xref: /openbmc/linux/block/bio.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 
32 #include <trace/events/block.h>
33 
34 /*
35  * Test patch to inline a certain number of bi_io_vec's inside the bio
36  * itself, to shrink a bio data allocation from two mempool calls to one
37  */
38 #define BIO_INLINE_VECS		4
39 
40 /*
41  * if you change this list, also change bvec_alloc or things will
42  * break badly! cannot be bigger than what you can fit into an
43  * unsigned short
44  */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
47 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50 
51 /*
52  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53  * IO code that does not need private memory pools.
54  */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57 
58 /*
59  * Our slab pool management
60  */
61 struct bio_slab {
62 	struct kmem_cache *slab;
63 	unsigned int slab_ref;
64 	unsigned int slab_size;
65 	char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70 
71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 	unsigned int sz = sizeof(struct bio) + extra_size;
74 	struct kmem_cache *slab = NULL;
75 	struct bio_slab *bslab, *new_bio_slabs;
76 	unsigned int new_bio_slab_max;
77 	unsigned int i, entry = -1;
78 
79 	mutex_lock(&bio_slab_lock);
80 
81 	i = 0;
82 	while (i < bio_slab_nr) {
83 		bslab = &bio_slabs[i];
84 
85 		if (!bslab->slab && entry == -1)
86 			entry = i;
87 		else if (bslab->slab_size == sz) {
88 			slab = bslab->slab;
89 			bslab->slab_ref++;
90 			break;
91 		}
92 		i++;
93 	}
94 
95 	if (slab)
96 		goto out_unlock;
97 
98 	if (bio_slab_nr == bio_slab_max && entry == -1) {
99 		new_bio_slab_max = bio_slab_max << 1;
100 		new_bio_slabs = krealloc(bio_slabs,
101 					 new_bio_slab_max * sizeof(struct bio_slab),
102 					 GFP_KERNEL);
103 		if (!new_bio_slabs)
104 			goto out_unlock;
105 		bio_slab_max = new_bio_slab_max;
106 		bio_slabs = new_bio_slabs;
107 	}
108 	if (entry == -1)
109 		entry = bio_slab_nr++;
110 
111 	bslab = &bio_slabs[entry];
112 
113 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 				 SLAB_HWCACHE_ALIGN, NULL);
116 	if (!slab)
117 		goto out_unlock;
118 
119 	bslab->slab = slab;
120 	bslab->slab_ref = 1;
121 	bslab->slab_size = sz;
122 out_unlock:
123 	mutex_unlock(&bio_slab_lock);
124 	return slab;
125 }
126 
127 static void bio_put_slab(struct bio_set *bs)
128 {
129 	struct bio_slab *bslab = NULL;
130 	unsigned int i;
131 
132 	mutex_lock(&bio_slab_lock);
133 
134 	for (i = 0; i < bio_slab_nr; i++) {
135 		if (bs->bio_slab == bio_slabs[i].slab) {
136 			bslab = &bio_slabs[i];
137 			break;
138 		}
139 	}
140 
141 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 		goto out;
143 
144 	WARN_ON(!bslab->slab_ref);
145 
146 	if (--bslab->slab_ref)
147 		goto out;
148 
149 	kmem_cache_destroy(bslab->slab);
150 	bslab->slab = NULL;
151 
152 out:
153 	mutex_unlock(&bio_slab_lock);
154 }
155 
156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 	return bvec_slabs[idx].nr_vecs;
159 }
160 
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 	if (!idx)
164 		return;
165 	idx--;
166 
167 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
168 
169 	if (idx == BVEC_POOL_MAX) {
170 		mempool_free(bv, pool);
171 	} else {
172 		struct biovec_slab *bvs = bvec_slabs + idx;
173 
174 		kmem_cache_free(bvs->slab, bv);
175 	}
176 }
177 
178 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
179 			   mempool_t *pool)
180 {
181 	struct bio_vec *bvl;
182 
183 	/*
184 	 * see comment near bvec_array define!
185 	 */
186 	switch (nr) {
187 	case 1:
188 		*idx = 0;
189 		break;
190 	case 2 ... 4:
191 		*idx = 1;
192 		break;
193 	case 5 ... 16:
194 		*idx = 2;
195 		break;
196 	case 17 ... 64:
197 		*idx = 3;
198 		break;
199 	case 65 ... 128:
200 		*idx = 4;
201 		break;
202 	case 129 ... BIO_MAX_PAGES:
203 		*idx = 5;
204 		break;
205 	default:
206 		return NULL;
207 	}
208 
209 	/*
210 	 * idx now points to the pool we want to allocate from. only the
211 	 * 1-vec entry pool is mempool backed.
212 	 */
213 	if (*idx == BVEC_POOL_MAX) {
214 fallback:
215 		bvl = mempool_alloc(pool, gfp_mask);
216 	} else {
217 		struct biovec_slab *bvs = bvec_slabs + *idx;
218 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
219 
220 		/*
221 		 * Make this allocation restricted and don't dump info on
222 		 * allocation failures, since we'll fallback to the mempool
223 		 * in case of failure.
224 		 */
225 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
226 
227 		/*
228 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
229 		 * is set, retry with the 1-entry mempool
230 		 */
231 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
232 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
233 			*idx = BVEC_POOL_MAX;
234 			goto fallback;
235 		}
236 	}
237 
238 	(*idx)++;
239 	return bvl;
240 }
241 
242 static void __bio_free(struct bio *bio)
243 {
244 	bio_disassociate_task(bio);
245 
246 	if (bio_integrity(bio))
247 		bio_integrity_free(bio);
248 }
249 
250 static void bio_free(struct bio *bio)
251 {
252 	struct bio_set *bs = bio->bi_pool;
253 	void *p;
254 
255 	__bio_free(bio);
256 
257 	if (bs) {
258 		bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
259 
260 		/*
261 		 * If we have front padding, adjust the bio pointer before freeing
262 		 */
263 		p = bio;
264 		p -= bs->front_pad;
265 
266 		mempool_free(p, bs->bio_pool);
267 	} else {
268 		/* Bio was allocated by bio_kmalloc() */
269 		kfree(bio);
270 	}
271 }
272 
273 void bio_init(struct bio *bio, struct bio_vec *table,
274 	      unsigned short max_vecs)
275 {
276 	memset(bio, 0, sizeof(*bio));
277 	atomic_set(&bio->__bi_remaining, 1);
278 	atomic_set(&bio->__bi_cnt, 1);
279 
280 	bio->bi_io_vec = table;
281 	bio->bi_max_vecs = max_vecs;
282 }
283 EXPORT_SYMBOL(bio_init);
284 
285 /**
286  * bio_reset - reinitialize a bio
287  * @bio:	bio to reset
288  *
289  * Description:
290  *   After calling bio_reset(), @bio will be in the same state as a freshly
291  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
292  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
293  *   comment in struct bio.
294  */
295 void bio_reset(struct bio *bio)
296 {
297 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
298 
299 	__bio_free(bio);
300 
301 	memset(bio, 0, BIO_RESET_BYTES);
302 	bio->bi_flags = flags;
303 	atomic_set(&bio->__bi_remaining, 1);
304 }
305 EXPORT_SYMBOL(bio_reset);
306 
307 static struct bio *__bio_chain_endio(struct bio *bio)
308 {
309 	struct bio *parent = bio->bi_private;
310 
311 	if (!parent->bi_error)
312 		parent->bi_error = bio->bi_error;
313 	bio_put(bio);
314 	return parent;
315 }
316 
317 static void bio_chain_endio(struct bio *bio)
318 {
319 	bio_endio(__bio_chain_endio(bio));
320 }
321 
322 /**
323  * bio_chain - chain bio completions
324  * @bio: the target bio
325  * @parent: the @bio's parent bio
326  *
327  * The caller won't have a bi_end_io called when @bio completes - instead,
328  * @parent's bi_end_io won't be called until both @parent and @bio have
329  * completed; the chained bio will also be freed when it completes.
330  *
331  * The caller must not set bi_private or bi_end_io in @bio.
332  */
333 void bio_chain(struct bio *bio, struct bio *parent)
334 {
335 	BUG_ON(bio->bi_private || bio->bi_end_io);
336 
337 	bio->bi_private = parent;
338 	bio->bi_end_io	= bio_chain_endio;
339 	bio_inc_remaining(parent);
340 }
341 EXPORT_SYMBOL(bio_chain);
342 
343 static void bio_alloc_rescue(struct work_struct *work)
344 {
345 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
346 	struct bio *bio;
347 
348 	while (1) {
349 		spin_lock(&bs->rescue_lock);
350 		bio = bio_list_pop(&bs->rescue_list);
351 		spin_unlock(&bs->rescue_lock);
352 
353 		if (!bio)
354 			break;
355 
356 		generic_make_request(bio);
357 	}
358 }
359 
360 static void punt_bios_to_rescuer(struct bio_set *bs)
361 {
362 	struct bio_list punt, nopunt;
363 	struct bio *bio;
364 
365 	/*
366 	 * In order to guarantee forward progress we must punt only bios that
367 	 * were allocated from this bio_set; otherwise, if there was a bio on
368 	 * there for a stacking driver higher up in the stack, processing it
369 	 * could require allocating bios from this bio_set, and doing that from
370 	 * our own rescuer would be bad.
371 	 *
372 	 * Since bio lists are singly linked, pop them all instead of trying to
373 	 * remove from the middle of the list:
374 	 */
375 
376 	bio_list_init(&punt);
377 	bio_list_init(&nopunt);
378 
379 	while ((bio = bio_list_pop(current->bio_list)))
380 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
381 
382 	*current->bio_list = nopunt;
383 
384 	spin_lock(&bs->rescue_lock);
385 	bio_list_merge(&bs->rescue_list, &punt);
386 	spin_unlock(&bs->rescue_lock);
387 
388 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
389 }
390 
391 /**
392  * bio_alloc_bioset - allocate a bio for I/O
393  * @gfp_mask:   the GFP_ mask given to the slab allocator
394  * @nr_iovecs:	number of iovecs to pre-allocate
395  * @bs:		the bio_set to allocate from.
396  *
397  * Description:
398  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
399  *   backed by the @bs's mempool.
400  *
401  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
402  *   always be able to allocate a bio. This is due to the mempool guarantees.
403  *   To make this work, callers must never allocate more than 1 bio at a time
404  *   from this pool. Callers that need to allocate more than 1 bio must always
405  *   submit the previously allocated bio for IO before attempting to allocate
406  *   a new one. Failure to do so can cause deadlocks under memory pressure.
407  *
408  *   Note that when running under generic_make_request() (i.e. any block
409  *   driver), bios are not submitted until after you return - see the code in
410  *   generic_make_request() that converts recursion into iteration, to prevent
411  *   stack overflows.
412  *
413  *   This would normally mean allocating multiple bios under
414  *   generic_make_request() would be susceptible to deadlocks, but we have
415  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
416  *   thread.
417  *
418  *   However, we do not guarantee forward progress for allocations from other
419  *   mempools. Doing multiple allocations from the same mempool under
420  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
421  *   for per bio allocations.
422  *
423  *   RETURNS:
424  *   Pointer to new bio on success, NULL on failure.
425  */
426 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
427 {
428 	gfp_t saved_gfp = gfp_mask;
429 	unsigned front_pad;
430 	unsigned inline_vecs;
431 	struct bio_vec *bvl = NULL;
432 	struct bio *bio;
433 	void *p;
434 
435 	if (!bs) {
436 		if (nr_iovecs > UIO_MAXIOV)
437 			return NULL;
438 
439 		p = kmalloc(sizeof(struct bio) +
440 			    nr_iovecs * sizeof(struct bio_vec),
441 			    gfp_mask);
442 		front_pad = 0;
443 		inline_vecs = nr_iovecs;
444 	} else {
445 		/* should not use nobvec bioset for nr_iovecs > 0 */
446 		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
447 			return NULL;
448 		/*
449 		 * generic_make_request() converts recursion to iteration; this
450 		 * means if we're running beneath it, any bios we allocate and
451 		 * submit will not be submitted (and thus freed) until after we
452 		 * return.
453 		 *
454 		 * This exposes us to a potential deadlock if we allocate
455 		 * multiple bios from the same bio_set() while running
456 		 * underneath generic_make_request(). If we were to allocate
457 		 * multiple bios (say a stacking block driver that was splitting
458 		 * bios), we would deadlock if we exhausted the mempool's
459 		 * reserve.
460 		 *
461 		 * We solve this, and guarantee forward progress, with a rescuer
462 		 * workqueue per bio_set. If we go to allocate and there are
463 		 * bios on current->bio_list, we first try the allocation
464 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
465 		 * bios we would be blocking to the rescuer workqueue before
466 		 * we retry with the original gfp_flags.
467 		 */
468 
469 		if (current->bio_list && !bio_list_empty(current->bio_list))
470 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
471 
472 		p = mempool_alloc(bs->bio_pool, gfp_mask);
473 		if (!p && gfp_mask != saved_gfp) {
474 			punt_bios_to_rescuer(bs);
475 			gfp_mask = saved_gfp;
476 			p = mempool_alloc(bs->bio_pool, gfp_mask);
477 		}
478 
479 		front_pad = bs->front_pad;
480 		inline_vecs = BIO_INLINE_VECS;
481 	}
482 
483 	if (unlikely(!p))
484 		return NULL;
485 
486 	bio = p + front_pad;
487 	bio_init(bio, NULL, 0);
488 
489 	if (nr_iovecs > inline_vecs) {
490 		unsigned long idx = 0;
491 
492 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
493 		if (!bvl && gfp_mask != saved_gfp) {
494 			punt_bios_to_rescuer(bs);
495 			gfp_mask = saved_gfp;
496 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
497 		}
498 
499 		if (unlikely(!bvl))
500 			goto err_free;
501 
502 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
503 	} else if (nr_iovecs) {
504 		bvl = bio->bi_inline_vecs;
505 	}
506 
507 	bio->bi_pool = bs;
508 	bio->bi_max_vecs = nr_iovecs;
509 	bio->bi_io_vec = bvl;
510 	return bio;
511 
512 err_free:
513 	mempool_free(p, bs->bio_pool);
514 	return NULL;
515 }
516 EXPORT_SYMBOL(bio_alloc_bioset);
517 
518 void zero_fill_bio(struct bio *bio)
519 {
520 	unsigned long flags;
521 	struct bio_vec bv;
522 	struct bvec_iter iter;
523 
524 	bio_for_each_segment(bv, bio, iter) {
525 		char *data = bvec_kmap_irq(&bv, &flags);
526 		memset(data, 0, bv.bv_len);
527 		flush_dcache_page(bv.bv_page);
528 		bvec_kunmap_irq(data, &flags);
529 	}
530 }
531 EXPORT_SYMBOL(zero_fill_bio);
532 
533 /**
534  * bio_put - release a reference to a bio
535  * @bio:   bio to release reference to
536  *
537  * Description:
538  *   Put a reference to a &struct bio, either one you have gotten with
539  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
540  **/
541 void bio_put(struct bio *bio)
542 {
543 	if (!bio_flagged(bio, BIO_REFFED))
544 		bio_free(bio);
545 	else {
546 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
547 
548 		/*
549 		 * last put frees it
550 		 */
551 		if (atomic_dec_and_test(&bio->__bi_cnt))
552 			bio_free(bio);
553 	}
554 }
555 EXPORT_SYMBOL(bio_put);
556 
557 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
558 {
559 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
560 		blk_recount_segments(q, bio);
561 
562 	return bio->bi_phys_segments;
563 }
564 EXPORT_SYMBOL(bio_phys_segments);
565 
566 /**
567  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
568  * 	@bio: destination bio
569  * 	@bio_src: bio to clone
570  *
571  *	Clone a &bio. Caller will own the returned bio, but not
572  *	the actual data it points to. Reference count of returned
573  * 	bio will be one.
574  *
575  * 	Caller must ensure that @bio_src is not freed before @bio.
576  */
577 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
578 {
579 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
580 
581 	/*
582 	 * most users will be overriding ->bi_bdev with a new target,
583 	 * so we don't set nor calculate new physical/hw segment counts here
584 	 */
585 	bio->bi_bdev = bio_src->bi_bdev;
586 	bio_set_flag(bio, BIO_CLONED);
587 	bio->bi_opf = bio_src->bi_opf;
588 	bio->bi_iter = bio_src->bi_iter;
589 	bio->bi_io_vec = bio_src->bi_io_vec;
590 
591 	bio_clone_blkcg_association(bio, bio_src);
592 }
593 EXPORT_SYMBOL(__bio_clone_fast);
594 
595 /**
596  *	bio_clone_fast - clone a bio that shares the original bio's biovec
597  *	@bio: bio to clone
598  *	@gfp_mask: allocation priority
599  *	@bs: bio_set to allocate from
600  *
601  * 	Like __bio_clone_fast, only also allocates the returned bio
602  */
603 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
604 {
605 	struct bio *b;
606 
607 	b = bio_alloc_bioset(gfp_mask, 0, bs);
608 	if (!b)
609 		return NULL;
610 
611 	__bio_clone_fast(b, bio);
612 
613 	if (bio_integrity(bio)) {
614 		int ret;
615 
616 		ret = bio_integrity_clone(b, bio, gfp_mask);
617 
618 		if (ret < 0) {
619 			bio_put(b);
620 			return NULL;
621 		}
622 	}
623 
624 	return b;
625 }
626 EXPORT_SYMBOL(bio_clone_fast);
627 
628 static struct bio *__bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
629 				      struct bio_set *bs, int offset,
630 				      int size)
631 {
632 	struct bvec_iter iter;
633 	struct bio_vec bv;
634 	struct bio *bio;
635 	struct bvec_iter iter_src = bio_src->bi_iter;
636 
637 	/* for supporting partial clone */
638 	if (offset || size != bio_src->bi_iter.bi_size) {
639 		bio_advance_iter(bio_src, &iter_src, offset);
640 		iter_src.bi_size = size;
641 	}
642 
643 	/*
644 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
645 	 * bio_src->bi_io_vec to bio->bi_io_vec.
646 	 *
647 	 * We can't do that anymore, because:
648 	 *
649 	 *  - The point of cloning the biovec is to produce a bio with a biovec
650 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
651 	 *
652 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
653 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
654 	 *    But the clone should succeed as long as the number of biovecs we
655 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
656 	 *
657 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
658 	 *    that does not own the bio - reason being drivers don't use it for
659 	 *    iterating over the biovec anymore, so expecting it to be kept up
660 	 *    to date (i.e. for clones that share the parent biovec) is just
661 	 *    asking for trouble and would force extra work on
662 	 *    __bio_clone_fast() anyways.
663 	 */
664 
665 	bio = bio_alloc_bioset(gfp_mask, __bio_segments(bio_src,
666 			       &iter_src), bs);
667 	if (!bio)
668 		return NULL;
669 	bio->bi_bdev		= bio_src->bi_bdev;
670 	bio->bi_opf		= bio_src->bi_opf;
671 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
672 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
673 
674 	switch (bio_op(bio)) {
675 	case REQ_OP_DISCARD:
676 	case REQ_OP_SECURE_ERASE:
677 	case REQ_OP_WRITE_ZEROES:
678 		break;
679 	case REQ_OP_WRITE_SAME:
680 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
681 		break;
682 	default:
683 		__bio_for_each_segment(bv, bio_src, iter, iter_src)
684 			bio->bi_io_vec[bio->bi_vcnt++] = bv;
685 		break;
686 	}
687 
688 	if (bio_integrity(bio_src)) {
689 		int ret;
690 
691 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
692 		if (ret < 0) {
693 			bio_put(bio);
694 			return NULL;
695 		}
696 	}
697 
698 	bio_clone_blkcg_association(bio, bio_src);
699 
700 	return bio;
701 }
702 
703 /**
704  * 	bio_clone_bioset - clone a bio
705  * 	@bio_src: bio to clone
706  *	@gfp_mask: allocation priority
707  *	@bs: bio_set to allocate from
708  *
709  *	Clone bio. Caller will own the returned bio, but not the actual data it
710  *	points to. Reference count of returned bio will be one.
711  */
712 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
713 			     struct bio_set *bs)
714 {
715 	return __bio_clone_bioset(bio_src, gfp_mask, bs, 0,
716 				  bio_src->bi_iter.bi_size);
717 }
718 EXPORT_SYMBOL(bio_clone_bioset);
719 
720 /**
721  * 	bio_clone_bioset_partial - clone a partial bio
722  * 	@bio_src: bio to clone
723  *	@gfp_mask: allocation priority
724  *	@bs: bio_set to allocate from
725  *	@offset: cloned starting from the offset
726  *	@size: size for the cloned bio
727  *
728  *	Clone bio. Caller will own the returned bio, but not the actual data it
729  *	points to. Reference count of returned bio will be one.
730  */
731 struct bio *bio_clone_bioset_partial(struct bio *bio_src, gfp_t gfp_mask,
732 				     struct bio_set *bs, int offset,
733 				     int size)
734 {
735 	return __bio_clone_bioset(bio_src, gfp_mask, bs, offset, size);
736 }
737 EXPORT_SYMBOL(bio_clone_bioset_partial);
738 
739 /**
740  *	bio_add_pc_page	-	attempt to add page to bio
741  *	@q: the target queue
742  *	@bio: destination bio
743  *	@page: page to add
744  *	@len: vec entry length
745  *	@offset: vec entry offset
746  *
747  *	Attempt to add a page to the bio_vec maplist. This can fail for a
748  *	number of reasons, such as the bio being full or target block device
749  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
750  *	so it is always possible to add a single page to an empty bio.
751  *
752  *	This should only be used by REQ_PC bios.
753  */
754 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
755 		    *page, unsigned int len, unsigned int offset)
756 {
757 	int retried_segments = 0;
758 	struct bio_vec *bvec;
759 
760 	/*
761 	 * cloned bio must not modify vec list
762 	 */
763 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
764 		return 0;
765 
766 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
767 		return 0;
768 
769 	/*
770 	 * For filesystems with a blocksize smaller than the pagesize
771 	 * we will often be called with the same page as last time and
772 	 * a consecutive offset.  Optimize this special case.
773 	 */
774 	if (bio->bi_vcnt > 0) {
775 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
776 
777 		if (page == prev->bv_page &&
778 		    offset == prev->bv_offset + prev->bv_len) {
779 			prev->bv_len += len;
780 			bio->bi_iter.bi_size += len;
781 			goto done;
782 		}
783 
784 		/*
785 		 * If the queue doesn't support SG gaps and adding this
786 		 * offset would create a gap, disallow it.
787 		 */
788 		if (bvec_gap_to_prev(q, prev, offset))
789 			return 0;
790 	}
791 
792 	if (bio->bi_vcnt >= bio->bi_max_vecs)
793 		return 0;
794 
795 	/*
796 	 * setup the new entry, we might clear it again later if we
797 	 * cannot add the page
798 	 */
799 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
800 	bvec->bv_page = page;
801 	bvec->bv_len = len;
802 	bvec->bv_offset = offset;
803 	bio->bi_vcnt++;
804 	bio->bi_phys_segments++;
805 	bio->bi_iter.bi_size += len;
806 
807 	/*
808 	 * Perform a recount if the number of segments is greater
809 	 * than queue_max_segments(q).
810 	 */
811 
812 	while (bio->bi_phys_segments > queue_max_segments(q)) {
813 
814 		if (retried_segments)
815 			goto failed;
816 
817 		retried_segments = 1;
818 		blk_recount_segments(q, bio);
819 	}
820 
821 	/* If we may be able to merge these biovecs, force a recount */
822 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
823 		bio_clear_flag(bio, BIO_SEG_VALID);
824 
825  done:
826 	return len;
827 
828  failed:
829 	bvec->bv_page = NULL;
830 	bvec->bv_len = 0;
831 	bvec->bv_offset = 0;
832 	bio->bi_vcnt--;
833 	bio->bi_iter.bi_size -= len;
834 	blk_recount_segments(q, bio);
835 	return 0;
836 }
837 EXPORT_SYMBOL(bio_add_pc_page);
838 
839 /**
840  *	bio_add_page	-	attempt to add page to bio
841  *	@bio: destination bio
842  *	@page: page to add
843  *	@len: vec entry length
844  *	@offset: vec entry offset
845  *
846  *	Attempt to add a page to the bio_vec maplist. This will only fail
847  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
848  */
849 int bio_add_page(struct bio *bio, struct page *page,
850 		 unsigned int len, unsigned int offset)
851 {
852 	struct bio_vec *bv;
853 
854 	/*
855 	 * cloned bio must not modify vec list
856 	 */
857 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
858 		return 0;
859 
860 	/*
861 	 * For filesystems with a blocksize smaller than the pagesize
862 	 * we will often be called with the same page as last time and
863 	 * a consecutive offset.  Optimize this special case.
864 	 */
865 	if (bio->bi_vcnt > 0) {
866 		bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
867 
868 		if (page == bv->bv_page &&
869 		    offset == bv->bv_offset + bv->bv_len) {
870 			bv->bv_len += len;
871 			goto done;
872 		}
873 	}
874 
875 	if (bio->bi_vcnt >= bio->bi_max_vecs)
876 		return 0;
877 
878 	bv		= &bio->bi_io_vec[bio->bi_vcnt];
879 	bv->bv_page	= page;
880 	bv->bv_len	= len;
881 	bv->bv_offset	= offset;
882 
883 	bio->bi_vcnt++;
884 done:
885 	bio->bi_iter.bi_size += len;
886 	return len;
887 }
888 EXPORT_SYMBOL(bio_add_page);
889 
890 /**
891  * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
892  * @bio: bio to add pages to
893  * @iter: iov iterator describing the region to be mapped
894  *
895  * Pins as many pages from *iter and appends them to @bio's bvec array. The
896  * pages will have to be released using put_page() when done.
897  */
898 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
899 {
900 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
901 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
902 	struct page **pages = (struct page **)bv;
903 	size_t offset, diff;
904 	ssize_t size;
905 
906 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
907 	if (unlikely(size <= 0))
908 		return size ? size : -EFAULT;
909 	nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
910 
911 	/*
912 	 * Deep magic below:  We need to walk the pinned pages backwards
913 	 * because we are abusing the space allocated for the bio_vecs
914 	 * for the page array.  Because the bio_vecs are larger than the
915 	 * page pointers by definition this will always work.  But it also
916 	 * means we can't use bio_add_page, so any changes to it's semantics
917 	 * need to be reflected here as well.
918 	 */
919 	bio->bi_iter.bi_size += size;
920 	bio->bi_vcnt += nr_pages;
921 
922 	diff = (nr_pages * PAGE_SIZE - offset) - size;
923 	while (nr_pages--) {
924 		bv[nr_pages].bv_page = pages[nr_pages];
925 		bv[nr_pages].bv_len = PAGE_SIZE;
926 		bv[nr_pages].bv_offset = 0;
927 	}
928 
929 	bv[0].bv_offset += offset;
930 	bv[0].bv_len -= offset;
931 	if (diff)
932 		bv[bio->bi_vcnt - 1].bv_len -= diff;
933 
934 	iov_iter_advance(iter, size);
935 	return 0;
936 }
937 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
938 
939 struct submit_bio_ret {
940 	struct completion event;
941 	int error;
942 };
943 
944 static void submit_bio_wait_endio(struct bio *bio)
945 {
946 	struct submit_bio_ret *ret = bio->bi_private;
947 
948 	ret->error = bio->bi_error;
949 	complete(&ret->event);
950 }
951 
952 /**
953  * submit_bio_wait - submit a bio, and wait until it completes
954  * @bio: The &struct bio which describes the I/O
955  *
956  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
957  * bio_endio() on failure.
958  */
959 int submit_bio_wait(struct bio *bio)
960 {
961 	struct submit_bio_ret ret;
962 
963 	init_completion(&ret.event);
964 	bio->bi_private = &ret;
965 	bio->bi_end_io = submit_bio_wait_endio;
966 	bio->bi_opf |= REQ_SYNC;
967 	submit_bio(bio);
968 	wait_for_completion_io(&ret.event);
969 
970 	return ret.error;
971 }
972 EXPORT_SYMBOL(submit_bio_wait);
973 
974 /**
975  * bio_advance - increment/complete a bio by some number of bytes
976  * @bio:	bio to advance
977  * @bytes:	number of bytes to complete
978  *
979  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
980  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
981  * be updated on the last bvec as well.
982  *
983  * @bio will then represent the remaining, uncompleted portion of the io.
984  */
985 void bio_advance(struct bio *bio, unsigned bytes)
986 {
987 	if (bio_integrity(bio))
988 		bio_integrity_advance(bio, bytes);
989 
990 	bio_advance_iter(bio, &bio->bi_iter, bytes);
991 }
992 EXPORT_SYMBOL(bio_advance);
993 
994 /**
995  * bio_alloc_pages - allocates a single page for each bvec in a bio
996  * @bio: bio to allocate pages for
997  * @gfp_mask: flags for allocation
998  *
999  * Allocates pages up to @bio->bi_vcnt.
1000  *
1001  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
1002  * freed.
1003  */
1004 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
1005 {
1006 	int i;
1007 	struct bio_vec *bv;
1008 
1009 	bio_for_each_segment_all(bv, bio, i) {
1010 		bv->bv_page = alloc_page(gfp_mask);
1011 		if (!bv->bv_page) {
1012 			while (--bv >= bio->bi_io_vec)
1013 				__free_page(bv->bv_page);
1014 			return -ENOMEM;
1015 		}
1016 	}
1017 
1018 	return 0;
1019 }
1020 EXPORT_SYMBOL(bio_alloc_pages);
1021 
1022 /**
1023  * bio_copy_data - copy contents of data buffers from one chain of bios to
1024  * another
1025  * @src: source bio list
1026  * @dst: destination bio list
1027  *
1028  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1029  * @src and @dst as linked lists of bios.
1030  *
1031  * Stops when it reaches the end of either @src or @dst - that is, copies
1032  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1033  */
1034 void bio_copy_data(struct bio *dst, struct bio *src)
1035 {
1036 	struct bvec_iter src_iter, dst_iter;
1037 	struct bio_vec src_bv, dst_bv;
1038 	void *src_p, *dst_p;
1039 	unsigned bytes;
1040 
1041 	src_iter = src->bi_iter;
1042 	dst_iter = dst->bi_iter;
1043 
1044 	while (1) {
1045 		if (!src_iter.bi_size) {
1046 			src = src->bi_next;
1047 			if (!src)
1048 				break;
1049 
1050 			src_iter = src->bi_iter;
1051 		}
1052 
1053 		if (!dst_iter.bi_size) {
1054 			dst = dst->bi_next;
1055 			if (!dst)
1056 				break;
1057 
1058 			dst_iter = dst->bi_iter;
1059 		}
1060 
1061 		src_bv = bio_iter_iovec(src, src_iter);
1062 		dst_bv = bio_iter_iovec(dst, dst_iter);
1063 
1064 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1065 
1066 		src_p = kmap_atomic(src_bv.bv_page);
1067 		dst_p = kmap_atomic(dst_bv.bv_page);
1068 
1069 		memcpy(dst_p + dst_bv.bv_offset,
1070 		       src_p + src_bv.bv_offset,
1071 		       bytes);
1072 
1073 		kunmap_atomic(dst_p);
1074 		kunmap_atomic(src_p);
1075 
1076 		bio_advance_iter(src, &src_iter, bytes);
1077 		bio_advance_iter(dst, &dst_iter, bytes);
1078 	}
1079 }
1080 EXPORT_SYMBOL(bio_copy_data);
1081 
1082 struct bio_map_data {
1083 	int is_our_pages;
1084 	struct iov_iter iter;
1085 	struct iovec iov[];
1086 };
1087 
1088 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1089 					       gfp_t gfp_mask)
1090 {
1091 	if (iov_count > UIO_MAXIOV)
1092 		return NULL;
1093 
1094 	return kmalloc(sizeof(struct bio_map_data) +
1095 		       sizeof(struct iovec) * iov_count, gfp_mask);
1096 }
1097 
1098 /**
1099  * bio_copy_from_iter - copy all pages from iov_iter to bio
1100  * @bio: The &struct bio which describes the I/O as destination
1101  * @iter: iov_iter as source
1102  *
1103  * Copy all pages from iov_iter to bio.
1104  * Returns 0 on success, or error on failure.
1105  */
1106 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1107 {
1108 	int i;
1109 	struct bio_vec *bvec;
1110 
1111 	bio_for_each_segment_all(bvec, bio, i) {
1112 		ssize_t ret;
1113 
1114 		ret = copy_page_from_iter(bvec->bv_page,
1115 					  bvec->bv_offset,
1116 					  bvec->bv_len,
1117 					  &iter);
1118 
1119 		if (!iov_iter_count(&iter))
1120 			break;
1121 
1122 		if (ret < bvec->bv_len)
1123 			return -EFAULT;
1124 	}
1125 
1126 	return 0;
1127 }
1128 
1129 /**
1130  * bio_copy_to_iter - copy all pages from bio to iov_iter
1131  * @bio: The &struct bio which describes the I/O as source
1132  * @iter: iov_iter as destination
1133  *
1134  * Copy all pages from bio to iov_iter.
1135  * Returns 0 on success, or error on failure.
1136  */
1137 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1138 {
1139 	int i;
1140 	struct bio_vec *bvec;
1141 
1142 	bio_for_each_segment_all(bvec, bio, i) {
1143 		ssize_t ret;
1144 
1145 		ret = copy_page_to_iter(bvec->bv_page,
1146 					bvec->bv_offset,
1147 					bvec->bv_len,
1148 					&iter);
1149 
1150 		if (!iov_iter_count(&iter))
1151 			break;
1152 
1153 		if (ret < bvec->bv_len)
1154 			return -EFAULT;
1155 	}
1156 
1157 	return 0;
1158 }
1159 
1160 void bio_free_pages(struct bio *bio)
1161 {
1162 	struct bio_vec *bvec;
1163 	int i;
1164 
1165 	bio_for_each_segment_all(bvec, bio, i)
1166 		__free_page(bvec->bv_page);
1167 }
1168 EXPORT_SYMBOL(bio_free_pages);
1169 
1170 /**
1171  *	bio_uncopy_user	-	finish previously mapped bio
1172  *	@bio: bio being terminated
1173  *
1174  *	Free pages allocated from bio_copy_user_iov() and write back data
1175  *	to user space in case of a read.
1176  */
1177 int bio_uncopy_user(struct bio *bio)
1178 {
1179 	struct bio_map_data *bmd = bio->bi_private;
1180 	int ret = 0;
1181 
1182 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1183 		/*
1184 		 * if we're in a workqueue, the request is orphaned, so
1185 		 * don't copy into a random user address space, just free
1186 		 * and return -EINTR so user space doesn't expect any data.
1187 		 */
1188 		if (!current->mm)
1189 			ret = -EINTR;
1190 		else if (bio_data_dir(bio) == READ)
1191 			ret = bio_copy_to_iter(bio, bmd->iter);
1192 		if (bmd->is_our_pages)
1193 			bio_free_pages(bio);
1194 	}
1195 	kfree(bmd);
1196 	bio_put(bio);
1197 	return ret;
1198 }
1199 
1200 /**
1201  *	bio_copy_user_iov	-	copy user data to bio
1202  *	@q:		destination block queue
1203  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1204  *	@iter:		iovec iterator
1205  *	@gfp_mask:	memory allocation flags
1206  *
1207  *	Prepares and returns a bio for indirect user io, bouncing data
1208  *	to/from kernel pages as necessary. Must be paired with
1209  *	call bio_uncopy_user() on io completion.
1210  */
1211 struct bio *bio_copy_user_iov(struct request_queue *q,
1212 			      struct rq_map_data *map_data,
1213 			      const struct iov_iter *iter,
1214 			      gfp_t gfp_mask)
1215 {
1216 	struct bio_map_data *bmd;
1217 	struct page *page;
1218 	struct bio *bio;
1219 	int i, ret;
1220 	int nr_pages = 0;
1221 	unsigned int len = iter->count;
1222 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1223 
1224 	for (i = 0; i < iter->nr_segs; i++) {
1225 		unsigned long uaddr;
1226 		unsigned long end;
1227 		unsigned long start;
1228 
1229 		uaddr = (unsigned long) iter->iov[i].iov_base;
1230 		end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1231 			>> PAGE_SHIFT;
1232 		start = uaddr >> PAGE_SHIFT;
1233 
1234 		/*
1235 		 * Overflow, abort
1236 		 */
1237 		if (end < start)
1238 			return ERR_PTR(-EINVAL);
1239 
1240 		nr_pages += end - start;
1241 	}
1242 
1243 	if (offset)
1244 		nr_pages++;
1245 
1246 	bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1247 	if (!bmd)
1248 		return ERR_PTR(-ENOMEM);
1249 
1250 	/*
1251 	 * We need to do a deep copy of the iov_iter including the iovecs.
1252 	 * The caller provided iov might point to an on-stack or otherwise
1253 	 * shortlived one.
1254 	 */
1255 	bmd->is_our_pages = map_data ? 0 : 1;
1256 	memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1257 	iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1258 			iter->nr_segs, iter->count);
1259 
1260 	ret = -ENOMEM;
1261 	bio = bio_kmalloc(gfp_mask, nr_pages);
1262 	if (!bio)
1263 		goto out_bmd;
1264 
1265 	ret = 0;
1266 
1267 	if (map_data) {
1268 		nr_pages = 1 << map_data->page_order;
1269 		i = map_data->offset / PAGE_SIZE;
1270 	}
1271 	while (len) {
1272 		unsigned int bytes = PAGE_SIZE;
1273 
1274 		bytes -= offset;
1275 
1276 		if (bytes > len)
1277 			bytes = len;
1278 
1279 		if (map_data) {
1280 			if (i == map_data->nr_entries * nr_pages) {
1281 				ret = -ENOMEM;
1282 				break;
1283 			}
1284 
1285 			page = map_data->pages[i / nr_pages];
1286 			page += (i % nr_pages);
1287 
1288 			i++;
1289 		} else {
1290 			page = alloc_page(q->bounce_gfp | gfp_mask);
1291 			if (!page) {
1292 				ret = -ENOMEM;
1293 				break;
1294 			}
1295 		}
1296 
1297 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1298 			break;
1299 
1300 		len -= bytes;
1301 		offset = 0;
1302 	}
1303 
1304 	if (ret)
1305 		goto cleanup;
1306 
1307 	/*
1308 	 * success
1309 	 */
1310 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1311 	    (map_data && map_data->from_user)) {
1312 		ret = bio_copy_from_iter(bio, *iter);
1313 		if (ret)
1314 			goto cleanup;
1315 	}
1316 
1317 	bio->bi_private = bmd;
1318 	return bio;
1319 cleanup:
1320 	if (!map_data)
1321 		bio_free_pages(bio);
1322 	bio_put(bio);
1323 out_bmd:
1324 	kfree(bmd);
1325 	return ERR_PTR(ret);
1326 }
1327 
1328 /**
1329  *	bio_map_user_iov - map user iovec into bio
1330  *	@q:		the struct request_queue for the bio
1331  *	@iter:		iovec iterator
1332  *	@gfp_mask:	memory allocation flags
1333  *
1334  *	Map the user space address into a bio suitable for io to a block
1335  *	device. Returns an error pointer in case of error.
1336  */
1337 struct bio *bio_map_user_iov(struct request_queue *q,
1338 			     const struct iov_iter *iter,
1339 			     gfp_t gfp_mask)
1340 {
1341 	int j;
1342 	int nr_pages = 0;
1343 	struct page **pages;
1344 	struct bio *bio;
1345 	int cur_page = 0;
1346 	int ret, offset;
1347 	struct iov_iter i;
1348 	struct iovec iov;
1349 
1350 	iov_for_each(iov, i, *iter) {
1351 		unsigned long uaddr = (unsigned long) iov.iov_base;
1352 		unsigned long len = iov.iov_len;
1353 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1354 		unsigned long start = uaddr >> PAGE_SHIFT;
1355 
1356 		/*
1357 		 * Overflow, abort
1358 		 */
1359 		if (end < start)
1360 			return ERR_PTR(-EINVAL);
1361 
1362 		nr_pages += end - start;
1363 		/*
1364 		 * buffer must be aligned to at least logical block size for now
1365 		 */
1366 		if (uaddr & queue_dma_alignment(q))
1367 			return ERR_PTR(-EINVAL);
1368 	}
1369 
1370 	if (!nr_pages)
1371 		return ERR_PTR(-EINVAL);
1372 
1373 	bio = bio_kmalloc(gfp_mask, nr_pages);
1374 	if (!bio)
1375 		return ERR_PTR(-ENOMEM);
1376 
1377 	ret = -ENOMEM;
1378 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1379 	if (!pages)
1380 		goto out;
1381 
1382 	iov_for_each(iov, i, *iter) {
1383 		unsigned long uaddr = (unsigned long) iov.iov_base;
1384 		unsigned long len = iov.iov_len;
1385 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1386 		unsigned long start = uaddr >> PAGE_SHIFT;
1387 		const int local_nr_pages = end - start;
1388 		const int page_limit = cur_page + local_nr_pages;
1389 
1390 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1391 				(iter->type & WRITE) != WRITE,
1392 				&pages[cur_page]);
1393 		if (ret < local_nr_pages) {
1394 			ret = -EFAULT;
1395 			goto out_unmap;
1396 		}
1397 
1398 		offset = offset_in_page(uaddr);
1399 		for (j = cur_page; j < page_limit; j++) {
1400 			unsigned int bytes = PAGE_SIZE - offset;
1401 
1402 			if (len <= 0)
1403 				break;
1404 
1405 			if (bytes > len)
1406 				bytes = len;
1407 
1408 			/*
1409 			 * sorry...
1410 			 */
1411 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1412 					    bytes)
1413 				break;
1414 
1415 			len -= bytes;
1416 			offset = 0;
1417 		}
1418 
1419 		cur_page = j;
1420 		/*
1421 		 * release the pages we didn't map into the bio, if any
1422 		 */
1423 		while (j < page_limit)
1424 			put_page(pages[j++]);
1425 	}
1426 
1427 	kfree(pages);
1428 
1429 	bio_set_flag(bio, BIO_USER_MAPPED);
1430 
1431 	/*
1432 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1433 	 * it would normally disappear when its bi_end_io is run.
1434 	 * however, we need it for the unmap, so grab an extra
1435 	 * reference to it
1436 	 */
1437 	bio_get(bio);
1438 	return bio;
1439 
1440  out_unmap:
1441 	for (j = 0; j < nr_pages; j++) {
1442 		if (!pages[j])
1443 			break;
1444 		put_page(pages[j]);
1445 	}
1446  out:
1447 	kfree(pages);
1448 	bio_put(bio);
1449 	return ERR_PTR(ret);
1450 }
1451 
1452 static void __bio_unmap_user(struct bio *bio)
1453 {
1454 	struct bio_vec *bvec;
1455 	int i;
1456 
1457 	/*
1458 	 * make sure we dirty pages we wrote to
1459 	 */
1460 	bio_for_each_segment_all(bvec, bio, i) {
1461 		if (bio_data_dir(bio) == READ)
1462 			set_page_dirty_lock(bvec->bv_page);
1463 
1464 		put_page(bvec->bv_page);
1465 	}
1466 
1467 	bio_put(bio);
1468 }
1469 
1470 /**
1471  *	bio_unmap_user	-	unmap a bio
1472  *	@bio:		the bio being unmapped
1473  *
1474  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1475  *	process context.
1476  *
1477  *	bio_unmap_user() may sleep.
1478  */
1479 void bio_unmap_user(struct bio *bio)
1480 {
1481 	__bio_unmap_user(bio);
1482 	bio_put(bio);
1483 }
1484 
1485 static void bio_map_kern_endio(struct bio *bio)
1486 {
1487 	bio_put(bio);
1488 }
1489 
1490 /**
1491  *	bio_map_kern	-	map kernel address into bio
1492  *	@q: the struct request_queue for the bio
1493  *	@data: pointer to buffer to map
1494  *	@len: length in bytes
1495  *	@gfp_mask: allocation flags for bio allocation
1496  *
1497  *	Map the kernel address into a bio suitable for io to a block
1498  *	device. Returns an error pointer in case of error.
1499  */
1500 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1501 			 gfp_t gfp_mask)
1502 {
1503 	unsigned long kaddr = (unsigned long)data;
1504 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1505 	unsigned long start = kaddr >> PAGE_SHIFT;
1506 	const int nr_pages = end - start;
1507 	int offset, i;
1508 	struct bio *bio;
1509 
1510 	bio = bio_kmalloc(gfp_mask, nr_pages);
1511 	if (!bio)
1512 		return ERR_PTR(-ENOMEM);
1513 
1514 	offset = offset_in_page(kaddr);
1515 	for (i = 0; i < nr_pages; i++) {
1516 		unsigned int bytes = PAGE_SIZE - offset;
1517 
1518 		if (len <= 0)
1519 			break;
1520 
1521 		if (bytes > len)
1522 			bytes = len;
1523 
1524 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1525 				    offset) < bytes) {
1526 			/* we don't support partial mappings */
1527 			bio_put(bio);
1528 			return ERR_PTR(-EINVAL);
1529 		}
1530 
1531 		data += bytes;
1532 		len -= bytes;
1533 		offset = 0;
1534 	}
1535 
1536 	bio->bi_end_io = bio_map_kern_endio;
1537 	return bio;
1538 }
1539 EXPORT_SYMBOL(bio_map_kern);
1540 
1541 static void bio_copy_kern_endio(struct bio *bio)
1542 {
1543 	bio_free_pages(bio);
1544 	bio_put(bio);
1545 }
1546 
1547 static void bio_copy_kern_endio_read(struct bio *bio)
1548 {
1549 	char *p = bio->bi_private;
1550 	struct bio_vec *bvec;
1551 	int i;
1552 
1553 	bio_for_each_segment_all(bvec, bio, i) {
1554 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1555 		p += bvec->bv_len;
1556 	}
1557 
1558 	bio_copy_kern_endio(bio);
1559 }
1560 
1561 /**
1562  *	bio_copy_kern	-	copy kernel address into bio
1563  *	@q: the struct request_queue for the bio
1564  *	@data: pointer to buffer to copy
1565  *	@len: length in bytes
1566  *	@gfp_mask: allocation flags for bio and page allocation
1567  *	@reading: data direction is READ
1568  *
1569  *	copy the kernel address into a bio suitable for io to a block
1570  *	device. Returns an error pointer in case of error.
1571  */
1572 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1573 			  gfp_t gfp_mask, int reading)
1574 {
1575 	unsigned long kaddr = (unsigned long)data;
1576 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1577 	unsigned long start = kaddr >> PAGE_SHIFT;
1578 	struct bio *bio;
1579 	void *p = data;
1580 	int nr_pages = 0;
1581 
1582 	/*
1583 	 * Overflow, abort
1584 	 */
1585 	if (end < start)
1586 		return ERR_PTR(-EINVAL);
1587 
1588 	nr_pages = end - start;
1589 	bio = bio_kmalloc(gfp_mask, nr_pages);
1590 	if (!bio)
1591 		return ERR_PTR(-ENOMEM);
1592 
1593 	while (len) {
1594 		struct page *page;
1595 		unsigned int bytes = PAGE_SIZE;
1596 
1597 		if (bytes > len)
1598 			bytes = len;
1599 
1600 		page = alloc_page(q->bounce_gfp | gfp_mask);
1601 		if (!page)
1602 			goto cleanup;
1603 
1604 		if (!reading)
1605 			memcpy(page_address(page), p, bytes);
1606 
1607 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1608 			break;
1609 
1610 		len -= bytes;
1611 		p += bytes;
1612 	}
1613 
1614 	if (reading) {
1615 		bio->bi_end_io = bio_copy_kern_endio_read;
1616 		bio->bi_private = data;
1617 	} else {
1618 		bio->bi_end_io = bio_copy_kern_endio;
1619 	}
1620 
1621 	return bio;
1622 
1623 cleanup:
1624 	bio_free_pages(bio);
1625 	bio_put(bio);
1626 	return ERR_PTR(-ENOMEM);
1627 }
1628 
1629 /*
1630  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1631  * for performing direct-IO in BIOs.
1632  *
1633  * The problem is that we cannot run set_page_dirty() from interrupt context
1634  * because the required locks are not interrupt-safe.  So what we can do is to
1635  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1636  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1637  * in process context.
1638  *
1639  * We special-case compound pages here: normally this means reads into hugetlb
1640  * pages.  The logic in here doesn't really work right for compound pages
1641  * because the VM does not uniformly chase down the head page in all cases.
1642  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1643  * handle them at all.  So we skip compound pages here at an early stage.
1644  *
1645  * Note that this code is very hard to test under normal circumstances because
1646  * direct-io pins the pages with get_user_pages().  This makes
1647  * is_page_cache_freeable return false, and the VM will not clean the pages.
1648  * But other code (eg, flusher threads) could clean the pages if they are mapped
1649  * pagecache.
1650  *
1651  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1652  * deferred bio dirtying paths.
1653  */
1654 
1655 /*
1656  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1657  */
1658 void bio_set_pages_dirty(struct bio *bio)
1659 {
1660 	struct bio_vec *bvec;
1661 	int i;
1662 
1663 	bio_for_each_segment_all(bvec, bio, i) {
1664 		struct page *page = bvec->bv_page;
1665 
1666 		if (page && !PageCompound(page))
1667 			set_page_dirty_lock(page);
1668 	}
1669 }
1670 
1671 static void bio_release_pages(struct bio *bio)
1672 {
1673 	struct bio_vec *bvec;
1674 	int i;
1675 
1676 	bio_for_each_segment_all(bvec, bio, i) {
1677 		struct page *page = bvec->bv_page;
1678 
1679 		if (page)
1680 			put_page(page);
1681 	}
1682 }
1683 
1684 /*
1685  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1686  * If they are, then fine.  If, however, some pages are clean then they must
1687  * have been written out during the direct-IO read.  So we take another ref on
1688  * the BIO and the offending pages and re-dirty the pages in process context.
1689  *
1690  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1691  * here on.  It will run one put_page() against each page and will run one
1692  * bio_put() against the BIO.
1693  */
1694 
1695 static void bio_dirty_fn(struct work_struct *work);
1696 
1697 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1698 static DEFINE_SPINLOCK(bio_dirty_lock);
1699 static struct bio *bio_dirty_list;
1700 
1701 /*
1702  * This runs in process context
1703  */
1704 static void bio_dirty_fn(struct work_struct *work)
1705 {
1706 	unsigned long flags;
1707 	struct bio *bio;
1708 
1709 	spin_lock_irqsave(&bio_dirty_lock, flags);
1710 	bio = bio_dirty_list;
1711 	bio_dirty_list = NULL;
1712 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1713 
1714 	while (bio) {
1715 		struct bio *next = bio->bi_private;
1716 
1717 		bio_set_pages_dirty(bio);
1718 		bio_release_pages(bio);
1719 		bio_put(bio);
1720 		bio = next;
1721 	}
1722 }
1723 
1724 void bio_check_pages_dirty(struct bio *bio)
1725 {
1726 	struct bio_vec *bvec;
1727 	int nr_clean_pages = 0;
1728 	int i;
1729 
1730 	bio_for_each_segment_all(bvec, bio, i) {
1731 		struct page *page = bvec->bv_page;
1732 
1733 		if (PageDirty(page) || PageCompound(page)) {
1734 			put_page(page);
1735 			bvec->bv_page = NULL;
1736 		} else {
1737 			nr_clean_pages++;
1738 		}
1739 	}
1740 
1741 	if (nr_clean_pages) {
1742 		unsigned long flags;
1743 
1744 		spin_lock_irqsave(&bio_dirty_lock, flags);
1745 		bio->bi_private = bio_dirty_list;
1746 		bio_dirty_list = bio;
1747 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1748 		schedule_work(&bio_dirty_work);
1749 	} else {
1750 		bio_put(bio);
1751 	}
1752 }
1753 
1754 void generic_start_io_acct(int rw, unsigned long sectors,
1755 			   struct hd_struct *part)
1756 {
1757 	int cpu = part_stat_lock();
1758 
1759 	part_round_stats(cpu, part);
1760 	part_stat_inc(cpu, part, ios[rw]);
1761 	part_stat_add(cpu, part, sectors[rw], sectors);
1762 	part_inc_in_flight(part, rw);
1763 
1764 	part_stat_unlock();
1765 }
1766 EXPORT_SYMBOL(generic_start_io_acct);
1767 
1768 void generic_end_io_acct(int rw, struct hd_struct *part,
1769 			 unsigned long start_time)
1770 {
1771 	unsigned long duration = jiffies - start_time;
1772 	int cpu = part_stat_lock();
1773 
1774 	part_stat_add(cpu, part, ticks[rw], duration);
1775 	part_round_stats(cpu, part);
1776 	part_dec_in_flight(part, rw);
1777 
1778 	part_stat_unlock();
1779 }
1780 EXPORT_SYMBOL(generic_end_io_acct);
1781 
1782 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1783 void bio_flush_dcache_pages(struct bio *bi)
1784 {
1785 	struct bio_vec bvec;
1786 	struct bvec_iter iter;
1787 
1788 	bio_for_each_segment(bvec, bi, iter)
1789 		flush_dcache_page(bvec.bv_page);
1790 }
1791 EXPORT_SYMBOL(bio_flush_dcache_pages);
1792 #endif
1793 
1794 static inline bool bio_remaining_done(struct bio *bio)
1795 {
1796 	/*
1797 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1798 	 * we always end io on the first invocation.
1799 	 */
1800 	if (!bio_flagged(bio, BIO_CHAIN))
1801 		return true;
1802 
1803 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1804 
1805 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1806 		bio_clear_flag(bio, BIO_CHAIN);
1807 		return true;
1808 	}
1809 
1810 	return false;
1811 }
1812 
1813 /**
1814  * bio_endio - end I/O on a bio
1815  * @bio:	bio
1816  *
1817  * Description:
1818  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1819  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1820  *   bio unless they own it and thus know that it has an end_io function.
1821  **/
1822 void bio_endio(struct bio *bio)
1823 {
1824 again:
1825 	if (!bio_remaining_done(bio))
1826 		return;
1827 
1828 	/*
1829 	 * Need to have a real endio function for chained bios, otherwise
1830 	 * various corner cases will break (like stacking block devices that
1831 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1832 	 * recursion and blowing the stack. Tail call optimization would
1833 	 * handle this, but compiling with frame pointers also disables
1834 	 * gcc's sibling call optimization.
1835 	 */
1836 	if (bio->bi_end_io == bio_chain_endio) {
1837 		bio = __bio_chain_endio(bio);
1838 		goto again;
1839 	}
1840 
1841 	if (bio->bi_end_io)
1842 		bio->bi_end_io(bio);
1843 }
1844 EXPORT_SYMBOL(bio_endio);
1845 
1846 /**
1847  * bio_split - split a bio
1848  * @bio:	bio to split
1849  * @sectors:	number of sectors to split from the front of @bio
1850  * @gfp:	gfp mask
1851  * @bs:		bio set to allocate from
1852  *
1853  * Allocates and returns a new bio which represents @sectors from the start of
1854  * @bio, and updates @bio to represent the remaining sectors.
1855  *
1856  * Unless this is a discard request the newly allocated bio will point
1857  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1858  * @bio is not freed before the split.
1859  */
1860 struct bio *bio_split(struct bio *bio, int sectors,
1861 		      gfp_t gfp, struct bio_set *bs)
1862 {
1863 	struct bio *split = NULL;
1864 
1865 	BUG_ON(sectors <= 0);
1866 	BUG_ON(sectors >= bio_sectors(bio));
1867 
1868 	split = bio_clone_fast(bio, gfp, bs);
1869 	if (!split)
1870 		return NULL;
1871 
1872 	split->bi_iter.bi_size = sectors << 9;
1873 
1874 	if (bio_integrity(split))
1875 		bio_integrity_trim(split, 0, sectors);
1876 
1877 	bio_advance(bio, split->bi_iter.bi_size);
1878 
1879 	return split;
1880 }
1881 EXPORT_SYMBOL(bio_split);
1882 
1883 /**
1884  * bio_trim - trim a bio
1885  * @bio:	bio to trim
1886  * @offset:	number of sectors to trim from the front of @bio
1887  * @size:	size we want to trim @bio to, in sectors
1888  */
1889 void bio_trim(struct bio *bio, int offset, int size)
1890 {
1891 	/* 'bio' is a cloned bio which we need to trim to match
1892 	 * the given offset and size.
1893 	 */
1894 
1895 	size <<= 9;
1896 	if (offset == 0 && size == bio->bi_iter.bi_size)
1897 		return;
1898 
1899 	bio_clear_flag(bio, BIO_SEG_VALID);
1900 
1901 	bio_advance(bio, offset << 9);
1902 
1903 	bio->bi_iter.bi_size = size;
1904 }
1905 EXPORT_SYMBOL_GPL(bio_trim);
1906 
1907 /*
1908  * create memory pools for biovec's in a bio_set.
1909  * use the global biovec slabs created for general use.
1910  */
1911 mempool_t *biovec_create_pool(int pool_entries)
1912 {
1913 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1914 
1915 	return mempool_create_slab_pool(pool_entries, bp->slab);
1916 }
1917 
1918 void bioset_free(struct bio_set *bs)
1919 {
1920 	if (bs->rescue_workqueue)
1921 		destroy_workqueue(bs->rescue_workqueue);
1922 
1923 	if (bs->bio_pool)
1924 		mempool_destroy(bs->bio_pool);
1925 
1926 	if (bs->bvec_pool)
1927 		mempool_destroy(bs->bvec_pool);
1928 
1929 	bioset_integrity_free(bs);
1930 	bio_put_slab(bs);
1931 
1932 	kfree(bs);
1933 }
1934 EXPORT_SYMBOL(bioset_free);
1935 
1936 static struct bio_set *__bioset_create(unsigned int pool_size,
1937 				       unsigned int front_pad,
1938 				       bool create_bvec_pool)
1939 {
1940 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1941 	struct bio_set *bs;
1942 
1943 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1944 	if (!bs)
1945 		return NULL;
1946 
1947 	bs->front_pad = front_pad;
1948 
1949 	spin_lock_init(&bs->rescue_lock);
1950 	bio_list_init(&bs->rescue_list);
1951 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1952 
1953 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1954 	if (!bs->bio_slab) {
1955 		kfree(bs);
1956 		return NULL;
1957 	}
1958 
1959 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1960 	if (!bs->bio_pool)
1961 		goto bad;
1962 
1963 	if (create_bvec_pool) {
1964 		bs->bvec_pool = biovec_create_pool(pool_size);
1965 		if (!bs->bvec_pool)
1966 			goto bad;
1967 	}
1968 
1969 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1970 	if (!bs->rescue_workqueue)
1971 		goto bad;
1972 
1973 	return bs;
1974 bad:
1975 	bioset_free(bs);
1976 	return NULL;
1977 }
1978 
1979 /**
1980  * bioset_create  - Create a bio_set
1981  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1982  * @front_pad:	Number of bytes to allocate in front of the returned bio
1983  *
1984  * Description:
1985  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1986  *    to ask for a number of bytes to be allocated in front of the bio.
1987  *    Front pad allocation is useful for embedding the bio inside
1988  *    another structure, to avoid allocating extra data to go with the bio.
1989  *    Note that the bio must be embedded at the END of that structure always,
1990  *    or things will break badly.
1991  */
1992 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1993 {
1994 	return __bioset_create(pool_size, front_pad, true);
1995 }
1996 EXPORT_SYMBOL(bioset_create);
1997 
1998 /**
1999  * bioset_create_nobvec  - Create a bio_set without bio_vec mempool
2000  * @pool_size:	Number of bio to cache in the mempool
2001  * @front_pad:	Number of bytes to allocate in front of the returned bio
2002  *
2003  * Description:
2004  *    Same functionality as bioset_create() except that mempool is not
2005  *    created for bio_vecs. Saving some memory for bio_clone_fast() users.
2006  */
2007 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
2008 {
2009 	return __bioset_create(pool_size, front_pad, false);
2010 }
2011 EXPORT_SYMBOL(bioset_create_nobvec);
2012 
2013 #ifdef CONFIG_BLK_CGROUP
2014 
2015 /**
2016  * bio_associate_blkcg - associate a bio with the specified blkcg
2017  * @bio: target bio
2018  * @blkcg_css: css of the blkcg to associate
2019  *
2020  * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
2021  * treat @bio as if it were issued by a task which belongs to the blkcg.
2022  *
2023  * This function takes an extra reference of @blkcg_css which will be put
2024  * when @bio is released.  The caller must own @bio and is responsible for
2025  * synchronizing calls to this function.
2026  */
2027 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2028 {
2029 	if (unlikely(bio->bi_css))
2030 		return -EBUSY;
2031 	css_get(blkcg_css);
2032 	bio->bi_css = blkcg_css;
2033 	return 0;
2034 }
2035 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2036 
2037 /**
2038  * bio_associate_current - associate a bio with %current
2039  * @bio: target bio
2040  *
2041  * Associate @bio with %current if it hasn't been associated yet.  Block
2042  * layer will treat @bio as if it were issued by %current no matter which
2043  * task actually issues it.
2044  *
2045  * This function takes an extra reference of @task's io_context and blkcg
2046  * which will be put when @bio is released.  The caller must own @bio,
2047  * ensure %current->io_context exists, and is responsible for synchronizing
2048  * calls to this function.
2049  */
2050 int bio_associate_current(struct bio *bio)
2051 {
2052 	struct io_context *ioc;
2053 
2054 	if (bio->bi_css)
2055 		return -EBUSY;
2056 
2057 	ioc = current->io_context;
2058 	if (!ioc)
2059 		return -ENOENT;
2060 
2061 	get_io_context_active(ioc);
2062 	bio->bi_ioc = ioc;
2063 	bio->bi_css = task_get_css(current, io_cgrp_id);
2064 	return 0;
2065 }
2066 EXPORT_SYMBOL_GPL(bio_associate_current);
2067 
2068 /**
2069  * bio_disassociate_task - undo bio_associate_current()
2070  * @bio: target bio
2071  */
2072 void bio_disassociate_task(struct bio *bio)
2073 {
2074 	if (bio->bi_ioc) {
2075 		put_io_context(bio->bi_ioc);
2076 		bio->bi_ioc = NULL;
2077 	}
2078 	if (bio->bi_css) {
2079 		css_put(bio->bi_css);
2080 		bio->bi_css = NULL;
2081 	}
2082 }
2083 
2084 /**
2085  * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2086  * @dst: destination bio
2087  * @src: source bio
2088  */
2089 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2090 {
2091 	if (src->bi_css)
2092 		WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2093 }
2094 
2095 #endif /* CONFIG_BLK_CGROUP */
2096 
2097 static void __init biovec_init_slabs(void)
2098 {
2099 	int i;
2100 
2101 	for (i = 0; i < BVEC_POOL_NR; i++) {
2102 		int size;
2103 		struct biovec_slab *bvs = bvec_slabs + i;
2104 
2105 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2106 			bvs->slab = NULL;
2107 			continue;
2108 		}
2109 
2110 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2111 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2112                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2113 	}
2114 }
2115 
2116 static int __init init_bio(void)
2117 {
2118 	bio_slab_max = 2;
2119 	bio_slab_nr = 0;
2120 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2121 	if (!bio_slabs)
2122 		panic("bio: can't allocate bios\n");
2123 
2124 	bio_integrity_init();
2125 	biovec_init_slabs();
2126 
2127 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2128 	if (!fs_bio_set)
2129 		panic("bio: can't allocate bios\n");
2130 
2131 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2132 		panic("bio: can't create integrity pool\n");
2133 
2134 	return 0;
2135 }
2136 subsys_initcall(init_bio);
2137