xref: /openbmc/linux/block/bio.c (revision 4633a79f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
22 #include <linux/xarray.h>
23 
24 #include <trace/events/block.h>
25 #include "blk.h"
26 #include "blk-rq-qos.h"
27 
28 struct bio_alloc_cache {
29 	struct bio_list		free_list;
30 	unsigned int		nr;
31 };
32 
33 static struct biovec_slab {
34 	int nr_vecs;
35 	char *name;
36 	struct kmem_cache *slab;
37 } bvec_slabs[] __read_mostly = {
38 	{ .nr_vecs = 16, .name = "biovec-16" },
39 	{ .nr_vecs = 64, .name = "biovec-64" },
40 	{ .nr_vecs = 128, .name = "biovec-128" },
41 	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
42 };
43 
44 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45 {
46 	switch (nr_vecs) {
47 	/* smaller bios use inline vecs */
48 	case 5 ... 16:
49 		return &bvec_slabs[0];
50 	case 17 ... 64:
51 		return &bvec_slabs[1];
52 	case 65 ... 128:
53 		return &bvec_slabs[2];
54 	case 129 ... BIO_MAX_VECS:
55 		return &bvec_slabs[3];
56 	default:
57 		BUG();
58 		return NULL;
59 	}
60 }
61 
62 /*
63  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64  * IO code that does not need private memory pools.
65  */
66 struct bio_set fs_bio_set;
67 EXPORT_SYMBOL(fs_bio_set);
68 
69 /*
70  * Our slab pool management
71  */
72 struct bio_slab {
73 	struct kmem_cache *slab;
74 	unsigned int slab_ref;
75 	unsigned int slab_size;
76 	char name[8];
77 };
78 static DEFINE_MUTEX(bio_slab_lock);
79 static DEFINE_XARRAY(bio_slabs);
80 
81 static struct bio_slab *create_bio_slab(unsigned int size)
82 {
83 	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
84 
85 	if (!bslab)
86 		return NULL;
87 
88 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 	bslab->slab = kmem_cache_create(bslab->name, size,
90 			ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
91 	if (!bslab->slab)
92 		goto fail_alloc_slab;
93 
94 	bslab->slab_ref = 1;
95 	bslab->slab_size = size;
96 
97 	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
98 		return bslab;
99 
100 	kmem_cache_destroy(bslab->slab);
101 
102 fail_alloc_slab:
103 	kfree(bslab);
104 	return NULL;
105 }
106 
107 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
108 {
109 	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
110 }
111 
112 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
113 {
114 	unsigned int size = bs_bio_slab_size(bs);
115 	struct bio_slab *bslab;
116 
117 	mutex_lock(&bio_slab_lock);
118 	bslab = xa_load(&bio_slabs, size);
119 	if (bslab)
120 		bslab->slab_ref++;
121 	else
122 		bslab = create_bio_slab(size);
123 	mutex_unlock(&bio_slab_lock);
124 
125 	if (bslab)
126 		return bslab->slab;
127 	return NULL;
128 }
129 
130 static void bio_put_slab(struct bio_set *bs)
131 {
132 	struct bio_slab *bslab = NULL;
133 	unsigned int slab_size = bs_bio_slab_size(bs);
134 
135 	mutex_lock(&bio_slab_lock);
136 
137 	bslab = xa_load(&bio_slabs, slab_size);
138 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
139 		goto out;
140 
141 	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
142 
143 	WARN_ON(!bslab->slab_ref);
144 
145 	if (--bslab->slab_ref)
146 		goto out;
147 
148 	xa_erase(&bio_slabs, slab_size);
149 
150 	kmem_cache_destroy(bslab->slab);
151 	kfree(bslab);
152 
153 out:
154 	mutex_unlock(&bio_slab_lock);
155 }
156 
157 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
158 {
159 	BIO_BUG_ON(nr_vecs > BIO_MAX_VECS);
160 
161 	if (nr_vecs == BIO_MAX_VECS)
162 		mempool_free(bv, pool);
163 	else if (nr_vecs > BIO_INLINE_VECS)
164 		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
165 }
166 
167 /*
168  * Make the first allocation restricted and don't dump info on allocation
169  * failures, since we'll fall back to the mempool in case of failure.
170  */
171 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
172 {
173 	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
174 		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
175 }
176 
177 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
178 		gfp_t gfp_mask)
179 {
180 	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
181 
182 	if (WARN_ON_ONCE(!bvs))
183 		return NULL;
184 
185 	/*
186 	 * Upgrade the nr_vecs request to take full advantage of the allocation.
187 	 * We also rely on this in the bvec_free path.
188 	 */
189 	*nr_vecs = bvs->nr_vecs;
190 
191 	/*
192 	 * Try a slab allocation first for all smaller allocations.  If that
193 	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
194 	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
195 	 */
196 	if (*nr_vecs < BIO_MAX_VECS) {
197 		struct bio_vec *bvl;
198 
199 		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
200 		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
201 			return bvl;
202 		*nr_vecs = BIO_MAX_VECS;
203 	}
204 
205 	return mempool_alloc(pool, gfp_mask);
206 }
207 
208 void bio_uninit(struct bio *bio)
209 {
210 #ifdef CONFIG_BLK_CGROUP
211 	if (bio->bi_blkg) {
212 		blkg_put(bio->bi_blkg);
213 		bio->bi_blkg = NULL;
214 	}
215 #endif
216 	if (bio_integrity(bio))
217 		bio_integrity_free(bio);
218 
219 	bio_crypt_free_ctx(bio);
220 }
221 EXPORT_SYMBOL(bio_uninit);
222 
223 static void bio_free(struct bio *bio)
224 {
225 	struct bio_set *bs = bio->bi_pool;
226 	void *p;
227 
228 	bio_uninit(bio);
229 
230 	if (bs) {
231 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
232 
233 		/*
234 		 * If we have front padding, adjust the bio pointer before freeing
235 		 */
236 		p = bio;
237 		p -= bs->front_pad;
238 
239 		mempool_free(p, &bs->bio_pool);
240 	} else {
241 		/* Bio was allocated by bio_kmalloc() */
242 		kfree(bio);
243 	}
244 }
245 
246 /*
247  * Users of this function have their own bio allocation. Subsequently,
248  * they must remember to pair any call to bio_init() with bio_uninit()
249  * when IO has completed, or when the bio is released.
250  */
251 void bio_init(struct bio *bio, struct bio_vec *table,
252 	      unsigned short max_vecs)
253 {
254 	bio->bi_next = NULL;
255 	bio->bi_bdev = NULL;
256 	bio->bi_opf = 0;
257 	bio->bi_flags = 0;
258 	bio->bi_ioprio = 0;
259 	bio->bi_write_hint = 0;
260 	bio->bi_status = 0;
261 	bio->bi_iter.bi_sector = 0;
262 	bio->bi_iter.bi_size = 0;
263 	bio->bi_iter.bi_idx = 0;
264 	bio->bi_iter.bi_bvec_done = 0;
265 	bio->bi_end_io = NULL;
266 	bio->bi_private = NULL;
267 #ifdef CONFIG_BLK_CGROUP
268 	bio->bi_blkg = NULL;
269 	bio->bi_issue.value = 0;
270 #ifdef CONFIG_BLK_CGROUP_IOCOST
271 	bio->bi_iocost_cost = 0;
272 #endif
273 #endif
274 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
275 	bio->bi_crypt_context = NULL;
276 #endif
277 #ifdef CONFIG_BLK_DEV_INTEGRITY
278 	bio->bi_integrity = NULL;
279 #endif
280 	bio->bi_vcnt = 0;
281 
282 	atomic_set(&bio->__bi_remaining, 1);
283 	atomic_set(&bio->__bi_cnt, 1);
284 
285 	bio->bi_max_vecs = max_vecs;
286 	bio->bi_io_vec = table;
287 	bio->bi_pool = NULL;
288 }
289 EXPORT_SYMBOL(bio_init);
290 
291 /**
292  * bio_reset - reinitialize a bio
293  * @bio:	bio to reset
294  *
295  * Description:
296  *   After calling bio_reset(), @bio will be in the same state as a freshly
297  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
298  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
299  *   comment in struct bio.
300  */
301 void bio_reset(struct bio *bio)
302 {
303 	bio_uninit(bio);
304 	memset(bio, 0, BIO_RESET_BYTES);
305 	atomic_set(&bio->__bi_remaining, 1);
306 }
307 EXPORT_SYMBOL(bio_reset);
308 
309 static struct bio *__bio_chain_endio(struct bio *bio)
310 {
311 	struct bio *parent = bio->bi_private;
312 
313 	if (bio->bi_status && !parent->bi_status)
314 		parent->bi_status = bio->bi_status;
315 	bio_put(bio);
316 	return parent;
317 }
318 
319 static void bio_chain_endio(struct bio *bio)
320 {
321 	bio_endio(__bio_chain_endio(bio));
322 }
323 
324 /**
325  * bio_chain - chain bio completions
326  * @bio: the target bio
327  * @parent: the parent bio of @bio
328  *
329  * The caller won't have a bi_end_io called when @bio completes - instead,
330  * @parent's bi_end_io won't be called until both @parent and @bio have
331  * completed; the chained bio will also be freed when it completes.
332  *
333  * The caller must not set bi_private or bi_end_io in @bio.
334  */
335 void bio_chain(struct bio *bio, struct bio *parent)
336 {
337 	BUG_ON(bio->bi_private || bio->bi_end_io);
338 
339 	bio->bi_private = parent;
340 	bio->bi_end_io	= bio_chain_endio;
341 	bio_inc_remaining(parent);
342 }
343 EXPORT_SYMBOL(bio_chain);
344 
345 static void bio_alloc_rescue(struct work_struct *work)
346 {
347 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
348 	struct bio *bio;
349 
350 	while (1) {
351 		spin_lock(&bs->rescue_lock);
352 		bio = bio_list_pop(&bs->rescue_list);
353 		spin_unlock(&bs->rescue_lock);
354 
355 		if (!bio)
356 			break;
357 
358 		submit_bio_noacct(bio);
359 	}
360 }
361 
362 static void punt_bios_to_rescuer(struct bio_set *bs)
363 {
364 	struct bio_list punt, nopunt;
365 	struct bio *bio;
366 
367 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
368 		return;
369 	/*
370 	 * In order to guarantee forward progress we must punt only bios that
371 	 * were allocated from this bio_set; otherwise, if there was a bio on
372 	 * there for a stacking driver higher up in the stack, processing it
373 	 * could require allocating bios from this bio_set, and doing that from
374 	 * our own rescuer would be bad.
375 	 *
376 	 * Since bio lists are singly linked, pop them all instead of trying to
377 	 * remove from the middle of the list:
378 	 */
379 
380 	bio_list_init(&punt);
381 	bio_list_init(&nopunt);
382 
383 	while ((bio = bio_list_pop(&current->bio_list[0])))
384 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
385 	current->bio_list[0] = nopunt;
386 
387 	bio_list_init(&nopunt);
388 	while ((bio = bio_list_pop(&current->bio_list[1])))
389 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
390 	current->bio_list[1] = nopunt;
391 
392 	spin_lock(&bs->rescue_lock);
393 	bio_list_merge(&bs->rescue_list, &punt);
394 	spin_unlock(&bs->rescue_lock);
395 
396 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
397 }
398 
399 /**
400  * bio_alloc_bioset - allocate a bio for I/O
401  * @gfp_mask:   the GFP_* mask given to the slab allocator
402  * @nr_iovecs:	number of iovecs to pre-allocate
403  * @bs:		the bio_set to allocate from.
404  *
405  * Allocate a bio from the mempools in @bs.
406  *
407  * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
408  * allocate a bio.  This is due to the mempool guarantees.  To make this work,
409  * callers must never allocate more than 1 bio at a time from the general pool.
410  * Callers that need to allocate more than 1 bio must always submit the
411  * previously allocated bio for IO before attempting to allocate a new one.
412  * Failure to do so can cause deadlocks under memory pressure.
413  *
414  * Note that when running under submit_bio_noacct() (i.e. any block driver),
415  * bios are not submitted until after you return - see the code in
416  * submit_bio_noacct() that converts recursion into iteration, to prevent
417  * stack overflows.
418  *
419  * This would normally mean allocating multiple bios under submit_bio_noacct()
420  * would be susceptible to deadlocks, but we have
421  * deadlock avoidance code that resubmits any blocked bios from a rescuer
422  * thread.
423  *
424  * However, we do not guarantee forward progress for allocations from other
425  * mempools. Doing multiple allocations from the same mempool under
426  * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
427  * for per bio allocations.
428  *
429  * Returns: Pointer to new bio on success, NULL on failure.
430  */
431 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
432 			     struct bio_set *bs)
433 {
434 	gfp_t saved_gfp = gfp_mask;
435 	struct bio *bio;
436 	void *p;
437 
438 	/* should not use nobvec bioset for nr_iovecs > 0 */
439 	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
440 		return NULL;
441 
442 	/*
443 	 * submit_bio_noacct() converts recursion to iteration; this means if
444 	 * we're running beneath it, any bios we allocate and submit will not be
445 	 * submitted (and thus freed) until after we return.
446 	 *
447 	 * This exposes us to a potential deadlock if we allocate multiple bios
448 	 * from the same bio_set() while running underneath submit_bio_noacct().
449 	 * If we were to allocate multiple bios (say a stacking block driver
450 	 * that was splitting bios), we would deadlock if we exhausted the
451 	 * mempool's reserve.
452 	 *
453 	 * We solve this, and guarantee forward progress, with a rescuer
454 	 * workqueue per bio_set. If we go to allocate and there are bios on
455 	 * current->bio_list, we first try the allocation without
456 	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
457 	 * blocking to the rescuer workqueue before we retry with the original
458 	 * gfp_flags.
459 	 */
460 	if (current->bio_list &&
461 	    (!bio_list_empty(&current->bio_list[0]) ||
462 	     !bio_list_empty(&current->bio_list[1])) &&
463 	    bs->rescue_workqueue)
464 		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
465 
466 	p = mempool_alloc(&bs->bio_pool, gfp_mask);
467 	if (!p && gfp_mask != saved_gfp) {
468 		punt_bios_to_rescuer(bs);
469 		gfp_mask = saved_gfp;
470 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
471 	}
472 	if (unlikely(!p))
473 		return NULL;
474 
475 	bio = p + bs->front_pad;
476 	if (nr_iovecs > BIO_INLINE_VECS) {
477 		struct bio_vec *bvl = NULL;
478 
479 		bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
480 		if (!bvl && gfp_mask != saved_gfp) {
481 			punt_bios_to_rescuer(bs);
482 			gfp_mask = saved_gfp;
483 			bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
484 		}
485 		if (unlikely(!bvl))
486 			goto err_free;
487 
488 		bio_init(bio, bvl, nr_iovecs);
489 	} else if (nr_iovecs) {
490 		bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
491 	} else {
492 		bio_init(bio, NULL, 0);
493 	}
494 
495 	bio->bi_pool = bs;
496 	return bio;
497 
498 err_free:
499 	mempool_free(p, &bs->bio_pool);
500 	return NULL;
501 }
502 EXPORT_SYMBOL(bio_alloc_bioset);
503 
504 /**
505  * bio_kmalloc - kmalloc a bio for I/O
506  * @gfp_mask:   the GFP_* mask given to the slab allocator
507  * @nr_iovecs:	number of iovecs to pre-allocate
508  *
509  * Use kmalloc to allocate and initialize a bio.
510  *
511  * Returns: Pointer to new bio on success, NULL on failure.
512  */
513 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
514 {
515 	struct bio *bio;
516 
517 	if (nr_iovecs > UIO_MAXIOV)
518 		return NULL;
519 
520 	bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
521 	if (unlikely(!bio))
522 		return NULL;
523 	bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
524 	bio->bi_pool = NULL;
525 	return bio;
526 }
527 EXPORT_SYMBOL(bio_kmalloc);
528 
529 void zero_fill_bio(struct bio *bio)
530 {
531 	struct bio_vec bv;
532 	struct bvec_iter iter;
533 
534 	bio_for_each_segment(bv, bio, iter)
535 		memzero_bvec(&bv);
536 }
537 EXPORT_SYMBOL(zero_fill_bio);
538 
539 /**
540  * bio_truncate - truncate the bio to small size of @new_size
541  * @bio:	the bio to be truncated
542  * @new_size:	new size for truncating the bio
543  *
544  * Description:
545  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
546  *   REQ_OP_READ, zero the truncated part. This function should only
547  *   be used for handling corner cases, such as bio eod.
548  */
549 void bio_truncate(struct bio *bio, unsigned new_size)
550 {
551 	struct bio_vec bv;
552 	struct bvec_iter iter;
553 	unsigned int done = 0;
554 	bool truncated = false;
555 
556 	if (new_size >= bio->bi_iter.bi_size)
557 		return;
558 
559 	if (bio_op(bio) != REQ_OP_READ)
560 		goto exit;
561 
562 	bio_for_each_segment(bv, bio, iter) {
563 		if (done + bv.bv_len > new_size) {
564 			unsigned offset;
565 
566 			if (!truncated)
567 				offset = new_size - done;
568 			else
569 				offset = 0;
570 			zero_user(bv.bv_page, bv.bv_offset + offset,
571 				  bv.bv_len - offset);
572 			truncated = true;
573 		}
574 		done += bv.bv_len;
575 	}
576 
577  exit:
578 	/*
579 	 * Don't touch bvec table here and make it really immutable, since
580 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
581 	 * in its .end_bio() callback.
582 	 *
583 	 * It is enough to truncate bio by updating .bi_size since we can make
584 	 * correct bvec with the updated .bi_size for drivers.
585 	 */
586 	bio->bi_iter.bi_size = new_size;
587 }
588 
589 /**
590  * guard_bio_eod - truncate a BIO to fit the block device
591  * @bio:	bio to truncate
592  *
593  * This allows us to do IO even on the odd last sectors of a device, even if the
594  * block size is some multiple of the physical sector size.
595  *
596  * We'll just truncate the bio to the size of the device, and clear the end of
597  * the buffer head manually.  Truly out-of-range accesses will turn into actual
598  * I/O errors, this only handles the "we need to be able to do I/O at the final
599  * sector" case.
600  */
601 void guard_bio_eod(struct bio *bio)
602 {
603 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
604 
605 	if (!maxsector)
606 		return;
607 
608 	/*
609 	 * If the *whole* IO is past the end of the device,
610 	 * let it through, and the IO layer will turn it into
611 	 * an EIO.
612 	 */
613 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
614 		return;
615 
616 	maxsector -= bio->bi_iter.bi_sector;
617 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
618 		return;
619 
620 	bio_truncate(bio, maxsector << 9);
621 }
622 
623 #define ALLOC_CACHE_MAX		512
624 #define ALLOC_CACHE_SLACK	 64
625 
626 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
627 				  unsigned int nr)
628 {
629 	unsigned int i = 0;
630 	struct bio *bio;
631 
632 	while ((bio = bio_list_pop(&cache->free_list)) != NULL) {
633 		cache->nr--;
634 		bio_free(bio);
635 		if (++i == nr)
636 			break;
637 	}
638 }
639 
640 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
641 {
642 	struct bio_set *bs;
643 
644 	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
645 	if (bs->cache) {
646 		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
647 
648 		bio_alloc_cache_prune(cache, -1U);
649 	}
650 	return 0;
651 }
652 
653 static void bio_alloc_cache_destroy(struct bio_set *bs)
654 {
655 	int cpu;
656 
657 	if (!bs->cache)
658 		return;
659 
660 	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
661 	for_each_possible_cpu(cpu) {
662 		struct bio_alloc_cache *cache;
663 
664 		cache = per_cpu_ptr(bs->cache, cpu);
665 		bio_alloc_cache_prune(cache, -1U);
666 	}
667 	free_percpu(bs->cache);
668 }
669 
670 /**
671  * bio_put - release a reference to a bio
672  * @bio:   bio to release reference to
673  *
674  * Description:
675  *   Put a reference to a &struct bio, either one you have gotten with
676  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
677  **/
678 void bio_put(struct bio *bio)
679 {
680 	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
681 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
682 		if (!atomic_dec_and_test(&bio->__bi_cnt))
683 			return;
684 	}
685 
686 	if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
687 		struct bio_alloc_cache *cache;
688 
689 		bio_uninit(bio);
690 		cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
691 		bio_list_add_head(&cache->free_list, bio);
692 		if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
693 			bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
694 		put_cpu();
695 	} else {
696 		bio_free(bio);
697 	}
698 }
699 EXPORT_SYMBOL(bio_put);
700 
701 /**
702  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
703  * 	@bio: destination bio
704  * 	@bio_src: bio to clone
705  *
706  *	Clone a &bio. Caller will own the returned bio, but not
707  *	the actual data it points to. Reference count of returned
708  * 	bio will be one.
709  *
710  * 	Caller must ensure that @bio_src is not freed before @bio.
711  */
712 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
713 {
714 	WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
715 
716 	/*
717 	 * most users will be overriding ->bi_bdev with a new target,
718 	 * so we don't set nor calculate new physical/hw segment counts here
719 	 */
720 	bio->bi_bdev = bio_src->bi_bdev;
721 	bio_set_flag(bio, BIO_CLONED);
722 	if (bio_flagged(bio_src, BIO_THROTTLED))
723 		bio_set_flag(bio, BIO_THROTTLED);
724 	if (bio_flagged(bio_src, BIO_REMAPPED))
725 		bio_set_flag(bio, BIO_REMAPPED);
726 	bio->bi_opf = bio_src->bi_opf;
727 	bio->bi_ioprio = bio_src->bi_ioprio;
728 	bio->bi_write_hint = bio_src->bi_write_hint;
729 	bio->bi_iter = bio_src->bi_iter;
730 	bio->bi_io_vec = bio_src->bi_io_vec;
731 
732 	bio_clone_blkg_association(bio, bio_src);
733 	blkcg_bio_issue_init(bio);
734 }
735 EXPORT_SYMBOL(__bio_clone_fast);
736 
737 /**
738  *	bio_clone_fast - clone a bio that shares the original bio's biovec
739  *	@bio: bio to clone
740  *	@gfp_mask: allocation priority
741  *	@bs: bio_set to allocate from
742  *
743  * 	Like __bio_clone_fast, only also allocates the returned bio
744  */
745 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
746 {
747 	struct bio *b;
748 
749 	b = bio_alloc_bioset(gfp_mask, 0, bs);
750 	if (!b)
751 		return NULL;
752 
753 	__bio_clone_fast(b, bio);
754 
755 	if (bio_crypt_clone(b, bio, gfp_mask) < 0)
756 		goto err_put;
757 
758 	if (bio_integrity(bio) &&
759 	    bio_integrity_clone(b, bio, gfp_mask) < 0)
760 		goto err_put;
761 
762 	return b;
763 
764 err_put:
765 	bio_put(b);
766 	return NULL;
767 }
768 EXPORT_SYMBOL(bio_clone_fast);
769 
770 const char *bio_devname(struct bio *bio, char *buf)
771 {
772 	return bdevname(bio->bi_bdev, buf);
773 }
774 EXPORT_SYMBOL(bio_devname);
775 
776 static inline bool page_is_mergeable(const struct bio_vec *bv,
777 		struct page *page, unsigned int len, unsigned int off,
778 		bool *same_page)
779 {
780 	size_t bv_end = bv->bv_offset + bv->bv_len;
781 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
782 	phys_addr_t page_addr = page_to_phys(page);
783 
784 	if (vec_end_addr + 1 != page_addr + off)
785 		return false;
786 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
787 		return false;
788 
789 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
790 	if (*same_page)
791 		return true;
792 	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
793 }
794 
795 /*
796  * Try to merge a page into a segment, while obeying the hardware segment
797  * size limit.  This is not for normal read/write bios, but for passthrough
798  * or Zone Append operations that we can't split.
799  */
800 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
801 				 struct page *page, unsigned len,
802 				 unsigned offset, bool *same_page)
803 {
804 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
805 	unsigned long mask = queue_segment_boundary(q);
806 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
807 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
808 
809 	if ((addr1 | mask) != (addr2 | mask))
810 		return false;
811 	if (bv->bv_len + len > queue_max_segment_size(q))
812 		return false;
813 	return __bio_try_merge_page(bio, page, len, offset, same_page);
814 }
815 
816 /**
817  * bio_add_hw_page - attempt to add a page to a bio with hw constraints
818  * @q: the target queue
819  * @bio: destination bio
820  * @page: page to add
821  * @len: vec entry length
822  * @offset: vec entry offset
823  * @max_sectors: maximum number of sectors that can be added
824  * @same_page: return if the segment has been merged inside the same page
825  *
826  * Add a page to a bio while respecting the hardware max_sectors, max_segment
827  * and gap limitations.
828  */
829 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
830 		struct page *page, unsigned int len, unsigned int offset,
831 		unsigned int max_sectors, bool *same_page)
832 {
833 	struct bio_vec *bvec;
834 
835 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
836 		return 0;
837 
838 	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
839 		return 0;
840 
841 	if (bio->bi_vcnt > 0) {
842 		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
843 			return len;
844 
845 		/*
846 		 * If the queue doesn't support SG gaps and adding this segment
847 		 * would create a gap, disallow it.
848 		 */
849 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
850 		if (bvec_gap_to_prev(q, bvec, offset))
851 			return 0;
852 	}
853 
854 	if (bio_full(bio, len))
855 		return 0;
856 
857 	if (bio->bi_vcnt >= queue_max_segments(q))
858 		return 0;
859 
860 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
861 	bvec->bv_page = page;
862 	bvec->bv_len = len;
863 	bvec->bv_offset = offset;
864 	bio->bi_vcnt++;
865 	bio->bi_iter.bi_size += len;
866 	return len;
867 }
868 
869 /**
870  * bio_add_pc_page	- attempt to add page to passthrough bio
871  * @q: the target queue
872  * @bio: destination bio
873  * @page: page to add
874  * @len: vec entry length
875  * @offset: vec entry offset
876  *
877  * Attempt to add a page to the bio_vec maplist. This can fail for a
878  * number of reasons, such as the bio being full or target block device
879  * limitations. The target block device must allow bio's up to PAGE_SIZE,
880  * so it is always possible to add a single page to an empty bio.
881  *
882  * This should only be used by passthrough bios.
883  */
884 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
885 		struct page *page, unsigned int len, unsigned int offset)
886 {
887 	bool same_page = false;
888 	return bio_add_hw_page(q, bio, page, len, offset,
889 			queue_max_hw_sectors(q), &same_page);
890 }
891 EXPORT_SYMBOL(bio_add_pc_page);
892 
893 /**
894  * bio_add_zone_append_page - attempt to add page to zone-append bio
895  * @bio: destination bio
896  * @page: page to add
897  * @len: vec entry length
898  * @offset: vec entry offset
899  *
900  * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
901  * for a zone-append request. This can fail for a number of reasons, such as the
902  * bio being full or the target block device is not a zoned block device or
903  * other limitations of the target block device. The target block device must
904  * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
905  * to an empty bio.
906  *
907  * Returns: number of bytes added to the bio, or 0 in case of a failure.
908  */
909 int bio_add_zone_append_page(struct bio *bio, struct page *page,
910 			     unsigned int len, unsigned int offset)
911 {
912 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
913 	bool same_page = false;
914 
915 	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
916 		return 0;
917 
918 	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
919 		return 0;
920 
921 	return bio_add_hw_page(q, bio, page, len, offset,
922 			       queue_max_zone_append_sectors(q), &same_page);
923 }
924 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
925 
926 /**
927  * __bio_try_merge_page - try appending data to an existing bvec.
928  * @bio: destination bio
929  * @page: start page to add
930  * @len: length of the data to add
931  * @off: offset of the data relative to @page
932  * @same_page: return if the segment has been merged inside the same page
933  *
934  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
935  * useful optimisation for file systems with a block size smaller than the
936  * page size.
937  *
938  * Warn if (@len, @off) crosses pages in case that @same_page is true.
939  *
940  * Return %true on success or %false on failure.
941  */
942 bool __bio_try_merge_page(struct bio *bio, struct page *page,
943 		unsigned int len, unsigned int off, bool *same_page)
944 {
945 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
946 		return false;
947 
948 	if (bio->bi_vcnt > 0) {
949 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
950 
951 		if (page_is_mergeable(bv, page, len, off, same_page)) {
952 			if (bio->bi_iter.bi_size > UINT_MAX - len) {
953 				*same_page = false;
954 				return false;
955 			}
956 			bv->bv_len += len;
957 			bio->bi_iter.bi_size += len;
958 			return true;
959 		}
960 	}
961 	return false;
962 }
963 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
964 
965 /**
966  * __bio_add_page - add page(s) to a bio in a new segment
967  * @bio: destination bio
968  * @page: start page to add
969  * @len: length of the data to add, may cross pages
970  * @off: offset of the data relative to @page, may cross pages
971  *
972  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
973  * that @bio has space for another bvec.
974  */
975 void __bio_add_page(struct bio *bio, struct page *page,
976 		unsigned int len, unsigned int off)
977 {
978 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
979 
980 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
981 	WARN_ON_ONCE(bio_full(bio, len));
982 
983 	bv->bv_page = page;
984 	bv->bv_offset = off;
985 	bv->bv_len = len;
986 
987 	bio->bi_iter.bi_size += len;
988 	bio->bi_vcnt++;
989 
990 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
991 		bio_set_flag(bio, BIO_WORKINGSET);
992 }
993 EXPORT_SYMBOL_GPL(__bio_add_page);
994 
995 /**
996  *	bio_add_page	-	attempt to add page(s) to bio
997  *	@bio: destination bio
998  *	@page: start page to add
999  *	@len: vec entry length, may cross pages
1000  *	@offset: vec entry offset relative to @page, may cross pages
1001  *
1002  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1003  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1004  */
1005 int bio_add_page(struct bio *bio, struct page *page,
1006 		 unsigned int len, unsigned int offset)
1007 {
1008 	bool same_page = false;
1009 
1010 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1011 		if (bio_full(bio, len))
1012 			return 0;
1013 		__bio_add_page(bio, page, len, offset);
1014 	}
1015 	return len;
1016 }
1017 EXPORT_SYMBOL(bio_add_page);
1018 
1019 void bio_release_pages(struct bio *bio, bool mark_dirty)
1020 {
1021 	struct bvec_iter_all iter_all;
1022 	struct bio_vec *bvec;
1023 
1024 	if (bio_flagged(bio, BIO_NO_PAGE_REF))
1025 		return;
1026 
1027 	bio_for_each_segment_all(bvec, bio, iter_all) {
1028 		if (mark_dirty && !PageCompound(bvec->bv_page))
1029 			set_page_dirty_lock(bvec->bv_page);
1030 		put_page(bvec->bv_page);
1031 	}
1032 }
1033 EXPORT_SYMBOL_GPL(bio_release_pages);
1034 
1035 static void __bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1036 {
1037 	WARN_ON_ONCE(bio->bi_max_vecs);
1038 
1039 	bio->bi_vcnt = iter->nr_segs;
1040 	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1041 	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1042 	bio->bi_iter.bi_size = iter->count;
1043 	bio_set_flag(bio, BIO_NO_PAGE_REF);
1044 	bio_set_flag(bio, BIO_CLONED);
1045 }
1046 
1047 static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1048 {
1049 	__bio_iov_bvec_set(bio, iter);
1050 	iov_iter_advance(iter, iter->count);
1051 	return 0;
1052 }
1053 
1054 static int bio_iov_bvec_set_append(struct bio *bio, struct iov_iter *iter)
1055 {
1056 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1057 	struct iov_iter i = *iter;
1058 
1059 	iov_iter_truncate(&i, queue_max_zone_append_sectors(q) << 9);
1060 	__bio_iov_bvec_set(bio, &i);
1061 	iov_iter_advance(iter, i.count);
1062 	return 0;
1063 }
1064 
1065 static void bio_put_pages(struct page **pages, size_t size, size_t off)
1066 {
1067 	size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1068 
1069 	for (i = 0; i < nr; i++)
1070 		put_page(pages[i]);
1071 }
1072 
1073 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
1074 
1075 /**
1076  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1077  * @bio: bio to add pages to
1078  * @iter: iov iterator describing the region to be mapped
1079  *
1080  * Pins pages from *iter and appends them to @bio's bvec array. The
1081  * pages will have to be released using put_page() when done.
1082  * For multi-segment *iter, this function only adds pages from the
1083  * next non-empty segment of the iov iterator.
1084  */
1085 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1086 {
1087 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1088 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1089 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1090 	struct page **pages = (struct page **)bv;
1091 	bool same_page = false;
1092 	ssize_t size, left;
1093 	unsigned len, i;
1094 	size_t offset;
1095 
1096 	/*
1097 	 * Move page array up in the allocated memory for the bio vecs as far as
1098 	 * possible so that we can start filling biovecs from the beginning
1099 	 * without overwriting the temporary page array.
1100 	*/
1101 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1102 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1103 
1104 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1105 	if (unlikely(size <= 0))
1106 		return size ? size : -EFAULT;
1107 
1108 	for (left = size, i = 0; left > 0; left -= len, i++) {
1109 		struct page *page = pages[i];
1110 
1111 		len = min_t(size_t, PAGE_SIZE - offset, left);
1112 
1113 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1114 			if (same_page)
1115 				put_page(page);
1116 		} else {
1117 			if (WARN_ON_ONCE(bio_full(bio, len))) {
1118 				bio_put_pages(pages + i, left, offset);
1119 				return -EINVAL;
1120 			}
1121 			__bio_add_page(bio, page, len, offset);
1122 		}
1123 		offset = 0;
1124 	}
1125 
1126 	iov_iter_advance(iter, size);
1127 	return 0;
1128 }
1129 
1130 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1131 {
1132 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1133 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1134 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1135 	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1136 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1137 	struct page **pages = (struct page **)bv;
1138 	ssize_t size, left;
1139 	unsigned len, i;
1140 	size_t offset;
1141 	int ret = 0;
1142 
1143 	if (WARN_ON_ONCE(!max_append_sectors))
1144 		return 0;
1145 
1146 	/*
1147 	 * Move page array up in the allocated memory for the bio vecs as far as
1148 	 * possible so that we can start filling biovecs from the beginning
1149 	 * without overwriting the temporary page array.
1150 	 */
1151 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1152 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1153 
1154 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1155 	if (unlikely(size <= 0))
1156 		return size ? size : -EFAULT;
1157 
1158 	for (left = size, i = 0; left > 0; left -= len, i++) {
1159 		struct page *page = pages[i];
1160 		bool same_page = false;
1161 
1162 		len = min_t(size_t, PAGE_SIZE - offset, left);
1163 		if (bio_add_hw_page(q, bio, page, len, offset,
1164 				max_append_sectors, &same_page) != len) {
1165 			bio_put_pages(pages + i, left, offset);
1166 			ret = -EINVAL;
1167 			break;
1168 		}
1169 		if (same_page)
1170 			put_page(page);
1171 		offset = 0;
1172 	}
1173 
1174 	iov_iter_advance(iter, size - left);
1175 	return ret;
1176 }
1177 
1178 /**
1179  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1180  * @bio: bio to add pages to
1181  * @iter: iov iterator describing the region to be added
1182  *
1183  * This takes either an iterator pointing to user memory, or one pointing to
1184  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1185  * map them into the kernel. On IO completion, the caller should put those
1186  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1187  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1188  * to ensure the bvecs and pages stay referenced until the submitted I/O is
1189  * completed by a call to ->ki_complete() or returns with an error other than
1190  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1191  * on IO completion. If it isn't, then pages should be released.
1192  *
1193  * The function tries, but does not guarantee, to pin as many pages as
1194  * fit into the bio, or are requested in @iter, whatever is smaller. If
1195  * MM encounters an error pinning the requested pages, it stops. Error
1196  * is returned only if 0 pages could be pinned.
1197  *
1198  * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1199  * responsible for setting BIO_WORKINGSET if necessary.
1200  */
1201 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1202 {
1203 	int ret = 0;
1204 
1205 	if (iov_iter_is_bvec(iter)) {
1206 		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1207 			return bio_iov_bvec_set_append(bio, iter);
1208 		return bio_iov_bvec_set(bio, iter);
1209 	}
1210 
1211 	do {
1212 		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1213 			ret = __bio_iov_append_get_pages(bio, iter);
1214 		else
1215 			ret = __bio_iov_iter_get_pages(bio, iter);
1216 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1217 
1218 	/* don't account direct I/O as memory stall */
1219 	bio_clear_flag(bio, BIO_WORKINGSET);
1220 	return bio->bi_vcnt ? 0 : ret;
1221 }
1222 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1223 
1224 static void submit_bio_wait_endio(struct bio *bio)
1225 {
1226 	complete(bio->bi_private);
1227 }
1228 
1229 /**
1230  * submit_bio_wait - submit a bio, and wait until it completes
1231  * @bio: The &struct bio which describes the I/O
1232  *
1233  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1234  * bio_endio() on failure.
1235  *
1236  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1237  * result in bio reference to be consumed. The caller must drop the reference
1238  * on his own.
1239  */
1240 int submit_bio_wait(struct bio *bio)
1241 {
1242 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1243 			bio->bi_bdev->bd_disk->lockdep_map);
1244 	unsigned long hang_check;
1245 
1246 	bio->bi_private = &done;
1247 	bio->bi_end_io = submit_bio_wait_endio;
1248 	bio->bi_opf |= REQ_SYNC;
1249 	submit_bio(bio);
1250 
1251 	/* Prevent hang_check timer from firing at us during very long I/O */
1252 	hang_check = sysctl_hung_task_timeout_secs;
1253 	if (hang_check)
1254 		while (!wait_for_completion_io_timeout(&done,
1255 					hang_check * (HZ/2)))
1256 			;
1257 	else
1258 		wait_for_completion_io(&done);
1259 
1260 	return blk_status_to_errno(bio->bi_status);
1261 }
1262 EXPORT_SYMBOL(submit_bio_wait);
1263 
1264 /**
1265  * bio_advance - increment/complete a bio by some number of bytes
1266  * @bio:	bio to advance
1267  * @bytes:	number of bytes to complete
1268  *
1269  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1270  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1271  * be updated on the last bvec as well.
1272  *
1273  * @bio will then represent the remaining, uncompleted portion of the io.
1274  */
1275 void bio_advance(struct bio *bio, unsigned bytes)
1276 {
1277 	if (bio_integrity(bio))
1278 		bio_integrity_advance(bio, bytes);
1279 
1280 	bio_crypt_advance(bio, bytes);
1281 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1282 }
1283 EXPORT_SYMBOL(bio_advance);
1284 
1285 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1286 			struct bio *src, struct bvec_iter *src_iter)
1287 {
1288 	while (src_iter->bi_size && dst_iter->bi_size) {
1289 		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1290 		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1291 		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1292 		void *src_buf;
1293 
1294 		src_buf = bvec_kmap_local(&src_bv);
1295 		memcpy_to_bvec(&dst_bv, src_buf);
1296 		kunmap_local(src_buf);
1297 
1298 		bio_advance_iter_single(src, src_iter, bytes);
1299 		bio_advance_iter_single(dst, dst_iter, bytes);
1300 	}
1301 }
1302 EXPORT_SYMBOL(bio_copy_data_iter);
1303 
1304 /**
1305  * bio_copy_data - copy contents of data buffers from one bio to another
1306  * @src: source bio
1307  * @dst: destination bio
1308  *
1309  * Stops when it reaches the end of either @src or @dst - that is, copies
1310  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1311  */
1312 void bio_copy_data(struct bio *dst, struct bio *src)
1313 {
1314 	struct bvec_iter src_iter = src->bi_iter;
1315 	struct bvec_iter dst_iter = dst->bi_iter;
1316 
1317 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1318 }
1319 EXPORT_SYMBOL(bio_copy_data);
1320 
1321 void bio_free_pages(struct bio *bio)
1322 {
1323 	struct bio_vec *bvec;
1324 	struct bvec_iter_all iter_all;
1325 
1326 	bio_for_each_segment_all(bvec, bio, iter_all)
1327 		__free_page(bvec->bv_page);
1328 }
1329 EXPORT_SYMBOL(bio_free_pages);
1330 
1331 /*
1332  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1333  * for performing direct-IO in BIOs.
1334  *
1335  * The problem is that we cannot run set_page_dirty() from interrupt context
1336  * because the required locks are not interrupt-safe.  So what we can do is to
1337  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1338  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1339  * in process context.
1340  *
1341  * We special-case compound pages here: normally this means reads into hugetlb
1342  * pages.  The logic in here doesn't really work right for compound pages
1343  * because the VM does not uniformly chase down the head page in all cases.
1344  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1345  * handle them at all.  So we skip compound pages here at an early stage.
1346  *
1347  * Note that this code is very hard to test under normal circumstances because
1348  * direct-io pins the pages with get_user_pages().  This makes
1349  * is_page_cache_freeable return false, and the VM will not clean the pages.
1350  * But other code (eg, flusher threads) could clean the pages if they are mapped
1351  * pagecache.
1352  *
1353  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1354  * deferred bio dirtying paths.
1355  */
1356 
1357 /*
1358  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1359  */
1360 void bio_set_pages_dirty(struct bio *bio)
1361 {
1362 	struct bio_vec *bvec;
1363 	struct bvec_iter_all iter_all;
1364 
1365 	bio_for_each_segment_all(bvec, bio, iter_all) {
1366 		if (!PageCompound(bvec->bv_page))
1367 			set_page_dirty_lock(bvec->bv_page);
1368 	}
1369 }
1370 
1371 /*
1372  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1373  * If they are, then fine.  If, however, some pages are clean then they must
1374  * have been written out during the direct-IO read.  So we take another ref on
1375  * the BIO and re-dirty the pages in process context.
1376  *
1377  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1378  * here on.  It will run one put_page() against each page and will run one
1379  * bio_put() against the BIO.
1380  */
1381 
1382 static void bio_dirty_fn(struct work_struct *work);
1383 
1384 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1385 static DEFINE_SPINLOCK(bio_dirty_lock);
1386 static struct bio *bio_dirty_list;
1387 
1388 /*
1389  * This runs in process context
1390  */
1391 static void bio_dirty_fn(struct work_struct *work)
1392 {
1393 	struct bio *bio, *next;
1394 
1395 	spin_lock_irq(&bio_dirty_lock);
1396 	next = bio_dirty_list;
1397 	bio_dirty_list = NULL;
1398 	spin_unlock_irq(&bio_dirty_lock);
1399 
1400 	while ((bio = next) != NULL) {
1401 		next = bio->bi_private;
1402 
1403 		bio_release_pages(bio, true);
1404 		bio_put(bio);
1405 	}
1406 }
1407 
1408 void bio_check_pages_dirty(struct bio *bio)
1409 {
1410 	struct bio_vec *bvec;
1411 	unsigned long flags;
1412 	struct bvec_iter_all iter_all;
1413 
1414 	bio_for_each_segment_all(bvec, bio, iter_all) {
1415 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1416 			goto defer;
1417 	}
1418 
1419 	bio_release_pages(bio, false);
1420 	bio_put(bio);
1421 	return;
1422 defer:
1423 	spin_lock_irqsave(&bio_dirty_lock, flags);
1424 	bio->bi_private = bio_dirty_list;
1425 	bio_dirty_list = bio;
1426 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1427 	schedule_work(&bio_dirty_work);
1428 }
1429 
1430 static inline bool bio_remaining_done(struct bio *bio)
1431 {
1432 	/*
1433 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1434 	 * we always end io on the first invocation.
1435 	 */
1436 	if (!bio_flagged(bio, BIO_CHAIN))
1437 		return true;
1438 
1439 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1440 
1441 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1442 		bio_clear_flag(bio, BIO_CHAIN);
1443 		return true;
1444 	}
1445 
1446 	return false;
1447 }
1448 
1449 /**
1450  * bio_endio - end I/O on a bio
1451  * @bio:	bio
1452  *
1453  * Description:
1454  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1455  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1456  *   bio unless they own it and thus know that it has an end_io function.
1457  *
1458  *   bio_endio() can be called several times on a bio that has been chained
1459  *   using bio_chain().  The ->bi_end_io() function will only be called the
1460  *   last time.
1461  **/
1462 void bio_endio(struct bio *bio)
1463 {
1464 again:
1465 	if (!bio_remaining_done(bio))
1466 		return;
1467 	if (!bio_integrity_endio(bio))
1468 		return;
1469 
1470 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACKED))
1471 		rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
1472 
1473 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1474 		trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
1475 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1476 	}
1477 
1478 	/*
1479 	 * Need to have a real endio function for chained bios, otherwise
1480 	 * various corner cases will break (like stacking block devices that
1481 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1482 	 * recursion and blowing the stack. Tail call optimization would
1483 	 * handle this, but compiling with frame pointers also disables
1484 	 * gcc's sibling call optimization.
1485 	 */
1486 	if (bio->bi_end_io == bio_chain_endio) {
1487 		bio = __bio_chain_endio(bio);
1488 		goto again;
1489 	}
1490 
1491 	blk_throtl_bio_endio(bio);
1492 	/* release cgroup info */
1493 	bio_uninit(bio);
1494 	if (bio->bi_end_io)
1495 		bio->bi_end_io(bio);
1496 }
1497 EXPORT_SYMBOL(bio_endio);
1498 
1499 /**
1500  * bio_split - split a bio
1501  * @bio:	bio to split
1502  * @sectors:	number of sectors to split from the front of @bio
1503  * @gfp:	gfp mask
1504  * @bs:		bio set to allocate from
1505  *
1506  * Allocates and returns a new bio which represents @sectors from the start of
1507  * @bio, and updates @bio to represent the remaining sectors.
1508  *
1509  * Unless this is a discard request the newly allocated bio will point
1510  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1511  * neither @bio nor @bs are freed before the split bio.
1512  */
1513 struct bio *bio_split(struct bio *bio, int sectors,
1514 		      gfp_t gfp, struct bio_set *bs)
1515 {
1516 	struct bio *split;
1517 
1518 	BUG_ON(sectors <= 0);
1519 	BUG_ON(sectors >= bio_sectors(bio));
1520 
1521 	/* Zone append commands cannot be split */
1522 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1523 		return NULL;
1524 
1525 	split = bio_clone_fast(bio, gfp, bs);
1526 	if (!split)
1527 		return NULL;
1528 
1529 	split->bi_iter.bi_size = sectors << 9;
1530 
1531 	if (bio_integrity(split))
1532 		bio_integrity_trim(split);
1533 
1534 	bio_advance(bio, split->bi_iter.bi_size);
1535 
1536 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1537 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1538 
1539 	return split;
1540 }
1541 EXPORT_SYMBOL(bio_split);
1542 
1543 /**
1544  * bio_trim - trim a bio
1545  * @bio:	bio to trim
1546  * @offset:	number of sectors to trim from the front of @bio
1547  * @size:	size we want to trim @bio to, in sectors
1548  *
1549  * This function is typically used for bios that are cloned and submitted
1550  * to the underlying device in parts.
1551  */
1552 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1553 {
1554 	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1555 			 offset + size > bio->bi_iter.bi_size))
1556 		return;
1557 
1558 	size <<= 9;
1559 	if (offset == 0 && size == bio->bi_iter.bi_size)
1560 		return;
1561 
1562 	bio_advance(bio, offset << 9);
1563 	bio->bi_iter.bi_size = size;
1564 
1565 	if (bio_integrity(bio))
1566 		bio_integrity_trim(bio);
1567 }
1568 EXPORT_SYMBOL_GPL(bio_trim);
1569 
1570 /*
1571  * create memory pools for biovec's in a bio_set.
1572  * use the global biovec slabs created for general use.
1573  */
1574 int biovec_init_pool(mempool_t *pool, int pool_entries)
1575 {
1576 	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1577 
1578 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1579 }
1580 
1581 /*
1582  * bioset_exit - exit a bioset initialized with bioset_init()
1583  *
1584  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1585  * kzalloc()).
1586  */
1587 void bioset_exit(struct bio_set *bs)
1588 {
1589 	bio_alloc_cache_destroy(bs);
1590 	if (bs->rescue_workqueue)
1591 		destroy_workqueue(bs->rescue_workqueue);
1592 	bs->rescue_workqueue = NULL;
1593 
1594 	mempool_exit(&bs->bio_pool);
1595 	mempool_exit(&bs->bvec_pool);
1596 
1597 	bioset_integrity_free(bs);
1598 	if (bs->bio_slab)
1599 		bio_put_slab(bs);
1600 	bs->bio_slab = NULL;
1601 }
1602 EXPORT_SYMBOL(bioset_exit);
1603 
1604 /**
1605  * bioset_init - Initialize a bio_set
1606  * @bs:		pool to initialize
1607  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1608  * @front_pad:	Number of bytes to allocate in front of the returned bio
1609  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1610  *              and %BIOSET_NEED_RESCUER
1611  *
1612  * Description:
1613  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1614  *    to ask for a number of bytes to be allocated in front of the bio.
1615  *    Front pad allocation is useful for embedding the bio inside
1616  *    another structure, to avoid allocating extra data to go with the bio.
1617  *    Note that the bio must be embedded at the END of that structure always,
1618  *    or things will break badly.
1619  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1620  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1621  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1622  *    dispatch queued requests when the mempool runs out of space.
1623  *
1624  */
1625 int bioset_init(struct bio_set *bs,
1626 		unsigned int pool_size,
1627 		unsigned int front_pad,
1628 		int flags)
1629 {
1630 	bs->front_pad = front_pad;
1631 	if (flags & BIOSET_NEED_BVECS)
1632 		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1633 	else
1634 		bs->back_pad = 0;
1635 
1636 	spin_lock_init(&bs->rescue_lock);
1637 	bio_list_init(&bs->rescue_list);
1638 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1639 
1640 	bs->bio_slab = bio_find_or_create_slab(bs);
1641 	if (!bs->bio_slab)
1642 		return -ENOMEM;
1643 
1644 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1645 		goto bad;
1646 
1647 	if ((flags & BIOSET_NEED_BVECS) &&
1648 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1649 		goto bad;
1650 
1651 	if (flags & BIOSET_NEED_RESCUER) {
1652 		bs->rescue_workqueue = alloc_workqueue("bioset",
1653 							WQ_MEM_RECLAIM, 0);
1654 		if (!bs->rescue_workqueue)
1655 			goto bad;
1656 	}
1657 	if (flags & BIOSET_PERCPU_CACHE) {
1658 		bs->cache = alloc_percpu(struct bio_alloc_cache);
1659 		if (!bs->cache)
1660 			goto bad;
1661 		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1662 	}
1663 
1664 	return 0;
1665 bad:
1666 	bioset_exit(bs);
1667 	return -ENOMEM;
1668 }
1669 EXPORT_SYMBOL(bioset_init);
1670 
1671 /*
1672  * Initialize and setup a new bio_set, based on the settings from
1673  * another bio_set.
1674  */
1675 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1676 {
1677 	int flags;
1678 
1679 	flags = 0;
1680 	if (src->bvec_pool.min_nr)
1681 		flags |= BIOSET_NEED_BVECS;
1682 	if (src->rescue_workqueue)
1683 		flags |= BIOSET_NEED_RESCUER;
1684 
1685 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1686 }
1687 EXPORT_SYMBOL(bioset_init_from_src);
1688 
1689 /**
1690  * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
1691  * @kiocb:	kiocb describing the IO
1692  * @nr_vecs:	number of iovecs to pre-allocate
1693  * @bs:		bio_set to allocate from
1694  *
1695  * Description:
1696  *    Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
1697  *    used to check if we should dip into the per-cpu bio_set allocation
1698  *    cache. The allocation uses GFP_KERNEL internally. On return, the
1699  *    bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
1700  *    MUST be done from process context, not hard/soft IRQ.
1701  *
1702  */
1703 struct bio *bio_alloc_kiocb(struct kiocb *kiocb, unsigned short nr_vecs,
1704 			    struct bio_set *bs)
1705 {
1706 	struct bio_alloc_cache *cache;
1707 	struct bio *bio;
1708 
1709 	if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
1710 		return bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1711 
1712 	cache = per_cpu_ptr(bs->cache, get_cpu());
1713 	bio = bio_list_pop(&cache->free_list);
1714 	if (bio) {
1715 		cache->nr--;
1716 		put_cpu();
1717 		bio_init(bio, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs);
1718 		bio->bi_pool = bs;
1719 		bio_set_flag(bio, BIO_PERCPU_CACHE);
1720 		return bio;
1721 	}
1722 	put_cpu();
1723 	bio = bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1724 	bio_set_flag(bio, BIO_PERCPU_CACHE);
1725 	return bio;
1726 }
1727 EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
1728 
1729 static int __init init_bio(void)
1730 {
1731 	int i;
1732 
1733 	bio_integrity_init();
1734 
1735 	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1736 		struct biovec_slab *bvs = bvec_slabs + i;
1737 
1738 		bvs->slab = kmem_cache_create(bvs->name,
1739 				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1740 				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1741 	}
1742 
1743 	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1744 					bio_cpu_dead);
1745 
1746 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1747 		panic("bio: can't allocate bios\n");
1748 
1749 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1750 		panic("bio: can't create integrity pool\n");
1751 
1752 	return 0;
1753 }
1754 subsys_initcall(init_bio);
1755