xref: /openbmc/linux/block/bio.c (revision 52b89439)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 
21 #include <trace/events/block.h>
22 #include "blk.h"
23 #include "blk-rq-qos.h"
24 
25 /*
26  * Test patch to inline a certain number of bi_io_vec's inside the bio
27  * itself, to shrink a bio data allocation from two mempool calls to one
28  */
29 #define BIO_INLINE_VECS		4
30 
31 /*
32  * if you change this list, also change bvec_alloc or things will
33  * break badly! cannot be bigger than what you can fit into an
34  * unsigned short
35  */
36 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
37 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
38 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
39 };
40 #undef BV
41 
42 /*
43  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
44  * IO code that does not need private memory pools.
45  */
46 struct bio_set fs_bio_set;
47 EXPORT_SYMBOL(fs_bio_set);
48 
49 /*
50  * Our slab pool management
51  */
52 struct bio_slab {
53 	struct kmem_cache *slab;
54 	unsigned int slab_ref;
55 	unsigned int slab_size;
56 	char name[8];
57 };
58 static DEFINE_MUTEX(bio_slab_lock);
59 static struct bio_slab *bio_slabs;
60 static unsigned int bio_slab_nr, bio_slab_max;
61 
62 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
63 {
64 	unsigned int sz = sizeof(struct bio) + extra_size;
65 	struct kmem_cache *slab = NULL;
66 	struct bio_slab *bslab, *new_bio_slabs;
67 	unsigned int new_bio_slab_max;
68 	unsigned int i, entry = -1;
69 
70 	mutex_lock(&bio_slab_lock);
71 
72 	i = 0;
73 	while (i < bio_slab_nr) {
74 		bslab = &bio_slabs[i];
75 
76 		if (!bslab->slab && entry == -1)
77 			entry = i;
78 		else if (bslab->slab_size == sz) {
79 			slab = bslab->slab;
80 			bslab->slab_ref++;
81 			break;
82 		}
83 		i++;
84 	}
85 
86 	if (slab)
87 		goto out_unlock;
88 
89 	if (bio_slab_nr == bio_slab_max && entry == -1) {
90 		new_bio_slab_max = bio_slab_max << 1;
91 		new_bio_slabs = krealloc(bio_slabs,
92 					 new_bio_slab_max * sizeof(struct bio_slab),
93 					 GFP_KERNEL);
94 		if (!new_bio_slabs)
95 			goto out_unlock;
96 		bio_slab_max = new_bio_slab_max;
97 		bio_slabs = new_bio_slabs;
98 	}
99 	if (entry == -1)
100 		entry = bio_slab_nr++;
101 
102 	bslab = &bio_slabs[entry];
103 
104 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
105 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
106 				 SLAB_HWCACHE_ALIGN, NULL);
107 	if (!slab)
108 		goto out_unlock;
109 
110 	bslab->slab = slab;
111 	bslab->slab_ref = 1;
112 	bslab->slab_size = sz;
113 out_unlock:
114 	mutex_unlock(&bio_slab_lock);
115 	return slab;
116 }
117 
118 static void bio_put_slab(struct bio_set *bs)
119 {
120 	struct bio_slab *bslab = NULL;
121 	unsigned int i;
122 
123 	mutex_lock(&bio_slab_lock);
124 
125 	for (i = 0; i < bio_slab_nr; i++) {
126 		if (bs->bio_slab == bio_slabs[i].slab) {
127 			bslab = &bio_slabs[i];
128 			break;
129 		}
130 	}
131 
132 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
133 		goto out;
134 
135 	WARN_ON(!bslab->slab_ref);
136 
137 	if (--bslab->slab_ref)
138 		goto out;
139 
140 	kmem_cache_destroy(bslab->slab);
141 	bslab->slab = NULL;
142 
143 out:
144 	mutex_unlock(&bio_slab_lock);
145 }
146 
147 unsigned int bvec_nr_vecs(unsigned short idx)
148 {
149 	return bvec_slabs[--idx].nr_vecs;
150 }
151 
152 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
153 {
154 	if (!idx)
155 		return;
156 	idx--;
157 
158 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
159 
160 	if (idx == BVEC_POOL_MAX) {
161 		mempool_free(bv, pool);
162 	} else {
163 		struct biovec_slab *bvs = bvec_slabs + idx;
164 
165 		kmem_cache_free(bvs->slab, bv);
166 	}
167 }
168 
169 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
170 			   mempool_t *pool)
171 {
172 	struct bio_vec *bvl;
173 
174 	/*
175 	 * see comment near bvec_array define!
176 	 */
177 	switch (nr) {
178 	case 1:
179 		*idx = 0;
180 		break;
181 	case 2 ... 4:
182 		*idx = 1;
183 		break;
184 	case 5 ... 16:
185 		*idx = 2;
186 		break;
187 	case 17 ... 64:
188 		*idx = 3;
189 		break;
190 	case 65 ... 128:
191 		*idx = 4;
192 		break;
193 	case 129 ... BIO_MAX_PAGES:
194 		*idx = 5;
195 		break;
196 	default:
197 		return NULL;
198 	}
199 
200 	/*
201 	 * idx now points to the pool we want to allocate from. only the
202 	 * 1-vec entry pool is mempool backed.
203 	 */
204 	if (*idx == BVEC_POOL_MAX) {
205 fallback:
206 		bvl = mempool_alloc(pool, gfp_mask);
207 	} else {
208 		struct biovec_slab *bvs = bvec_slabs + *idx;
209 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
210 
211 		/*
212 		 * Make this allocation restricted and don't dump info on
213 		 * allocation failures, since we'll fallback to the mempool
214 		 * in case of failure.
215 		 */
216 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
217 
218 		/*
219 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
220 		 * is set, retry with the 1-entry mempool
221 		 */
222 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
223 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
224 			*idx = BVEC_POOL_MAX;
225 			goto fallback;
226 		}
227 	}
228 
229 	(*idx)++;
230 	return bvl;
231 }
232 
233 void bio_uninit(struct bio *bio)
234 {
235 	bio_disassociate_blkg(bio);
236 
237 	if (bio_integrity(bio))
238 		bio_integrity_free(bio);
239 }
240 EXPORT_SYMBOL(bio_uninit);
241 
242 static void bio_free(struct bio *bio)
243 {
244 	struct bio_set *bs = bio->bi_pool;
245 	void *p;
246 
247 	bio_uninit(bio);
248 
249 	if (bs) {
250 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
251 
252 		/*
253 		 * If we have front padding, adjust the bio pointer before freeing
254 		 */
255 		p = bio;
256 		p -= bs->front_pad;
257 
258 		mempool_free(p, &bs->bio_pool);
259 	} else {
260 		/* Bio was allocated by bio_kmalloc() */
261 		kfree(bio);
262 	}
263 }
264 
265 /*
266  * Users of this function have their own bio allocation. Subsequently,
267  * they must remember to pair any call to bio_init() with bio_uninit()
268  * when IO has completed, or when the bio is released.
269  */
270 void bio_init(struct bio *bio, struct bio_vec *table,
271 	      unsigned short max_vecs)
272 {
273 	memset(bio, 0, sizeof(*bio));
274 	atomic_set(&bio->__bi_remaining, 1);
275 	atomic_set(&bio->__bi_cnt, 1);
276 
277 	bio->bi_io_vec = table;
278 	bio->bi_max_vecs = max_vecs;
279 }
280 EXPORT_SYMBOL(bio_init);
281 
282 /**
283  * bio_reset - reinitialize a bio
284  * @bio:	bio to reset
285  *
286  * Description:
287  *   After calling bio_reset(), @bio will be in the same state as a freshly
288  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
289  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
290  *   comment in struct bio.
291  */
292 void bio_reset(struct bio *bio)
293 {
294 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
295 
296 	bio_uninit(bio);
297 
298 	memset(bio, 0, BIO_RESET_BYTES);
299 	bio->bi_flags = flags;
300 	atomic_set(&bio->__bi_remaining, 1);
301 }
302 EXPORT_SYMBOL(bio_reset);
303 
304 static struct bio *__bio_chain_endio(struct bio *bio)
305 {
306 	struct bio *parent = bio->bi_private;
307 
308 	if (!parent->bi_status)
309 		parent->bi_status = bio->bi_status;
310 	bio_put(bio);
311 	return parent;
312 }
313 
314 static void bio_chain_endio(struct bio *bio)
315 {
316 	bio_endio(__bio_chain_endio(bio));
317 }
318 
319 /**
320  * bio_chain - chain bio completions
321  * @bio: the target bio
322  * @parent: the @bio's parent bio
323  *
324  * The caller won't have a bi_end_io called when @bio completes - instead,
325  * @parent's bi_end_io won't be called until both @parent and @bio have
326  * completed; the chained bio will also be freed when it completes.
327  *
328  * The caller must not set bi_private or bi_end_io in @bio.
329  */
330 void bio_chain(struct bio *bio, struct bio *parent)
331 {
332 	BUG_ON(bio->bi_private || bio->bi_end_io);
333 
334 	bio->bi_private = parent;
335 	bio->bi_end_io	= bio_chain_endio;
336 	bio_inc_remaining(parent);
337 }
338 EXPORT_SYMBOL(bio_chain);
339 
340 static void bio_alloc_rescue(struct work_struct *work)
341 {
342 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
343 	struct bio *bio;
344 
345 	while (1) {
346 		spin_lock(&bs->rescue_lock);
347 		bio = bio_list_pop(&bs->rescue_list);
348 		spin_unlock(&bs->rescue_lock);
349 
350 		if (!bio)
351 			break;
352 
353 		generic_make_request(bio);
354 	}
355 }
356 
357 static void punt_bios_to_rescuer(struct bio_set *bs)
358 {
359 	struct bio_list punt, nopunt;
360 	struct bio *bio;
361 
362 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
363 		return;
364 	/*
365 	 * In order to guarantee forward progress we must punt only bios that
366 	 * were allocated from this bio_set; otherwise, if there was a bio on
367 	 * there for a stacking driver higher up in the stack, processing it
368 	 * could require allocating bios from this bio_set, and doing that from
369 	 * our own rescuer would be bad.
370 	 *
371 	 * Since bio lists are singly linked, pop them all instead of trying to
372 	 * remove from the middle of the list:
373 	 */
374 
375 	bio_list_init(&punt);
376 	bio_list_init(&nopunt);
377 
378 	while ((bio = bio_list_pop(&current->bio_list[0])))
379 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
380 	current->bio_list[0] = nopunt;
381 
382 	bio_list_init(&nopunt);
383 	while ((bio = bio_list_pop(&current->bio_list[1])))
384 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
385 	current->bio_list[1] = nopunt;
386 
387 	spin_lock(&bs->rescue_lock);
388 	bio_list_merge(&bs->rescue_list, &punt);
389 	spin_unlock(&bs->rescue_lock);
390 
391 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
392 }
393 
394 /**
395  * bio_alloc_bioset - allocate a bio for I/O
396  * @gfp_mask:   the GFP_* mask given to the slab allocator
397  * @nr_iovecs:	number of iovecs to pre-allocate
398  * @bs:		the bio_set to allocate from.
399  *
400  * Description:
401  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
402  *   backed by the @bs's mempool.
403  *
404  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
405  *   always be able to allocate a bio. This is due to the mempool guarantees.
406  *   To make this work, callers must never allocate more than 1 bio at a time
407  *   from this pool. Callers that need to allocate more than 1 bio must always
408  *   submit the previously allocated bio for IO before attempting to allocate
409  *   a new one. Failure to do so can cause deadlocks under memory pressure.
410  *
411  *   Note that when running under generic_make_request() (i.e. any block
412  *   driver), bios are not submitted until after you return - see the code in
413  *   generic_make_request() that converts recursion into iteration, to prevent
414  *   stack overflows.
415  *
416  *   This would normally mean allocating multiple bios under
417  *   generic_make_request() would be susceptible to deadlocks, but we have
418  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
419  *   thread.
420  *
421  *   However, we do not guarantee forward progress for allocations from other
422  *   mempools. Doing multiple allocations from the same mempool under
423  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
424  *   for per bio allocations.
425  *
426  *   RETURNS:
427  *   Pointer to new bio on success, NULL on failure.
428  */
429 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
430 			     struct bio_set *bs)
431 {
432 	gfp_t saved_gfp = gfp_mask;
433 	unsigned front_pad;
434 	unsigned inline_vecs;
435 	struct bio_vec *bvl = NULL;
436 	struct bio *bio;
437 	void *p;
438 
439 	if (!bs) {
440 		if (nr_iovecs > UIO_MAXIOV)
441 			return NULL;
442 
443 		p = kmalloc(sizeof(struct bio) +
444 			    nr_iovecs * sizeof(struct bio_vec),
445 			    gfp_mask);
446 		front_pad = 0;
447 		inline_vecs = nr_iovecs;
448 	} else {
449 		/* should not use nobvec bioset for nr_iovecs > 0 */
450 		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
451 				 nr_iovecs > 0))
452 			return NULL;
453 		/*
454 		 * generic_make_request() converts recursion to iteration; this
455 		 * means if we're running beneath it, any bios we allocate and
456 		 * submit will not be submitted (and thus freed) until after we
457 		 * return.
458 		 *
459 		 * This exposes us to a potential deadlock if we allocate
460 		 * multiple bios from the same bio_set() while running
461 		 * underneath generic_make_request(). If we were to allocate
462 		 * multiple bios (say a stacking block driver that was splitting
463 		 * bios), we would deadlock if we exhausted the mempool's
464 		 * reserve.
465 		 *
466 		 * We solve this, and guarantee forward progress, with a rescuer
467 		 * workqueue per bio_set. If we go to allocate and there are
468 		 * bios on current->bio_list, we first try the allocation
469 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
470 		 * bios we would be blocking to the rescuer workqueue before
471 		 * we retry with the original gfp_flags.
472 		 */
473 
474 		if (current->bio_list &&
475 		    (!bio_list_empty(&current->bio_list[0]) ||
476 		     !bio_list_empty(&current->bio_list[1])) &&
477 		    bs->rescue_workqueue)
478 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
479 
480 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
481 		if (!p && gfp_mask != saved_gfp) {
482 			punt_bios_to_rescuer(bs);
483 			gfp_mask = saved_gfp;
484 			p = mempool_alloc(&bs->bio_pool, gfp_mask);
485 		}
486 
487 		front_pad = bs->front_pad;
488 		inline_vecs = BIO_INLINE_VECS;
489 	}
490 
491 	if (unlikely(!p))
492 		return NULL;
493 
494 	bio = p + front_pad;
495 	bio_init(bio, NULL, 0);
496 
497 	if (nr_iovecs > inline_vecs) {
498 		unsigned long idx = 0;
499 
500 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
501 		if (!bvl && gfp_mask != saved_gfp) {
502 			punt_bios_to_rescuer(bs);
503 			gfp_mask = saved_gfp;
504 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
505 		}
506 
507 		if (unlikely(!bvl))
508 			goto err_free;
509 
510 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
511 	} else if (nr_iovecs) {
512 		bvl = bio->bi_inline_vecs;
513 	}
514 
515 	bio->bi_pool = bs;
516 	bio->bi_max_vecs = nr_iovecs;
517 	bio->bi_io_vec = bvl;
518 	return bio;
519 
520 err_free:
521 	mempool_free(p, &bs->bio_pool);
522 	return NULL;
523 }
524 EXPORT_SYMBOL(bio_alloc_bioset);
525 
526 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
527 {
528 	unsigned long flags;
529 	struct bio_vec bv;
530 	struct bvec_iter iter;
531 
532 	__bio_for_each_segment(bv, bio, iter, start) {
533 		char *data = bvec_kmap_irq(&bv, &flags);
534 		memset(data, 0, bv.bv_len);
535 		flush_dcache_page(bv.bv_page);
536 		bvec_kunmap_irq(data, &flags);
537 	}
538 }
539 EXPORT_SYMBOL(zero_fill_bio_iter);
540 
541 /**
542  * bio_put - release a reference to a bio
543  * @bio:   bio to release reference to
544  *
545  * Description:
546  *   Put a reference to a &struct bio, either one you have gotten with
547  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
548  **/
549 void bio_put(struct bio *bio)
550 {
551 	if (!bio_flagged(bio, BIO_REFFED))
552 		bio_free(bio);
553 	else {
554 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
555 
556 		/*
557 		 * last put frees it
558 		 */
559 		if (atomic_dec_and_test(&bio->__bi_cnt))
560 			bio_free(bio);
561 	}
562 }
563 EXPORT_SYMBOL(bio_put);
564 
565 /**
566  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
567  * 	@bio: destination bio
568  * 	@bio_src: bio to clone
569  *
570  *	Clone a &bio. Caller will own the returned bio, but not
571  *	the actual data it points to. Reference count of returned
572  * 	bio will be one.
573  *
574  * 	Caller must ensure that @bio_src is not freed before @bio.
575  */
576 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
577 {
578 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
579 
580 	/*
581 	 * most users will be overriding ->bi_disk with a new target,
582 	 * so we don't set nor calculate new physical/hw segment counts here
583 	 */
584 	bio->bi_disk = bio_src->bi_disk;
585 	bio->bi_partno = bio_src->bi_partno;
586 	bio_set_flag(bio, BIO_CLONED);
587 	if (bio_flagged(bio_src, BIO_THROTTLED))
588 		bio_set_flag(bio, BIO_THROTTLED);
589 	bio->bi_opf = bio_src->bi_opf;
590 	bio->bi_ioprio = bio_src->bi_ioprio;
591 	bio->bi_write_hint = bio_src->bi_write_hint;
592 	bio->bi_iter = bio_src->bi_iter;
593 	bio->bi_io_vec = bio_src->bi_io_vec;
594 
595 	bio_clone_blkg_association(bio, bio_src);
596 	blkcg_bio_issue_init(bio);
597 }
598 EXPORT_SYMBOL(__bio_clone_fast);
599 
600 /**
601  *	bio_clone_fast - clone a bio that shares the original bio's biovec
602  *	@bio: bio to clone
603  *	@gfp_mask: allocation priority
604  *	@bs: bio_set to allocate from
605  *
606  * 	Like __bio_clone_fast, only also allocates the returned bio
607  */
608 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
609 {
610 	struct bio *b;
611 
612 	b = bio_alloc_bioset(gfp_mask, 0, bs);
613 	if (!b)
614 		return NULL;
615 
616 	__bio_clone_fast(b, bio);
617 
618 	if (bio_integrity(bio)) {
619 		int ret;
620 
621 		ret = bio_integrity_clone(b, bio, gfp_mask);
622 
623 		if (ret < 0) {
624 			bio_put(b);
625 			return NULL;
626 		}
627 	}
628 
629 	return b;
630 }
631 EXPORT_SYMBOL(bio_clone_fast);
632 
633 static inline bool page_is_mergeable(const struct bio_vec *bv,
634 		struct page *page, unsigned int len, unsigned int off,
635 		bool *same_page)
636 {
637 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
638 		bv->bv_offset + bv->bv_len - 1;
639 	phys_addr_t page_addr = page_to_phys(page);
640 
641 	if (vec_end_addr + 1 != page_addr + off)
642 		return false;
643 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
644 		return false;
645 
646 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
647 	if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
648 		return false;
649 	return true;
650 }
651 
652 static bool bio_try_merge_pc_page(struct request_queue *q, struct bio *bio,
653 		struct page *page, unsigned len, unsigned offset,
654 		bool *same_page)
655 {
656 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
657 	unsigned long mask = queue_segment_boundary(q);
658 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
659 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
660 
661 	if ((addr1 | mask) != (addr2 | mask))
662 		return false;
663 	if (bv->bv_len + len > queue_max_segment_size(q))
664 		return false;
665 	return __bio_try_merge_page(bio, page, len, offset, same_page);
666 }
667 
668 /**
669  *	__bio_add_pc_page	- attempt to add page to passthrough bio
670  *	@q: the target queue
671  *	@bio: destination bio
672  *	@page: page to add
673  *	@len: vec entry length
674  *	@offset: vec entry offset
675  *	@same_page: return if the merge happen inside the same page
676  *
677  *	Attempt to add a page to the bio_vec maplist. This can fail for a
678  *	number of reasons, such as the bio being full or target block device
679  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
680  *	so it is always possible to add a single page to an empty bio.
681  *
682  *	This should only be used by passthrough bios.
683  */
684 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
685 		struct page *page, unsigned int len, unsigned int offset,
686 		bool *same_page)
687 {
688 	struct bio_vec *bvec;
689 
690 	/*
691 	 * cloned bio must not modify vec list
692 	 */
693 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
694 		return 0;
695 
696 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
697 		return 0;
698 
699 	if (bio->bi_vcnt > 0) {
700 		if (bio_try_merge_pc_page(q, bio, page, len, offset, same_page))
701 			return len;
702 
703 		/*
704 		 * If the queue doesn't support SG gaps and adding this segment
705 		 * would create a gap, disallow it.
706 		 */
707 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
708 		if (bvec_gap_to_prev(q, bvec, offset))
709 			return 0;
710 	}
711 
712 	if (bio_full(bio, len))
713 		return 0;
714 
715 	if (bio->bi_vcnt >= queue_max_segments(q))
716 		return 0;
717 
718 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
719 	bvec->bv_page = page;
720 	bvec->bv_len = len;
721 	bvec->bv_offset = offset;
722 	bio->bi_vcnt++;
723 	bio->bi_iter.bi_size += len;
724 	return len;
725 }
726 
727 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
728 		struct page *page, unsigned int len, unsigned int offset)
729 {
730 	bool same_page = false;
731 	return __bio_add_pc_page(q, bio, page, len, offset, &same_page);
732 }
733 EXPORT_SYMBOL(bio_add_pc_page);
734 
735 /**
736  * __bio_try_merge_page - try appending data to an existing bvec.
737  * @bio: destination bio
738  * @page: start page to add
739  * @len: length of the data to add
740  * @off: offset of the data relative to @page
741  * @same_page: return if the segment has been merged inside the same page
742  *
743  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
744  * a useful optimisation for file systems with a block size smaller than the
745  * page size.
746  *
747  * Warn if (@len, @off) crosses pages in case that @same_page is true.
748  *
749  * Return %true on success or %false on failure.
750  */
751 bool __bio_try_merge_page(struct bio *bio, struct page *page,
752 		unsigned int len, unsigned int off, bool *same_page)
753 {
754 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
755 		return false;
756 
757 	if (bio->bi_vcnt > 0) {
758 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
759 
760 		if (page_is_mergeable(bv, page, len, off, same_page)) {
761 			if (bio->bi_iter.bi_size > UINT_MAX - len)
762 				return false;
763 			bv->bv_len += len;
764 			bio->bi_iter.bi_size += len;
765 			return true;
766 		}
767 	}
768 	return false;
769 }
770 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
771 
772 /**
773  * __bio_add_page - add page(s) to a bio in a new segment
774  * @bio: destination bio
775  * @page: start page to add
776  * @len: length of the data to add, may cross pages
777  * @off: offset of the data relative to @page, may cross pages
778  *
779  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
780  * that @bio has space for another bvec.
781  */
782 void __bio_add_page(struct bio *bio, struct page *page,
783 		unsigned int len, unsigned int off)
784 {
785 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
786 
787 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
788 	WARN_ON_ONCE(bio_full(bio, len));
789 
790 	bv->bv_page = page;
791 	bv->bv_offset = off;
792 	bv->bv_len = len;
793 
794 	bio->bi_iter.bi_size += len;
795 	bio->bi_vcnt++;
796 
797 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
798 		bio_set_flag(bio, BIO_WORKINGSET);
799 }
800 EXPORT_SYMBOL_GPL(__bio_add_page);
801 
802 /**
803  *	bio_add_page	-	attempt to add page(s) to bio
804  *	@bio: destination bio
805  *	@page: start page to add
806  *	@len: vec entry length, may cross pages
807  *	@offset: vec entry offset relative to @page, may cross pages
808  *
809  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
810  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
811  */
812 int bio_add_page(struct bio *bio, struct page *page,
813 		 unsigned int len, unsigned int offset)
814 {
815 	bool same_page = false;
816 
817 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
818 		if (bio_full(bio, len))
819 			return 0;
820 		__bio_add_page(bio, page, len, offset);
821 	}
822 	return len;
823 }
824 EXPORT_SYMBOL(bio_add_page);
825 
826 void bio_release_pages(struct bio *bio, bool mark_dirty)
827 {
828 	struct bvec_iter_all iter_all;
829 	struct bio_vec *bvec;
830 
831 	if (bio_flagged(bio, BIO_NO_PAGE_REF))
832 		return;
833 
834 	bio_for_each_segment_all(bvec, bio, iter_all) {
835 		if (mark_dirty && !PageCompound(bvec->bv_page))
836 			set_page_dirty_lock(bvec->bv_page);
837 		put_page(bvec->bv_page);
838 	}
839 }
840 
841 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
842 {
843 	const struct bio_vec *bv = iter->bvec;
844 	unsigned int len;
845 	size_t size;
846 
847 	if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
848 		return -EINVAL;
849 
850 	len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
851 	size = bio_add_page(bio, bv->bv_page, len,
852 				bv->bv_offset + iter->iov_offset);
853 	if (unlikely(size != len))
854 		return -EINVAL;
855 	iov_iter_advance(iter, size);
856 	return 0;
857 }
858 
859 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
860 
861 /**
862  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
863  * @bio: bio to add pages to
864  * @iter: iov iterator describing the region to be mapped
865  *
866  * Pins pages from *iter and appends them to @bio's bvec array. The
867  * pages will have to be released using put_page() when done.
868  * For multi-segment *iter, this function only adds pages from the
869  * the next non-empty segment of the iov iterator.
870  */
871 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
872 {
873 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
874 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
875 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
876 	struct page **pages = (struct page **)bv;
877 	bool same_page = false;
878 	ssize_t size, left;
879 	unsigned len, i;
880 	size_t offset;
881 
882 	/*
883 	 * Move page array up in the allocated memory for the bio vecs as far as
884 	 * possible so that we can start filling biovecs from the beginning
885 	 * without overwriting the temporary page array.
886 	*/
887 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
888 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
889 
890 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
891 	if (unlikely(size <= 0))
892 		return size ? size : -EFAULT;
893 
894 	for (left = size, i = 0; left > 0; left -= len, i++) {
895 		struct page *page = pages[i];
896 
897 		len = min_t(size_t, PAGE_SIZE - offset, left);
898 
899 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
900 			if (same_page)
901 				put_page(page);
902 		} else {
903 			if (WARN_ON_ONCE(bio_full(bio, len)))
904                                 return -EINVAL;
905 			__bio_add_page(bio, page, len, offset);
906 		}
907 		offset = 0;
908 	}
909 
910 	iov_iter_advance(iter, size);
911 	return 0;
912 }
913 
914 /**
915  * bio_iov_iter_get_pages - add user or kernel pages to a bio
916  * @bio: bio to add pages to
917  * @iter: iov iterator describing the region to be added
918  *
919  * This takes either an iterator pointing to user memory, or one pointing to
920  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
921  * map them into the kernel. On IO completion, the caller should put those
922  * pages. If we're adding kernel pages, and the caller told us it's safe to
923  * do so, we just have to add the pages to the bio directly. We don't grab an
924  * extra reference to those pages (the user should already have that), and we
925  * don't put the page on IO completion. The caller needs to check if the bio is
926  * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
927  * released.
928  *
929  * The function tries, but does not guarantee, to pin as many pages as
930  * fit into the bio, or are requested in *iter, whatever is smaller. If
931  * MM encounters an error pinning the requested pages, it stops. Error
932  * is returned only if 0 pages could be pinned.
933  */
934 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
935 {
936 	const bool is_bvec = iov_iter_is_bvec(iter);
937 	int ret;
938 
939 	if (WARN_ON_ONCE(bio->bi_vcnt))
940 		return -EINVAL;
941 
942 	do {
943 		if (is_bvec)
944 			ret = __bio_iov_bvec_add_pages(bio, iter);
945 		else
946 			ret = __bio_iov_iter_get_pages(bio, iter);
947 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
948 
949 	if (is_bvec)
950 		bio_set_flag(bio, BIO_NO_PAGE_REF);
951 	return bio->bi_vcnt ? 0 : ret;
952 }
953 
954 static void submit_bio_wait_endio(struct bio *bio)
955 {
956 	complete(bio->bi_private);
957 }
958 
959 /**
960  * submit_bio_wait - submit a bio, and wait until it completes
961  * @bio: The &struct bio which describes the I/O
962  *
963  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
964  * bio_endio() on failure.
965  *
966  * WARNING: Unlike to how submit_bio() is usually used, this function does not
967  * result in bio reference to be consumed. The caller must drop the reference
968  * on his own.
969  */
970 int submit_bio_wait(struct bio *bio)
971 {
972 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
973 
974 	bio->bi_private = &done;
975 	bio->bi_end_io = submit_bio_wait_endio;
976 	bio->bi_opf |= REQ_SYNC;
977 	submit_bio(bio);
978 	wait_for_completion_io(&done);
979 
980 	return blk_status_to_errno(bio->bi_status);
981 }
982 EXPORT_SYMBOL(submit_bio_wait);
983 
984 /**
985  * bio_advance - increment/complete a bio by some number of bytes
986  * @bio:	bio to advance
987  * @bytes:	number of bytes to complete
988  *
989  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
990  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
991  * be updated on the last bvec as well.
992  *
993  * @bio will then represent the remaining, uncompleted portion of the io.
994  */
995 void bio_advance(struct bio *bio, unsigned bytes)
996 {
997 	if (bio_integrity(bio))
998 		bio_integrity_advance(bio, bytes);
999 
1000 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1001 }
1002 EXPORT_SYMBOL(bio_advance);
1003 
1004 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1005 			struct bio *src, struct bvec_iter *src_iter)
1006 {
1007 	struct bio_vec src_bv, dst_bv;
1008 	void *src_p, *dst_p;
1009 	unsigned bytes;
1010 
1011 	while (src_iter->bi_size && dst_iter->bi_size) {
1012 		src_bv = bio_iter_iovec(src, *src_iter);
1013 		dst_bv = bio_iter_iovec(dst, *dst_iter);
1014 
1015 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1016 
1017 		src_p = kmap_atomic(src_bv.bv_page);
1018 		dst_p = kmap_atomic(dst_bv.bv_page);
1019 
1020 		memcpy(dst_p + dst_bv.bv_offset,
1021 		       src_p + src_bv.bv_offset,
1022 		       bytes);
1023 
1024 		kunmap_atomic(dst_p);
1025 		kunmap_atomic(src_p);
1026 
1027 		flush_dcache_page(dst_bv.bv_page);
1028 
1029 		bio_advance_iter(src, src_iter, bytes);
1030 		bio_advance_iter(dst, dst_iter, bytes);
1031 	}
1032 }
1033 EXPORT_SYMBOL(bio_copy_data_iter);
1034 
1035 /**
1036  * bio_copy_data - copy contents of data buffers from one bio to another
1037  * @src: source bio
1038  * @dst: destination bio
1039  *
1040  * Stops when it reaches the end of either @src or @dst - that is, copies
1041  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1042  */
1043 void bio_copy_data(struct bio *dst, struct bio *src)
1044 {
1045 	struct bvec_iter src_iter = src->bi_iter;
1046 	struct bvec_iter dst_iter = dst->bi_iter;
1047 
1048 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1049 }
1050 EXPORT_SYMBOL(bio_copy_data);
1051 
1052 /**
1053  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1054  * another
1055  * @src: source bio list
1056  * @dst: destination bio list
1057  *
1058  * Stops when it reaches the end of either the @src list or @dst list - that is,
1059  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1060  * bios).
1061  */
1062 void bio_list_copy_data(struct bio *dst, struct bio *src)
1063 {
1064 	struct bvec_iter src_iter = src->bi_iter;
1065 	struct bvec_iter dst_iter = dst->bi_iter;
1066 
1067 	while (1) {
1068 		if (!src_iter.bi_size) {
1069 			src = src->bi_next;
1070 			if (!src)
1071 				break;
1072 
1073 			src_iter = src->bi_iter;
1074 		}
1075 
1076 		if (!dst_iter.bi_size) {
1077 			dst = dst->bi_next;
1078 			if (!dst)
1079 				break;
1080 
1081 			dst_iter = dst->bi_iter;
1082 		}
1083 
1084 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1085 	}
1086 }
1087 EXPORT_SYMBOL(bio_list_copy_data);
1088 
1089 struct bio_map_data {
1090 	int is_our_pages;
1091 	struct iov_iter iter;
1092 	struct iovec iov[];
1093 };
1094 
1095 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1096 					       gfp_t gfp_mask)
1097 {
1098 	struct bio_map_data *bmd;
1099 	if (data->nr_segs > UIO_MAXIOV)
1100 		return NULL;
1101 
1102 	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
1103 	if (!bmd)
1104 		return NULL;
1105 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1106 	bmd->iter = *data;
1107 	bmd->iter.iov = bmd->iov;
1108 	return bmd;
1109 }
1110 
1111 /**
1112  * bio_copy_from_iter - copy all pages from iov_iter to bio
1113  * @bio: The &struct bio which describes the I/O as destination
1114  * @iter: iov_iter as source
1115  *
1116  * Copy all pages from iov_iter to bio.
1117  * Returns 0 on success, or error on failure.
1118  */
1119 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1120 {
1121 	struct bio_vec *bvec;
1122 	struct bvec_iter_all iter_all;
1123 
1124 	bio_for_each_segment_all(bvec, bio, iter_all) {
1125 		ssize_t ret;
1126 
1127 		ret = copy_page_from_iter(bvec->bv_page,
1128 					  bvec->bv_offset,
1129 					  bvec->bv_len,
1130 					  iter);
1131 
1132 		if (!iov_iter_count(iter))
1133 			break;
1134 
1135 		if (ret < bvec->bv_len)
1136 			return -EFAULT;
1137 	}
1138 
1139 	return 0;
1140 }
1141 
1142 /**
1143  * bio_copy_to_iter - copy all pages from bio to iov_iter
1144  * @bio: The &struct bio which describes the I/O as source
1145  * @iter: iov_iter as destination
1146  *
1147  * Copy all pages from bio to iov_iter.
1148  * Returns 0 on success, or error on failure.
1149  */
1150 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1151 {
1152 	struct bio_vec *bvec;
1153 	struct bvec_iter_all iter_all;
1154 
1155 	bio_for_each_segment_all(bvec, bio, iter_all) {
1156 		ssize_t ret;
1157 
1158 		ret = copy_page_to_iter(bvec->bv_page,
1159 					bvec->bv_offset,
1160 					bvec->bv_len,
1161 					&iter);
1162 
1163 		if (!iov_iter_count(&iter))
1164 			break;
1165 
1166 		if (ret < bvec->bv_len)
1167 			return -EFAULT;
1168 	}
1169 
1170 	return 0;
1171 }
1172 
1173 void bio_free_pages(struct bio *bio)
1174 {
1175 	struct bio_vec *bvec;
1176 	struct bvec_iter_all iter_all;
1177 
1178 	bio_for_each_segment_all(bvec, bio, iter_all)
1179 		__free_page(bvec->bv_page);
1180 }
1181 EXPORT_SYMBOL(bio_free_pages);
1182 
1183 /**
1184  *	bio_uncopy_user	-	finish previously mapped bio
1185  *	@bio: bio being terminated
1186  *
1187  *	Free pages allocated from bio_copy_user_iov() and write back data
1188  *	to user space in case of a read.
1189  */
1190 int bio_uncopy_user(struct bio *bio)
1191 {
1192 	struct bio_map_data *bmd = bio->bi_private;
1193 	int ret = 0;
1194 
1195 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1196 		/*
1197 		 * if we're in a workqueue, the request is orphaned, so
1198 		 * don't copy into a random user address space, just free
1199 		 * and return -EINTR so user space doesn't expect any data.
1200 		 */
1201 		if (!current->mm)
1202 			ret = -EINTR;
1203 		else if (bio_data_dir(bio) == READ)
1204 			ret = bio_copy_to_iter(bio, bmd->iter);
1205 		if (bmd->is_our_pages)
1206 			bio_free_pages(bio);
1207 	}
1208 	kfree(bmd);
1209 	bio_put(bio);
1210 	return ret;
1211 }
1212 
1213 /**
1214  *	bio_copy_user_iov	-	copy user data to bio
1215  *	@q:		destination block queue
1216  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1217  *	@iter:		iovec iterator
1218  *	@gfp_mask:	memory allocation flags
1219  *
1220  *	Prepares and returns a bio for indirect user io, bouncing data
1221  *	to/from kernel pages as necessary. Must be paired with
1222  *	call bio_uncopy_user() on io completion.
1223  */
1224 struct bio *bio_copy_user_iov(struct request_queue *q,
1225 			      struct rq_map_data *map_data,
1226 			      struct iov_iter *iter,
1227 			      gfp_t gfp_mask)
1228 {
1229 	struct bio_map_data *bmd;
1230 	struct page *page;
1231 	struct bio *bio;
1232 	int i = 0, ret;
1233 	int nr_pages;
1234 	unsigned int len = iter->count;
1235 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1236 
1237 	bmd = bio_alloc_map_data(iter, gfp_mask);
1238 	if (!bmd)
1239 		return ERR_PTR(-ENOMEM);
1240 
1241 	/*
1242 	 * We need to do a deep copy of the iov_iter including the iovecs.
1243 	 * The caller provided iov might point to an on-stack or otherwise
1244 	 * shortlived one.
1245 	 */
1246 	bmd->is_our_pages = map_data ? 0 : 1;
1247 
1248 	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1249 	if (nr_pages > BIO_MAX_PAGES)
1250 		nr_pages = BIO_MAX_PAGES;
1251 
1252 	ret = -ENOMEM;
1253 	bio = bio_kmalloc(gfp_mask, nr_pages);
1254 	if (!bio)
1255 		goto out_bmd;
1256 
1257 	ret = 0;
1258 
1259 	if (map_data) {
1260 		nr_pages = 1 << map_data->page_order;
1261 		i = map_data->offset / PAGE_SIZE;
1262 	}
1263 	while (len) {
1264 		unsigned int bytes = PAGE_SIZE;
1265 
1266 		bytes -= offset;
1267 
1268 		if (bytes > len)
1269 			bytes = len;
1270 
1271 		if (map_data) {
1272 			if (i == map_data->nr_entries * nr_pages) {
1273 				ret = -ENOMEM;
1274 				break;
1275 			}
1276 
1277 			page = map_data->pages[i / nr_pages];
1278 			page += (i % nr_pages);
1279 
1280 			i++;
1281 		} else {
1282 			page = alloc_page(q->bounce_gfp | gfp_mask);
1283 			if (!page) {
1284 				ret = -ENOMEM;
1285 				break;
1286 			}
1287 		}
1288 
1289 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1290 			if (!map_data)
1291 				__free_page(page);
1292 			break;
1293 		}
1294 
1295 		len -= bytes;
1296 		offset = 0;
1297 	}
1298 
1299 	if (ret)
1300 		goto cleanup;
1301 
1302 	if (map_data)
1303 		map_data->offset += bio->bi_iter.bi_size;
1304 
1305 	/*
1306 	 * success
1307 	 */
1308 	if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1309 	    (map_data && map_data->from_user)) {
1310 		ret = bio_copy_from_iter(bio, iter);
1311 		if (ret)
1312 			goto cleanup;
1313 	} else {
1314 		if (bmd->is_our_pages)
1315 			zero_fill_bio(bio);
1316 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1317 	}
1318 
1319 	bio->bi_private = bmd;
1320 	if (map_data && map_data->null_mapped)
1321 		bio_set_flag(bio, BIO_NULL_MAPPED);
1322 	return bio;
1323 cleanup:
1324 	if (!map_data)
1325 		bio_free_pages(bio);
1326 	bio_put(bio);
1327 out_bmd:
1328 	kfree(bmd);
1329 	return ERR_PTR(ret);
1330 }
1331 
1332 /**
1333  *	bio_map_user_iov - map user iovec into bio
1334  *	@q:		the struct request_queue for the bio
1335  *	@iter:		iovec iterator
1336  *	@gfp_mask:	memory allocation flags
1337  *
1338  *	Map the user space address into a bio suitable for io to a block
1339  *	device. Returns an error pointer in case of error.
1340  */
1341 struct bio *bio_map_user_iov(struct request_queue *q,
1342 			     struct iov_iter *iter,
1343 			     gfp_t gfp_mask)
1344 {
1345 	int j;
1346 	struct bio *bio;
1347 	int ret;
1348 
1349 	if (!iov_iter_count(iter))
1350 		return ERR_PTR(-EINVAL);
1351 
1352 	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1353 	if (!bio)
1354 		return ERR_PTR(-ENOMEM);
1355 
1356 	while (iov_iter_count(iter)) {
1357 		struct page **pages;
1358 		ssize_t bytes;
1359 		size_t offs, added = 0;
1360 		int npages;
1361 
1362 		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1363 		if (unlikely(bytes <= 0)) {
1364 			ret = bytes ? bytes : -EFAULT;
1365 			goto out_unmap;
1366 		}
1367 
1368 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1369 
1370 		if (unlikely(offs & queue_dma_alignment(q))) {
1371 			ret = -EINVAL;
1372 			j = 0;
1373 		} else {
1374 			for (j = 0; j < npages; j++) {
1375 				struct page *page = pages[j];
1376 				unsigned int n = PAGE_SIZE - offs;
1377 				bool same_page = false;
1378 
1379 				if (n > bytes)
1380 					n = bytes;
1381 
1382 				if (!__bio_add_pc_page(q, bio, page, n, offs,
1383 						&same_page)) {
1384 					if (same_page)
1385 						put_page(page);
1386 					break;
1387 				}
1388 
1389 				added += n;
1390 				bytes -= n;
1391 				offs = 0;
1392 			}
1393 			iov_iter_advance(iter, added);
1394 		}
1395 		/*
1396 		 * release the pages we didn't map into the bio, if any
1397 		 */
1398 		while (j < npages)
1399 			put_page(pages[j++]);
1400 		kvfree(pages);
1401 		/* couldn't stuff something into bio? */
1402 		if (bytes)
1403 			break;
1404 	}
1405 
1406 	bio_set_flag(bio, BIO_USER_MAPPED);
1407 
1408 	/*
1409 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1410 	 * it would normally disappear when its bi_end_io is run.
1411 	 * however, we need it for the unmap, so grab an extra
1412 	 * reference to it
1413 	 */
1414 	bio_get(bio);
1415 	return bio;
1416 
1417  out_unmap:
1418 	bio_release_pages(bio, false);
1419 	bio_put(bio);
1420 	return ERR_PTR(ret);
1421 }
1422 
1423 /**
1424  *	bio_unmap_user	-	unmap a bio
1425  *	@bio:		the bio being unmapped
1426  *
1427  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1428  *	process context.
1429  *
1430  *	bio_unmap_user() may sleep.
1431  */
1432 void bio_unmap_user(struct bio *bio)
1433 {
1434 	bio_release_pages(bio, bio_data_dir(bio) == READ);
1435 	bio_put(bio);
1436 	bio_put(bio);
1437 }
1438 
1439 static void bio_invalidate_vmalloc_pages(struct bio *bio)
1440 {
1441 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
1442 	if (bio->bi_private && !op_is_write(bio_op(bio))) {
1443 		unsigned long i, len = 0;
1444 
1445 		for (i = 0; i < bio->bi_vcnt; i++)
1446 			len += bio->bi_io_vec[i].bv_len;
1447 		invalidate_kernel_vmap_range(bio->bi_private, len);
1448 	}
1449 #endif
1450 }
1451 
1452 static void bio_map_kern_endio(struct bio *bio)
1453 {
1454 	bio_invalidate_vmalloc_pages(bio);
1455 	bio_put(bio);
1456 }
1457 
1458 /**
1459  *	bio_map_kern	-	map kernel address into bio
1460  *	@q: the struct request_queue for the bio
1461  *	@data: pointer to buffer to map
1462  *	@len: length in bytes
1463  *	@gfp_mask: allocation flags for bio allocation
1464  *
1465  *	Map the kernel address into a bio suitable for io to a block
1466  *	device. Returns an error pointer in case of error.
1467  */
1468 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1469 			 gfp_t gfp_mask)
1470 {
1471 	unsigned long kaddr = (unsigned long)data;
1472 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1473 	unsigned long start = kaddr >> PAGE_SHIFT;
1474 	const int nr_pages = end - start;
1475 	bool is_vmalloc = is_vmalloc_addr(data);
1476 	struct page *page;
1477 	int offset, i;
1478 	struct bio *bio;
1479 
1480 	bio = bio_kmalloc(gfp_mask, nr_pages);
1481 	if (!bio)
1482 		return ERR_PTR(-ENOMEM);
1483 
1484 	if (is_vmalloc) {
1485 		flush_kernel_vmap_range(data, len);
1486 		bio->bi_private = data;
1487 	}
1488 
1489 	offset = offset_in_page(kaddr);
1490 	for (i = 0; i < nr_pages; i++) {
1491 		unsigned int bytes = PAGE_SIZE - offset;
1492 
1493 		if (len <= 0)
1494 			break;
1495 
1496 		if (bytes > len)
1497 			bytes = len;
1498 
1499 		if (!is_vmalloc)
1500 			page = virt_to_page(data);
1501 		else
1502 			page = vmalloc_to_page(data);
1503 		if (bio_add_pc_page(q, bio, page, bytes,
1504 				    offset) < bytes) {
1505 			/* we don't support partial mappings */
1506 			bio_put(bio);
1507 			return ERR_PTR(-EINVAL);
1508 		}
1509 
1510 		data += bytes;
1511 		len -= bytes;
1512 		offset = 0;
1513 	}
1514 
1515 	bio->bi_end_io = bio_map_kern_endio;
1516 	return bio;
1517 }
1518 
1519 static void bio_copy_kern_endio(struct bio *bio)
1520 {
1521 	bio_free_pages(bio);
1522 	bio_put(bio);
1523 }
1524 
1525 static void bio_copy_kern_endio_read(struct bio *bio)
1526 {
1527 	char *p = bio->bi_private;
1528 	struct bio_vec *bvec;
1529 	struct bvec_iter_all iter_all;
1530 
1531 	bio_for_each_segment_all(bvec, bio, iter_all) {
1532 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1533 		p += bvec->bv_len;
1534 	}
1535 
1536 	bio_copy_kern_endio(bio);
1537 }
1538 
1539 /**
1540  *	bio_copy_kern	-	copy kernel address into bio
1541  *	@q: the struct request_queue for the bio
1542  *	@data: pointer to buffer to copy
1543  *	@len: length in bytes
1544  *	@gfp_mask: allocation flags for bio and page allocation
1545  *	@reading: data direction is READ
1546  *
1547  *	copy the kernel address into a bio suitable for io to a block
1548  *	device. Returns an error pointer in case of error.
1549  */
1550 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1551 			  gfp_t gfp_mask, int reading)
1552 {
1553 	unsigned long kaddr = (unsigned long)data;
1554 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1555 	unsigned long start = kaddr >> PAGE_SHIFT;
1556 	struct bio *bio;
1557 	void *p = data;
1558 	int nr_pages = 0;
1559 
1560 	/*
1561 	 * Overflow, abort
1562 	 */
1563 	if (end < start)
1564 		return ERR_PTR(-EINVAL);
1565 
1566 	nr_pages = end - start;
1567 	bio = bio_kmalloc(gfp_mask, nr_pages);
1568 	if (!bio)
1569 		return ERR_PTR(-ENOMEM);
1570 
1571 	while (len) {
1572 		struct page *page;
1573 		unsigned int bytes = PAGE_SIZE;
1574 
1575 		if (bytes > len)
1576 			bytes = len;
1577 
1578 		page = alloc_page(q->bounce_gfp | gfp_mask);
1579 		if (!page)
1580 			goto cleanup;
1581 
1582 		if (!reading)
1583 			memcpy(page_address(page), p, bytes);
1584 
1585 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1586 			break;
1587 
1588 		len -= bytes;
1589 		p += bytes;
1590 	}
1591 
1592 	if (reading) {
1593 		bio->bi_end_io = bio_copy_kern_endio_read;
1594 		bio->bi_private = data;
1595 	} else {
1596 		bio->bi_end_io = bio_copy_kern_endio;
1597 	}
1598 
1599 	return bio;
1600 
1601 cleanup:
1602 	bio_free_pages(bio);
1603 	bio_put(bio);
1604 	return ERR_PTR(-ENOMEM);
1605 }
1606 
1607 /*
1608  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1609  * for performing direct-IO in BIOs.
1610  *
1611  * The problem is that we cannot run set_page_dirty() from interrupt context
1612  * because the required locks are not interrupt-safe.  So what we can do is to
1613  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1614  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1615  * in process context.
1616  *
1617  * We special-case compound pages here: normally this means reads into hugetlb
1618  * pages.  The logic in here doesn't really work right for compound pages
1619  * because the VM does not uniformly chase down the head page in all cases.
1620  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1621  * handle them at all.  So we skip compound pages here at an early stage.
1622  *
1623  * Note that this code is very hard to test under normal circumstances because
1624  * direct-io pins the pages with get_user_pages().  This makes
1625  * is_page_cache_freeable return false, and the VM will not clean the pages.
1626  * But other code (eg, flusher threads) could clean the pages if they are mapped
1627  * pagecache.
1628  *
1629  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1630  * deferred bio dirtying paths.
1631  */
1632 
1633 /*
1634  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1635  */
1636 void bio_set_pages_dirty(struct bio *bio)
1637 {
1638 	struct bio_vec *bvec;
1639 	struct bvec_iter_all iter_all;
1640 
1641 	bio_for_each_segment_all(bvec, bio, iter_all) {
1642 		if (!PageCompound(bvec->bv_page))
1643 			set_page_dirty_lock(bvec->bv_page);
1644 	}
1645 }
1646 
1647 /*
1648  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1649  * If they are, then fine.  If, however, some pages are clean then they must
1650  * have been written out during the direct-IO read.  So we take another ref on
1651  * the BIO and re-dirty the pages in process context.
1652  *
1653  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1654  * here on.  It will run one put_page() against each page and will run one
1655  * bio_put() against the BIO.
1656  */
1657 
1658 static void bio_dirty_fn(struct work_struct *work);
1659 
1660 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1661 static DEFINE_SPINLOCK(bio_dirty_lock);
1662 static struct bio *bio_dirty_list;
1663 
1664 /*
1665  * This runs in process context
1666  */
1667 static void bio_dirty_fn(struct work_struct *work)
1668 {
1669 	struct bio *bio, *next;
1670 
1671 	spin_lock_irq(&bio_dirty_lock);
1672 	next = bio_dirty_list;
1673 	bio_dirty_list = NULL;
1674 	spin_unlock_irq(&bio_dirty_lock);
1675 
1676 	while ((bio = next) != NULL) {
1677 		next = bio->bi_private;
1678 
1679 		bio_release_pages(bio, true);
1680 		bio_put(bio);
1681 	}
1682 }
1683 
1684 void bio_check_pages_dirty(struct bio *bio)
1685 {
1686 	struct bio_vec *bvec;
1687 	unsigned long flags;
1688 	struct bvec_iter_all iter_all;
1689 
1690 	bio_for_each_segment_all(bvec, bio, iter_all) {
1691 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1692 			goto defer;
1693 	}
1694 
1695 	bio_release_pages(bio, false);
1696 	bio_put(bio);
1697 	return;
1698 defer:
1699 	spin_lock_irqsave(&bio_dirty_lock, flags);
1700 	bio->bi_private = bio_dirty_list;
1701 	bio_dirty_list = bio;
1702 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1703 	schedule_work(&bio_dirty_work);
1704 }
1705 
1706 void update_io_ticks(struct hd_struct *part, unsigned long now)
1707 {
1708 	unsigned long stamp;
1709 again:
1710 	stamp = READ_ONCE(part->stamp);
1711 	if (unlikely(stamp != now)) {
1712 		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1713 			__part_stat_add(part, io_ticks, 1);
1714 		}
1715 	}
1716 	if (part->partno) {
1717 		part = &part_to_disk(part)->part0;
1718 		goto again;
1719 	}
1720 }
1721 
1722 void generic_start_io_acct(struct request_queue *q, int op,
1723 			   unsigned long sectors, struct hd_struct *part)
1724 {
1725 	const int sgrp = op_stat_group(op);
1726 
1727 	part_stat_lock();
1728 
1729 	update_io_ticks(part, jiffies);
1730 	part_stat_inc(part, ios[sgrp]);
1731 	part_stat_add(part, sectors[sgrp], sectors);
1732 	part_inc_in_flight(q, part, op_is_write(op));
1733 
1734 	part_stat_unlock();
1735 }
1736 EXPORT_SYMBOL(generic_start_io_acct);
1737 
1738 void generic_end_io_acct(struct request_queue *q, int req_op,
1739 			 struct hd_struct *part, unsigned long start_time)
1740 {
1741 	unsigned long now = jiffies;
1742 	unsigned long duration = now - start_time;
1743 	const int sgrp = op_stat_group(req_op);
1744 
1745 	part_stat_lock();
1746 
1747 	update_io_ticks(part, now);
1748 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1749 	part_stat_add(part, time_in_queue, duration);
1750 	part_dec_in_flight(q, part, op_is_write(req_op));
1751 
1752 	part_stat_unlock();
1753 }
1754 EXPORT_SYMBOL(generic_end_io_acct);
1755 
1756 static inline bool bio_remaining_done(struct bio *bio)
1757 {
1758 	/*
1759 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1760 	 * we always end io on the first invocation.
1761 	 */
1762 	if (!bio_flagged(bio, BIO_CHAIN))
1763 		return true;
1764 
1765 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1766 
1767 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1768 		bio_clear_flag(bio, BIO_CHAIN);
1769 		return true;
1770 	}
1771 
1772 	return false;
1773 }
1774 
1775 /**
1776  * bio_endio - end I/O on a bio
1777  * @bio:	bio
1778  *
1779  * Description:
1780  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1781  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1782  *   bio unless they own it and thus know that it has an end_io function.
1783  *
1784  *   bio_endio() can be called several times on a bio that has been chained
1785  *   using bio_chain().  The ->bi_end_io() function will only be called the
1786  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1787  *   generated if BIO_TRACE_COMPLETION is set.
1788  **/
1789 void bio_endio(struct bio *bio)
1790 {
1791 again:
1792 	if (!bio_remaining_done(bio))
1793 		return;
1794 	if (!bio_integrity_endio(bio))
1795 		return;
1796 
1797 	if (bio->bi_disk)
1798 		rq_qos_done_bio(bio->bi_disk->queue, bio);
1799 
1800 	/*
1801 	 * Need to have a real endio function for chained bios, otherwise
1802 	 * various corner cases will break (like stacking block devices that
1803 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1804 	 * recursion and blowing the stack. Tail call optimization would
1805 	 * handle this, but compiling with frame pointers also disables
1806 	 * gcc's sibling call optimization.
1807 	 */
1808 	if (bio->bi_end_io == bio_chain_endio) {
1809 		bio = __bio_chain_endio(bio);
1810 		goto again;
1811 	}
1812 
1813 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1814 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1815 					 blk_status_to_errno(bio->bi_status));
1816 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1817 	}
1818 
1819 	blk_throtl_bio_endio(bio);
1820 	/* release cgroup info */
1821 	bio_uninit(bio);
1822 	if (bio->bi_end_io)
1823 		bio->bi_end_io(bio);
1824 }
1825 EXPORT_SYMBOL(bio_endio);
1826 
1827 /**
1828  * bio_split - split a bio
1829  * @bio:	bio to split
1830  * @sectors:	number of sectors to split from the front of @bio
1831  * @gfp:	gfp mask
1832  * @bs:		bio set to allocate from
1833  *
1834  * Allocates and returns a new bio which represents @sectors from the start of
1835  * @bio, and updates @bio to represent the remaining sectors.
1836  *
1837  * Unless this is a discard request the newly allocated bio will point
1838  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1839  * neither @bio nor @bs are freed before the split bio.
1840  */
1841 struct bio *bio_split(struct bio *bio, int sectors,
1842 		      gfp_t gfp, struct bio_set *bs)
1843 {
1844 	struct bio *split;
1845 
1846 	BUG_ON(sectors <= 0);
1847 	BUG_ON(sectors >= bio_sectors(bio));
1848 
1849 	split = bio_clone_fast(bio, gfp, bs);
1850 	if (!split)
1851 		return NULL;
1852 
1853 	split->bi_iter.bi_size = sectors << 9;
1854 
1855 	if (bio_integrity(split))
1856 		bio_integrity_trim(split);
1857 
1858 	bio_advance(bio, split->bi_iter.bi_size);
1859 
1860 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1861 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1862 
1863 	return split;
1864 }
1865 EXPORT_SYMBOL(bio_split);
1866 
1867 /**
1868  * bio_trim - trim a bio
1869  * @bio:	bio to trim
1870  * @offset:	number of sectors to trim from the front of @bio
1871  * @size:	size we want to trim @bio to, in sectors
1872  */
1873 void bio_trim(struct bio *bio, int offset, int size)
1874 {
1875 	/* 'bio' is a cloned bio which we need to trim to match
1876 	 * the given offset and size.
1877 	 */
1878 
1879 	size <<= 9;
1880 	if (offset == 0 && size == bio->bi_iter.bi_size)
1881 		return;
1882 
1883 	bio_advance(bio, offset << 9);
1884 	bio->bi_iter.bi_size = size;
1885 
1886 	if (bio_integrity(bio))
1887 		bio_integrity_trim(bio);
1888 
1889 }
1890 EXPORT_SYMBOL_GPL(bio_trim);
1891 
1892 /*
1893  * create memory pools for biovec's in a bio_set.
1894  * use the global biovec slabs created for general use.
1895  */
1896 int biovec_init_pool(mempool_t *pool, int pool_entries)
1897 {
1898 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1899 
1900 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1901 }
1902 
1903 /*
1904  * bioset_exit - exit a bioset initialized with bioset_init()
1905  *
1906  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1907  * kzalloc()).
1908  */
1909 void bioset_exit(struct bio_set *bs)
1910 {
1911 	if (bs->rescue_workqueue)
1912 		destroy_workqueue(bs->rescue_workqueue);
1913 	bs->rescue_workqueue = NULL;
1914 
1915 	mempool_exit(&bs->bio_pool);
1916 	mempool_exit(&bs->bvec_pool);
1917 
1918 	bioset_integrity_free(bs);
1919 	if (bs->bio_slab)
1920 		bio_put_slab(bs);
1921 	bs->bio_slab = NULL;
1922 }
1923 EXPORT_SYMBOL(bioset_exit);
1924 
1925 /**
1926  * bioset_init - Initialize a bio_set
1927  * @bs:		pool to initialize
1928  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1929  * @front_pad:	Number of bytes to allocate in front of the returned bio
1930  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1931  *              and %BIOSET_NEED_RESCUER
1932  *
1933  * Description:
1934  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1935  *    to ask for a number of bytes to be allocated in front of the bio.
1936  *    Front pad allocation is useful for embedding the bio inside
1937  *    another structure, to avoid allocating extra data to go with the bio.
1938  *    Note that the bio must be embedded at the END of that structure always,
1939  *    or things will break badly.
1940  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1941  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1942  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1943  *    dispatch queued requests when the mempool runs out of space.
1944  *
1945  */
1946 int bioset_init(struct bio_set *bs,
1947 		unsigned int pool_size,
1948 		unsigned int front_pad,
1949 		int flags)
1950 {
1951 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1952 
1953 	bs->front_pad = front_pad;
1954 
1955 	spin_lock_init(&bs->rescue_lock);
1956 	bio_list_init(&bs->rescue_list);
1957 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1958 
1959 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1960 	if (!bs->bio_slab)
1961 		return -ENOMEM;
1962 
1963 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1964 		goto bad;
1965 
1966 	if ((flags & BIOSET_NEED_BVECS) &&
1967 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1968 		goto bad;
1969 
1970 	if (!(flags & BIOSET_NEED_RESCUER))
1971 		return 0;
1972 
1973 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1974 	if (!bs->rescue_workqueue)
1975 		goto bad;
1976 
1977 	return 0;
1978 bad:
1979 	bioset_exit(bs);
1980 	return -ENOMEM;
1981 }
1982 EXPORT_SYMBOL(bioset_init);
1983 
1984 /*
1985  * Initialize and setup a new bio_set, based on the settings from
1986  * another bio_set.
1987  */
1988 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1989 {
1990 	int flags;
1991 
1992 	flags = 0;
1993 	if (src->bvec_pool.min_nr)
1994 		flags |= BIOSET_NEED_BVECS;
1995 	if (src->rescue_workqueue)
1996 		flags |= BIOSET_NEED_RESCUER;
1997 
1998 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1999 }
2000 EXPORT_SYMBOL(bioset_init_from_src);
2001 
2002 #ifdef CONFIG_BLK_CGROUP
2003 
2004 /**
2005  * bio_disassociate_blkg - puts back the blkg reference if associated
2006  * @bio: target bio
2007  *
2008  * Helper to disassociate the blkg from @bio if a blkg is associated.
2009  */
2010 void bio_disassociate_blkg(struct bio *bio)
2011 {
2012 	if (bio->bi_blkg) {
2013 		blkg_put(bio->bi_blkg);
2014 		bio->bi_blkg = NULL;
2015 	}
2016 }
2017 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2018 
2019 /**
2020  * __bio_associate_blkg - associate a bio with the a blkg
2021  * @bio: target bio
2022  * @blkg: the blkg to associate
2023  *
2024  * This tries to associate @bio with the specified @blkg.  Association failure
2025  * is handled by walking up the blkg tree.  Therefore, the blkg associated can
2026  * be anything between @blkg and the root_blkg.  This situation only happens
2027  * when a cgroup is dying and then the remaining bios will spill to the closest
2028  * alive blkg.
2029  *
2030  * A reference will be taken on the @blkg and will be released when @bio is
2031  * freed.
2032  */
2033 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2034 {
2035 	bio_disassociate_blkg(bio);
2036 
2037 	bio->bi_blkg = blkg_tryget_closest(blkg);
2038 }
2039 
2040 /**
2041  * bio_associate_blkg_from_css - associate a bio with a specified css
2042  * @bio: target bio
2043  * @css: target css
2044  *
2045  * Associate @bio with the blkg found by combining the css's blkg and the
2046  * request_queue of the @bio.  This falls back to the queue's root_blkg if
2047  * the association fails with the css.
2048  */
2049 void bio_associate_blkg_from_css(struct bio *bio,
2050 				 struct cgroup_subsys_state *css)
2051 {
2052 	struct request_queue *q = bio->bi_disk->queue;
2053 	struct blkcg_gq *blkg;
2054 
2055 	rcu_read_lock();
2056 
2057 	if (!css || !css->parent)
2058 		blkg = q->root_blkg;
2059 	else
2060 		blkg = blkg_lookup_create(css_to_blkcg(css), q);
2061 
2062 	__bio_associate_blkg(bio, blkg);
2063 
2064 	rcu_read_unlock();
2065 }
2066 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2067 
2068 #ifdef CONFIG_MEMCG
2069 /**
2070  * bio_associate_blkg_from_page - associate a bio with the page's blkg
2071  * @bio: target bio
2072  * @page: the page to lookup the blkcg from
2073  *
2074  * Associate @bio with the blkg from @page's owning memcg and the respective
2075  * request_queue.  If cgroup_e_css returns %NULL, fall back to the queue's
2076  * root_blkg.
2077  */
2078 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2079 {
2080 	struct cgroup_subsys_state *css;
2081 
2082 	if (!page->mem_cgroup)
2083 		return;
2084 
2085 	rcu_read_lock();
2086 
2087 	css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2088 	bio_associate_blkg_from_css(bio, css);
2089 
2090 	rcu_read_unlock();
2091 }
2092 #endif /* CONFIG_MEMCG */
2093 
2094 /**
2095  * bio_associate_blkg - associate a bio with a blkg
2096  * @bio: target bio
2097  *
2098  * Associate @bio with the blkg found from the bio's css and request_queue.
2099  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2100  * already associated, the css is reused and association redone as the
2101  * request_queue may have changed.
2102  */
2103 void bio_associate_blkg(struct bio *bio)
2104 {
2105 	struct cgroup_subsys_state *css;
2106 
2107 	rcu_read_lock();
2108 
2109 	if (bio->bi_blkg)
2110 		css = &bio_blkcg(bio)->css;
2111 	else
2112 		css = blkcg_css();
2113 
2114 	bio_associate_blkg_from_css(bio, css);
2115 
2116 	rcu_read_unlock();
2117 }
2118 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2119 
2120 /**
2121  * bio_clone_blkg_association - clone blkg association from src to dst bio
2122  * @dst: destination bio
2123  * @src: source bio
2124  */
2125 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2126 {
2127 	rcu_read_lock();
2128 
2129 	if (src->bi_blkg)
2130 		__bio_associate_blkg(dst, src->bi_blkg);
2131 
2132 	rcu_read_unlock();
2133 }
2134 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2135 #endif /* CONFIG_BLK_CGROUP */
2136 
2137 static void __init biovec_init_slabs(void)
2138 {
2139 	int i;
2140 
2141 	for (i = 0; i < BVEC_POOL_NR; i++) {
2142 		int size;
2143 		struct biovec_slab *bvs = bvec_slabs + i;
2144 
2145 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2146 			bvs->slab = NULL;
2147 			continue;
2148 		}
2149 
2150 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2151 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2152                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2153 	}
2154 }
2155 
2156 static int __init init_bio(void)
2157 {
2158 	bio_slab_max = 2;
2159 	bio_slab_nr = 0;
2160 	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2161 			    GFP_KERNEL);
2162 
2163 	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2164 
2165 	if (!bio_slabs)
2166 		panic("bio: can't allocate bios\n");
2167 
2168 	bio_integrity_init();
2169 	biovec_init_slabs();
2170 
2171 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2172 		panic("bio: can't allocate bios\n");
2173 
2174 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2175 		panic("bio: can't create integrity pool\n");
2176 
2177 	return 0;
2178 }
2179 subsys_initcall(init_bio);
2180