi_next = cache->free_list; 775 bio->bi_bdev = NULL; 776 cache->free_list = bio; 777 cache->nr++; 778 } else { 779 unsigned long flags; 780 781 local_irq_save(flags); 782 bio->bi_next = cache->free_list_irq; 783 cache->free_list_irq = bio; 784 cache->nr_irq++; 785 local_irq_restore(flags); 786 } 787 put_cpu(); 788 } 789 790 /** 791 * bio_put - release a reference to a bio 792 * @bio: bio to release reference to 793 * 794 * Description: 795 * Put a reference to a &struct bio, either one you have gotten with 796 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 797 **/ 798 void bio_put(struct bio *bio) 799 { 800 if (unlikely(bio_flagged(bio, BIO_REFFED))) { 801 BUG_ON(!atomic_read(&bio->__bi_cnt)); 802 if (!atomic_dec_and_test(&bio->__bi_cnt)) 803 return; 804 } 805 if (bio->bi_opf & REQ_ALLOC_CACHE) 806 bio_put_percpu_cache(bio); 807 else 808 bio_free(bio); 809 } 810 EXPORT_SYMBOL(bio_put); 811 812 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp) 813 { 814 bio_set_flag(bio, BIO_CLONED); 815 bio->bi_ioprio = bio_src->bi_ioprio; 816 bio->bi_iter = bio_src->bi_iter; 817 818 if (bio->bi_bdev) { 819 if (bio->bi_bdev == bio_src->bi_bdev && 820 bio_flagged(bio_src, BIO_REMAPPED)) 821 bio_set_flag(bio, BIO_REMAPPED); 822 bio_clone_blkg_association(bio, bio_src); 823 } 824 825 if (bio_crypt_clone(bio, bio_src, gfp) < 0) 826 return -ENOMEM; 827 if (bio_integrity(bio_src) && 828 bio_integrity_clone(bio, bio_src, gfp) < 0) 829 return -ENOMEM; 830 return 0; 831 } 832 833 /** 834 * bio_alloc_clone - clone a bio that shares the original bio's biovec 835 * @bdev: block_device to clone onto 836 * @bio_src: bio to clone from 837 * @gfp: allocation priority 838 * @bs: bio_set to allocate from 839 * 840 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned 841 * bio, but not the actual data it points to. 842 * 843 * The caller must ensure that the return bio is not freed before @bio_src. 844 */ 845 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src, 846 gfp_t gfp, struct bio_set *bs) 847 { 848 struct bio *bio; 849 850 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs); 851 if (!bio) 852 return NULL; 853 854 if (__bio_clone(bio, bio_src, gfp) < 0) { 855 bio_put(bio); 856 return NULL; 857 } 858 bio->bi_io_vec = bio_src->bi_io_vec; 859 860 return bio; 861 } 862 EXPORT_SYMBOL(bio_alloc_clone); 863 864 /** 865 * bio_init_clone - clone a bio that shares the original bio's biovec 866 * @bdev: block_device to clone onto 867 * @bio: bio to clone into 868 * @bio_src: bio to clone from 869 * @gfp: allocation priority 870 * 871 * Initialize a new bio in caller provided memory that is a clone of @bio_src. 872 * The caller owns the returned bio, but not the actual data it points to. 873 * 874 * The caller must ensure that @bio_src is not freed before @bio. 875 */ 876 int bio_init_clone(struct block_device *bdev, struct bio *bio, 877 struct bio *bio_src, gfp_t gfp) 878 { 879 int ret; 880 881 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf); 882 ret = __bio_clone(bio, bio_src, gfp); 883 if (ret) 884 bio_uninit(bio); 885 return ret; 886 } 887 EXPORT_SYMBOL(bio_init_clone); 888 889 /** 890 * bio_full - check if the bio is full 891 * @bio: bio to check 892 * @len: length of one segment to be added 893 * 894 * Return true if @bio is full and one segment with @len bytes can't be 895 * added to the bio, otherwise return false 896 */ 897 static inline bool bio_full(struct bio *bio, unsigned len) 898 { 899 if (bio->bi_vcnt >= bio->bi_max_vecs) 900 return true; 901 if (bio->bi_iter.bi_size > UINT_MAX - len) 902 return true; 903 return false; 904 } 905 906 static inline bool page_is_mergeable(const struct bio_vec *bv, 907 struct page *page, unsigned int len, unsigned int off, 908 bool *same_page) 909 { 910 size_t bv_end = bv->bv_offset + bv->bv_len; 911 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1; 912 phys_addr_t page_addr = page_to_phys(page); 913 914 if (vec_end_addr + 1 != page_addr + off) 915 return false; 916 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 917 return false; 918 if (!zone_device_pages_have_same_pgmap(bv->bv_page, page)) 919 return false; 920 921 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); 922 if (*same_page) 923 return true; 924 else if (IS_ENABLED(CONFIG_KMSAN)) 925 return false; 926 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE); 927 } 928 929 /** 930 * __bio_try_merge_page - try appending data to an existing bvec. 931 * @bio: destination bio 932 * @page: start page to add 933 * @len: length of the data to add 934 * @off: offset of the data relative to @page 935 * @same_page: return if the segment has been merged inside the same page 936 * 937 * Try to add the data at @page + @off to the last bvec of @bio. This is a 938 * useful optimisation for file systems with a block size smaller than the 939 * page size. 940 * 941 * Warn if (@len, @off) crosses pages in case that @same_page is true. 942 * 943 * Return %true on success or %false on failure. 944 */ 945 static bool __bio_try_merge_page(struct bio *bio, struct page *page, 946 unsigned int len, unsigned int off, bool *same_page) 947 { 948 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 949 return false; 950 951 if (bio->bi_vcnt > 0) { 952 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 953 954 if (page_is_mergeable(bv, page, len, off, same_page)) { 955 if (bio->bi_iter.bi_size > UINT_MAX - len) { 956 *same_page = false; 957 return false; 958 } 959 bv->bv_len += len; 960 bio->bi_iter.bi_size += len; 961 return true; 962 } 963 } 964 return false; 965 } 966 967 /* 968 * Try to merge a page into a segment, while obeying the hardware segment 969 * size limit. This is not for normal read/write bios, but for passthrough 970 * or Zone Append operations that we can't split. 971 */ 972 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio, 973 struct page *page, unsigned len, 974 unsigned offset, bool *same_page) 975 { 976 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 977 unsigned long mask = queue_segment_boundary(q); 978 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; 979 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 980 981 if ((addr1 | mask) != (addr2 | mask)) 982 return false; 983 if (bv->bv_len + len > queue_max_segment_size(q)) 984 return false; 985 return __bio_try_merge_page(bio, page, len, offset, same_page); 986 } 987 988 /** 989 * bio_add_hw_page - attempt to add a page to a bio with hw constraints 990 * @q: the target queue 991 * @bio: destination bio 992 * @page: page to add 993 * @len: vec entry length 994 * @offset: vec entry offset 995 * @max_sectors: maximum number of sectors that can be added 996 * @same_page: return if the segment has been merged inside the same page 997 * 998 * Add a page to a bio while respecting the hardware max_sectors, max_segment 999 * and gap limitations. 1000 */ 1001 int bio_add_hw_page(struct request_queue *q, struct bio *bio, 1002 struct page *page, unsigned int len, unsigned int offset, 1003 unsigned int max_sectors, bool *same_page) 1004 { 1005 struct bio_vec *bvec; 1006 1007 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 1008 return 0; 1009 1010 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors) 1011 return 0; 1012 1013 if (bio->bi_vcnt > 0) { 1014 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page)) 1015 return len; 1016 1017 /* 1018 * If the queue doesn't support SG gaps and adding this segment 1019 * would create a gap, disallow it. 1020 */ 1021 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 1022 if (bvec_gap_to_prev(&q->limits, bvec, offset)) 1023 return 0; 1024 } 1025 1026 if (bio_full(bio, len)) 1027 return 0; 1028 1029 if (bio->bi_vcnt >= queue_max_segments(q)) 1030 return 0; 1031 1032 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, offset); 1033 bio->bi_vcnt++; 1034 bio->bi_iter.bi_size += len; 1035 return len; 1036 } 1037 1038 /** 1039 * bio_add_pc_page - attempt to add page to passthrough bio 1040 * @q: the target queue 1041 * @bio: destination bio 1042 * @page: page to add 1043 * @len: vec entry length 1044 * @offset: vec entry offset 1045 * 1046 * Attempt to add a page to the bio_vec maplist. This can fail for a 1047 * number of reasons, such as the bio being full or target block device 1048 * limitations. The target block device must allow bio's up to PAGE_SIZE, 1049 * so it is always possible to add a single page to an empty bio. 1050 * 1051 * This should only be used by passthrough bios. 1052 */ 1053 int bio_add_pc_page(struct request_queue *q, struct bio *bio, 1054 struct page *page, unsigned int len, unsigned int offset) 1055 { 1056 bool same_page = false; 1057 return bio_add_hw_page(q, bio, page, len, offset, 1058 queue_max_hw_sectors(q), &same_page); 1059 } 1060 EXPORT_SYMBOL(bio_add_pc_page); 1061 1062 /** 1063 * bio_add_zone_append_page - attempt to add page to zone-append bio 1064 * @bio: destination bio 1065 * @page: page to add 1066 * @len: vec entry length 1067 * @offset: vec entry offset 1068 * 1069 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted 1070 * for a zone-append request. This can fail for a number of reasons, such as the 1071 * bio being full or the target block device is not a zoned block device or 1072 * other limitations of the target block device. The target block device must 1073 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page 1074 * to an empty bio. 1075 * 1076 * Returns: number of bytes added to the bio, or 0 in case of a failure. 1077 */ 1078 int bio_add_zone_append_page(struct bio *bio, struct page *page, 1079 unsigned int len, unsigned int offset) 1080 { 1081 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1082 bool same_page = false; 1083 1084 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND)) 1085 return 0; 1086 1087 if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev))) 1088 return 0; 1089 1090 return bio_add_hw_page(q, bio, page, len, offset, 1091 queue_max_zone_append_sectors(q), &same_page); 1092 } 1093 EXPORT_SYMBOL_GPL(bio_add_zone_append_page); 1094 1095 /** 1096 * __bio_add_page - add page(s) to a bio in a new segment 1097 * @bio: destination bio 1098 * @page: start page to add 1099 * @len: length of the data to add, may cross pages 1100 * @off: offset of the data relative to @page, may cross pages 1101 * 1102 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 1103 * that @bio has space for another bvec. 1104 */ 1105 void __bio_add_page(struct bio *bio, struct page *page, 1106 unsigned int len, unsigned int off) 1107 { 1108 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 1109 WARN_ON_ONCE(bio_full(bio, len)); 1110 1111 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off); 1112 bio->bi_iter.bi_size += len; 1113 bio->bi_vcnt++; 1114 } 1115 EXPORT_SYMBOL_GPL(__bio_add_page); 1116 1117 /** 1118 * bio_add_page - attempt to add page(s) to bio 1119 * @bio: destination bio 1120 * @page: start page to add 1121 * @len: vec entry length, may cross pages 1122 * @offset: vec entry offset relative to @page, may cross pages 1123 * 1124 * Attempt to add page(s) to the bio_vec maplist. This will only fail 1125 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 1126 */ 1127 int bio_add_page(struct bio *bio, struct page *page, 1128 unsigned int len, unsigned int offset) 1129 { 1130 bool same_page = false; 1131 1132 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { 1133 if (bio_full(bio, len)) 1134 return 0; 1135 __bio_add_page(bio, page, len, offset); 1136 } 1137 return len; 1138 } 1139 EXPORT_SYMBOL(bio_add_page); 1140 1141 /** 1142 * bio_add_folio - Attempt to add part of a folio to a bio. 1143 * @bio: BIO to add to. 1144 * @folio: Folio to add. 1145 * @len: How many bytes from the folio to add. 1146 * @off: First byte in this folio to add. 1147 * 1148 * Filesystems that use folios can call this function instead of calling 1149 * bio_add_page() for each page in the folio. If @off is bigger than 1150 * PAGE_SIZE, this function can create a bio_vec that starts in a page 1151 * after the bv_page. BIOs do not support folios that are 4GiB or larger. 1152 * 1153 * Return: Whether the addition was successful. 1154 */ 1155 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len, 1156 size_t off) 1157 { 1158 if (len > UINT_MAX || off > UINT_MAX) 1159 return false; 1160 return bio_add_page(bio, &folio->page, len, off) > 0; 1161 } 1162 1163 void __bio_release_pages(struct bio *bio, bool mark_dirty) 1164 { 1165 struct bvec_iter_all iter_all; 1166 struct bio_vec *bvec; 1167 1168 bio_for_each_segment_all(bvec, bio, iter_all) { 1169 if (mark_dirty && !PageCompound(bvec->bv_page)) 1170 set_page_dirty_lock(bvec->bv_page); 1171 put_page(bvec->bv_page); 1172 } 1173 } 1174 EXPORT_SYMBOL_GPL(__bio_release_pages); 1175 1176 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter) 1177 { 1178 size_t size = iov_iter_count(iter); 1179 1180 WARN_ON_ONCE(bio->bi_max_vecs); 1181 1182 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 1183 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1184 size_t max_sectors = queue_max_zone_append_sectors(q); 1185 1186 size = min(size, max_sectors << SECTOR_SHIFT); 1187 } 1188 1189 bio->bi_vcnt = iter->nr_segs; 1190 bio->bi_io_vec = (struct bio_vec *)iter->bvec; 1191 bio->bi_iter.bi_bvec_done = iter->iov_offset; 1192 bio->bi_iter.bi_size = size; 1193 bio_set_flag(bio, BIO_NO_PAGE_REF); 1194 bio_set_flag(bio, BIO_CLONED); 1195 } 1196 1197 static int bio_iov_add_page(struct bio *bio, struct page *page, 1198 unsigned int len, unsigned int offset) 1199 { 1200 bool same_page = false; 1201 1202 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { 1203 __bio_add_page(bio, page, len, offset); 1204 return 0; 1205 } 1206 1207 if (same_page) 1208 put_page(page); 1209 return 0; 1210 } 1211 1212 static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page, 1213 unsigned int len, unsigned int offset) 1214 { 1215 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1216 bool same_page = false; 1217 1218 if (bio_add_hw_page(q, bio, page, len, offset, 1219 queue_max_zone_append_sectors(q), &same_page) != len) 1220 return -EINVAL; 1221 if (same_page) 1222 put_page(page); 1223 return 0; 1224 } 1225 1226 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 1227 1228 /** 1229 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 1230 * @bio: bio to add pages to 1231 * @iter: iov iterator describing the region to be mapped 1232 * 1233 * Pins pages from *iter and appends them to @bio's bvec array. The 1234 * pages will have to be released using put_page() when done. 1235 * For multi-segment *iter, this function only adds pages from the 1236 * next non-empty segment of the iov iterator. 1237 */ 1238 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1239 { 1240 iov_iter_extraction_t extraction_flags = 0; 1241 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 1242 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 1243 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 1244 struct page **pages = (struct page **)bv; 1245 ssize_t size, left; 1246 unsigned len, i = 0; 1247 size_t offset, trim; 1248 int ret = 0; 1249 1250 /* 1251 * Move page array up in the allocated memory for the bio vecs as far as 1252 * possible so that we can start filling biovecs from the beginning 1253 * without overwriting the temporary page array. 1254 */ 1255 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 1256 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 1257 1258 if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue)) 1259 extraction_flags |= ITER_ALLOW_P2PDMA; 1260 1261 /* 1262 * Each segment in the iov is required to be a block size multiple. 1263 * However, we may not be able to get the entire segment if it spans 1264 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the 1265 * result to ensure the bio's total size is correct. The remainder of 1266 * the iov data will be picked up in the next bio iteration. 1267 */ 1268 size = iov_iter_get_pages(iter, pages, 1269 UINT_MAX - bio->bi_iter.bi_size, 1270 nr_pages, &offset, extraction_flags); 1271 if (unlikely(size <= 0)) 1272 return size ? size : -EFAULT; 1273 1274 nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE); 1275 1276 trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1); 1277 iov_iter_revert(iter, trim); 1278 1279 size -= trim; 1280 if (unlikely(!size)) { 1281 ret = -EFAULT; 1282 goto out; 1283 } 1284 1285 for (left = size, i = 0; left > 0; left -= len, i++) { 1286 struct page *page = pages[i]; 1287 1288 len = min_t(size_t, PAGE_SIZE - offset, left); 1289 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 1290 ret = bio_iov_add_zone_append_page(bio, page, len, 1291 offset); 1292 if (ret) 1293 break; 1294 } else 1295 bio_iov_add_page(bio, page, len, offset); 1296 1297 offset = 0; 1298 } 1299 1300 iov_iter_revert(iter, left); 1301 out: 1302 while (i < nr_pages) 1303 put_page(pages[i++]); 1304 1305 return ret; 1306 } 1307 1308 /** 1309 * bio_iov_iter_get_pages - add user or kernel pages to a bio 1310 * @bio: bio to add pages to 1311 * @iter: iov iterator describing the region to be added 1312 * 1313 * This takes either an iterator pointing to user memory, or one pointing to 1314 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 1315 * map them into the kernel. On IO completion, the caller should put those 1316 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided 1317 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs 1318 * to ensure the bvecs and pages stay referenced until the submitted I/O is 1319 * completed by a call to ->ki_complete() or returns with an error other than 1320 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF 1321 * on IO completion. If it isn't, then pages should be released. 1322 * 1323 * The function tries, but does not guarantee, to pin as many pages as 1324 * fit into the bio, or are requested in @iter, whatever is smaller. If 1325 * MM encounters an error pinning the requested pages, it stops. Error 1326 * is returned only if 0 pages could be pinned. 1327 */ 1328 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1329 { 1330 int ret = 0; 1331 1332 if (iov_iter_is_bvec(iter)) { 1333 bio_iov_bvec_set(bio, iter); 1334 iov_iter_advance(iter, bio->bi_iter.bi_size); 1335 return 0; 1336 } 1337 1338 do { 1339 ret = __bio_iov_iter_get_pages(bio, iter); 1340 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); 1341 1342 return bio->bi_vcnt ? 0 : ret; 1343 } 1344 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 1345 1346 static void submit_bio_wait_endio(struct bio *bio) 1347 { 1348 complete(bio->bi_private); 1349 } 1350 1351 /** 1352 * submit_bio_wait - submit a bio, and wait until it completes 1353 * @bio: The &struct bio which describes the I/O 1354 * 1355 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 1356 * bio_endio() on failure. 1357 * 1358 * WARNING: Unlike to how submit_bio() is usually used, this function does not 1359 * result in bio reference to be consumed. The caller must drop the reference 1360 * on his own. 1361 */ 1362 int submit_bio_wait(struct bio *bio) 1363 { 1364 DECLARE_COMPLETION_ONSTACK_MAP(done, 1365 bio->bi_bdev->bd_disk->lockdep_map); 1366 unsigned long hang_check; 1367 1368 bio->bi_private = &done; 1369 bio->bi_end_io = submit_bio_wait_endio; 1370 bio->bi_opf |= REQ_SYNC; 1371 submit_bio(bio); 1372 1373 /* Prevent hang_check timer from firing at us during very long I/O */ 1374 hang_check = sysctl_hung_task_timeout_secs; 1375 if (hang_check) 1376 while (!wait_for_completion_io_timeout(&done, 1377 hang_check * (HZ/2))) 1378 ; 1379 else 1380 wait_for_completion_io(&done); 1381 1382 return blk_status_to_errno(bio->bi_status); 1383 } 1384 EXPORT_SYMBOL(submit_bio_wait); 1385 1386 void __bio_advance(struct bio *bio, unsigned bytes) 1387 { 1388 if (bio_integrity(bio)) 1389 bio_integrity_advance(bio, bytes); 1390 1391 bio_crypt_advance(bio, bytes); 1392 bio_advance_iter(bio, &bio->bi_iter, bytes); 1393 } 1394 EXPORT_SYMBOL(__bio_advance); 1395 1396 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 1397 struct bio *src, struct bvec_iter *src_iter) 1398 { 1399 while (src_iter->bi_size && dst_iter->bi_size) { 1400 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter); 1401 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter); 1402 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len); 1403 void *src_buf = bvec_kmap_local(&src_bv); 1404 void *dst_buf = bvec_kmap_local(&dst_bv); 1405 1406 memcpy(dst_buf, src_buf, bytes); 1407 1408 kunmap_local(dst_buf); 1409 kunmap_local(src_buf); 1410 1411 bio_advance_iter_single(src, src_iter, bytes); 1412 bio_advance_iter_single(dst, dst_iter, bytes); 1413 } 1414 } 1415 EXPORT_SYMBOL(bio_copy_data_iter); 1416 1417 /** 1418 * bio_copy_data - copy contents of data buffers from one bio to another 1419 * @src: source bio 1420 * @dst: destination bio 1421 * 1422 * Stops when it reaches the end of either @src or @dst - that is, copies 1423 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1424 */ 1425 void bio_copy_data(struct bio *dst, struct bio *src) 1426 { 1427 struct bvec_iter src_iter = src->bi_iter; 1428 struct bvec_iter dst_iter = dst->bi_iter; 1429 1430 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1431 } 1432 EXPORT_SYMBOL(bio_copy_data); 1433 1434 void bio_free_pages(struct bio *bio) 1435 { 1436 struct bio_vec *bvec; 1437 struct bvec_iter_all iter_all; 1438 1439 bio_for_each_segment_all(bvec, bio, iter_all) 1440 __free_page(bvec->bv_page); 1441 } 1442 EXPORT_SYMBOL(bio_free_pages); 1443 1444 /* 1445 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1446 * for performing direct-IO in BIOs. 1447 * 1448 * The problem is that we cannot run set_page_dirty() from interrupt context 1449 * because the required locks are not interrupt-safe. So what we can do is to 1450 * mark the pages dirty _before_ performing IO. And in interrupt context, 1451 * check that the pages are still dirty. If so, fine. If not, redirty them 1452 * in process context. 1453 * 1454 * We special-case compound pages here: normally this means reads into hugetlb 1455 * pages. The logic in here doesn't really work right for compound pages 1456 * because the VM does not uniformly chase down the head page in all cases. 1457 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1458 * handle them at all. So we skip compound pages here at an early stage. 1459 * 1460 * Note that this code is very hard to test under normal circumstances because 1461 * direct-io pins the pages with get_user_pages(). This makes 1462 * is_page_cache_freeable return false, and the VM will not clean the pages. 1463 * But other code (eg, flusher threads) could clean the pages if they are mapped 1464 * pagecache. 1465 * 1466 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1467 * deferred bio dirtying paths. 1468 */ 1469 1470 /* 1471 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1472 */ 1473 void bio_set_pages_dirty(struct bio *bio) 1474 { 1475 struct bio_vec *bvec; 1476 struct bvec_iter_all iter_all; 1477 1478 bio_for_each_segment_all(bvec, bio, iter_all) { 1479 if (!PageCompound(bvec->bv_page)) 1480 set_page_dirty_lock(bvec->bv_page); 1481 } 1482 } 1483 1484 /* 1485 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1486 * If they are, then fine. If, however, some pages are clean then they must 1487 * have been written out during the direct-IO read. So we take another ref on 1488 * the BIO and re-dirty the pages in process context. 1489 * 1490 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1491 * here on. It will run one put_page() against each page and will run one 1492 * bio_put() against the BIO. 1493 */ 1494 1495 static void bio_dirty_fn(struct work_struct *work); 1496 1497 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1498 static DEFINE_SPINLOCK(bio_dirty_lock); 1499 static struct bio *bio_dirty_list; 1500 1501 /* 1502 * This runs in process context 1503 */ 1504 static void bio_dirty_fn(struct work_struct *work) 1505 { 1506 struct bio *bio, *next; 1507 1508 spin_lock_irq(&bio_dirty_lock); 1509 next = bio_dirty_list; 1510 bio_dirty_list = NULL; 1511 spin_unlock_irq(&bio_dirty_lock); 1512 1513 while ((bio = next) != NULL) { 1514 next = bio->bi_private; 1515 1516 bio_release_pages(bio, true); 1517 bio_put(bio); 1518 } 1519 } 1520 1521 void bio_check_pages_dirty(struct bio *bio) 1522 { 1523 struct bio_vec *bvec; 1524 unsigned long flags; 1525 struct bvec_iter_all iter_all; 1526 1527 bio_for_each_segment_all(bvec, bio, iter_all) { 1528 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page)) 1529 goto defer; 1530 } 1531 1532 bio_release_pages(bio, false); 1533 bio_put(bio); 1534 return; 1535 defer: 1536 spin_lock_irqsave(&bio_dirty_lock, flags); 1537 bio->bi_private = bio_dirty_list; 1538 bio_dirty_list = bio; 1539 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1540 schedule_work(&bio_dirty_work); 1541 } 1542 1543 static inline bool bio_remaining_done(struct bio *bio) 1544 { 1545 /* 1546 * If we're not chaining, then ->__bi_remaining is always 1 and 1547 * we always end io on the first invocation. 1548 */ 1549 if (!bio_flagged(bio, BIO_CHAIN)) 1550 return true; 1551 1552 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1553 1554 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1555 bio_clear_flag(bio, BIO_CHAIN); 1556 return true; 1557 } 1558 1559 return false; 1560 } 1561 1562 /** 1563 * bio_endio - end I/O on a bio 1564 * @bio: bio 1565 * 1566 * Description: 1567 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1568 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1569 * bio unless they own it and thus know that it has an end_io function. 1570 * 1571 * bio_endio() can be called several times on a bio that has been chained 1572 * using bio_chain(). The ->bi_end_io() function will only be called the 1573 * last time. 1574 **/ 1575 void bio_endio(struct bio *bio) 1576 { 1577 again: 1578 if (!bio_remaining_done(bio)) 1579 return; 1580 if (!bio_integrity_endio(bio)) 1581 return; 1582 1583 rq_qos_done_bio(bio); 1584 1585 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1586 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio); 1587 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1588 } 1589 1590 /* 1591 * Need to have a real endio function for chained bios, otherwise 1592 * various corner cases will break (like stacking block devices that 1593 * save/restore bi_end_io) - however, we want to avoid unbounded 1594 * recursion and blowing the stack. Tail call optimization would 1595 * handle this, but compiling with frame pointers also disables 1596 * gcc's sibling call optimization. 1597 */ 1598 if (bio->bi_end_io == bio_chain_endio) { 1599 bio = __bio_chain_endio(bio); 1600 goto again; 1601 } 1602 1603 blk_throtl_bio_endio(bio); 1604 /* release cgroup info */ 1605 bio_uninit(bio); 1606 if (bio->bi_end_io) 1607 bio->bi_end_io(bio); 1608 } 1609 EXPORT_SYMBOL(bio_endio); 1610 1611 /** 1612 * bio_split - split a bio 1613 * @bio: bio to split 1614 * @sectors: number of sectors to split from the front of @bio 1615 * @gfp: gfp mask 1616 * @bs: bio set to allocate from 1617 * 1618 * Allocates and returns a new bio which represents @sectors from the start of 1619 * @bio, and updates @bio to represent the remaining sectors. 1620 * 1621 * Unless this is a discard request the newly allocated bio will point 1622 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that 1623 * neither @bio nor @bs are freed before the split bio. 1624 */ 1625 struct bio *bio_split(struct bio *bio, int sectors, 1626 gfp_t gfp, struct bio_set *bs) 1627 { 1628 struct bio *split; 1629 1630 BUG_ON(sectors <= 0); 1631 BUG_ON(sectors >= bio_sectors(bio)); 1632 1633 /* Zone append commands cannot be split */ 1634 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND)) 1635 return NULL; 1636 1637 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs); 1638 if (!split) 1639 return NULL; 1640 1641 split->bi_iter.bi_size = sectors << 9; 1642 1643 if (bio_integrity(split)) 1644 bio_integrity_trim(split); 1645 1646 bio_advance(bio, split->bi_iter.bi_size); 1647 1648 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1649 bio_set_flag(split, BIO_TRACE_COMPLETION); 1650 1651 return split; 1652 } 1653 EXPORT_SYMBOL(bio_split); 1654 1655 /** 1656 * bio_trim - trim a bio 1657 * @bio: bio to trim 1658 * @offset: number of sectors to trim from the front of @bio 1659 * @size: size we want to trim @bio to, in sectors 1660 * 1661 * This function is typically used for bios that are cloned and submitted 1662 * to the underlying device in parts. 1663 */ 1664 void bio_trim(struct bio *bio, sector_t offset, sector_t size) 1665 { 1666 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS || 1667 offset + size > bio_sectors(bio))) 1668 return; 1669 1670 size <<= 9; 1671 if (offset == 0 && size == bio->bi_iter.bi_size) 1672 return; 1673 1674 bio_advance(bio, offset << 9); 1675 bio->bi_iter.bi_size = size; 1676 1677 if (bio_integrity(bio)) 1678 bio_integrity_trim(bio); 1679 } 1680 EXPORT_SYMBOL_GPL(bio_trim); 1681 1682 /* 1683 * create memory pools for biovec's in a bio_set. 1684 * use the global biovec slabs created for general use. 1685 */ 1686 int biovec_init_pool(mempool_t *pool, int pool_entries) 1687 { 1688 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1; 1689 1690 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1691 } 1692 1693 /* 1694 * bioset_exit - exit a bioset initialized with bioset_init() 1695 * 1696 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1697 * kzalloc()). 1698 */ 1699 void bioset_exit(struct bio_set *bs) 1700 { 1701 bio_alloc_cache_destroy(bs); 1702 if (bs->rescue_workqueue) 1703 destroy_workqueue(bs->rescue_workqueue); 1704 bs->rescue_workqueue = NULL; 1705 1706 mempool_exit(&bs->bio_pool); 1707 mempool_exit(&bs->bvec_pool); 1708 1709 bioset_integrity_free(bs); 1710 if (bs->bio_slab) 1711 bio_put_slab(bs); 1712 bs->bio_slab = NULL; 1713 } 1714 EXPORT_SYMBOL(bioset_exit); 1715 1716 /** 1717 * bioset_init - Initialize a bio_set 1718 * @bs: pool to initialize 1719 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1720 * @front_pad: Number of bytes to allocate in front of the returned bio 1721 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1722 * and %BIOSET_NEED_RESCUER 1723 * 1724 * Description: 1725 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1726 * to ask for a number of bytes to be allocated in front of the bio. 1727 * Front pad allocation is useful for embedding the bio inside 1728 * another structure, to avoid allocating extra data to go with the bio. 1729 * Note that the bio must be embedded at the END of that structure always, 1730 * or things will break badly. 1731 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1732 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone(). 1733 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used 1734 * to dispatch queued requests when the mempool runs out of space. 1735 * 1736 */ 1737 int bioset_init(struct bio_set *bs, 1738 unsigned int pool_size, 1739 unsigned int front_pad, 1740 int flags) 1741 { 1742 bs->front_pad = front_pad; 1743 if (flags & BIOSET_NEED_BVECS) 1744 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1745 else 1746 bs->back_pad = 0; 1747 1748 spin_lock_init(&bs->rescue_lock); 1749 bio_list_init(&bs->rescue_list); 1750 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1751 1752 bs->bio_slab = bio_find_or_create_slab(bs); 1753 if (!bs->bio_slab) 1754 return -ENOMEM; 1755 1756 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 1757 goto bad; 1758 1759 if ((flags & BIOSET_NEED_BVECS) && 1760 biovec_init_pool(&bs->bvec_pool, pool_size)) 1761 goto bad; 1762 1763 if (flags & BIOSET_NEED_RESCUER) { 1764 bs->rescue_workqueue = alloc_workqueue("bioset", 1765 WQ_MEM_RECLAIM, 0); 1766 if (!bs->rescue_workqueue) 1767 goto bad; 1768 } 1769 if (flags & BIOSET_PERCPU_CACHE) { 1770 bs->cache = alloc_percpu(struct bio_alloc_cache); 1771 if (!bs->cache) 1772 goto bad; 1773 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 1774 } 1775 1776 return 0; 1777 bad: 1778 bioset_exit(bs); 1779 return -ENOMEM; 1780 } 1781 EXPORT_SYMBOL(bioset_init); 1782 1783 static int __init init_bio(void) 1784 { 1785 int i; 1786 1787 BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags)); 1788 1789 bio_integrity_init(); 1790 1791 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) { 1792 struct biovec_slab *bvs = bvec_slabs + i; 1793 1794 bvs->slab = kmem_cache_create(bvs->name, 1795 bvs->nr_vecs * sizeof(struct bio_vec), 0, 1796 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1797 } 1798 1799 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL, 1800 bio_cpu_dead); 1801 1802 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, 1803 BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE)) 1804 panic("bio: can't allocate bios\n"); 1805 1806 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) 1807 panic("bio: can't create integrity pool\n"); 1808 1809 return 0; 1810 } 1811 subsys_initcall(init_bio); 1812