xref: /openbmc/linux/block/bio.c (revision 465d0eb0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/highmem.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/blk-crypto.h>
21 #include <linux/xarray.h>
22 
23 #include <trace/events/block.h>
24 #include "blk.h"
25 #include "blk-rq-qos.h"
26 #include "blk-cgroup.h"
27 
28 struct bio_alloc_cache {
29 	struct bio		*free_list;
30 	unsigned int		nr;
31 };
32 
33 static struct biovec_slab {
34 	int nr_vecs;
35 	char *name;
36 	struct kmem_cache *slab;
37 } bvec_slabs[] __read_mostly = {
38 	{ .nr_vecs = 16, .name = "biovec-16" },
39 	{ .nr_vecs = 64, .name = "biovec-64" },
40 	{ .nr_vecs = 128, .name = "biovec-128" },
41 	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
42 };
43 
44 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45 {
46 	switch (nr_vecs) {
47 	/* smaller bios use inline vecs */
48 	case 5 ... 16:
49 		return &bvec_slabs[0];
50 	case 17 ... 64:
51 		return &bvec_slabs[1];
52 	case 65 ... 128:
53 		return &bvec_slabs[2];
54 	case 129 ... BIO_MAX_VECS:
55 		return &bvec_slabs[3];
56 	default:
57 		BUG();
58 		return NULL;
59 	}
60 }
61 
62 /*
63  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64  * IO code that does not need private memory pools.
65  */
66 struct bio_set fs_bio_set;
67 EXPORT_SYMBOL(fs_bio_set);
68 
69 /*
70  * Our slab pool management
71  */
72 struct bio_slab {
73 	struct kmem_cache *slab;
74 	unsigned int slab_ref;
75 	unsigned int slab_size;
76 	char name[8];
77 };
78 static DEFINE_MUTEX(bio_slab_lock);
79 static DEFINE_XARRAY(bio_slabs);
80 
81 static struct bio_slab *create_bio_slab(unsigned int size)
82 {
83 	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
84 
85 	if (!bslab)
86 		return NULL;
87 
88 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 	bslab->slab = kmem_cache_create(bslab->name, size,
90 			ARCH_KMALLOC_MINALIGN,
91 			SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
92 	if (!bslab->slab)
93 		goto fail_alloc_slab;
94 
95 	bslab->slab_ref = 1;
96 	bslab->slab_size = size;
97 
98 	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
99 		return bslab;
100 
101 	kmem_cache_destroy(bslab->slab);
102 
103 fail_alloc_slab:
104 	kfree(bslab);
105 	return NULL;
106 }
107 
108 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
109 {
110 	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
111 }
112 
113 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
114 {
115 	unsigned int size = bs_bio_slab_size(bs);
116 	struct bio_slab *bslab;
117 
118 	mutex_lock(&bio_slab_lock);
119 	bslab = xa_load(&bio_slabs, size);
120 	if (bslab)
121 		bslab->slab_ref++;
122 	else
123 		bslab = create_bio_slab(size);
124 	mutex_unlock(&bio_slab_lock);
125 
126 	if (bslab)
127 		return bslab->slab;
128 	return NULL;
129 }
130 
131 static void bio_put_slab(struct bio_set *bs)
132 {
133 	struct bio_slab *bslab = NULL;
134 	unsigned int slab_size = bs_bio_slab_size(bs);
135 
136 	mutex_lock(&bio_slab_lock);
137 
138 	bslab = xa_load(&bio_slabs, slab_size);
139 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
140 		goto out;
141 
142 	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
143 
144 	WARN_ON(!bslab->slab_ref);
145 
146 	if (--bslab->slab_ref)
147 		goto out;
148 
149 	xa_erase(&bio_slabs, slab_size);
150 
151 	kmem_cache_destroy(bslab->slab);
152 	kfree(bslab);
153 
154 out:
155 	mutex_unlock(&bio_slab_lock);
156 }
157 
158 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
159 {
160 	BUG_ON(nr_vecs > BIO_MAX_VECS);
161 
162 	if (nr_vecs == BIO_MAX_VECS)
163 		mempool_free(bv, pool);
164 	else if (nr_vecs > BIO_INLINE_VECS)
165 		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
166 }
167 
168 /*
169  * Make the first allocation restricted and don't dump info on allocation
170  * failures, since we'll fall back to the mempool in case of failure.
171  */
172 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
173 {
174 	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
175 		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
176 }
177 
178 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
179 		gfp_t gfp_mask)
180 {
181 	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
182 
183 	if (WARN_ON_ONCE(!bvs))
184 		return NULL;
185 
186 	/*
187 	 * Upgrade the nr_vecs request to take full advantage of the allocation.
188 	 * We also rely on this in the bvec_free path.
189 	 */
190 	*nr_vecs = bvs->nr_vecs;
191 
192 	/*
193 	 * Try a slab allocation first for all smaller allocations.  If that
194 	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
195 	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
196 	 */
197 	if (*nr_vecs < BIO_MAX_VECS) {
198 		struct bio_vec *bvl;
199 
200 		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
201 		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
202 			return bvl;
203 		*nr_vecs = BIO_MAX_VECS;
204 	}
205 
206 	return mempool_alloc(pool, gfp_mask);
207 }
208 
209 void bio_uninit(struct bio *bio)
210 {
211 #ifdef CONFIG_BLK_CGROUP
212 	if (bio->bi_blkg) {
213 		blkg_put(bio->bi_blkg);
214 		bio->bi_blkg = NULL;
215 	}
216 #endif
217 	if (bio_integrity(bio))
218 		bio_integrity_free(bio);
219 
220 	bio_crypt_free_ctx(bio);
221 }
222 EXPORT_SYMBOL(bio_uninit);
223 
224 static void bio_free(struct bio *bio)
225 {
226 	struct bio_set *bs = bio->bi_pool;
227 	void *p = bio;
228 
229 	WARN_ON_ONCE(!bs);
230 
231 	bio_uninit(bio);
232 	bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
233 	mempool_free(p - bs->front_pad, &bs->bio_pool);
234 }
235 
236 /*
237  * Users of this function have their own bio allocation. Subsequently,
238  * they must remember to pair any call to bio_init() with bio_uninit()
239  * when IO has completed, or when the bio is released.
240  */
241 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
242 	      unsigned short max_vecs, blk_opf_t opf)
243 {
244 	bio->bi_next = NULL;
245 	bio->bi_bdev = bdev;
246 	bio->bi_opf = opf;
247 	bio->bi_flags = 0;
248 	bio->bi_ioprio = 0;
249 	bio->bi_status = 0;
250 	bio->bi_iter.bi_sector = 0;
251 	bio->bi_iter.bi_size = 0;
252 	bio->bi_iter.bi_idx = 0;
253 	bio->bi_iter.bi_bvec_done = 0;
254 	bio->bi_end_io = NULL;
255 	bio->bi_private = NULL;
256 #ifdef CONFIG_BLK_CGROUP
257 	bio->bi_blkg = NULL;
258 	bio->bi_issue.value = 0;
259 	if (bdev)
260 		bio_associate_blkg(bio);
261 #ifdef CONFIG_BLK_CGROUP_IOCOST
262 	bio->bi_iocost_cost = 0;
263 #endif
264 #endif
265 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
266 	bio->bi_crypt_context = NULL;
267 #endif
268 #ifdef CONFIG_BLK_DEV_INTEGRITY
269 	bio->bi_integrity = NULL;
270 #endif
271 	bio->bi_vcnt = 0;
272 
273 	atomic_set(&bio->__bi_remaining, 1);
274 	atomic_set(&bio->__bi_cnt, 1);
275 	bio->bi_cookie = BLK_QC_T_NONE;
276 
277 	bio->bi_max_vecs = max_vecs;
278 	bio->bi_io_vec = table;
279 	bio->bi_pool = NULL;
280 }
281 EXPORT_SYMBOL(bio_init);
282 
283 /**
284  * bio_reset - reinitialize a bio
285  * @bio:	bio to reset
286  * @bdev:	block device to use the bio for
287  * @opf:	operation and flags for bio
288  *
289  * Description:
290  *   After calling bio_reset(), @bio will be in the same state as a freshly
291  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
292  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
293  *   comment in struct bio.
294  */
295 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
296 {
297 	bio_uninit(bio);
298 	memset(bio, 0, BIO_RESET_BYTES);
299 	atomic_set(&bio->__bi_remaining, 1);
300 	bio->bi_bdev = bdev;
301 	if (bio->bi_bdev)
302 		bio_associate_blkg(bio);
303 	bio->bi_opf = opf;
304 }
305 EXPORT_SYMBOL(bio_reset);
306 
307 static struct bio *__bio_chain_endio(struct bio *bio)
308 {
309 	struct bio *parent = bio->bi_private;
310 
311 	if (bio->bi_status && !parent->bi_status)
312 		parent->bi_status = bio->bi_status;
313 	bio_put(bio);
314 	return parent;
315 }
316 
317 static void bio_chain_endio(struct bio *bio)
318 {
319 	bio_endio(__bio_chain_endio(bio));
320 }
321 
322 /**
323  * bio_chain - chain bio completions
324  * @bio: the target bio
325  * @parent: the parent bio of @bio
326  *
327  * The caller won't have a bi_end_io called when @bio completes - instead,
328  * @parent's bi_end_io won't be called until both @parent and @bio have
329  * completed; the chained bio will also be freed when it completes.
330  *
331  * The caller must not set bi_private or bi_end_io in @bio.
332  */
333 void bio_chain(struct bio *bio, struct bio *parent)
334 {
335 	BUG_ON(bio->bi_private || bio->bi_end_io);
336 
337 	bio->bi_private = parent;
338 	bio->bi_end_io	= bio_chain_endio;
339 	bio_inc_remaining(parent);
340 }
341 EXPORT_SYMBOL(bio_chain);
342 
343 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
344 		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
345 {
346 	struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
347 
348 	if (bio) {
349 		bio_chain(bio, new);
350 		submit_bio(bio);
351 	}
352 
353 	return new;
354 }
355 EXPORT_SYMBOL_GPL(blk_next_bio);
356 
357 static void bio_alloc_rescue(struct work_struct *work)
358 {
359 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
360 	struct bio *bio;
361 
362 	while (1) {
363 		spin_lock(&bs->rescue_lock);
364 		bio = bio_list_pop(&bs->rescue_list);
365 		spin_unlock(&bs->rescue_lock);
366 
367 		if (!bio)
368 			break;
369 
370 		submit_bio_noacct(bio);
371 	}
372 }
373 
374 static void punt_bios_to_rescuer(struct bio_set *bs)
375 {
376 	struct bio_list punt, nopunt;
377 	struct bio *bio;
378 
379 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
380 		return;
381 	/*
382 	 * In order to guarantee forward progress we must punt only bios that
383 	 * were allocated from this bio_set; otherwise, if there was a bio on
384 	 * there for a stacking driver higher up in the stack, processing it
385 	 * could require allocating bios from this bio_set, and doing that from
386 	 * our own rescuer would be bad.
387 	 *
388 	 * Since bio lists are singly linked, pop them all instead of trying to
389 	 * remove from the middle of the list:
390 	 */
391 
392 	bio_list_init(&punt);
393 	bio_list_init(&nopunt);
394 
395 	while ((bio = bio_list_pop(&current->bio_list[0])))
396 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
397 	current->bio_list[0] = nopunt;
398 
399 	bio_list_init(&nopunt);
400 	while ((bio = bio_list_pop(&current->bio_list[1])))
401 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
402 	current->bio_list[1] = nopunt;
403 
404 	spin_lock(&bs->rescue_lock);
405 	bio_list_merge(&bs->rescue_list, &punt);
406 	spin_unlock(&bs->rescue_lock);
407 
408 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
409 }
410 
411 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
412 		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
413 		struct bio_set *bs)
414 {
415 	struct bio_alloc_cache *cache;
416 	struct bio *bio;
417 
418 	cache = per_cpu_ptr(bs->cache, get_cpu());
419 	if (!cache->free_list) {
420 		put_cpu();
421 		return NULL;
422 	}
423 	bio = cache->free_list;
424 	cache->free_list = bio->bi_next;
425 	cache->nr--;
426 	put_cpu();
427 
428 	bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
429 	bio->bi_pool = bs;
430 	return bio;
431 }
432 
433 /**
434  * bio_alloc_bioset - allocate a bio for I/O
435  * @bdev:	block device to allocate the bio for (can be %NULL)
436  * @nr_vecs:	number of bvecs to pre-allocate
437  * @opf:	operation and flags for bio
438  * @gfp_mask:   the GFP_* mask given to the slab allocator
439  * @bs:		the bio_set to allocate from.
440  *
441  * Allocate a bio from the mempools in @bs.
442  *
443  * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
444  * allocate a bio.  This is due to the mempool guarantees.  To make this work,
445  * callers must never allocate more than 1 bio at a time from the general pool.
446  * Callers that need to allocate more than 1 bio must always submit the
447  * previously allocated bio for IO before attempting to allocate a new one.
448  * Failure to do so can cause deadlocks under memory pressure.
449  *
450  * Note that when running under submit_bio_noacct() (i.e. any block driver),
451  * bios are not submitted until after you return - see the code in
452  * submit_bio_noacct() that converts recursion into iteration, to prevent
453  * stack overflows.
454  *
455  * This would normally mean allocating multiple bios under submit_bio_noacct()
456  * would be susceptible to deadlocks, but we have
457  * deadlock avoidance code that resubmits any blocked bios from a rescuer
458  * thread.
459  *
460  * However, we do not guarantee forward progress for allocations from other
461  * mempools. Doing multiple allocations from the same mempool under
462  * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
463  * for per bio allocations.
464  *
465  * If REQ_ALLOC_CACHE is set, the final put of the bio MUST be done from process
466  * context, not hard/soft IRQ.
467  *
468  * Returns: Pointer to new bio on success, NULL on failure.
469  */
470 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
471 			     blk_opf_t opf, gfp_t gfp_mask,
472 			     struct bio_set *bs)
473 {
474 	gfp_t saved_gfp = gfp_mask;
475 	struct bio *bio;
476 	void *p;
477 
478 	/* should not use nobvec bioset for nr_vecs > 0 */
479 	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
480 		return NULL;
481 
482 	if (opf & REQ_ALLOC_CACHE) {
483 		if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
484 			bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
485 						     gfp_mask, bs);
486 			if (bio)
487 				return bio;
488 			/*
489 			 * No cached bio available, bio returned below marked with
490 			 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
491 			 */
492 		} else {
493 			opf &= ~REQ_ALLOC_CACHE;
494 		}
495 	}
496 
497 	/*
498 	 * submit_bio_noacct() converts recursion to iteration; this means if
499 	 * we're running beneath it, any bios we allocate and submit will not be
500 	 * submitted (and thus freed) until after we return.
501 	 *
502 	 * This exposes us to a potential deadlock if we allocate multiple bios
503 	 * from the same bio_set() while running underneath submit_bio_noacct().
504 	 * If we were to allocate multiple bios (say a stacking block driver
505 	 * that was splitting bios), we would deadlock if we exhausted the
506 	 * mempool's reserve.
507 	 *
508 	 * We solve this, and guarantee forward progress, with a rescuer
509 	 * workqueue per bio_set. If we go to allocate and there are bios on
510 	 * current->bio_list, we first try the allocation without
511 	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
512 	 * blocking to the rescuer workqueue before we retry with the original
513 	 * gfp_flags.
514 	 */
515 	if (current->bio_list &&
516 	    (!bio_list_empty(&current->bio_list[0]) ||
517 	     !bio_list_empty(&current->bio_list[1])) &&
518 	    bs->rescue_workqueue)
519 		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
520 
521 	p = mempool_alloc(&bs->bio_pool, gfp_mask);
522 	if (!p && gfp_mask != saved_gfp) {
523 		punt_bios_to_rescuer(bs);
524 		gfp_mask = saved_gfp;
525 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
526 	}
527 	if (unlikely(!p))
528 		return NULL;
529 
530 	bio = p + bs->front_pad;
531 	if (nr_vecs > BIO_INLINE_VECS) {
532 		struct bio_vec *bvl = NULL;
533 
534 		bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
535 		if (!bvl && gfp_mask != saved_gfp) {
536 			punt_bios_to_rescuer(bs);
537 			gfp_mask = saved_gfp;
538 			bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
539 		}
540 		if (unlikely(!bvl))
541 			goto err_free;
542 
543 		bio_init(bio, bdev, bvl, nr_vecs, opf);
544 	} else if (nr_vecs) {
545 		bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
546 	} else {
547 		bio_init(bio, bdev, NULL, 0, opf);
548 	}
549 
550 	bio->bi_pool = bs;
551 	return bio;
552 
553 err_free:
554 	mempool_free(p, &bs->bio_pool);
555 	return NULL;
556 }
557 EXPORT_SYMBOL(bio_alloc_bioset);
558 
559 /**
560  * bio_kmalloc - kmalloc a bio
561  * @nr_vecs:	number of bio_vecs to allocate
562  * @gfp_mask:   the GFP_* mask given to the slab allocator
563  *
564  * Use kmalloc to allocate a bio (including bvecs).  The bio must be initialized
565  * using bio_init() before use.  To free a bio returned from this function use
566  * kfree() after calling bio_uninit().  A bio returned from this function can
567  * be reused by calling bio_uninit() before calling bio_init() again.
568  *
569  * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
570  * function are not backed by a mempool can can fail.  Do not use this function
571  * for allocations in the file system I/O path.
572  *
573  * Returns: Pointer to new bio on success, NULL on failure.
574  */
575 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
576 {
577 	struct bio *bio;
578 
579 	if (nr_vecs > UIO_MAXIOV)
580 		return NULL;
581 	return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
582 }
583 EXPORT_SYMBOL(bio_kmalloc);
584 
585 void zero_fill_bio(struct bio *bio)
586 {
587 	struct bio_vec bv;
588 	struct bvec_iter iter;
589 
590 	bio_for_each_segment(bv, bio, iter)
591 		memzero_bvec(&bv);
592 }
593 EXPORT_SYMBOL(zero_fill_bio);
594 
595 /**
596  * bio_truncate - truncate the bio to small size of @new_size
597  * @bio:	the bio to be truncated
598  * @new_size:	new size for truncating the bio
599  *
600  * Description:
601  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
602  *   REQ_OP_READ, zero the truncated part. This function should only
603  *   be used for handling corner cases, such as bio eod.
604  */
605 static void bio_truncate(struct bio *bio, unsigned new_size)
606 {
607 	struct bio_vec bv;
608 	struct bvec_iter iter;
609 	unsigned int done = 0;
610 	bool truncated = false;
611 
612 	if (new_size >= bio->bi_iter.bi_size)
613 		return;
614 
615 	if (bio_op(bio) != REQ_OP_READ)
616 		goto exit;
617 
618 	bio_for_each_segment(bv, bio, iter) {
619 		if (done + bv.bv_len > new_size) {
620 			unsigned offset;
621 
622 			if (!truncated)
623 				offset = new_size - done;
624 			else
625 				offset = 0;
626 			zero_user(bv.bv_page, bv.bv_offset + offset,
627 				  bv.bv_len - offset);
628 			truncated = true;
629 		}
630 		done += bv.bv_len;
631 	}
632 
633  exit:
634 	/*
635 	 * Don't touch bvec table here and make it really immutable, since
636 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
637 	 * in its .end_bio() callback.
638 	 *
639 	 * It is enough to truncate bio by updating .bi_size since we can make
640 	 * correct bvec with the updated .bi_size for drivers.
641 	 */
642 	bio->bi_iter.bi_size = new_size;
643 }
644 
645 /**
646  * guard_bio_eod - truncate a BIO to fit the block device
647  * @bio:	bio to truncate
648  *
649  * This allows us to do IO even on the odd last sectors of a device, even if the
650  * block size is some multiple of the physical sector size.
651  *
652  * We'll just truncate the bio to the size of the device, and clear the end of
653  * the buffer head manually.  Truly out-of-range accesses will turn into actual
654  * I/O errors, this only handles the "we need to be able to do I/O at the final
655  * sector" case.
656  */
657 void guard_bio_eod(struct bio *bio)
658 {
659 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
660 
661 	if (!maxsector)
662 		return;
663 
664 	/*
665 	 * If the *whole* IO is past the end of the device,
666 	 * let it through, and the IO layer will turn it into
667 	 * an EIO.
668 	 */
669 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
670 		return;
671 
672 	maxsector -= bio->bi_iter.bi_sector;
673 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
674 		return;
675 
676 	bio_truncate(bio, maxsector << 9);
677 }
678 
679 #define ALLOC_CACHE_MAX		512
680 #define ALLOC_CACHE_SLACK	 64
681 
682 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
683 				  unsigned int nr)
684 {
685 	unsigned int i = 0;
686 	struct bio *bio;
687 
688 	while ((bio = cache->free_list) != NULL) {
689 		cache->free_list = bio->bi_next;
690 		cache->nr--;
691 		bio_free(bio);
692 		if (++i == nr)
693 			break;
694 	}
695 }
696 
697 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
698 {
699 	struct bio_set *bs;
700 
701 	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
702 	if (bs->cache) {
703 		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
704 
705 		bio_alloc_cache_prune(cache, -1U);
706 	}
707 	return 0;
708 }
709 
710 static void bio_alloc_cache_destroy(struct bio_set *bs)
711 {
712 	int cpu;
713 
714 	if (!bs->cache)
715 		return;
716 
717 	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
718 	for_each_possible_cpu(cpu) {
719 		struct bio_alloc_cache *cache;
720 
721 		cache = per_cpu_ptr(bs->cache, cpu);
722 		bio_alloc_cache_prune(cache, -1U);
723 	}
724 	free_percpu(bs->cache);
725 	bs->cache = NULL;
726 }
727 
728 /**
729  * bio_put - release a reference to a bio
730  * @bio:   bio to release reference to
731  *
732  * Description:
733  *   Put a reference to a &struct bio, either one you have gotten with
734  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
735  **/
736 void bio_put(struct bio *bio)
737 {
738 	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
739 		BUG_ON(!atomic_read(&bio->__bi_cnt));
740 		if (!atomic_dec_and_test(&bio->__bi_cnt))
741 			return;
742 	}
743 
744 	if (bio->bi_opf & REQ_ALLOC_CACHE) {
745 		struct bio_alloc_cache *cache;
746 
747 		bio_uninit(bio);
748 		cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
749 		bio->bi_next = cache->free_list;
750 		cache->free_list = bio;
751 		if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
752 			bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
753 		put_cpu();
754 	} else {
755 		bio_free(bio);
756 	}
757 }
758 EXPORT_SYMBOL(bio_put);
759 
760 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
761 {
762 	bio_set_flag(bio, BIO_CLONED);
763 	if (bio_flagged(bio_src, BIO_THROTTLED))
764 		bio_set_flag(bio, BIO_THROTTLED);
765 	bio->bi_ioprio = bio_src->bi_ioprio;
766 	bio->bi_iter = bio_src->bi_iter;
767 
768 	if (bio->bi_bdev) {
769 		if (bio->bi_bdev == bio_src->bi_bdev &&
770 		    bio_flagged(bio_src, BIO_REMAPPED))
771 			bio_set_flag(bio, BIO_REMAPPED);
772 		bio_clone_blkg_association(bio, bio_src);
773 	}
774 
775 	if (bio_crypt_clone(bio, bio_src, gfp) < 0)
776 		return -ENOMEM;
777 	if (bio_integrity(bio_src) &&
778 	    bio_integrity_clone(bio, bio_src, gfp) < 0)
779 		return -ENOMEM;
780 	return 0;
781 }
782 
783 /**
784  * bio_alloc_clone - clone a bio that shares the original bio's biovec
785  * @bdev: block_device to clone onto
786  * @bio_src: bio to clone from
787  * @gfp: allocation priority
788  * @bs: bio_set to allocate from
789  *
790  * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
791  * bio, but not the actual data it points to.
792  *
793  * The caller must ensure that the return bio is not freed before @bio_src.
794  */
795 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
796 		gfp_t gfp, struct bio_set *bs)
797 {
798 	struct bio *bio;
799 
800 	bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
801 	if (!bio)
802 		return NULL;
803 
804 	if (__bio_clone(bio, bio_src, gfp) < 0) {
805 		bio_put(bio);
806 		return NULL;
807 	}
808 	bio->bi_io_vec = bio_src->bi_io_vec;
809 
810 	return bio;
811 }
812 EXPORT_SYMBOL(bio_alloc_clone);
813 
814 /**
815  * bio_init_clone - clone a bio that shares the original bio's biovec
816  * @bdev: block_device to clone onto
817  * @bio: bio to clone into
818  * @bio_src: bio to clone from
819  * @gfp: allocation priority
820  *
821  * Initialize a new bio in caller provided memory that is a clone of @bio_src.
822  * The caller owns the returned bio, but not the actual data it points to.
823  *
824  * The caller must ensure that @bio_src is not freed before @bio.
825  */
826 int bio_init_clone(struct block_device *bdev, struct bio *bio,
827 		struct bio *bio_src, gfp_t gfp)
828 {
829 	int ret;
830 
831 	bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
832 	ret = __bio_clone(bio, bio_src, gfp);
833 	if (ret)
834 		bio_uninit(bio);
835 	return ret;
836 }
837 EXPORT_SYMBOL(bio_init_clone);
838 
839 /**
840  * bio_full - check if the bio is full
841  * @bio:	bio to check
842  * @len:	length of one segment to be added
843  *
844  * Return true if @bio is full and one segment with @len bytes can't be
845  * added to the bio, otherwise return false
846  */
847 static inline bool bio_full(struct bio *bio, unsigned len)
848 {
849 	if (bio->bi_vcnt >= bio->bi_max_vecs)
850 		return true;
851 	if (bio->bi_iter.bi_size > UINT_MAX - len)
852 		return true;
853 	return false;
854 }
855 
856 static inline bool page_is_mergeable(const struct bio_vec *bv,
857 		struct page *page, unsigned int len, unsigned int off,
858 		bool *same_page)
859 {
860 	size_t bv_end = bv->bv_offset + bv->bv_len;
861 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
862 	phys_addr_t page_addr = page_to_phys(page);
863 
864 	if (vec_end_addr + 1 != page_addr + off)
865 		return false;
866 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
867 		return false;
868 
869 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
870 	if (*same_page)
871 		return true;
872 	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
873 }
874 
875 /**
876  * __bio_try_merge_page - try appending data to an existing bvec.
877  * @bio: destination bio
878  * @page: start page to add
879  * @len: length of the data to add
880  * @off: offset of the data relative to @page
881  * @same_page: return if the segment has been merged inside the same page
882  *
883  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
884  * useful optimisation for file systems with a block size smaller than the
885  * page size.
886  *
887  * Warn if (@len, @off) crosses pages in case that @same_page is true.
888  *
889  * Return %true on success or %false on failure.
890  */
891 static bool __bio_try_merge_page(struct bio *bio, struct page *page,
892 		unsigned int len, unsigned int off, bool *same_page)
893 {
894 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
895 		return false;
896 
897 	if (bio->bi_vcnt > 0) {
898 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
899 
900 		if (page_is_mergeable(bv, page, len, off, same_page)) {
901 			if (bio->bi_iter.bi_size > UINT_MAX - len) {
902 				*same_page = false;
903 				return false;
904 			}
905 			bv->bv_len += len;
906 			bio->bi_iter.bi_size += len;
907 			return true;
908 		}
909 	}
910 	return false;
911 }
912 
913 /*
914  * Try to merge a page into a segment, while obeying the hardware segment
915  * size limit.  This is not for normal read/write bios, but for passthrough
916  * or Zone Append operations that we can't split.
917  */
918 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
919 				 struct page *page, unsigned len,
920 				 unsigned offset, bool *same_page)
921 {
922 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
923 	unsigned long mask = queue_segment_boundary(q);
924 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
925 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
926 
927 	if ((addr1 | mask) != (addr2 | mask))
928 		return false;
929 	if (bv->bv_len + len > queue_max_segment_size(q))
930 		return false;
931 	return __bio_try_merge_page(bio, page, len, offset, same_page);
932 }
933 
934 /**
935  * bio_add_hw_page - attempt to add a page to a bio with hw constraints
936  * @q: the target queue
937  * @bio: destination bio
938  * @page: page to add
939  * @len: vec entry length
940  * @offset: vec entry offset
941  * @max_sectors: maximum number of sectors that can be added
942  * @same_page: return if the segment has been merged inside the same page
943  *
944  * Add a page to a bio while respecting the hardware max_sectors, max_segment
945  * and gap limitations.
946  */
947 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
948 		struct page *page, unsigned int len, unsigned int offset,
949 		unsigned int max_sectors, bool *same_page)
950 {
951 	struct bio_vec *bvec;
952 
953 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
954 		return 0;
955 
956 	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
957 		return 0;
958 
959 	if (bio->bi_vcnt > 0) {
960 		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
961 			return len;
962 
963 		/*
964 		 * If the queue doesn't support SG gaps and adding this segment
965 		 * would create a gap, disallow it.
966 		 */
967 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
968 		if (bvec_gap_to_prev(&q->limits, bvec, offset))
969 			return 0;
970 	}
971 
972 	if (bio_full(bio, len))
973 		return 0;
974 
975 	if (bio->bi_vcnt >= queue_max_segments(q))
976 		return 0;
977 
978 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
979 	bvec->bv_page = page;
980 	bvec->bv_len = len;
981 	bvec->bv_offset = offset;
982 	bio->bi_vcnt++;
983 	bio->bi_iter.bi_size += len;
984 	return len;
985 }
986 
987 /**
988  * bio_add_pc_page	- attempt to add page to passthrough bio
989  * @q: the target queue
990  * @bio: destination bio
991  * @page: page to add
992  * @len: vec entry length
993  * @offset: vec entry offset
994  *
995  * Attempt to add a page to the bio_vec maplist. This can fail for a
996  * number of reasons, such as the bio being full or target block device
997  * limitations. The target block device must allow bio's up to PAGE_SIZE,
998  * so it is always possible to add a single page to an empty bio.
999  *
1000  * This should only be used by passthrough bios.
1001  */
1002 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
1003 		struct page *page, unsigned int len, unsigned int offset)
1004 {
1005 	bool same_page = false;
1006 	return bio_add_hw_page(q, bio, page, len, offset,
1007 			queue_max_hw_sectors(q), &same_page);
1008 }
1009 EXPORT_SYMBOL(bio_add_pc_page);
1010 
1011 /**
1012  * bio_add_zone_append_page - attempt to add page to zone-append bio
1013  * @bio: destination bio
1014  * @page: page to add
1015  * @len: vec entry length
1016  * @offset: vec entry offset
1017  *
1018  * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
1019  * for a zone-append request. This can fail for a number of reasons, such as the
1020  * bio being full or the target block device is not a zoned block device or
1021  * other limitations of the target block device. The target block device must
1022  * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
1023  * to an empty bio.
1024  *
1025  * Returns: number of bytes added to the bio, or 0 in case of a failure.
1026  */
1027 int bio_add_zone_append_page(struct bio *bio, struct page *page,
1028 			     unsigned int len, unsigned int offset)
1029 {
1030 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1031 	bool same_page = false;
1032 
1033 	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
1034 		return 0;
1035 
1036 	if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev)))
1037 		return 0;
1038 
1039 	return bio_add_hw_page(q, bio, page, len, offset,
1040 			       queue_max_zone_append_sectors(q), &same_page);
1041 }
1042 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1043 
1044 /**
1045  * __bio_add_page - add page(s) to a bio in a new segment
1046  * @bio: destination bio
1047  * @page: start page to add
1048  * @len: length of the data to add, may cross pages
1049  * @off: offset of the data relative to @page, may cross pages
1050  *
1051  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
1052  * that @bio has space for another bvec.
1053  */
1054 void __bio_add_page(struct bio *bio, struct page *page,
1055 		unsigned int len, unsigned int off)
1056 {
1057 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
1058 
1059 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
1060 	WARN_ON_ONCE(bio_full(bio, len));
1061 
1062 	bv->bv_page = page;
1063 	bv->bv_offset = off;
1064 	bv->bv_len = len;
1065 
1066 	bio->bi_iter.bi_size += len;
1067 	bio->bi_vcnt++;
1068 
1069 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
1070 		bio_set_flag(bio, BIO_WORKINGSET);
1071 }
1072 EXPORT_SYMBOL_GPL(__bio_add_page);
1073 
1074 /**
1075  *	bio_add_page	-	attempt to add page(s) to bio
1076  *	@bio: destination bio
1077  *	@page: start page to add
1078  *	@len: vec entry length, may cross pages
1079  *	@offset: vec entry offset relative to @page, may cross pages
1080  *
1081  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1082  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1083  */
1084 int bio_add_page(struct bio *bio, struct page *page,
1085 		 unsigned int len, unsigned int offset)
1086 {
1087 	bool same_page = false;
1088 
1089 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1090 		if (bio_full(bio, len))
1091 			return 0;
1092 		__bio_add_page(bio, page, len, offset);
1093 	}
1094 	return len;
1095 }
1096 EXPORT_SYMBOL(bio_add_page);
1097 
1098 /**
1099  * bio_add_folio - Attempt to add part of a folio to a bio.
1100  * @bio: BIO to add to.
1101  * @folio: Folio to add.
1102  * @len: How many bytes from the folio to add.
1103  * @off: First byte in this folio to add.
1104  *
1105  * Filesystems that use folios can call this function instead of calling
1106  * bio_add_page() for each page in the folio.  If @off is bigger than
1107  * PAGE_SIZE, this function can create a bio_vec that starts in a page
1108  * after the bv_page.  BIOs do not support folios that are 4GiB or larger.
1109  *
1110  * Return: Whether the addition was successful.
1111  */
1112 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1113 		   size_t off)
1114 {
1115 	if (len > UINT_MAX || off > UINT_MAX)
1116 		return false;
1117 	return bio_add_page(bio, &folio->page, len, off) > 0;
1118 }
1119 
1120 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1121 {
1122 	struct bvec_iter_all iter_all;
1123 	struct bio_vec *bvec;
1124 
1125 	bio_for_each_segment_all(bvec, bio, iter_all) {
1126 		if (mark_dirty && !PageCompound(bvec->bv_page))
1127 			set_page_dirty_lock(bvec->bv_page);
1128 		put_page(bvec->bv_page);
1129 	}
1130 }
1131 EXPORT_SYMBOL_GPL(__bio_release_pages);
1132 
1133 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1134 {
1135 	size_t size = iov_iter_count(iter);
1136 
1137 	WARN_ON_ONCE(bio->bi_max_vecs);
1138 
1139 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1140 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1141 		size_t max_sectors = queue_max_zone_append_sectors(q);
1142 
1143 		size = min(size, max_sectors << SECTOR_SHIFT);
1144 	}
1145 
1146 	bio->bi_vcnt = iter->nr_segs;
1147 	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1148 	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1149 	bio->bi_iter.bi_size = size;
1150 	bio_set_flag(bio, BIO_NO_PAGE_REF);
1151 	bio_set_flag(bio, BIO_CLONED);
1152 }
1153 
1154 static int bio_iov_add_page(struct bio *bio, struct page *page,
1155 		unsigned int len, unsigned int offset)
1156 {
1157 	bool same_page = false;
1158 
1159 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1160 		__bio_add_page(bio, page, len, offset);
1161 		return 0;
1162 	}
1163 
1164 	if (same_page)
1165 		put_page(page);
1166 	return 0;
1167 }
1168 
1169 static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page,
1170 		unsigned int len, unsigned int offset)
1171 {
1172 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1173 	bool same_page = false;
1174 
1175 	if (bio_add_hw_page(q, bio, page, len, offset,
1176 			queue_max_zone_append_sectors(q), &same_page) != len)
1177 		return -EINVAL;
1178 	if (same_page)
1179 		put_page(page);
1180 	return 0;
1181 }
1182 
1183 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
1184 
1185 /**
1186  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1187  * @bio: bio to add pages to
1188  * @iter: iov iterator describing the region to be mapped
1189  *
1190  * Pins pages from *iter and appends them to @bio's bvec array. The
1191  * pages will have to be released using put_page() when done.
1192  * For multi-segment *iter, this function only adds pages from the
1193  * next non-empty segment of the iov iterator.
1194  */
1195 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1196 {
1197 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1198 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1199 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1200 	struct page **pages = (struct page **)bv;
1201 	ssize_t size, left;
1202 	unsigned len, i = 0;
1203 	size_t offset, trim;
1204 	int ret = 0;
1205 
1206 	/*
1207 	 * Move page array up in the allocated memory for the bio vecs as far as
1208 	 * possible so that we can start filling biovecs from the beginning
1209 	 * without overwriting the temporary page array.
1210 	 */
1211 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1212 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1213 
1214 	/*
1215 	 * Each segment in the iov is required to be a block size multiple.
1216 	 * However, we may not be able to get the entire segment if it spans
1217 	 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1218 	 * result to ensure the bio's total size is correct. The remainder of
1219 	 * the iov data will be picked up in the next bio iteration.
1220 	 */
1221 	size = iov_iter_get_pages2(iter, pages, UINT_MAX - bio->bi_iter.bi_size,
1222 				  nr_pages, &offset);
1223 	if (unlikely(size <= 0))
1224 		return size ? size : -EFAULT;
1225 
1226 	nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1227 
1228 	trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1229 	iov_iter_revert(iter, trim);
1230 
1231 	size -= trim;
1232 	if (unlikely(!size)) {
1233 		ret = -EFAULT;
1234 		goto out;
1235 	}
1236 
1237 	for (left = size, i = 0; left > 0; left -= len, i++) {
1238 		struct page *page = pages[i];
1239 
1240 		len = min_t(size_t, PAGE_SIZE - offset, left);
1241 		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1242 			ret = bio_iov_add_zone_append_page(bio, page, len,
1243 					offset);
1244 			if (ret)
1245 				break;
1246 		} else
1247 			bio_iov_add_page(bio, page, len, offset);
1248 
1249 		offset = 0;
1250 	}
1251 
1252 	iov_iter_revert(iter, left);
1253 out:
1254 	while (i < nr_pages)
1255 		put_page(pages[i++]);
1256 
1257 	return ret;
1258 }
1259 
1260 /**
1261  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1262  * @bio: bio to add pages to
1263  * @iter: iov iterator describing the region to be added
1264  *
1265  * This takes either an iterator pointing to user memory, or one pointing to
1266  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1267  * map them into the kernel. On IO completion, the caller should put those
1268  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1269  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1270  * to ensure the bvecs and pages stay referenced until the submitted I/O is
1271  * completed by a call to ->ki_complete() or returns with an error other than
1272  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1273  * on IO completion. If it isn't, then pages should be released.
1274  *
1275  * The function tries, but does not guarantee, to pin as many pages as
1276  * fit into the bio, or are requested in @iter, whatever is smaller. If
1277  * MM encounters an error pinning the requested pages, it stops. Error
1278  * is returned only if 0 pages could be pinned.
1279  *
1280  * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1281  * responsible for setting BIO_WORKINGSET if necessary.
1282  */
1283 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1284 {
1285 	int ret = 0;
1286 
1287 	if (iov_iter_is_bvec(iter)) {
1288 		bio_iov_bvec_set(bio, iter);
1289 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1290 		return 0;
1291 	}
1292 
1293 	do {
1294 		ret = __bio_iov_iter_get_pages(bio, iter);
1295 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1296 
1297 	/* don't account direct I/O as memory stall */
1298 	bio_clear_flag(bio, BIO_WORKINGSET);
1299 	return bio->bi_vcnt ? 0 : ret;
1300 }
1301 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1302 
1303 static void submit_bio_wait_endio(struct bio *bio)
1304 {
1305 	complete(bio->bi_private);
1306 }
1307 
1308 /**
1309  * submit_bio_wait - submit a bio, and wait until it completes
1310  * @bio: The &struct bio which describes the I/O
1311  *
1312  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1313  * bio_endio() on failure.
1314  *
1315  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1316  * result in bio reference to be consumed. The caller must drop the reference
1317  * on his own.
1318  */
1319 int submit_bio_wait(struct bio *bio)
1320 {
1321 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1322 			bio->bi_bdev->bd_disk->lockdep_map);
1323 	unsigned long hang_check;
1324 
1325 	bio->bi_private = &done;
1326 	bio->bi_end_io = submit_bio_wait_endio;
1327 	bio->bi_opf |= REQ_SYNC;
1328 	submit_bio(bio);
1329 
1330 	/* Prevent hang_check timer from firing at us during very long I/O */
1331 	hang_check = sysctl_hung_task_timeout_secs;
1332 	if (hang_check)
1333 		while (!wait_for_completion_io_timeout(&done,
1334 					hang_check * (HZ/2)))
1335 			;
1336 	else
1337 		wait_for_completion_io(&done);
1338 
1339 	return blk_status_to_errno(bio->bi_status);
1340 }
1341 EXPORT_SYMBOL(submit_bio_wait);
1342 
1343 void __bio_advance(struct bio *bio, unsigned bytes)
1344 {
1345 	if (bio_integrity(bio))
1346 		bio_integrity_advance(bio, bytes);
1347 
1348 	bio_crypt_advance(bio, bytes);
1349 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1350 }
1351 EXPORT_SYMBOL(__bio_advance);
1352 
1353 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1354 			struct bio *src, struct bvec_iter *src_iter)
1355 {
1356 	while (src_iter->bi_size && dst_iter->bi_size) {
1357 		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1358 		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1359 		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1360 		void *src_buf = bvec_kmap_local(&src_bv);
1361 		void *dst_buf = bvec_kmap_local(&dst_bv);
1362 
1363 		memcpy(dst_buf, src_buf, bytes);
1364 
1365 		kunmap_local(dst_buf);
1366 		kunmap_local(src_buf);
1367 
1368 		bio_advance_iter_single(src, src_iter, bytes);
1369 		bio_advance_iter_single(dst, dst_iter, bytes);
1370 	}
1371 }
1372 EXPORT_SYMBOL(bio_copy_data_iter);
1373 
1374 /**
1375  * bio_copy_data - copy contents of data buffers from one bio to another
1376  * @src: source bio
1377  * @dst: destination bio
1378  *
1379  * Stops when it reaches the end of either @src or @dst - that is, copies
1380  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1381  */
1382 void bio_copy_data(struct bio *dst, struct bio *src)
1383 {
1384 	struct bvec_iter src_iter = src->bi_iter;
1385 	struct bvec_iter dst_iter = dst->bi_iter;
1386 
1387 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1388 }
1389 EXPORT_SYMBOL(bio_copy_data);
1390 
1391 void bio_free_pages(struct bio *bio)
1392 {
1393 	struct bio_vec *bvec;
1394 	struct bvec_iter_all iter_all;
1395 
1396 	bio_for_each_segment_all(bvec, bio, iter_all)
1397 		__free_page(bvec->bv_page);
1398 }
1399 EXPORT_SYMBOL(bio_free_pages);
1400 
1401 /*
1402  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1403  * for performing direct-IO in BIOs.
1404  *
1405  * The problem is that we cannot run set_page_dirty() from interrupt context
1406  * because the required locks are not interrupt-safe.  So what we can do is to
1407  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1408  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1409  * in process context.
1410  *
1411  * We special-case compound pages here: normally this means reads into hugetlb
1412  * pages.  The logic in here doesn't really work right for compound pages
1413  * because the VM does not uniformly chase down the head page in all cases.
1414  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1415  * handle them at all.  So we skip compound pages here at an early stage.
1416  *
1417  * Note that this code is very hard to test under normal circumstances because
1418  * direct-io pins the pages with get_user_pages().  This makes
1419  * is_page_cache_freeable return false, and the VM will not clean the pages.
1420  * But other code (eg, flusher threads) could clean the pages if they are mapped
1421  * pagecache.
1422  *
1423  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1424  * deferred bio dirtying paths.
1425  */
1426 
1427 /*
1428  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1429  */
1430 void bio_set_pages_dirty(struct bio *bio)
1431 {
1432 	struct bio_vec *bvec;
1433 	struct bvec_iter_all iter_all;
1434 
1435 	bio_for_each_segment_all(bvec, bio, iter_all) {
1436 		if (!PageCompound(bvec->bv_page))
1437 			set_page_dirty_lock(bvec->bv_page);
1438 	}
1439 }
1440 
1441 /*
1442  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1443  * If they are, then fine.  If, however, some pages are clean then they must
1444  * have been written out during the direct-IO read.  So we take another ref on
1445  * the BIO and re-dirty the pages in process context.
1446  *
1447  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1448  * here on.  It will run one put_page() against each page and will run one
1449  * bio_put() against the BIO.
1450  */
1451 
1452 static void bio_dirty_fn(struct work_struct *work);
1453 
1454 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1455 static DEFINE_SPINLOCK(bio_dirty_lock);
1456 static struct bio *bio_dirty_list;
1457 
1458 /*
1459  * This runs in process context
1460  */
1461 static void bio_dirty_fn(struct work_struct *work)
1462 {
1463 	struct bio *bio, *next;
1464 
1465 	spin_lock_irq(&bio_dirty_lock);
1466 	next = bio_dirty_list;
1467 	bio_dirty_list = NULL;
1468 	spin_unlock_irq(&bio_dirty_lock);
1469 
1470 	while ((bio = next) != NULL) {
1471 		next = bio->bi_private;
1472 
1473 		bio_release_pages(bio, true);
1474 		bio_put(bio);
1475 	}
1476 }
1477 
1478 void bio_check_pages_dirty(struct bio *bio)
1479 {
1480 	struct bio_vec *bvec;
1481 	unsigned long flags;
1482 	struct bvec_iter_all iter_all;
1483 
1484 	bio_for_each_segment_all(bvec, bio, iter_all) {
1485 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1486 			goto defer;
1487 	}
1488 
1489 	bio_release_pages(bio, false);
1490 	bio_put(bio);
1491 	return;
1492 defer:
1493 	spin_lock_irqsave(&bio_dirty_lock, flags);
1494 	bio->bi_private = bio_dirty_list;
1495 	bio_dirty_list = bio;
1496 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1497 	schedule_work(&bio_dirty_work);
1498 }
1499 
1500 static inline bool bio_remaining_done(struct bio *bio)
1501 {
1502 	/*
1503 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1504 	 * we always end io on the first invocation.
1505 	 */
1506 	if (!bio_flagged(bio, BIO_CHAIN))
1507 		return true;
1508 
1509 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1510 
1511 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1512 		bio_clear_flag(bio, BIO_CHAIN);
1513 		return true;
1514 	}
1515 
1516 	return false;
1517 }
1518 
1519 /**
1520  * bio_endio - end I/O on a bio
1521  * @bio:	bio
1522  *
1523  * Description:
1524  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1525  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1526  *   bio unless they own it and thus know that it has an end_io function.
1527  *
1528  *   bio_endio() can be called several times on a bio that has been chained
1529  *   using bio_chain().  The ->bi_end_io() function will only be called the
1530  *   last time.
1531  **/
1532 void bio_endio(struct bio *bio)
1533 {
1534 again:
1535 	if (!bio_remaining_done(bio))
1536 		return;
1537 	if (!bio_integrity_endio(bio))
1538 		return;
1539 
1540 	rq_qos_done_bio(bio);
1541 
1542 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1543 		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1544 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1545 	}
1546 
1547 	/*
1548 	 * Need to have a real endio function for chained bios, otherwise
1549 	 * various corner cases will break (like stacking block devices that
1550 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1551 	 * recursion and blowing the stack. Tail call optimization would
1552 	 * handle this, but compiling with frame pointers also disables
1553 	 * gcc's sibling call optimization.
1554 	 */
1555 	if (bio->bi_end_io == bio_chain_endio) {
1556 		bio = __bio_chain_endio(bio);
1557 		goto again;
1558 	}
1559 
1560 	blk_throtl_bio_endio(bio);
1561 	/* release cgroup info */
1562 	bio_uninit(bio);
1563 	if (bio->bi_end_io)
1564 		bio->bi_end_io(bio);
1565 }
1566 EXPORT_SYMBOL(bio_endio);
1567 
1568 /**
1569  * bio_split - split a bio
1570  * @bio:	bio to split
1571  * @sectors:	number of sectors to split from the front of @bio
1572  * @gfp:	gfp mask
1573  * @bs:		bio set to allocate from
1574  *
1575  * Allocates and returns a new bio which represents @sectors from the start of
1576  * @bio, and updates @bio to represent the remaining sectors.
1577  *
1578  * Unless this is a discard request the newly allocated bio will point
1579  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1580  * neither @bio nor @bs are freed before the split bio.
1581  */
1582 struct bio *bio_split(struct bio *bio, int sectors,
1583 		      gfp_t gfp, struct bio_set *bs)
1584 {
1585 	struct bio *split;
1586 
1587 	BUG_ON(sectors <= 0);
1588 	BUG_ON(sectors >= bio_sectors(bio));
1589 
1590 	/* Zone append commands cannot be split */
1591 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1592 		return NULL;
1593 
1594 	split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1595 	if (!split)
1596 		return NULL;
1597 
1598 	split->bi_iter.bi_size = sectors << 9;
1599 
1600 	if (bio_integrity(split))
1601 		bio_integrity_trim(split);
1602 
1603 	bio_advance(bio, split->bi_iter.bi_size);
1604 
1605 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1606 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1607 
1608 	return split;
1609 }
1610 EXPORT_SYMBOL(bio_split);
1611 
1612 /**
1613  * bio_trim - trim a bio
1614  * @bio:	bio to trim
1615  * @offset:	number of sectors to trim from the front of @bio
1616  * @size:	size we want to trim @bio to, in sectors
1617  *
1618  * This function is typically used for bios that are cloned and submitted
1619  * to the underlying device in parts.
1620  */
1621 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1622 {
1623 	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1624 			 offset + size > bio_sectors(bio)))
1625 		return;
1626 
1627 	size <<= 9;
1628 	if (offset == 0 && size == bio->bi_iter.bi_size)
1629 		return;
1630 
1631 	bio_advance(bio, offset << 9);
1632 	bio->bi_iter.bi_size = size;
1633 
1634 	if (bio_integrity(bio))
1635 		bio_integrity_trim(bio);
1636 }
1637 EXPORT_SYMBOL_GPL(bio_trim);
1638 
1639 /*
1640  * create memory pools for biovec's in a bio_set.
1641  * use the global biovec slabs created for general use.
1642  */
1643 int biovec_init_pool(mempool_t *pool, int pool_entries)
1644 {
1645 	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1646 
1647 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1648 }
1649 
1650 /*
1651  * bioset_exit - exit a bioset initialized with bioset_init()
1652  *
1653  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1654  * kzalloc()).
1655  */
1656 void bioset_exit(struct bio_set *bs)
1657 {
1658 	bio_alloc_cache_destroy(bs);
1659 	if (bs->rescue_workqueue)
1660 		destroy_workqueue(bs->rescue_workqueue);
1661 	bs->rescue_workqueue = NULL;
1662 
1663 	mempool_exit(&bs->bio_pool);
1664 	mempool_exit(&bs->bvec_pool);
1665 
1666 	bioset_integrity_free(bs);
1667 	if (bs->bio_slab)
1668 		bio_put_slab(bs);
1669 	bs->bio_slab = NULL;
1670 }
1671 EXPORT_SYMBOL(bioset_exit);
1672 
1673 /**
1674  * bioset_init - Initialize a bio_set
1675  * @bs:		pool to initialize
1676  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1677  * @front_pad:	Number of bytes to allocate in front of the returned bio
1678  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1679  *              and %BIOSET_NEED_RESCUER
1680  *
1681  * Description:
1682  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1683  *    to ask for a number of bytes to be allocated in front of the bio.
1684  *    Front pad allocation is useful for embedding the bio inside
1685  *    another structure, to avoid allocating extra data to go with the bio.
1686  *    Note that the bio must be embedded at the END of that structure always,
1687  *    or things will break badly.
1688  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1689  *    for allocating iovecs.  This pool is not needed e.g. for bio_init_clone().
1690  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1691  *    to dispatch queued requests when the mempool runs out of space.
1692  *
1693  */
1694 int bioset_init(struct bio_set *bs,
1695 		unsigned int pool_size,
1696 		unsigned int front_pad,
1697 		int flags)
1698 {
1699 	bs->front_pad = front_pad;
1700 	if (flags & BIOSET_NEED_BVECS)
1701 		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1702 	else
1703 		bs->back_pad = 0;
1704 
1705 	spin_lock_init(&bs->rescue_lock);
1706 	bio_list_init(&bs->rescue_list);
1707 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1708 
1709 	bs->bio_slab = bio_find_or_create_slab(bs);
1710 	if (!bs->bio_slab)
1711 		return -ENOMEM;
1712 
1713 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1714 		goto bad;
1715 
1716 	if ((flags & BIOSET_NEED_BVECS) &&
1717 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1718 		goto bad;
1719 
1720 	if (flags & BIOSET_NEED_RESCUER) {
1721 		bs->rescue_workqueue = alloc_workqueue("bioset",
1722 							WQ_MEM_RECLAIM, 0);
1723 		if (!bs->rescue_workqueue)
1724 			goto bad;
1725 	}
1726 	if (flags & BIOSET_PERCPU_CACHE) {
1727 		bs->cache = alloc_percpu(struct bio_alloc_cache);
1728 		if (!bs->cache)
1729 			goto bad;
1730 		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1731 	}
1732 
1733 	return 0;
1734 bad:
1735 	bioset_exit(bs);
1736 	return -ENOMEM;
1737 }
1738 EXPORT_SYMBOL(bioset_init);
1739 
1740 static int __init init_bio(void)
1741 {
1742 	int i;
1743 
1744 	bio_integrity_init();
1745 
1746 	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1747 		struct biovec_slab *bvs = bvec_slabs + i;
1748 
1749 		bvs->slab = kmem_cache_create(bvs->name,
1750 				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1751 				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1752 	}
1753 
1754 	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1755 					bio_cpu_dead);
1756 
1757 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1758 		panic("bio: can't allocate bios\n");
1759 
1760 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1761 		panic("bio: can't create integrity pool\n");
1762 
1763 	return 0;
1764 }
1765 subsys_initcall(init_bio);
1766