xref: /openbmc/linux/block/bio.c (revision 519a8a6c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
22 
23 #include <trace/events/block.h>
24 #include "blk.h"
25 #include "blk-rq-qos.h"
26 
27 /*
28  * Test patch to inline a certain number of bi_io_vec's inside the bio
29  * itself, to shrink a bio data allocation from two mempool calls to one
30  */
31 #define BIO_INLINE_VECS		4
32 
33 /*
34  * if you change this list, also change bvec_alloc or things will
35  * break badly! cannot be bigger than what you can fit into an
36  * unsigned short
37  */
38 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
39 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
40 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
41 };
42 #undef BV
43 
44 /*
45  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
46  * IO code that does not need private memory pools.
47  */
48 struct bio_set fs_bio_set;
49 EXPORT_SYMBOL(fs_bio_set);
50 
51 /*
52  * Our slab pool management
53  */
54 struct bio_slab {
55 	struct kmem_cache *slab;
56 	unsigned int slab_ref;
57 	unsigned int slab_size;
58 	char name[8];
59 };
60 static DEFINE_MUTEX(bio_slab_lock);
61 static struct bio_slab *bio_slabs;
62 static unsigned int bio_slab_nr, bio_slab_max;
63 
64 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
65 {
66 	unsigned int sz = sizeof(struct bio) + extra_size;
67 	struct kmem_cache *slab = NULL;
68 	struct bio_slab *bslab, *new_bio_slabs;
69 	unsigned int new_bio_slab_max;
70 	unsigned int i, entry = -1;
71 
72 	mutex_lock(&bio_slab_lock);
73 
74 	i = 0;
75 	while (i < bio_slab_nr) {
76 		bslab = &bio_slabs[i];
77 
78 		if (!bslab->slab && entry == -1)
79 			entry = i;
80 		else if (bslab->slab_size == sz) {
81 			slab = bslab->slab;
82 			bslab->slab_ref++;
83 			break;
84 		}
85 		i++;
86 	}
87 
88 	if (slab)
89 		goto out_unlock;
90 
91 	if (bio_slab_nr == bio_slab_max && entry == -1) {
92 		new_bio_slab_max = bio_slab_max << 1;
93 		new_bio_slabs = krealloc(bio_slabs,
94 					 new_bio_slab_max * sizeof(struct bio_slab),
95 					 GFP_KERNEL);
96 		if (!new_bio_slabs)
97 			goto out_unlock;
98 		bio_slab_max = new_bio_slab_max;
99 		bio_slabs = new_bio_slabs;
100 	}
101 	if (entry == -1)
102 		entry = bio_slab_nr++;
103 
104 	bslab = &bio_slabs[entry];
105 
106 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
107 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
108 				 SLAB_HWCACHE_ALIGN, NULL);
109 	if (!slab)
110 		goto out_unlock;
111 
112 	bslab->slab = slab;
113 	bslab->slab_ref = 1;
114 	bslab->slab_size = sz;
115 out_unlock:
116 	mutex_unlock(&bio_slab_lock);
117 	return slab;
118 }
119 
120 static void bio_put_slab(struct bio_set *bs)
121 {
122 	struct bio_slab *bslab = NULL;
123 	unsigned int i;
124 
125 	mutex_lock(&bio_slab_lock);
126 
127 	for (i = 0; i < bio_slab_nr; i++) {
128 		if (bs->bio_slab == bio_slabs[i].slab) {
129 			bslab = &bio_slabs[i];
130 			break;
131 		}
132 	}
133 
134 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
135 		goto out;
136 
137 	WARN_ON(!bslab->slab_ref);
138 
139 	if (--bslab->slab_ref)
140 		goto out;
141 
142 	kmem_cache_destroy(bslab->slab);
143 	bslab->slab = NULL;
144 
145 out:
146 	mutex_unlock(&bio_slab_lock);
147 }
148 
149 unsigned int bvec_nr_vecs(unsigned short idx)
150 {
151 	return bvec_slabs[--idx].nr_vecs;
152 }
153 
154 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
155 {
156 	if (!idx)
157 		return;
158 	idx--;
159 
160 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
161 
162 	if (idx == BVEC_POOL_MAX) {
163 		mempool_free(bv, pool);
164 	} else {
165 		struct biovec_slab *bvs = bvec_slabs + idx;
166 
167 		kmem_cache_free(bvs->slab, bv);
168 	}
169 }
170 
171 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
172 			   mempool_t *pool)
173 {
174 	struct bio_vec *bvl;
175 
176 	/*
177 	 * see comment near bvec_array define!
178 	 */
179 	switch (nr) {
180 	case 1:
181 		*idx = 0;
182 		break;
183 	case 2 ... 4:
184 		*idx = 1;
185 		break;
186 	case 5 ... 16:
187 		*idx = 2;
188 		break;
189 	case 17 ... 64:
190 		*idx = 3;
191 		break;
192 	case 65 ... 128:
193 		*idx = 4;
194 		break;
195 	case 129 ... BIO_MAX_PAGES:
196 		*idx = 5;
197 		break;
198 	default:
199 		return NULL;
200 	}
201 
202 	/*
203 	 * idx now points to the pool we want to allocate from. only the
204 	 * 1-vec entry pool is mempool backed.
205 	 */
206 	if (*idx == BVEC_POOL_MAX) {
207 fallback:
208 		bvl = mempool_alloc(pool, gfp_mask);
209 	} else {
210 		struct biovec_slab *bvs = bvec_slabs + *idx;
211 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
212 
213 		/*
214 		 * Make this allocation restricted and don't dump info on
215 		 * allocation failures, since we'll fallback to the mempool
216 		 * in case of failure.
217 		 */
218 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
219 
220 		/*
221 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
222 		 * is set, retry with the 1-entry mempool
223 		 */
224 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
225 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
226 			*idx = BVEC_POOL_MAX;
227 			goto fallback;
228 		}
229 	}
230 
231 	(*idx)++;
232 	return bvl;
233 }
234 
235 void bio_uninit(struct bio *bio)
236 {
237 #ifdef CONFIG_BLK_CGROUP
238 	if (bio->bi_blkg) {
239 		blkg_put(bio->bi_blkg);
240 		bio->bi_blkg = NULL;
241 	}
242 #endif
243 	if (bio_integrity(bio))
244 		bio_integrity_free(bio);
245 
246 	bio_crypt_free_ctx(bio);
247 }
248 EXPORT_SYMBOL(bio_uninit);
249 
250 static void bio_free(struct bio *bio)
251 {
252 	struct bio_set *bs = bio->bi_pool;
253 	void *p;
254 
255 	bio_uninit(bio);
256 
257 	if (bs) {
258 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
259 
260 		/*
261 		 * If we have front padding, adjust the bio pointer before freeing
262 		 */
263 		p = bio;
264 		p -= bs->front_pad;
265 
266 		mempool_free(p, &bs->bio_pool);
267 	} else {
268 		/* Bio was allocated by bio_kmalloc() */
269 		kfree(bio);
270 	}
271 }
272 
273 /*
274  * Users of this function have their own bio allocation. Subsequently,
275  * they must remember to pair any call to bio_init() with bio_uninit()
276  * when IO has completed, or when the bio is released.
277  */
278 void bio_init(struct bio *bio, struct bio_vec *table,
279 	      unsigned short max_vecs)
280 {
281 	memset(bio, 0, sizeof(*bio));
282 	atomic_set(&bio->__bi_remaining, 1);
283 	atomic_set(&bio->__bi_cnt, 1);
284 
285 	bio->bi_io_vec = table;
286 	bio->bi_max_vecs = max_vecs;
287 }
288 EXPORT_SYMBOL(bio_init);
289 
290 /**
291  * bio_reset - reinitialize a bio
292  * @bio:	bio to reset
293  *
294  * Description:
295  *   After calling bio_reset(), @bio will be in the same state as a freshly
296  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
297  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
298  *   comment in struct bio.
299  */
300 void bio_reset(struct bio *bio)
301 {
302 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
303 
304 	bio_uninit(bio);
305 
306 	memset(bio, 0, BIO_RESET_BYTES);
307 	bio->bi_flags = flags;
308 	atomic_set(&bio->__bi_remaining, 1);
309 }
310 EXPORT_SYMBOL(bio_reset);
311 
312 static struct bio *__bio_chain_endio(struct bio *bio)
313 {
314 	struct bio *parent = bio->bi_private;
315 
316 	if (!parent->bi_status)
317 		parent->bi_status = bio->bi_status;
318 	bio_put(bio);
319 	return parent;
320 }
321 
322 static void bio_chain_endio(struct bio *bio)
323 {
324 	bio_endio(__bio_chain_endio(bio));
325 }
326 
327 /**
328  * bio_chain - chain bio completions
329  * @bio: the target bio
330  * @parent: the @bio's parent bio
331  *
332  * The caller won't have a bi_end_io called when @bio completes - instead,
333  * @parent's bi_end_io won't be called until both @parent and @bio have
334  * completed; the chained bio will also be freed when it completes.
335  *
336  * The caller must not set bi_private or bi_end_io in @bio.
337  */
338 void bio_chain(struct bio *bio, struct bio *parent)
339 {
340 	BUG_ON(bio->bi_private || bio->bi_end_io);
341 
342 	bio->bi_private = parent;
343 	bio->bi_end_io	= bio_chain_endio;
344 	bio_inc_remaining(parent);
345 }
346 EXPORT_SYMBOL(bio_chain);
347 
348 static void bio_alloc_rescue(struct work_struct *work)
349 {
350 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
351 	struct bio *bio;
352 
353 	while (1) {
354 		spin_lock(&bs->rescue_lock);
355 		bio = bio_list_pop(&bs->rescue_list);
356 		spin_unlock(&bs->rescue_lock);
357 
358 		if (!bio)
359 			break;
360 
361 		submit_bio_noacct(bio);
362 	}
363 }
364 
365 static void punt_bios_to_rescuer(struct bio_set *bs)
366 {
367 	struct bio_list punt, nopunt;
368 	struct bio *bio;
369 
370 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
371 		return;
372 	/*
373 	 * In order to guarantee forward progress we must punt only bios that
374 	 * were allocated from this bio_set; otherwise, if there was a bio on
375 	 * there for a stacking driver higher up in the stack, processing it
376 	 * could require allocating bios from this bio_set, and doing that from
377 	 * our own rescuer would be bad.
378 	 *
379 	 * Since bio lists are singly linked, pop them all instead of trying to
380 	 * remove from the middle of the list:
381 	 */
382 
383 	bio_list_init(&punt);
384 	bio_list_init(&nopunt);
385 
386 	while ((bio = bio_list_pop(&current->bio_list[0])))
387 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
388 	current->bio_list[0] = nopunt;
389 
390 	bio_list_init(&nopunt);
391 	while ((bio = bio_list_pop(&current->bio_list[1])))
392 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
393 	current->bio_list[1] = nopunt;
394 
395 	spin_lock(&bs->rescue_lock);
396 	bio_list_merge(&bs->rescue_list, &punt);
397 	spin_unlock(&bs->rescue_lock);
398 
399 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
400 }
401 
402 /**
403  * bio_alloc_bioset - allocate a bio for I/O
404  * @gfp_mask:   the GFP_* mask given to the slab allocator
405  * @nr_iovecs:	number of iovecs to pre-allocate
406  * @bs:		the bio_set to allocate from.
407  *
408  * Description:
409  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
410  *   backed by the @bs's mempool.
411  *
412  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
413  *   always be able to allocate a bio. This is due to the mempool guarantees.
414  *   To make this work, callers must never allocate more than 1 bio at a time
415  *   from this pool. Callers that need to allocate more than 1 bio must always
416  *   submit the previously allocated bio for IO before attempting to allocate
417  *   a new one. Failure to do so can cause deadlocks under memory pressure.
418  *
419  *   Note that when running under submit_bio_noacct() (i.e. any block
420  *   driver), bios are not submitted until after you return - see the code in
421  *   submit_bio_noacct() that converts recursion into iteration, to prevent
422  *   stack overflows.
423  *
424  *   This would normally mean allocating multiple bios under
425  *   submit_bio_noacct() would be susceptible to deadlocks, but we have
426  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
427  *   thread.
428  *
429  *   However, we do not guarantee forward progress for allocations from other
430  *   mempools. Doing multiple allocations from the same mempool under
431  *   submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
432  *   for per bio allocations.
433  *
434  *   RETURNS:
435  *   Pointer to new bio on success, NULL on failure.
436  */
437 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
438 			     struct bio_set *bs)
439 {
440 	gfp_t saved_gfp = gfp_mask;
441 	unsigned front_pad;
442 	unsigned inline_vecs;
443 	struct bio_vec *bvl = NULL;
444 	struct bio *bio;
445 	void *p;
446 
447 	if (!bs) {
448 		if (nr_iovecs > UIO_MAXIOV)
449 			return NULL;
450 
451 		p = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
452 		front_pad = 0;
453 		inline_vecs = nr_iovecs;
454 	} else {
455 		/* should not use nobvec bioset for nr_iovecs > 0 */
456 		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
457 				 nr_iovecs > 0))
458 			return NULL;
459 		/*
460 		 * submit_bio_noacct() converts recursion to iteration; this
461 		 * means if we're running beneath it, any bios we allocate and
462 		 * submit will not be submitted (and thus freed) until after we
463 		 * return.
464 		 *
465 		 * This exposes us to a potential deadlock if we allocate
466 		 * multiple bios from the same bio_set() while running
467 		 * underneath submit_bio_noacct(). If we were to allocate
468 		 * multiple bios (say a stacking block driver that was splitting
469 		 * bios), we would deadlock if we exhausted the mempool's
470 		 * reserve.
471 		 *
472 		 * We solve this, and guarantee forward progress, with a rescuer
473 		 * workqueue per bio_set. If we go to allocate and there are
474 		 * bios on current->bio_list, we first try the allocation
475 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 		 * bios we would be blocking to the rescuer workqueue before
477 		 * we retry with the original gfp_flags.
478 		 */
479 
480 		if (current->bio_list &&
481 		    (!bio_list_empty(&current->bio_list[0]) ||
482 		     !bio_list_empty(&current->bio_list[1])) &&
483 		    bs->rescue_workqueue)
484 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
485 
486 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
487 		if (!p && gfp_mask != saved_gfp) {
488 			punt_bios_to_rescuer(bs);
489 			gfp_mask = saved_gfp;
490 			p = mempool_alloc(&bs->bio_pool, gfp_mask);
491 		}
492 
493 		front_pad = bs->front_pad;
494 		inline_vecs = BIO_INLINE_VECS;
495 	}
496 
497 	if (unlikely(!p))
498 		return NULL;
499 
500 	bio = p + front_pad;
501 	bio_init(bio, NULL, 0);
502 
503 	if (nr_iovecs > inline_vecs) {
504 		unsigned long idx = 0;
505 
506 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
507 		if (!bvl && gfp_mask != saved_gfp) {
508 			punt_bios_to_rescuer(bs);
509 			gfp_mask = saved_gfp;
510 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
511 		}
512 
513 		if (unlikely(!bvl))
514 			goto err_free;
515 
516 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
517 	} else if (nr_iovecs) {
518 		bvl = bio->bi_inline_vecs;
519 	}
520 
521 	bio->bi_pool = bs;
522 	bio->bi_max_vecs = nr_iovecs;
523 	bio->bi_io_vec = bvl;
524 	return bio;
525 
526 err_free:
527 	mempool_free(p, &bs->bio_pool);
528 	return NULL;
529 }
530 EXPORT_SYMBOL(bio_alloc_bioset);
531 
532 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
533 {
534 	unsigned long flags;
535 	struct bio_vec bv;
536 	struct bvec_iter iter;
537 
538 	__bio_for_each_segment(bv, bio, iter, start) {
539 		char *data = bvec_kmap_irq(&bv, &flags);
540 		memset(data, 0, bv.bv_len);
541 		flush_dcache_page(bv.bv_page);
542 		bvec_kunmap_irq(data, &flags);
543 	}
544 }
545 EXPORT_SYMBOL(zero_fill_bio_iter);
546 
547 /**
548  * bio_truncate - truncate the bio to small size of @new_size
549  * @bio:	the bio to be truncated
550  * @new_size:	new size for truncating the bio
551  *
552  * Description:
553  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
554  *   REQ_OP_READ, zero the truncated part. This function should only
555  *   be used for handling corner cases, such as bio eod.
556  */
557 void bio_truncate(struct bio *bio, unsigned new_size)
558 {
559 	struct bio_vec bv;
560 	struct bvec_iter iter;
561 	unsigned int done = 0;
562 	bool truncated = false;
563 
564 	if (new_size >= bio->bi_iter.bi_size)
565 		return;
566 
567 	if (bio_op(bio) != REQ_OP_READ)
568 		goto exit;
569 
570 	bio_for_each_segment(bv, bio, iter) {
571 		if (done + bv.bv_len > new_size) {
572 			unsigned offset;
573 
574 			if (!truncated)
575 				offset = new_size - done;
576 			else
577 				offset = 0;
578 			zero_user(bv.bv_page, offset, bv.bv_len - offset);
579 			truncated = true;
580 		}
581 		done += bv.bv_len;
582 	}
583 
584  exit:
585 	/*
586 	 * Don't touch bvec table here and make it really immutable, since
587 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
588 	 * in its .end_bio() callback.
589 	 *
590 	 * It is enough to truncate bio by updating .bi_size since we can make
591 	 * correct bvec with the updated .bi_size for drivers.
592 	 */
593 	bio->bi_iter.bi_size = new_size;
594 }
595 
596 /**
597  * guard_bio_eod - truncate a BIO to fit the block device
598  * @bio:	bio to truncate
599  *
600  * This allows us to do IO even on the odd last sectors of a device, even if the
601  * block size is some multiple of the physical sector size.
602  *
603  * We'll just truncate the bio to the size of the device, and clear the end of
604  * the buffer head manually.  Truly out-of-range accesses will turn into actual
605  * I/O errors, this only handles the "we need to be able to do I/O at the final
606  * sector" case.
607  */
608 void guard_bio_eod(struct bio *bio)
609 {
610 	sector_t maxsector;
611 	struct hd_struct *part;
612 
613 	rcu_read_lock();
614 	part = __disk_get_part(bio->bi_disk, bio->bi_partno);
615 	if (part)
616 		maxsector = part_nr_sects_read(part);
617 	else
618 		maxsector = get_capacity(bio->bi_disk);
619 	rcu_read_unlock();
620 
621 	if (!maxsector)
622 		return;
623 
624 	/*
625 	 * If the *whole* IO is past the end of the device,
626 	 * let it through, and the IO layer will turn it into
627 	 * an EIO.
628 	 */
629 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
630 		return;
631 
632 	maxsector -= bio->bi_iter.bi_sector;
633 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
634 		return;
635 
636 	bio_truncate(bio, maxsector << 9);
637 }
638 
639 /**
640  * bio_put - release a reference to a bio
641  * @bio:   bio to release reference to
642  *
643  * Description:
644  *   Put a reference to a &struct bio, either one you have gotten with
645  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
646  **/
647 void bio_put(struct bio *bio)
648 {
649 	if (!bio_flagged(bio, BIO_REFFED))
650 		bio_free(bio);
651 	else {
652 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
653 
654 		/*
655 		 * last put frees it
656 		 */
657 		if (atomic_dec_and_test(&bio->__bi_cnt))
658 			bio_free(bio);
659 	}
660 }
661 EXPORT_SYMBOL(bio_put);
662 
663 /**
664  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
665  * 	@bio: destination bio
666  * 	@bio_src: bio to clone
667  *
668  *	Clone a &bio. Caller will own the returned bio, but not
669  *	the actual data it points to. Reference count of returned
670  * 	bio will be one.
671  *
672  * 	Caller must ensure that @bio_src is not freed before @bio.
673  */
674 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
675 {
676 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
677 
678 	/*
679 	 * most users will be overriding ->bi_disk with a new target,
680 	 * so we don't set nor calculate new physical/hw segment counts here
681 	 */
682 	bio->bi_disk = bio_src->bi_disk;
683 	bio->bi_partno = bio_src->bi_partno;
684 	bio_set_flag(bio, BIO_CLONED);
685 	if (bio_flagged(bio_src, BIO_THROTTLED))
686 		bio_set_flag(bio, BIO_THROTTLED);
687 	bio->bi_opf = bio_src->bi_opf;
688 	bio->bi_ioprio = bio_src->bi_ioprio;
689 	bio->bi_write_hint = bio_src->bi_write_hint;
690 	bio->bi_iter = bio_src->bi_iter;
691 	bio->bi_io_vec = bio_src->bi_io_vec;
692 
693 	bio_clone_blkg_association(bio, bio_src);
694 	blkcg_bio_issue_init(bio);
695 }
696 EXPORT_SYMBOL(__bio_clone_fast);
697 
698 /**
699  *	bio_clone_fast - clone a bio that shares the original bio's biovec
700  *	@bio: bio to clone
701  *	@gfp_mask: allocation priority
702  *	@bs: bio_set to allocate from
703  *
704  * 	Like __bio_clone_fast, only also allocates the returned bio
705  */
706 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
707 {
708 	struct bio *b;
709 
710 	b = bio_alloc_bioset(gfp_mask, 0, bs);
711 	if (!b)
712 		return NULL;
713 
714 	__bio_clone_fast(b, bio);
715 
716 	bio_crypt_clone(b, bio, gfp_mask);
717 
718 	if (bio_integrity(bio)) {
719 		int ret;
720 
721 		ret = bio_integrity_clone(b, bio, gfp_mask);
722 
723 		if (ret < 0) {
724 			bio_put(b);
725 			return NULL;
726 		}
727 	}
728 
729 	return b;
730 }
731 EXPORT_SYMBOL(bio_clone_fast);
732 
733 const char *bio_devname(struct bio *bio, char *buf)
734 {
735 	return disk_name(bio->bi_disk, bio->bi_partno, buf);
736 }
737 EXPORT_SYMBOL(bio_devname);
738 
739 static inline bool page_is_mergeable(const struct bio_vec *bv,
740 		struct page *page, unsigned int len, unsigned int off,
741 		bool *same_page)
742 {
743 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
744 		bv->bv_offset + bv->bv_len - 1;
745 	phys_addr_t page_addr = page_to_phys(page);
746 
747 	if (vec_end_addr + 1 != page_addr + off)
748 		return false;
749 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
750 		return false;
751 
752 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
753 	if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
754 		return false;
755 	return true;
756 }
757 
758 /*
759  * Try to merge a page into a segment, while obeying the hardware segment
760  * size limit.  This is not for normal read/write bios, but for passthrough
761  * or Zone Append operations that we can't split.
762  */
763 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
764 				 struct page *page, unsigned len,
765 				 unsigned offset, bool *same_page)
766 {
767 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
768 	unsigned long mask = queue_segment_boundary(q);
769 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
770 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
771 
772 	if ((addr1 | mask) != (addr2 | mask))
773 		return false;
774 	if (bv->bv_len + len > queue_max_segment_size(q))
775 		return false;
776 	return __bio_try_merge_page(bio, page, len, offset, same_page);
777 }
778 
779 /**
780  * bio_add_hw_page - attempt to add a page to a bio with hw constraints
781  * @q: the target queue
782  * @bio: destination bio
783  * @page: page to add
784  * @len: vec entry length
785  * @offset: vec entry offset
786  * @max_sectors: maximum number of sectors that can be added
787  * @same_page: return if the segment has been merged inside the same page
788  *
789  * Add a page to a bio while respecting the hardware max_sectors, max_segment
790  * and gap limitations.
791  */
792 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
793 		struct page *page, unsigned int len, unsigned int offset,
794 		unsigned int max_sectors, bool *same_page)
795 {
796 	struct bio_vec *bvec;
797 
798 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
799 		return 0;
800 
801 	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
802 		return 0;
803 
804 	if (bio->bi_vcnt > 0) {
805 		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
806 			return len;
807 
808 		/*
809 		 * If the queue doesn't support SG gaps and adding this segment
810 		 * would create a gap, disallow it.
811 		 */
812 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
813 		if (bvec_gap_to_prev(q, bvec, offset))
814 			return 0;
815 	}
816 
817 	if (bio_full(bio, len))
818 		return 0;
819 
820 	if (bio->bi_vcnt >= queue_max_segments(q))
821 		return 0;
822 
823 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
824 	bvec->bv_page = page;
825 	bvec->bv_len = len;
826 	bvec->bv_offset = offset;
827 	bio->bi_vcnt++;
828 	bio->bi_iter.bi_size += len;
829 	return len;
830 }
831 
832 /**
833  * bio_add_pc_page	- attempt to add page to passthrough bio
834  * @q: the target queue
835  * @bio: destination bio
836  * @page: page to add
837  * @len: vec entry length
838  * @offset: vec entry offset
839  *
840  * Attempt to add a page to the bio_vec maplist. This can fail for a
841  * number of reasons, such as the bio being full or target block device
842  * limitations. The target block device must allow bio's up to PAGE_SIZE,
843  * so it is always possible to add a single page to an empty bio.
844  *
845  * This should only be used by passthrough bios.
846  */
847 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
848 		struct page *page, unsigned int len, unsigned int offset)
849 {
850 	bool same_page = false;
851 	return bio_add_hw_page(q, bio, page, len, offset,
852 			queue_max_hw_sectors(q), &same_page);
853 }
854 EXPORT_SYMBOL(bio_add_pc_page);
855 
856 /**
857  * __bio_try_merge_page - try appending data to an existing bvec.
858  * @bio: destination bio
859  * @page: start page to add
860  * @len: length of the data to add
861  * @off: offset of the data relative to @page
862  * @same_page: return if the segment has been merged inside the same page
863  *
864  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
865  * useful optimisation for file systems with a block size smaller than the
866  * page size.
867  *
868  * Warn if (@len, @off) crosses pages in case that @same_page is true.
869  *
870  * Return %true on success or %false on failure.
871  */
872 bool __bio_try_merge_page(struct bio *bio, struct page *page,
873 		unsigned int len, unsigned int off, bool *same_page)
874 {
875 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
876 		return false;
877 
878 	if (bio->bi_vcnt > 0) {
879 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
880 
881 		if (page_is_mergeable(bv, page, len, off, same_page)) {
882 			if (bio->bi_iter.bi_size > UINT_MAX - len)
883 				return false;
884 			bv->bv_len += len;
885 			bio->bi_iter.bi_size += len;
886 			return true;
887 		}
888 	}
889 	return false;
890 }
891 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
892 
893 /**
894  * __bio_add_page - add page(s) to a bio in a new segment
895  * @bio: destination bio
896  * @page: start page to add
897  * @len: length of the data to add, may cross pages
898  * @off: offset of the data relative to @page, may cross pages
899  *
900  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
901  * that @bio has space for another bvec.
902  */
903 void __bio_add_page(struct bio *bio, struct page *page,
904 		unsigned int len, unsigned int off)
905 {
906 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
907 
908 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
909 	WARN_ON_ONCE(bio_full(bio, len));
910 
911 	bv->bv_page = page;
912 	bv->bv_offset = off;
913 	bv->bv_len = len;
914 
915 	bio->bi_iter.bi_size += len;
916 	bio->bi_vcnt++;
917 
918 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
919 		bio_set_flag(bio, BIO_WORKINGSET);
920 }
921 EXPORT_SYMBOL_GPL(__bio_add_page);
922 
923 /**
924  *	bio_add_page	-	attempt to add page(s) to bio
925  *	@bio: destination bio
926  *	@page: start page to add
927  *	@len: vec entry length, may cross pages
928  *	@offset: vec entry offset relative to @page, may cross pages
929  *
930  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
931  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
932  */
933 int bio_add_page(struct bio *bio, struct page *page,
934 		 unsigned int len, unsigned int offset)
935 {
936 	bool same_page = false;
937 
938 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
939 		if (bio_full(bio, len))
940 			return 0;
941 		__bio_add_page(bio, page, len, offset);
942 	}
943 	return len;
944 }
945 EXPORT_SYMBOL(bio_add_page);
946 
947 void bio_release_pages(struct bio *bio, bool mark_dirty)
948 {
949 	struct bvec_iter_all iter_all;
950 	struct bio_vec *bvec;
951 
952 	if (bio_flagged(bio, BIO_NO_PAGE_REF))
953 		return;
954 
955 	bio_for_each_segment_all(bvec, bio, iter_all) {
956 		if (mark_dirty && !PageCompound(bvec->bv_page))
957 			set_page_dirty_lock(bvec->bv_page);
958 		put_page(bvec->bv_page);
959 	}
960 }
961 EXPORT_SYMBOL_GPL(bio_release_pages);
962 
963 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
964 {
965 	const struct bio_vec *bv = iter->bvec;
966 	unsigned int len;
967 	size_t size;
968 
969 	if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
970 		return -EINVAL;
971 
972 	len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
973 	size = bio_add_page(bio, bv->bv_page, len,
974 				bv->bv_offset + iter->iov_offset);
975 	if (unlikely(size != len))
976 		return -EINVAL;
977 	iov_iter_advance(iter, size);
978 	return 0;
979 }
980 
981 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
982 
983 /**
984  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
985  * @bio: bio to add pages to
986  * @iter: iov iterator describing the region to be mapped
987  *
988  * Pins pages from *iter and appends them to @bio's bvec array. The
989  * pages will have to be released using put_page() when done.
990  * For multi-segment *iter, this function only adds pages from the
991  * next non-empty segment of the iov iterator.
992  */
993 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
994 {
995 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
996 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
997 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
998 	struct page **pages = (struct page **)bv;
999 	bool same_page = false;
1000 	ssize_t size, left;
1001 	unsigned len, i;
1002 	size_t offset;
1003 
1004 	/*
1005 	 * Move page array up in the allocated memory for the bio vecs as far as
1006 	 * possible so that we can start filling biovecs from the beginning
1007 	 * without overwriting the temporary page array.
1008 	*/
1009 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1010 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1011 
1012 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1013 	if (unlikely(size <= 0))
1014 		return size ? size : -EFAULT;
1015 
1016 	for (left = size, i = 0; left > 0; left -= len, i++) {
1017 		struct page *page = pages[i];
1018 
1019 		len = min_t(size_t, PAGE_SIZE - offset, left);
1020 
1021 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1022 			if (same_page)
1023 				put_page(page);
1024 		} else {
1025 			if (WARN_ON_ONCE(bio_full(bio, len)))
1026                                 return -EINVAL;
1027 			__bio_add_page(bio, page, len, offset);
1028 		}
1029 		offset = 0;
1030 	}
1031 
1032 	iov_iter_advance(iter, size);
1033 	return 0;
1034 }
1035 
1036 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1037 {
1038 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1039 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1040 	struct request_queue *q = bio->bi_disk->queue;
1041 	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1042 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1043 	struct page **pages = (struct page **)bv;
1044 	ssize_t size, left;
1045 	unsigned len, i;
1046 	size_t offset;
1047 
1048 	if (WARN_ON_ONCE(!max_append_sectors))
1049 		return 0;
1050 
1051 	/*
1052 	 * Move page array up in the allocated memory for the bio vecs as far as
1053 	 * possible so that we can start filling biovecs from the beginning
1054 	 * without overwriting the temporary page array.
1055 	 */
1056 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1057 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1058 
1059 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1060 	if (unlikely(size <= 0))
1061 		return size ? size : -EFAULT;
1062 
1063 	for (left = size, i = 0; left > 0; left -= len, i++) {
1064 		struct page *page = pages[i];
1065 		bool same_page = false;
1066 
1067 		len = min_t(size_t, PAGE_SIZE - offset, left);
1068 		if (bio_add_hw_page(q, bio, page, len, offset,
1069 				max_append_sectors, &same_page) != len)
1070 			return -EINVAL;
1071 		if (same_page)
1072 			put_page(page);
1073 		offset = 0;
1074 	}
1075 
1076 	iov_iter_advance(iter, size);
1077 	return 0;
1078 }
1079 
1080 /**
1081  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1082  * @bio: bio to add pages to
1083  * @iter: iov iterator describing the region to be added
1084  *
1085  * This takes either an iterator pointing to user memory, or one pointing to
1086  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1087  * map them into the kernel. On IO completion, the caller should put those
1088  * pages. If we're adding kernel pages, and the caller told us it's safe to
1089  * do so, we just have to add the pages to the bio directly. We don't grab an
1090  * extra reference to those pages (the user should already have that), and we
1091  * don't put the page on IO completion. The caller needs to check if the bio is
1092  * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
1093  * released.
1094  *
1095  * The function tries, but does not guarantee, to pin as many pages as
1096  * fit into the bio, or are requested in *iter, whatever is smaller. If
1097  * MM encounters an error pinning the requested pages, it stops. Error
1098  * is returned only if 0 pages could be pinned.
1099  */
1100 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1101 {
1102 	const bool is_bvec = iov_iter_is_bvec(iter);
1103 	int ret;
1104 
1105 	if (WARN_ON_ONCE(bio->bi_vcnt))
1106 		return -EINVAL;
1107 
1108 	do {
1109 		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1110 			if (WARN_ON_ONCE(is_bvec))
1111 				return -EINVAL;
1112 			ret = __bio_iov_append_get_pages(bio, iter);
1113 		} else {
1114 			if (is_bvec)
1115 				ret = __bio_iov_bvec_add_pages(bio, iter);
1116 			else
1117 				ret = __bio_iov_iter_get_pages(bio, iter);
1118 		}
1119 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1120 
1121 	if (is_bvec)
1122 		bio_set_flag(bio, BIO_NO_PAGE_REF);
1123 	return bio->bi_vcnt ? 0 : ret;
1124 }
1125 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1126 
1127 static void submit_bio_wait_endio(struct bio *bio)
1128 {
1129 	complete(bio->bi_private);
1130 }
1131 
1132 /**
1133  * submit_bio_wait - submit a bio, and wait until it completes
1134  * @bio: The &struct bio which describes the I/O
1135  *
1136  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1137  * bio_endio() on failure.
1138  *
1139  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1140  * result in bio reference to be consumed. The caller must drop the reference
1141  * on his own.
1142  */
1143 int submit_bio_wait(struct bio *bio)
1144 {
1145 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
1146 	unsigned long hang_check;
1147 
1148 	bio->bi_private = &done;
1149 	bio->bi_end_io = submit_bio_wait_endio;
1150 	bio->bi_opf |= REQ_SYNC;
1151 	submit_bio(bio);
1152 
1153 	/* Prevent hang_check timer from firing at us during very long I/O */
1154 	hang_check = sysctl_hung_task_timeout_secs;
1155 	if (hang_check)
1156 		while (!wait_for_completion_io_timeout(&done,
1157 					hang_check * (HZ/2)))
1158 			;
1159 	else
1160 		wait_for_completion_io(&done);
1161 
1162 	return blk_status_to_errno(bio->bi_status);
1163 }
1164 EXPORT_SYMBOL(submit_bio_wait);
1165 
1166 /**
1167  * bio_advance - increment/complete a bio by some number of bytes
1168  * @bio:	bio to advance
1169  * @bytes:	number of bytes to complete
1170  *
1171  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1172  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1173  * be updated on the last bvec as well.
1174  *
1175  * @bio will then represent the remaining, uncompleted portion of the io.
1176  */
1177 void bio_advance(struct bio *bio, unsigned bytes)
1178 {
1179 	if (bio_integrity(bio))
1180 		bio_integrity_advance(bio, bytes);
1181 
1182 	bio_crypt_advance(bio, bytes);
1183 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1184 }
1185 EXPORT_SYMBOL(bio_advance);
1186 
1187 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1188 			struct bio *src, struct bvec_iter *src_iter)
1189 {
1190 	struct bio_vec src_bv, dst_bv;
1191 	void *src_p, *dst_p;
1192 	unsigned bytes;
1193 
1194 	while (src_iter->bi_size && dst_iter->bi_size) {
1195 		src_bv = bio_iter_iovec(src, *src_iter);
1196 		dst_bv = bio_iter_iovec(dst, *dst_iter);
1197 
1198 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1199 
1200 		src_p = kmap_atomic(src_bv.bv_page);
1201 		dst_p = kmap_atomic(dst_bv.bv_page);
1202 
1203 		memcpy(dst_p + dst_bv.bv_offset,
1204 		       src_p + src_bv.bv_offset,
1205 		       bytes);
1206 
1207 		kunmap_atomic(dst_p);
1208 		kunmap_atomic(src_p);
1209 
1210 		flush_dcache_page(dst_bv.bv_page);
1211 
1212 		bio_advance_iter(src, src_iter, bytes);
1213 		bio_advance_iter(dst, dst_iter, bytes);
1214 	}
1215 }
1216 EXPORT_SYMBOL(bio_copy_data_iter);
1217 
1218 /**
1219  * bio_copy_data - copy contents of data buffers from one bio to another
1220  * @src: source bio
1221  * @dst: destination bio
1222  *
1223  * Stops when it reaches the end of either @src or @dst - that is, copies
1224  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1225  */
1226 void bio_copy_data(struct bio *dst, struct bio *src)
1227 {
1228 	struct bvec_iter src_iter = src->bi_iter;
1229 	struct bvec_iter dst_iter = dst->bi_iter;
1230 
1231 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1232 }
1233 EXPORT_SYMBOL(bio_copy_data);
1234 
1235 /**
1236  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1237  * another
1238  * @src: source bio list
1239  * @dst: destination bio list
1240  *
1241  * Stops when it reaches the end of either the @src list or @dst list - that is,
1242  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1243  * bios).
1244  */
1245 void bio_list_copy_data(struct bio *dst, struct bio *src)
1246 {
1247 	struct bvec_iter src_iter = src->bi_iter;
1248 	struct bvec_iter dst_iter = dst->bi_iter;
1249 
1250 	while (1) {
1251 		if (!src_iter.bi_size) {
1252 			src = src->bi_next;
1253 			if (!src)
1254 				break;
1255 
1256 			src_iter = src->bi_iter;
1257 		}
1258 
1259 		if (!dst_iter.bi_size) {
1260 			dst = dst->bi_next;
1261 			if (!dst)
1262 				break;
1263 
1264 			dst_iter = dst->bi_iter;
1265 		}
1266 
1267 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1268 	}
1269 }
1270 EXPORT_SYMBOL(bio_list_copy_data);
1271 
1272 void bio_free_pages(struct bio *bio)
1273 {
1274 	struct bio_vec *bvec;
1275 	struct bvec_iter_all iter_all;
1276 
1277 	bio_for_each_segment_all(bvec, bio, iter_all)
1278 		__free_page(bvec->bv_page);
1279 }
1280 EXPORT_SYMBOL(bio_free_pages);
1281 
1282 /*
1283  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1284  * for performing direct-IO in BIOs.
1285  *
1286  * The problem is that we cannot run set_page_dirty() from interrupt context
1287  * because the required locks are not interrupt-safe.  So what we can do is to
1288  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1289  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1290  * in process context.
1291  *
1292  * We special-case compound pages here: normally this means reads into hugetlb
1293  * pages.  The logic in here doesn't really work right for compound pages
1294  * because the VM does not uniformly chase down the head page in all cases.
1295  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1296  * handle them at all.  So we skip compound pages here at an early stage.
1297  *
1298  * Note that this code is very hard to test under normal circumstances because
1299  * direct-io pins the pages with get_user_pages().  This makes
1300  * is_page_cache_freeable return false, and the VM will not clean the pages.
1301  * But other code (eg, flusher threads) could clean the pages if they are mapped
1302  * pagecache.
1303  *
1304  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1305  * deferred bio dirtying paths.
1306  */
1307 
1308 /*
1309  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1310  */
1311 void bio_set_pages_dirty(struct bio *bio)
1312 {
1313 	struct bio_vec *bvec;
1314 	struct bvec_iter_all iter_all;
1315 
1316 	bio_for_each_segment_all(bvec, bio, iter_all) {
1317 		if (!PageCompound(bvec->bv_page))
1318 			set_page_dirty_lock(bvec->bv_page);
1319 	}
1320 }
1321 
1322 /*
1323  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1324  * If they are, then fine.  If, however, some pages are clean then they must
1325  * have been written out during the direct-IO read.  So we take another ref on
1326  * the BIO and re-dirty the pages in process context.
1327  *
1328  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1329  * here on.  It will run one put_page() against each page and will run one
1330  * bio_put() against the BIO.
1331  */
1332 
1333 static void bio_dirty_fn(struct work_struct *work);
1334 
1335 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1336 static DEFINE_SPINLOCK(bio_dirty_lock);
1337 static struct bio *bio_dirty_list;
1338 
1339 /*
1340  * This runs in process context
1341  */
1342 static void bio_dirty_fn(struct work_struct *work)
1343 {
1344 	struct bio *bio, *next;
1345 
1346 	spin_lock_irq(&bio_dirty_lock);
1347 	next = bio_dirty_list;
1348 	bio_dirty_list = NULL;
1349 	spin_unlock_irq(&bio_dirty_lock);
1350 
1351 	while ((bio = next) != NULL) {
1352 		next = bio->bi_private;
1353 
1354 		bio_release_pages(bio, true);
1355 		bio_put(bio);
1356 	}
1357 }
1358 
1359 void bio_check_pages_dirty(struct bio *bio)
1360 {
1361 	struct bio_vec *bvec;
1362 	unsigned long flags;
1363 	struct bvec_iter_all iter_all;
1364 
1365 	bio_for_each_segment_all(bvec, bio, iter_all) {
1366 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1367 			goto defer;
1368 	}
1369 
1370 	bio_release_pages(bio, false);
1371 	bio_put(bio);
1372 	return;
1373 defer:
1374 	spin_lock_irqsave(&bio_dirty_lock, flags);
1375 	bio->bi_private = bio_dirty_list;
1376 	bio_dirty_list = bio;
1377 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1378 	schedule_work(&bio_dirty_work);
1379 }
1380 
1381 static inline bool bio_remaining_done(struct bio *bio)
1382 {
1383 	/*
1384 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1385 	 * we always end io on the first invocation.
1386 	 */
1387 	if (!bio_flagged(bio, BIO_CHAIN))
1388 		return true;
1389 
1390 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1391 
1392 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1393 		bio_clear_flag(bio, BIO_CHAIN);
1394 		return true;
1395 	}
1396 
1397 	return false;
1398 }
1399 
1400 /**
1401  * bio_endio - end I/O on a bio
1402  * @bio:	bio
1403  *
1404  * Description:
1405  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1406  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1407  *   bio unless they own it and thus know that it has an end_io function.
1408  *
1409  *   bio_endio() can be called several times on a bio that has been chained
1410  *   using bio_chain().  The ->bi_end_io() function will only be called the
1411  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1412  *   generated if BIO_TRACE_COMPLETION is set.
1413  **/
1414 void bio_endio(struct bio *bio)
1415 {
1416 again:
1417 	if (!bio_remaining_done(bio))
1418 		return;
1419 	if (!bio_integrity_endio(bio))
1420 		return;
1421 
1422 	if (bio->bi_disk)
1423 		rq_qos_done_bio(bio->bi_disk->queue, bio);
1424 
1425 	/*
1426 	 * Need to have a real endio function for chained bios, otherwise
1427 	 * various corner cases will break (like stacking block devices that
1428 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1429 	 * recursion and blowing the stack. Tail call optimization would
1430 	 * handle this, but compiling with frame pointers also disables
1431 	 * gcc's sibling call optimization.
1432 	 */
1433 	if (bio->bi_end_io == bio_chain_endio) {
1434 		bio = __bio_chain_endio(bio);
1435 		goto again;
1436 	}
1437 
1438 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1439 		trace_block_bio_complete(bio->bi_disk->queue, bio);
1440 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1441 	}
1442 
1443 	blk_throtl_bio_endio(bio);
1444 	/* release cgroup info */
1445 	bio_uninit(bio);
1446 	if (bio->bi_end_io)
1447 		bio->bi_end_io(bio);
1448 }
1449 EXPORT_SYMBOL(bio_endio);
1450 
1451 /**
1452  * bio_split - split a bio
1453  * @bio:	bio to split
1454  * @sectors:	number of sectors to split from the front of @bio
1455  * @gfp:	gfp mask
1456  * @bs:		bio set to allocate from
1457  *
1458  * Allocates and returns a new bio which represents @sectors from the start of
1459  * @bio, and updates @bio to represent the remaining sectors.
1460  *
1461  * Unless this is a discard request the newly allocated bio will point
1462  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1463  * neither @bio nor @bs are freed before the split bio.
1464  */
1465 struct bio *bio_split(struct bio *bio, int sectors,
1466 		      gfp_t gfp, struct bio_set *bs)
1467 {
1468 	struct bio *split;
1469 
1470 	BUG_ON(sectors <= 0);
1471 	BUG_ON(sectors >= bio_sectors(bio));
1472 
1473 	/* Zone append commands cannot be split */
1474 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1475 		return NULL;
1476 
1477 	split = bio_clone_fast(bio, gfp, bs);
1478 	if (!split)
1479 		return NULL;
1480 
1481 	split->bi_iter.bi_size = sectors << 9;
1482 
1483 	if (bio_integrity(split))
1484 		bio_integrity_trim(split);
1485 
1486 	bio_advance(bio, split->bi_iter.bi_size);
1487 
1488 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1489 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1490 
1491 	return split;
1492 }
1493 EXPORT_SYMBOL(bio_split);
1494 
1495 /**
1496  * bio_trim - trim a bio
1497  * @bio:	bio to trim
1498  * @offset:	number of sectors to trim from the front of @bio
1499  * @size:	size we want to trim @bio to, in sectors
1500  */
1501 void bio_trim(struct bio *bio, int offset, int size)
1502 {
1503 	/* 'bio' is a cloned bio which we need to trim to match
1504 	 * the given offset and size.
1505 	 */
1506 
1507 	size <<= 9;
1508 	if (offset == 0 && size == bio->bi_iter.bi_size)
1509 		return;
1510 
1511 	bio_advance(bio, offset << 9);
1512 	bio->bi_iter.bi_size = size;
1513 
1514 	if (bio_integrity(bio))
1515 		bio_integrity_trim(bio);
1516 
1517 }
1518 EXPORT_SYMBOL_GPL(bio_trim);
1519 
1520 /*
1521  * create memory pools for biovec's in a bio_set.
1522  * use the global biovec slabs created for general use.
1523  */
1524 int biovec_init_pool(mempool_t *pool, int pool_entries)
1525 {
1526 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1527 
1528 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1529 }
1530 
1531 /*
1532  * bioset_exit - exit a bioset initialized with bioset_init()
1533  *
1534  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1535  * kzalloc()).
1536  */
1537 void bioset_exit(struct bio_set *bs)
1538 {
1539 	if (bs->rescue_workqueue)
1540 		destroy_workqueue(bs->rescue_workqueue);
1541 	bs->rescue_workqueue = NULL;
1542 
1543 	mempool_exit(&bs->bio_pool);
1544 	mempool_exit(&bs->bvec_pool);
1545 
1546 	bioset_integrity_free(bs);
1547 	if (bs->bio_slab)
1548 		bio_put_slab(bs);
1549 	bs->bio_slab = NULL;
1550 }
1551 EXPORT_SYMBOL(bioset_exit);
1552 
1553 /**
1554  * bioset_init - Initialize a bio_set
1555  * @bs:		pool to initialize
1556  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1557  * @front_pad:	Number of bytes to allocate in front of the returned bio
1558  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1559  *              and %BIOSET_NEED_RESCUER
1560  *
1561  * Description:
1562  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1563  *    to ask for a number of bytes to be allocated in front of the bio.
1564  *    Front pad allocation is useful for embedding the bio inside
1565  *    another structure, to avoid allocating extra data to go with the bio.
1566  *    Note that the bio must be embedded at the END of that structure always,
1567  *    or things will break badly.
1568  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1569  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1570  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1571  *    dispatch queued requests when the mempool runs out of space.
1572  *
1573  */
1574 int bioset_init(struct bio_set *bs,
1575 		unsigned int pool_size,
1576 		unsigned int front_pad,
1577 		int flags)
1578 {
1579 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1580 
1581 	bs->front_pad = front_pad;
1582 
1583 	spin_lock_init(&bs->rescue_lock);
1584 	bio_list_init(&bs->rescue_list);
1585 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1586 
1587 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1588 	if (!bs->bio_slab)
1589 		return -ENOMEM;
1590 
1591 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1592 		goto bad;
1593 
1594 	if ((flags & BIOSET_NEED_BVECS) &&
1595 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1596 		goto bad;
1597 
1598 	if (!(flags & BIOSET_NEED_RESCUER))
1599 		return 0;
1600 
1601 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1602 	if (!bs->rescue_workqueue)
1603 		goto bad;
1604 
1605 	return 0;
1606 bad:
1607 	bioset_exit(bs);
1608 	return -ENOMEM;
1609 }
1610 EXPORT_SYMBOL(bioset_init);
1611 
1612 /*
1613  * Initialize and setup a new bio_set, based on the settings from
1614  * another bio_set.
1615  */
1616 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1617 {
1618 	int flags;
1619 
1620 	flags = 0;
1621 	if (src->bvec_pool.min_nr)
1622 		flags |= BIOSET_NEED_BVECS;
1623 	if (src->rescue_workqueue)
1624 		flags |= BIOSET_NEED_RESCUER;
1625 
1626 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1627 }
1628 EXPORT_SYMBOL(bioset_init_from_src);
1629 
1630 static void __init biovec_init_slabs(void)
1631 {
1632 	int i;
1633 
1634 	for (i = 0; i < BVEC_POOL_NR; i++) {
1635 		int size;
1636 		struct biovec_slab *bvs = bvec_slabs + i;
1637 
1638 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1639 			bvs->slab = NULL;
1640 			continue;
1641 		}
1642 
1643 		size = bvs->nr_vecs * sizeof(struct bio_vec);
1644 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
1645                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1646 	}
1647 }
1648 
1649 static int __init init_bio(void)
1650 {
1651 	bio_slab_max = 2;
1652 	bio_slab_nr = 0;
1653 	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
1654 			    GFP_KERNEL);
1655 
1656 	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
1657 
1658 	if (!bio_slabs)
1659 		panic("bio: can't allocate bios\n");
1660 
1661 	bio_integrity_init();
1662 	biovec_init_slabs();
1663 
1664 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1665 		panic("bio: can't allocate bios\n");
1666 
1667 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1668 		panic("bio: can't create integrity pool\n");
1669 
1670 	return 0;
1671 }
1672 subsys_initcall(init_bio);
1673