xref: /openbmc/linux/block/bio.c (revision 49add496)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
22 #include <linux/xarray.h>
23 
24 #include <trace/events/block.h>
25 #include "blk.h"
26 #include "blk-rq-qos.h"
27 
28 struct bio_alloc_cache {
29 	struct bio		*free_list;
30 	unsigned int		nr;
31 };
32 
33 static struct biovec_slab {
34 	int nr_vecs;
35 	char *name;
36 	struct kmem_cache *slab;
37 } bvec_slabs[] __read_mostly = {
38 	{ .nr_vecs = 16, .name = "biovec-16" },
39 	{ .nr_vecs = 64, .name = "biovec-64" },
40 	{ .nr_vecs = 128, .name = "biovec-128" },
41 	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
42 };
43 
44 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45 {
46 	switch (nr_vecs) {
47 	/* smaller bios use inline vecs */
48 	case 5 ... 16:
49 		return &bvec_slabs[0];
50 	case 17 ... 64:
51 		return &bvec_slabs[1];
52 	case 65 ... 128:
53 		return &bvec_slabs[2];
54 	case 129 ... BIO_MAX_VECS:
55 		return &bvec_slabs[3];
56 	default:
57 		BUG();
58 		return NULL;
59 	}
60 }
61 
62 /*
63  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64  * IO code that does not need private memory pools.
65  */
66 struct bio_set fs_bio_set;
67 EXPORT_SYMBOL(fs_bio_set);
68 
69 /*
70  * Our slab pool management
71  */
72 struct bio_slab {
73 	struct kmem_cache *slab;
74 	unsigned int slab_ref;
75 	unsigned int slab_size;
76 	char name[8];
77 };
78 static DEFINE_MUTEX(bio_slab_lock);
79 static DEFINE_XARRAY(bio_slabs);
80 
81 static struct bio_slab *create_bio_slab(unsigned int size)
82 {
83 	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
84 
85 	if (!bslab)
86 		return NULL;
87 
88 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 	bslab->slab = kmem_cache_create(bslab->name, size,
90 			ARCH_KMALLOC_MINALIGN,
91 			SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
92 	if (!bslab->slab)
93 		goto fail_alloc_slab;
94 
95 	bslab->slab_ref = 1;
96 	bslab->slab_size = size;
97 
98 	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
99 		return bslab;
100 
101 	kmem_cache_destroy(bslab->slab);
102 
103 fail_alloc_slab:
104 	kfree(bslab);
105 	return NULL;
106 }
107 
108 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
109 {
110 	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
111 }
112 
113 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
114 {
115 	unsigned int size = bs_bio_slab_size(bs);
116 	struct bio_slab *bslab;
117 
118 	mutex_lock(&bio_slab_lock);
119 	bslab = xa_load(&bio_slabs, size);
120 	if (bslab)
121 		bslab->slab_ref++;
122 	else
123 		bslab = create_bio_slab(size);
124 	mutex_unlock(&bio_slab_lock);
125 
126 	if (bslab)
127 		return bslab->slab;
128 	return NULL;
129 }
130 
131 static void bio_put_slab(struct bio_set *bs)
132 {
133 	struct bio_slab *bslab = NULL;
134 	unsigned int slab_size = bs_bio_slab_size(bs);
135 
136 	mutex_lock(&bio_slab_lock);
137 
138 	bslab = xa_load(&bio_slabs, slab_size);
139 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
140 		goto out;
141 
142 	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
143 
144 	WARN_ON(!bslab->slab_ref);
145 
146 	if (--bslab->slab_ref)
147 		goto out;
148 
149 	xa_erase(&bio_slabs, slab_size);
150 
151 	kmem_cache_destroy(bslab->slab);
152 	kfree(bslab);
153 
154 out:
155 	mutex_unlock(&bio_slab_lock);
156 }
157 
158 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
159 {
160 	BUG_ON(nr_vecs > BIO_MAX_VECS);
161 
162 	if (nr_vecs == BIO_MAX_VECS)
163 		mempool_free(bv, pool);
164 	else if (nr_vecs > BIO_INLINE_VECS)
165 		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
166 }
167 
168 /*
169  * Make the first allocation restricted and don't dump info on allocation
170  * failures, since we'll fall back to the mempool in case of failure.
171  */
172 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
173 {
174 	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
175 		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
176 }
177 
178 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
179 		gfp_t gfp_mask)
180 {
181 	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
182 
183 	if (WARN_ON_ONCE(!bvs))
184 		return NULL;
185 
186 	/*
187 	 * Upgrade the nr_vecs request to take full advantage of the allocation.
188 	 * We also rely on this in the bvec_free path.
189 	 */
190 	*nr_vecs = bvs->nr_vecs;
191 
192 	/*
193 	 * Try a slab allocation first for all smaller allocations.  If that
194 	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
195 	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
196 	 */
197 	if (*nr_vecs < BIO_MAX_VECS) {
198 		struct bio_vec *bvl;
199 
200 		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
201 		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
202 			return bvl;
203 		*nr_vecs = BIO_MAX_VECS;
204 	}
205 
206 	return mempool_alloc(pool, gfp_mask);
207 }
208 
209 void bio_uninit(struct bio *bio)
210 {
211 #ifdef CONFIG_BLK_CGROUP
212 	if (bio->bi_blkg) {
213 		blkg_put(bio->bi_blkg);
214 		bio->bi_blkg = NULL;
215 	}
216 #endif
217 	if (bio_integrity(bio))
218 		bio_integrity_free(bio);
219 
220 	bio_crypt_free_ctx(bio);
221 }
222 EXPORT_SYMBOL(bio_uninit);
223 
224 static void bio_free(struct bio *bio)
225 {
226 	struct bio_set *bs = bio->bi_pool;
227 	void *p;
228 
229 	bio_uninit(bio);
230 
231 	if (bs) {
232 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
233 
234 		/*
235 		 * If we have front padding, adjust the bio pointer before freeing
236 		 */
237 		p = bio;
238 		p -= bs->front_pad;
239 
240 		mempool_free(p, &bs->bio_pool);
241 	} else {
242 		/* Bio was allocated by bio_kmalloc() */
243 		kfree(bio);
244 	}
245 }
246 
247 /*
248  * Users of this function have their own bio allocation. Subsequently,
249  * they must remember to pair any call to bio_init() with bio_uninit()
250  * when IO has completed, or when the bio is released.
251  */
252 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
253 	      unsigned short max_vecs, unsigned int opf)
254 {
255 	bio->bi_next = NULL;
256 	bio->bi_bdev = bdev;
257 	bio->bi_opf = opf;
258 	bio->bi_flags = 0;
259 	bio->bi_ioprio = 0;
260 	bio->bi_write_hint = 0;
261 	bio->bi_status = 0;
262 	bio->bi_iter.bi_sector = 0;
263 	bio->bi_iter.bi_size = 0;
264 	bio->bi_iter.bi_idx = 0;
265 	bio->bi_iter.bi_bvec_done = 0;
266 	bio->bi_end_io = NULL;
267 	bio->bi_private = NULL;
268 #ifdef CONFIG_BLK_CGROUP
269 	bio->bi_blkg = NULL;
270 	bio->bi_issue.value = 0;
271 	if (bdev)
272 		bio_associate_blkg(bio);
273 #ifdef CONFIG_BLK_CGROUP_IOCOST
274 	bio->bi_iocost_cost = 0;
275 #endif
276 #endif
277 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
278 	bio->bi_crypt_context = NULL;
279 #endif
280 #ifdef CONFIG_BLK_DEV_INTEGRITY
281 	bio->bi_integrity = NULL;
282 #endif
283 	bio->bi_vcnt = 0;
284 
285 	atomic_set(&bio->__bi_remaining, 1);
286 	atomic_set(&bio->__bi_cnt, 1);
287 	bio->bi_cookie = BLK_QC_T_NONE;
288 
289 	bio->bi_max_vecs = max_vecs;
290 	bio->bi_io_vec = table;
291 	bio->bi_pool = NULL;
292 }
293 EXPORT_SYMBOL(bio_init);
294 
295 /**
296  * bio_reset - reinitialize a bio
297  * @bio:	bio to reset
298  *
299  * Description:
300  *   After calling bio_reset(), @bio will be in the same state as a freshly
301  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
302  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
303  *   comment in struct bio.
304  */
305 void bio_reset(struct bio *bio)
306 {
307 	bio_uninit(bio);
308 	memset(bio, 0, BIO_RESET_BYTES);
309 	atomic_set(&bio->__bi_remaining, 1);
310 }
311 EXPORT_SYMBOL(bio_reset);
312 
313 static struct bio *__bio_chain_endio(struct bio *bio)
314 {
315 	struct bio *parent = bio->bi_private;
316 
317 	if (bio->bi_status && !parent->bi_status)
318 		parent->bi_status = bio->bi_status;
319 	bio_put(bio);
320 	return parent;
321 }
322 
323 static void bio_chain_endio(struct bio *bio)
324 {
325 	bio_endio(__bio_chain_endio(bio));
326 }
327 
328 /**
329  * bio_chain - chain bio completions
330  * @bio: the target bio
331  * @parent: the parent bio of @bio
332  *
333  * The caller won't have a bi_end_io called when @bio completes - instead,
334  * @parent's bi_end_io won't be called until both @parent and @bio have
335  * completed; the chained bio will also be freed when it completes.
336  *
337  * The caller must not set bi_private or bi_end_io in @bio.
338  */
339 void bio_chain(struct bio *bio, struct bio *parent)
340 {
341 	BUG_ON(bio->bi_private || bio->bi_end_io);
342 
343 	bio->bi_private = parent;
344 	bio->bi_end_io	= bio_chain_endio;
345 	bio_inc_remaining(parent);
346 }
347 EXPORT_SYMBOL(bio_chain);
348 
349 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
350 		unsigned int nr_pages, unsigned int opf, gfp_t gfp)
351 {
352 	struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
353 
354 	if (bio) {
355 		bio_chain(bio, new);
356 		submit_bio(bio);
357 	}
358 
359 	return new;
360 }
361 EXPORT_SYMBOL_GPL(blk_next_bio);
362 
363 static void bio_alloc_rescue(struct work_struct *work)
364 {
365 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
366 	struct bio *bio;
367 
368 	while (1) {
369 		spin_lock(&bs->rescue_lock);
370 		bio = bio_list_pop(&bs->rescue_list);
371 		spin_unlock(&bs->rescue_lock);
372 
373 		if (!bio)
374 			break;
375 
376 		submit_bio_noacct(bio);
377 	}
378 }
379 
380 static void punt_bios_to_rescuer(struct bio_set *bs)
381 {
382 	struct bio_list punt, nopunt;
383 	struct bio *bio;
384 
385 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
386 		return;
387 	/*
388 	 * In order to guarantee forward progress we must punt only bios that
389 	 * were allocated from this bio_set; otherwise, if there was a bio on
390 	 * there for a stacking driver higher up in the stack, processing it
391 	 * could require allocating bios from this bio_set, and doing that from
392 	 * our own rescuer would be bad.
393 	 *
394 	 * Since bio lists are singly linked, pop them all instead of trying to
395 	 * remove from the middle of the list:
396 	 */
397 
398 	bio_list_init(&punt);
399 	bio_list_init(&nopunt);
400 
401 	while ((bio = bio_list_pop(&current->bio_list[0])))
402 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
403 	current->bio_list[0] = nopunt;
404 
405 	bio_list_init(&nopunt);
406 	while ((bio = bio_list_pop(&current->bio_list[1])))
407 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
408 	current->bio_list[1] = nopunt;
409 
410 	spin_lock(&bs->rescue_lock);
411 	bio_list_merge(&bs->rescue_list, &punt);
412 	spin_unlock(&bs->rescue_lock);
413 
414 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
415 }
416 
417 /**
418  * bio_alloc_bioset - allocate a bio for I/O
419  * @bdev:	block device to allocate the bio for (can be %NULL)
420  * @nr_vecs:	number of bvecs to pre-allocate
421  * @opf:	operation and flags for bio
422  * @gfp_mask:   the GFP_* mask given to the slab allocator
423  * @bs:		the bio_set to allocate from.
424  *
425  * Allocate a bio from the mempools in @bs.
426  *
427  * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
428  * allocate a bio.  This is due to the mempool guarantees.  To make this work,
429  * callers must never allocate more than 1 bio at a time from the general pool.
430  * Callers that need to allocate more than 1 bio must always submit the
431  * previously allocated bio for IO before attempting to allocate a new one.
432  * Failure to do so can cause deadlocks under memory pressure.
433  *
434  * Note that when running under submit_bio_noacct() (i.e. any block driver),
435  * bios are not submitted until after you return - see the code in
436  * submit_bio_noacct() that converts recursion into iteration, to prevent
437  * stack overflows.
438  *
439  * This would normally mean allocating multiple bios under submit_bio_noacct()
440  * would be susceptible to deadlocks, but we have
441  * deadlock avoidance code that resubmits any blocked bios from a rescuer
442  * thread.
443  *
444  * However, we do not guarantee forward progress for allocations from other
445  * mempools. Doing multiple allocations from the same mempool under
446  * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
447  * for per bio allocations.
448  *
449  * Returns: Pointer to new bio on success, NULL on failure.
450  */
451 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
452 			     unsigned int opf, gfp_t gfp_mask,
453 			     struct bio_set *bs)
454 {
455 	gfp_t saved_gfp = gfp_mask;
456 	struct bio *bio;
457 	void *p;
458 
459 	/* should not use nobvec bioset for nr_vecs > 0 */
460 	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
461 		return NULL;
462 
463 	/*
464 	 * submit_bio_noacct() converts recursion to iteration; this means if
465 	 * we're running beneath it, any bios we allocate and submit will not be
466 	 * submitted (and thus freed) until after we return.
467 	 *
468 	 * This exposes us to a potential deadlock if we allocate multiple bios
469 	 * from the same bio_set() while running underneath submit_bio_noacct().
470 	 * If we were to allocate multiple bios (say a stacking block driver
471 	 * that was splitting bios), we would deadlock if we exhausted the
472 	 * mempool's reserve.
473 	 *
474 	 * We solve this, and guarantee forward progress, with a rescuer
475 	 * workqueue per bio_set. If we go to allocate and there are bios on
476 	 * current->bio_list, we first try the allocation without
477 	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
478 	 * blocking to the rescuer workqueue before we retry with the original
479 	 * gfp_flags.
480 	 */
481 	if (current->bio_list &&
482 	    (!bio_list_empty(&current->bio_list[0]) ||
483 	     !bio_list_empty(&current->bio_list[1])) &&
484 	    bs->rescue_workqueue)
485 		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
486 
487 	p = mempool_alloc(&bs->bio_pool, gfp_mask);
488 	if (!p && gfp_mask != saved_gfp) {
489 		punt_bios_to_rescuer(bs);
490 		gfp_mask = saved_gfp;
491 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
492 	}
493 	if (unlikely(!p))
494 		return NULL;
495 
496 	bio = p + bs->front_pad;
497 	if (nr_vecs > BIO_INLINE_VECS) {
498 		struct bio_vec *bvl = NULL;
499 
500 		bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
501 		if (!bvl && gfp_mask != saved_gfp) {
502 			punt_bios_to_rescuer(bs);
503 			gfp_mask = saved_gfp;
504 			bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
505 		}
506 		if (unlikely(!bvl))
507 			goto err_free;
508 
509 		bio_init(bio, bdev, bvl, nr_vecs, opf);
510 	} else if (nr_vecs) {
511 		bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
512 	} else {
513 		bio_init(bio, bdev, NULL, 0, opf);
514 	}
515 
516 	bio->bi_pool = bs;
517 	return bio;
518 
519 err_free:
520 	mempool_free(p, &bs->bio_pool);
521 	return NULL;
522 }
523 EXPORT_SYMBOL(bio_alloc_bioset);
524 
525 /**
526  * bio_kmalloc - kmalloc a bio for I/O
527  * @gfp_mask:   the GFP_* mask given to the slab allocator
528  * @nr_iovecs:	number of iovecs to pre-allocate
529  *
530  * Use kmalloc to allocate and initialize a bio.
531  *
532  * Returns: Pointer to new bio on success, NULL on failure.
533  */
534 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
535 {
536 	struct bio *bio;
537 
538 	if (nr_iovecs > UIO_MAXIOV)
539 		return NULL;
540 
541 	bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
542 	if (unlikely(!bio))
543 		return NULL;
544 	bio_init(bio, NULL, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs,
545 		 0);
546 	bio->bi_pool = NULL;
547 	return bio;
548 }
549 EXPORT_SYMBOL(bio_kmalloc);
550 
551 void zero_fill_bio(struct bio *bio)
552 {
553 	struct bio_vec bv;
554 	struct bvec_iter iter;
555 
556 	bio_for_each_segment(bv, bio, iter)
557 		memzero_bvec(&bv);
558 }
559 EXPORT_SYMBOL(zero_fill_bio);
560 
561 /**
562  * bio_truncate - truncate the bio to small size of @new_size
563  * @bio:	the bio to be truncated
564  * @new_size:	new size for truncating the bio
565  *
566  * Description:
567  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
568  *   REQ_OP_READ, zero the truncated part. This function should only
569  *   be used for handling corner cases, such as bio eod.
570  */
571 static void bio_truncate(struct bio *bio, unsigned new_size)
572 {
573 	struct bio_vec bv;
574 	struct bvec_iter iter;
575 	unsigned int done = 0;
576 	bool truncated = false;
577 
578 	if (new_size >= bio->bi_iter.bi_size)
579 		return;
580 
581 	if (bio_op(bio) != REQ_OP_READ)
582 		goto exit;
583 
584 	bio_for_each_segment(bv, bio, iter) {
585 		if (done + bv.bv_len > new_size) {
586 			unsigned offset;
587 
588 			if (!truncated)
589 				offset = new_size - done;
590 			else
591 				offset = 0;
592 			zero_user(bv.bv_page, bv.bv_offset + offset,
593 				  bv.bv_len - offset);
594 			truncated = true;
595 		}
596 		done += bv.bv_len;
597 	}
598 
599  exit:
600 	/*
601 	 * Don't touch bvec table here and make it really immutable, since
602 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
603 	 * in its .end_bio() callback.
604 	 *
605 	 * It is enough to truncate bio by updating .bi_size since we can make
606 	 * correct bvec with the updated .bi_size for drivers.
607 	 */
608 	bio->bi_iter.bi_size = new_size;
609 }
610 
611 /**
612  * guard_bio_eod - truncate a BIO to fit the block device
613  * @bio:	bio to truncate
614  *
615  * This allows us to do IO even on the odd last sectors of a device, even if the
616  * block size is some multiple of the physical sector size.
617  *
618  * We'll just truncate the bio to the size of the device, and clear the end of
619  * the buffer head manually.  Truly out-of-range accesses will turn into actual
620  * I/O errors, this only handles the "we need to be able to do I/O at the final
621  * sector" case.
622  */
623 void guard_bio_eod(struct bio *bio)
624 {
625 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
626 
627 	if (!maxsector)
628 		return;
629 
630 	/*
631 	 * If the *whole* IO is past the end of the device,
632 	 * let it through, and the IO layer will turn it into
633 	 * an EIO.
634 	 */
635 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
636 		return;
637 
638 	maxsector -= bio->bi_iter.bi_sector;
639 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
640 		return;
641 
642 	bio_truncate(bio, maxsector << 9);
643 }
644 
645 #define ALLOC_CACHE_MAX		512
646 #define ALLOC_CACHE_SLACK	 64
647 
648 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
649 				  unsigned int nr)
650 {
651 	unsigned int i = 0;
652 	struct bio *bio;
653 
654 	while ((bio = cache->free_list) != NULL) {
655 		cache->free_list = bio->bi_next;
656 		cache->nr--;
657 		bio_free(bio);
658 		if (++i == nr)
659 			break;
660 	}
661 }
662 
663 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
664 {
665 	struct bio_set *bs;
666 
667 	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
668 	if (bs->cache) {
669 		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
670 
671 		bio_alloc_cache_prune(cache, -1U);
672 	}
673 	return 0;
674 }
675 
676 static void bio_alloc_cache_destroy(struct bio_set *bs)
677 {
678 	int cpu;
679 
680 	if (!bs->cache)
681 		return;
682 
683 	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
684 	for_each_possible_cpu(cpu) {
685 		struct bio_alloc_cache *cache;
686 
687 		cache = per_cpu_ptr(bs->cache, cpu);
688 		bio_alloc_cache_prune(cache, -1U);
689 	}
690 	free_percpu(bs->cache);
691 }
692 
693 /**
694  * bio_put - release a reference to a bio
695  * @bio:   bio to release reference to
696  *
697  * Description:
698  *   Put a reference to a &struct bio, either one you have gotten with
699  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
700  **/
701 void bio_put(struct bio *bio)
702 {
703 	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
704 		BUG_ON(!atomic_read(&bio->__bi_cnt));
705 		if (!atomic_dec_and_test(&bio->__bi_cnt))
706 			return;
707 	}
708 
709 	if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
710 		struct bio_alloc_cache *cache;
711 
712 		bio_uninit(bio);
713 		cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
714 		bio->bi_next = cache->free_list;
715 		cache->free_list = bio;
716 		if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
717 			bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
718 		put_cpu();
719 	} else {
720 		bio_free(bio);
721 	}
722 }
723 EXPORT_SYMBOL(bio_put);
724 
725 /**
726  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
727  * 	@bio: destination bio
728  * 	@bio_src: bio to clone
729  *
730  *	Clone a &bio. Caller will own the returned bio, but not
731  *	the actual data it points to. Reference count of returned
732  * 	bio will be one.
733  *
734  * 	Caller must ensure that @bio_src is not freed before @bio.
735  */
736 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
737 {
738 	WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
739 
740 	/*
741 	 * most users will be overriding ->bi_bdev with a new target,
742 	 * so we don't set nor calculate new physical/hw segment counts here
743 	 */
744 	bio->bi_bdev = bio_src->bi_bdev;
745 	bio_set_flag(bio, BIO_CLONED);
746 	if (bio_flagged(bio_src, BIO_THROTTLED))
747 		bio_set_flag(bio, BIO_THROTTLED);
748 	if (bio_flagged(bio_src, BIO_REMAPPED))
749 		bio_set_flag(bio, BIO_REMAPPED);
750 	bio->bi_opf = bio_src->bi_opf;
751 	bio->bi_ioprio = bio_src->bi_ioprio;
752 	bio->bi_write_hint = bio_src->bi_write_hint;
753 	bio->bi_iter = bio_src->bi_iter;
754 	bio->bi_io_vec = bio_src->bi_io_vec;
755 
756 	bio_clone_blkg_association(bio, bio_src);
757 	blkcg_bio_issue_init(bio);
758 }
759 EXPORT_SYMBOL(__bio_clone_fast);
760 
761 /**
762  *	bio_clone_fast - clone a bio that shares the original bio's biovec
763  *	@bio: bio to clone
764  *	@gfp_mask: allocation priority
765  *	@bs: bio_set to allocate from
766  *
767  * 	Like __bio_clone_fast, only also allocates the returned bio
768  */
769 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
770 {
771 	struct bio *b;
772 
773 	b = bio_alloc_bioset(NULL, 0, 0, gfp_mask, bs);
774 	if (!b)
775 		return NULL;
776 
777 	__bio_clone_fast(b, bio);
778 
779 	if (bio_crypt_clone(b, bio, gfp_mask) < 0)
780 		goto err_put;
781 
782 	if (bio_integrity(bio) &&
783 	    bio_integrity_clone(b, bio, gfp_mask) < 0)
784 		goto err_put;
785 
786 	return b;
787 
788 err_put:
789 	bio_put(b);
790 	return NULL;
791 }
792 EXPORT_SYMBOL(bio_clone_fast);
793 
794 const char *bio_devname(struct bio *bio, char *buf)
795 {
796 	return bdevname(bio->bi_bdev, buf);
797 }
798 EXPORT_SYMBOL(bio_devname);
799 
800 /**
801  * bio_full - check if the bio is full
802  * @bio:	bio to check
803  * @len:	length of one segment to be added
804  *
805  * Return true if @bio is full and one segment with @len bytes can't be
806  * added to the bio, otherwise return false
807  */
808 static inline bool bio_full(struct bio *bio, unsigned len)
809 {
810 	if (bio->bi_vcnt >= bio->bi_max_vecs)
811 		return true;
812 	if (bio->bi_iter.bi_size > UINT_MAX - len)
813 		return true;
814 	return false;
815 }
816 
817 static inline bool page_is_mergeable(const struct bio_vec *bv,
818 		struct page *page, unsigned int len, unsigned int off,
819 		bool *same_page)
820 {
821 	size_t bv_end = bv->bv_offset + bv->bv_len;
822 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
823 	phys_addr_t page_addr = page_to_phys(page);
824 
825 	if (vec_end_addr + 1 != page_addr + off)
826 		return false;
827 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
828 		return false;
829 
830 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
831 	if (*same_page)
832 		return true;
833 	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
834 }
835 
836 /**
837  * __bio_try_merge_page - try appending data to an existing bvec.
838  * @bio: destination bio
839  * @page: start page to add
840  * @len: length of the data to add
841  * @off: offset of the data relative to @page
842  * @same_page: return if the segment has been merged inside the same page
843  *
844  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
845  * useful optimisation for file systems with a block size smaller than the
846  * page size.
847  *
848  * Warn if (@len, @off) crosses pages in case that @same_page is true.
849  *
850  * Return %true on success or %false on failure.
851  */
852 static bool __bio_try_merge_page(struct bio *bio, struct page *page,
853 		unsigned int len, unsigned int off, bool *same_page)
854 {
855 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
856 		return false;
857 
858 	if (bio->bi_vcnt > 0) {
859 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
860 
861 		if (page_is_mergeable(bv, page, len, off, same_page)) {
862 			if (bio->bi_iter.bi_size > UINT_MAX - len) {
863 				*same_page = false;
864 				return false;
865 			}
866 			bv->bv_len += len;
867 			bio->bi_iter.bi_size += len;
868 			return true;
869 		}
870 	}
871 	return false;
872 }
873 
874 /*
875  * Try to merge a page into a segment, while obeying the hardware segment
876  * size limit.  This is not for normal read/write bios, but for passthrough
877  * or Zone Append operations that we can't split.
878  */
879 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
880 				 struct page *page, unsigned len,
881 				 unsigned offset, bool *same_page)
882 {
883 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
884 	unsigned long mask = queue_segment_boundary(q);
885 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
886 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
887 
888 	if ((addr1 | mask) != (addr2 | mask))
889 		return false;
890 	if (bv->bv_len + len > queue_max_segment_size(q))
891 		return false;
892 	return __bio_try_merge_page(bio, page, len, offset, same_page);
893 }
894 
895 /**
896  * bio_add_hw_page - attempt to add a page to a bio with hw constraints
897  * @q: the target queue
898  * @bio: destination bio
899  * @page: page to add
900  * @len: vec entry length
901  * @offset: vec entry offset
902  * @max_sectors: maximum number of sectors that can be added
903  * @same_page: return if the segment has been merged inside the same page
904  *
905  * Add a page to a bio while respecting the hardware max_sectors, max_segment
906  * and gap limitations.
907  */
908 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
909 		struct page *page, unsigned int len, unsigned int offset,
910 		unsigned int max_sectors, bool *same_page)
911 {
912 	struct bio_vec *bvec;
913 
914 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
915 		return 0;
916 
917 	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
918 		return 0;
919 
920 	if (bio->bi_vcnt > 0) {
921 		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
922 			return len;
923 
924 		/*
925 		 * If the queue doesn't support SG gaps and adding this segment
926 		 * would create a gap, disallow it.
927 		 */
928 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
929 		if (bvec_gap_to_prev(q, bvec, offset))
930 			return 0;
931 	}
932 
933 	if (bio_full(bio, len))
934 		return 0;
935 
936 	if (bio->bi_vcnt >= queue_max_segments(q))
937 		return 0;
938 
939 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
940 	bvec->bv_page = page;
941 	bvec->bv_len = len;
942 	bvec->bv_offset = offset;
943 	bio->bi_vcnt++;
944 	bio->bi_iter.bi_size += len;
945 	return len;
946 }
947 
948 /**
949  * bio_add_pc_page	- attempt to add page to passthrough bio
950  * @q: the target queue
951  * @bio: destination bio
952  * @page: page to add
953  * @len: vec entry length
954  * @offset: vec entry offset
955  *
956  * Attempt to add a page to the bio_vec maplist. This can fail for a
957  * number of reasons, such as the bio being full or target block device
958  * limitations. The target block device must allow bio's up to PAGE_SIZE,
959  * so it is always possible to add a single page to an empty bio.
960  *
961  * This should only be used by passthrough bios.
962  */
963 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
964 		struct page *page, unsigned int len, unsigned int offset)
965 {
966 	bool same_page = false;
967 	return bio_add_hw_page(q, bio, page, len, offset,
968 			queue_max_hw_sectors(q), &same_page);
969 }
970 EXPORT_SYMBOL(bio_add_pc_page);
971 
972 /**
973  * bio_add_zone_append_page - attempt to add page to zone-append bio
974  * @bio: destination bio
975  * @page: page to add
976  * @len: vec entry length
977  * @offset: vec entry offset
978  *
979  * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
980  * for a zone-append request. This can fail for a number of reasons, such as the
981  * bio being full or the target block device is not a zoned block device or
982  * other limitations of the target block device. The target block device must
983  * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
984  * to an empty bio.
985  *
986  * Returns: number of bytes added to the bio, or 0 in case of a failure.
987  */
988 int bio_add_zone_append_page(struct bio *bio, struct page *page,
989 			     unsigned int len, unsigned int offset)
990 {
991 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
992 	bool same_page = false;
993 
994 	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
995 		return 0;
996 
997 	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
998 		return 0;
999 
1000 	return bio_add_hw_page(q, bio, page, len, offset,
1001 			       queue_max_zone_append_sectors(q), &same_page);
1002 }
1003 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1004 
1005 /**
1006  * __bio_add_page - add page(s) to a bio in a new segment
1007  * @bio: destination bio
1008  * @page: start page to add
1009  * @len: length of the data to add, may cross pages
1010  * @off: offset of the data relative to @page, may cross pages
1011  *
1012  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
1013  * that @bio has space for another bvec.
1014  */
1015 void __bio_add_page(struct bio *bio, struct page *page,
1016 		unsigned int len, unsigned int off)
1017 {
1018 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
1019 
1020 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
1021 	WARN_ON_ONCE(bio_full(bio, len));
1022 
1023 	bv->bv_page = page;
1024 	bv->bv_offset = off;
1025 	bv->bv_len = len;
1026 
1027 	bio->bi_iter.bi_size += len;
1028 	bio->bi_vcnt++;
1029 
1030 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
1031 		bio_set_flag(bio, BIO_WORKINGSET);
1032 }
1033 EXPORT_SYMBOL_GPL(__bio_add_page);
1034 
1035 /**
1036  *	bio_add_page	-	attempt to add page(s) to bio
1037  *	@bio: destination bio
1038  *	@page: start page to add
1039  *	@len: vec entry length, may cross pages
1040  *	@offset: vec entry offset relative to @page, may cross pages
1041  *
1042  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1043  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1044  */
1045 int bio_add_page(struct bio *bio, struct page *page,
1046 		 unsigned int len, unsigned int offset)
1047 {
1048 	bool same_page = false;
1049 
1050 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1051 		if (bio_full(bio, len))
1052 			return 0;
1053 		__bio_add_page(bio, page, len, offset);
1054 	}
1055 	return len;
1056 }
1057 EXPORT_SYMBOL(bio_add_page);
1058 
1059 /**
1060  * bio_add_folio - Attempt to add part of a folio to a bio.
1061  * @bio: BIO to add to.
1062  * @folio: Folio to add.
1063  * @len: How many bytes from the folio to add.
1064  * @off: First byte in this folio to add.
1065  *
1066  * Filesystems that use folios can call this function instead of calling
1067  * bio_add_page() for each page in the folio.  If @off is bigger than
1068  * PAGE_SIZE, this function can create a bio_vec that starts in a page
1069  * after the bv_page.  BIOs do not support folios that are 4GiB or larger.
1070  *
1071  * Return: Whether the addition was successful.
1072  */
1073 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1074 		   size_t off)
1075 {
1076 	if (len > UINT_MAX || off > UINT_MAX)
1077 		return 0;
1078 	return bio_add_page(bio, &folio->page, len, off) > 0;
1079 }
1080 
1081 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1082 {
1083 	struct bvec_iter_all iter_all;
1084 	struct bio_vec *bvec;
1085 
1086 	bio_for_each_segment_all(bvec, bio, iter_all) {
1087 		if (mark_dirty && !PageCompound(bvec->bv_page))
1088 			set_page_dirty_lock(bvec->bv_page);
1089 		put_page(bvec->bv_page);
1090 	}
1091 }
1092 EXPORT_SYMBOL_GPL(__bio_release_pages);
1093 
1094 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1095 {
1096 	size_t size = iov_iter_count(iter);
1097 
1098 	WARN_ON_ONCE(bio->bi_max_vecs);
1099 
1100 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1101 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1102 		size_t max_sectors = queue_max_zone_append_sectors(q);
1103 
1104 		size = min(size, max_sectors << SECTOR_SHIFT);
1105 	}
1106 
1107 	bio->bi_vcnt = iter->nr_segs;
1108 	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1109 	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1110 	bio->bi_iter.bi_size = size;
1111 	bio_set_flag(bio, BIO_NO_PAGE_REF);
1112 	bio_set_flag(bio, BIO_CLONED);
1113 }
1114 
1115 static void bio_put_pages(struct page **pages, size_t size, size_t off)
1116 {
1117 	size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1118 
1119 	for (i = 0; i < nr; i++)
1120 		put_page(pages[i]);
1121 }
1122 
1123 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
1124 
1125 /**
1126  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1127  * @bio: bio to add pages to
1128  * @iter: iov iterator describing the region to be mapped
1129  *
1130  * Pins pages from *iter and appends them to @bio's bvec array. The
1131  * pages will have to be released using put_page() when done.
1132  * For multi-segment *iter, this function only adds pages from the
1133  * next non-empty segment of the iov iterator.
1134  */
1135 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1136 {
1137 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1138 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1139 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1140 	struct page **pages = (struct page **)bv;
1141 	bool same_page = false;
1142 	ssize_t size, left;
1143 	unsigned len, i;
1144 	size_t offset;
1145 
1146 	/*
1147 	 * Move page array up in the allocated memory for the bio vecs as far as
1148 	 * possible so that we can start filling biovecs from the beginning
1149 	 * without overwriting the temporary page array.
1150 	*/
1151 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1152 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1153 
1154 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1155 	if (unlikely(size <= 0))
1156 		return size ? size : -EFAULT;
1157 
1158 	for (left = size, i = 0; left > 0; left -= len, i++) {
1159 		struct page *page = pages[i];
1160 
1161 		len = min_t(size_t, PAGE_SIZE - offset, left);
1162 
1163 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1164 			if (same_page)
1165 				put_page(page);
1166 		} else {
1167 			if (WARN_ON_ONCE(bio_full(bio, len))) {
1168 				bio_put_pages(pages + i, left, offset);
1169 				return -EINVAL;
1170 			}
1171 			__bio_add_page(bio, page, len, offset);
1172 		}
1173 		offset = 0;
1174 	}
1175 
1176 	iov_iter_advance(iter, size);
1177 	return 0;
1178 }
1179 
1180 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1181 {
1182 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1183 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1184 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1185 	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1186 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1187 	struct page **pages = (struct page **)bv;
1188 	ssize_t size, left;
1189 	unsigned len, i;
1190 	size_t offset;
1191 	int ret = 0;
1192 
1193 	if (WARN_ON_ONCE(!max_append_sectors))
1194 		return 0;
1195 
1196 	/*
1197 	 * Move page array up in the allocated memory for the bio vecs as far as
1198 	 * possible so that we can start filling biovecs from the beginning
1199 	 * without overwriting the temporary page array.
1200 	 */
1201 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1202 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1203 
1204 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1205 	if (unlikely(size <= 0))
1206 		return size ? size : -EFAULT;
1207 
1208 	for (left = size, i = 0; left > 0; left -= len, i++) {
1209 		struct page *page = pages[i];
1210 		bool same_page = false;
1211 
1212 		len = min_t(size_t, PAGE_SIZE - offset, left);
1213 		if (bio_add_hw_page(q, bio, page, len, offset,
1214 				max_append_sectors, &same_page) != len) {
1215 			bio_put_pages(pages + i, left, offset);
1216 			ret = -EINVAL;
1217 			break;
1218 		}
1219 		if (same_page)
1220 			put_page(page);
1221 		offset = 0;
1222 	}
1223 
1224 	iov_iter_advance(iter, size - left);
1225 	return ret;
1226 }
1227 
1228 /**
1229  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1230  * @bio: bio to add pages to
1231  * @iter: iov iterator describing the region to be added
1232  *
1233  * This takes either an iterator pointing to user memory, or one pointing to
1234  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1235  * map them into the kernel. On IO completion, the caller should put those
1236  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1237  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1238  * to ensure the bvecs and pages stay referenced until the submitted I/O is
1239  * completed by a call to ->ki_complete() or returns with an error other than
1240  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1241  * on IO completion. If it isn't, then pages should be released.
1242  *
1243  * The function tries, but does not guarantee, to pin as many pages as
1244  * fit into the bio, or are requested in @iter, whatever is smaller. If
1245  * MM encounters an error pinning the requested pages, it stops. Error
1246  * is returned only if 0 pages could be pinned.
1247  *
1248  * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1249  * responsible for setting BIO_WORKINGSET if necessary.
1250  */
1251 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1252 {
1253 	int ret = 0;
1254 
1255 	if (iov_iter_is_bvec(iter)) {
1256 		bio_iov_bvec_set(bio, iter);
1257 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1258 		return 0;
1259 	}
1260 
1261 	do {
1262 		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1263 			ret = __bio_iov_append_get_pages(bio, iter);
1264 		else
1265 			ret = __bio_iov_iter_get_pages(bio, iter);
1266 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1267 
1268 	/* don't account direct I/O as memory stall */
1269 	bio_clear_flag(bio, BIO_WORKINGSET);
1270 	return bio->bi_vcnt ? 0 : ret;
1271 }
1272 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1273 
1274 static void submit_bio_wait_endio(struct bio *bio)
1275 {
1276 	complete(bio->bi_private);
1277 }
1278 
1279 /**
1280  * submit_bio_wait - submit a bio, and wait until it completes
1281  * @bio: The &struct bio which describes the I/O
1282  *
1283  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1284  * bio_endio() on failure.
1285  *
1286  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1287  * result in bio reference to be consumed. The caller must drop the reference
1288  * on his own.
1289  */
1290 int submit_bio_wait(struct bio *bio)
1291 {
1292 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1293 			bio->bi_bdev->bd_disk->lockdep_map);
1294 	unsigned long hang_check;
1295 
1296 	bio->bi_private = &done;
1297 	bio->bi_end_io = submit_bio_wait_endio;
1298 	bio->bi_opf |= REQ_SYNC;
1299 	submit_bio(bio);
1300 
1301 	/* Prevent hang_check timer from firing at us during very long I/O */
1302 	hang_check = sysctl_hung_task_timeout_secs;
1303 	if (hang_check)
1304 		while (!wait_for_completion_io_timeout(&done,
1305 					hang_check * (HZ/2)))
1306 			;
1307 	else
1308 		wait_for_completion_io(&done);
1309 
1310 	return blk_status_to_errno(bio->bi_status);
1311 }
1312 EXPORT_SYMBOL(submit_bio_wait);
1313 
1314 void __bio_advance(struct bio *bio, unsigned bytes)
1315 {
1316 	if (bio_integrity(bio))
1317 		bio_integrity_advance(bio, bytes);
1318 
1319 	bio_crypt_advance(bio, bytes);
1320 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1321 }
1322 EXPORT_SYMBOL(__bio_advance);
1323 
1324 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1325 			struct bio *src, struct bvec_iter *src_iter)
1326 {
1327 	while (src_iter->bi_size && dst_iter->bi_size) {
1328 		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1329 		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1330 		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1331 		void *src_buf;
1332 
1333 		src_buf = bvec_kmap_local(&src_bv);
1334 		memcpy_to_bvec(&dst_bv, src_buf);
1335 		kunmap_local(src_buf);
1336 
1337 		bio_advance_iter_single(src, src_iter, bytes);
1338 		bio_advance_iter_single(dst, dst_iter, bytes);
1339 	}
1340 }
1341 EXPORT_SYMBOL(bio_copy_data_iter);
1342 
1343 /**
1344  * bio_copy_data - copy contents of data buffers from one bio to another
1345  * @src: source bio
1346  * @dst: destination bio
1347  *
1348  * Stops when it reaches the end of either @src or @dst - that is, copies
1349  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1350  */
1351 void bio_copy_data(struct bio *dst, struct bio *src)
1352 {
1353 	struct bvec_iter src_iter = src->bi_iter;
1354 	struct bvec_iter dst_iter = dst->bi_iter;
1355 
1356 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1357 }
1358 EXPORT_SYMBOL(bio_copy_data);
1359 
1360 void bio_free_pages(struct bio *bio)
1361 {
1362 	struct bio_vec *bvec;
1363 	struct bvec_iter_all iter_all;
1364 
1365 	bio_for_each_segment_all(bvec, bio, iter_all)
1366 		__free_page(bvec->bv_page);
1367 }
1368 EXPORT_SYMBOL(bio_free_pages);
1369 
1370 /*
1371  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1372  * for performing direct-IO in BIOs.
1373  *
1374  * The problem is that we cannot run set_page_dirty() from interrupt context
1375  * because the required locks are not interrupt-safe.  So what we can do is to
1376  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1377  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1378  * in process context.
1379  *
1380  * We special-case compound pages here: normally this means reads into hugetlb
1381  * pages.  The logic in here doesn't really work right for compound pages
1382  * because the VM does not uniformly chase down the head page in all cases.
1383  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1384  * handle them at all.  So we skip compound pages here at an early stage.
1385  *
1386  * Note that this code is very hard to test under normal circumstances because
1387  * direct-io pins the pages with get_user_pages().  This makes
1388  * is_page_cache_freeable return false, and the VM will not clean the pages.
1389  * But other code (eg, flusher threads) could clean the pages if they are mapped
1390  * pagecache.
1391  *
1392  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1393  * deferred bio dirtying paths.
1394  */
1395 
1396 /*
1397  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1398  */
1399 void bio_set_pages_dirty(struct bio *bio)
1400 {
1401 	struct bio_vec *bvec;
1402 	struct bvec_iter_all iter_all;
1403 
1404 	bio_for_each_segment_all(bvec, bio, iter_all) {
1405 		if (!PageCompound(bvec->bv_page))
1406 			set_page_dirty_lock(bvec->bv_page);
1407 	}
1408 }
1409 
1410 /*
1411  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1412  * If they are, then fine.  If, however, some pages are clean then they must
1413  * have been written out during the direct-IO read.  So we take another ref on
1414  * the BIO and re-dirty the pages in process context.
1415  *
1416  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1417  * here on.  It will run one put_page() against each page and will run one
1418  * bio_put() against the BIO.
1419  */
1420 
1421 static void bio_dirty_fn(struct work_struct *work);
1422 
1423 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1424 static DEFINE_SPINLOCK(bio_dirty_lock);
1425 static struct bio *bio_dirty_list;
1426 
1427 /*
1428  * This runs in process context
1429  */
1430 static void bio_dirty_fn(struct work_struct *work)
1431 {
1432 	struct bio *bio, *next;
1433 
1434 	spin_lock_irq(&bio_dirty_lock);
1435 	next = bio_dirty_list;
1436 	bio_dirty_list = NULL;
1437 	spin_unlock_irq(&bio_dirty_lock);
1438 
1439 	while ((bio = next) != NULL) {
1440 		next = bio->bi_private;
1441 
1442 		bio_release_pages(bio, true);
1443 		bio_put(bio);
1444 	}
1445 }
1446 
1447 void bio_check_pages_dirty(struct bio *bio)
1448 {
1449 	struct bio_vec *bvec;
1450 	unsigned long flags;
1451 	struct bvec_iter_all iter_all;
1452 
1453 	bio_for_each_segment_all(bvec, bio, iter_all) {
1454 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1455 			goto defer;
1456 	}
1457 
1458 	bio_release_pages(bio, false);
1459 	bio_put(bio);
1460 	return;
1461 defer:
1462 	spin_lock_irqsave(&bio_dirty_lock, flags);
1463 	bio->bi_private = bio_dirty_list;
1464 	bio_dirty_list = bio;
1465 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1466 	schedule_work(&bio_dirty_work);
1467 }
1468 
1469 static inline bool bio_remaining_done(struct bio *bio)
1470 {
1471 	/*
1472 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1473 	 * we always end io on the first invocation.
1474 	 */
1475 	if (!bio_flagged(bio, BIO_CHAIN))
1476 		return true;
1477 
1478 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1479 
1480 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1481 		bio_clear_flag(bio, BIO_CHAIN);
1482 		return true;
1483 	}
1484 
1485 	return false;
1486 }
1487 
1488 /**
1489  * bio_endio - end I/O on a bio
1490  * @bio:	bio
1491  *
1492  * Description:
1493  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1494  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1495  *   bio unless they own it and thus know that it has an end_io function.
1496  *
1497  *   bio_endio() can be called several times on a bio that has been chained
1498  *   using bio_chain().  The ->bi_end_io() function will only be called the
1499  *   last time.
1500  **/
1501 void bio_endio(struct bio *bio)
1502 {
1503 again:
1504 	if (!bio_remaining_done(bio))
1505 		return;
1506 	if (!bio_integrity_endio(bio))
1507 		return;
1508 
1509 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACKED))
1510 		rq_qos_done_bio(bdev_get_queue(bio->bi_bdev), bio);
1511 
1512 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1513 		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1514 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1515 	}
1516 
1517 	/*
1518 	 * Need to have a real endio function for chained bios, otherwise
1519 	 * various corner cases will break (like stacking block devices that
1520 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1521 	 * recursion and blowing the stack. Tail call optimization would
1522 	 * handle this, but compiling with frame pointers also disables
1523 	 * gcc's sibling call optimization.
1524 	 */
1525 	if (bio->bi_end_io == bio_chain_endio) {
1526 		bio = __bio_chain_endio(bio);
1527 		goto again;
1528 	}
1529 
1530 	blk_throtl_bio_endio(bio);
1531 	/* release cgroup info */
1532 	bio_uninit(bio);
1533 	if (bio->bi_end_io)
1534 		bio->bi_end_io(bio);
1535 }
1536 EXPORT_SYMBOL(bio_endio);
1537 
1538 /**
1539  * bio_split - split a bio
1540  * @bio:	bio to split
1541  * @sectors:	number of sectors to split from the front of @bio
1542  * @gfp:	gfp mask
1543  * @bs:		bio set to allocate from
1544  *
1545  * Allocates and returns a new bio which represents @sectors from the start of
1546  * @bio, and updates @bio to represent the remaining sectors.
1547  *
1548  * Unless this is a discard request the newly allocated bio will point
1549  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1550  * neither @bio nor @bs are freed before the split bio.
1551  */
1552 struct bio *bio_split(struct bio *bio, int sectors,
1553 		      gfp_t gfp, struct bio_set *bs)
1554 {
1555 	struct bio *split;
1556 
1557 	BUG_ON(sectors <= 0);
1558 	BUG_ON(sectors >= bio_sectors(bio));
1559 
1560 	/* Zone append commands cannot be split */
1561 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1562 		return NULL;
1563 
1564 	split = bio_clone_fast(bio, gfp, bs);
1565 	if (!split)
1566 		return NULL;
1567 
1568 	split->bi_iter.bi_size = sectors << 9;
1569 
1570 	if (bio_integrity(split))
1571 		bio_integrity_trim(split);
1572 
1573 	bio_advance(bio, split->bi_iter.bi_size);
1574 
1575 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1576 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1577 
1578 	return split;
1579 }
1580 EXPORT_SYMBOL(bio_split);
1581 
1582 /**
1583  * bio_trim - trim a bio
1584  * @bio:	bio to trim
1585  * @offset:	number of sectors to trim from the front of @bio
1586  * @size:	size we want to trim @bio to, in sectors
1587  *
1588  * This function is typically used for bios that are cloned and submitted
1589  * to the underlying device in parts.
1590  */
1591 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1592 {
1593 	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1594 			 offset + size > bio->bi_iter.bi_size))
1595 		return;
1596 
1597 	size <<= 9;
1598 	if (offset == 0 && size == bio->bi_iter.bi_size)
1599 		return;
1600 
1601 	bio_advance(bio, offset << 9);
1602 	bio->bi_iter.bi_size = size;
1603 
1604 	if (bio_integrity(bio))
1605 		bio_integrity_trim(bio);
1606 }
1607 EXPORT_SYMBOL_GPL(bio_trim);
1608 
1609 /*
1610  * create memory pools for biovec's in a bio_set.
1611  * use the global biovec slabs created for general use.
1612  */
1613 int biovec_init_pool(mempool_t *pool, int pool_entries)
1614 {
1615 	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1616 
1617 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1618 }
1619 
1620 /*
1621  * bioset_exit - exit a bioset initialized with bioset_init()
1622  *
1623  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1624  * kzalloc()).
1625  */
1626 void bioset_exit(struct bio_set *bs)
1627 {
1628 	bio_alloc_cache_destroy(bs);
1629 	if (bs->rescue_workqueue)
1630 		destroy_workqueue(bs->rescue_workqueue);
1631 	bs->rescue_workqueue = NULL;
1632 
1633 	mempool_exit(&bs->bio_pool);
1634 	mempool_exit(&bs->bvec_pool);
1635 
1636 	bioset_integrity_free(bs);
1637 	if (bs->bio_slab)
1638 		bio_put_slab(bs);
1639 	bs->bio_slab = NULL;
1640 }
1641 EXPORT_SYMBOL(bioset_exit);
1642 
1643 /**
1644  * bioset_init - Initialize a bio_set
1645  * @bs:		pool to initialize
1646  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1647  * @front_pad:	Number of bytes to allocate in front of the returned bio
1648  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1649  *              and %BIOSET_NEED_RESCUER
1650  *
1651  * Description:
1652  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1653  *    to ask for a number of bytes to be allocated in front of the bio.
1654  *    Front pad allocation is useful for embedding the bio inside
1655  *    another structure, to avoid allocating extra data to go with the bio.
1656  *    Note that the bio must be embedded at the END of that structure always,
1657  *    or things will break badly.
1658  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1659  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1660  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1661  *    dispatch queued requests when the mempool runs out of space.
1662  *
1663  */
1664 int bioset_init(struct bio_set *bs,
1665 		unsigned int pool_size,
1666 		unsigned int front_pad,
1667 		int flags)
1668 {
1669 	bs->front_pad = front_pad;
1670 	if (flags & BIOSET_NEED_BVECS)
1671 		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1672 	else
1673 		bs->back_pad = 0;
1674 
1675 	spin_lock_init(&bs->rescue_lock);
1676 	bio_list_init(&bs->rescue_list);
1677 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1678 
1679 	bs->bio_slab = bio_find_or_create_slab(bs);
1680 	if (!bs->bio_slab)
1681 		return -ENOMEM;
1682 
1683 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1684 		goto bad;
1685 
1686 	if ((flags & BIOSET_NEED_BVECS) &&
1687 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1688 		goto bad;
1689 
1690 	if (flags & BIOSET_NEED_RESCUER) {
1691 		bs->rescue_workqueue = alloc_workqueue("bioset",
1692 							WQ_MEM_RECLAIM, 0);
1693 		if (!bs->rescue_workqueue)
1694 			goto bad;
1695 	}
1696 	if (flags & BIOSET_PERCPU_CACHE) {
1697 		bs->cache = alloc_percpu(struct bio_alloc_cache);
1698 		if (!bs->cache)
1699 			goto bad;
1700 		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1701 	}
1702 
1703 	return 0;
1704 bad:
1705 	bioset_exit(bs);
1706 	return -ENOMEM;
1707 }
1708 EXPORT_SYMBOL(bioset_init);
1709 
1710 /*
1711  * Initialize and setup a new bio_set, based on the settings from
1712  * another bio_set.
1713  */
1714 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1715 {
1716 	int flags;
1717 
1718 	flags = 0;
1719 	if (src->bvec_pool.min_nr)
1720 		flags |= BIOSET_NEED_BVECS;
1721 	if (src->rescue_workqueue)
1722 		flags |= BIOSET_NEED_RESCUER;
1723 
1724 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1725 }
1726 EXPORT_SYMBOL(bioset_init_from_src);
1727 
1728 /**
1729  * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
1730  * @kiocb:	kiocb describing the IO
1731  * @bdev:	block device to allocate the bio for (can be %NULL)
1732  * @nr_vecs:	number of iovecs to pre-allocate
1733  * @opf:	operation and flags for bio
1734  * @bs:		bio_set to allocate from
1735  *
1736  * Description:
1737  *    Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
1738  *    used to check if we should dip into the per-cpu bio_set allocation
1739  *    cache. The allocation uses GFP_KERNEL internally. On return, the
1740  *    bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
1741  *    MUST be done from process context, not hard/soft IRQ.
1742  *
1743  */
1744 struct bio *bio_alloc_kiocb(struct kiocb *kiocb, struct block_device *bdev,
1745 		unsigned short nr_vecs, unsigned int opf, struct bio_set *bs)
1746 {
1747 	struct bio_alloc_cache *cache;
1748 	struct bio *bio;
1749 
1750 	if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
1751 		return bio_alloc_bioset(bdev, nr_vecs, opf, GFP_KERNEL, bs);
1752 
1753 	cache = per_cpu_ptr(bs->cache, get_cpu());
1754 	if (cache->free_list) {
1755 		bio = cache->free_list;
1756 		cache->free_list = bio->bi_next;
1757 		cache->nr--;
1758 		put_cpu();
1759 		bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL,
1760 			 nr_vecs, opf);
1761 		bio->bi_pool = bs;
1762 		bio_set_flag(bio, BIO_PERCPU_CACHE);
1763 		return bio;
1764 	}
1765 	put_cpu();
1766 	bio = bio_alloc_bioset(bdev, nr_vecs, opf, GFP_KERNEL, bs);
1767 	bio_set_flag(bio, BIO_PERCPU_CACHE);
1768 	return bio;
1769 }
1770 EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
1771 
1772 static int __init init_bio(void)
1773 {
1774 	int i;
1775 
1776 	bio_integrity_init();
1777 
1778 	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1779 		struct biovec_slab *bvs = bvec_slabs + i;
1780 
1781 		bvs->slab = kmem_cache_create(bvs->name,
1782 				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1783 				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1784 	}
1785 
1786 	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1787 					bio_cpu_dead);
1788 
1789 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1790 		panic("bio: can't allocate bios\n");
1791 
1792 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1793 		panic("bio: can't create integrity pool\n");
1794 
1795 	return 0;
1796 }
1797 subsys_initcall(init_bio);
1798