xref: /openbmc/linux/block/bio.c (revision 3d745ea5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 
22 #include <trace/events/block.h>
23 #include "blk.h"
24 #include "blk-rq-qos.h"
25 
26 /*
27  * Test patch to inline a certain number of bi_io_vec's inside the bio
28  * itself, to shrink a bio data allocation from two mempool calls to one
29  */
30 #define BIO_INLINE_VECS		4
31 
32 /*
33  * if you change this list, also change bvec_alloc or things will
34  * break badly! cannot be bigger than what you can fit into an
35  * unsigned short
36  */
37 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
38 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
39 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
40 };
41 #undef BV
42 
43 /*
44  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
45  * IO code that does not need private memory pools.
46  */
47 struct bio_set fs_bio_set;
48 EXPORT_SYMBOL(fs_bio_set);
49 
50 /*
51  * Our slab pool management
52  */
53 struct bio_slab {
54 	struct kmem_cache *slab;
55 	unsigned int slab_ref;
56 	unsigned int slab_size;
57 	char name[8];
58 };
59 static DEFINE_MUTEX(bio_slab_lock);
60 static struct bio_slab *bio_slabs;
61 static unsigned int bio_slab_nr, bio_slab_max;
62 
63 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
64 {
65 	unsigned int sz = sizeof(struct bio) + extra_size;
66 	struct kmem_cache *slab = NULL;
67 	struct bio_slab *bslab, *new_bio_slabs;
68 	unsigned int new_bio_slab_max;
69 	unsigned int i, entry = -1;
70 
71 	mutex_lock(&bio_slab_lock);
72 
73 	i = 0;
74 	while (i < bio_slab_nr) {
75 		bslab = &bio_slabs[i];
76 
77 		if (!bslab->slab && entry == -1)
78 			entry = i;
79 		else if (bslab->slab_size == sz) {
80 			slab = bslab->slab;
81 			bslab->slab_ref++;
82 			break;
83 		}
84 		i++;
85 	}
86 
87 	if (slab)
88 		goto out_unlock;
89 
90 	if (bio_slab_nr == bio_slab_max && entry == -1) {
91 		new_bio_slab_max = bio_slab_max << 1;
92 		new_bio_slabs = krealloc(bio_slabs,
93 					 new_bio_slab_max * sizeof(struct bio_slab),
94 					 GFP_KERNEL);
95 		if (!new_bio_slabs)
96 			goto out_unlock;
97 		bio_slab_max = new_bio_slab_max;
98 		bio_slabs = new_bio_slabs;
99 	}
100 	if (entry == -1)
101 		entry = bio_slab_nr++;
102 
103 	bslab = &bio_slabs[entry];
104 
105 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
106 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
107 				 SLAB_HWCACHE_ALIGN, NULL);
108 	if (!slab)
109 		goto out_unlock;
110 
111 	bslab->slab = slab;
112 	bslab->slab_ref = 1;
113 	bslab->slab_size = sz;
114 out_unlock:
115 	mutex_unlock(&bio_slab_lock);
116 	return slab;
117 }
118 
119 static void bio_put_slab(struct bio_set *bs)
120 {
121 	struct bio_slab *bslab = NULL;
122 	unsigned int i;
123 
124 	mutex_lock(&bio_slab_lock);
125 
126 	for (i = 0; i < bio_slab_nr; i++) {
127 		if (bs->bio_slab == bio_slabs[i].slab) {
128 			bslab = &bio_slabs[i];
129 			break;
130 		}
131 	}
132 
133 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
134 		goto out;
135 
136 	WARN_ON(!bslab->slab_ref);
137 
138 	if (--bslab->slab_ref)
139 		goto out;
140 
141 	kmem_cache_destroy(bslab->slab);
142 	bslab->slab = NULL;
143 
144 out:
145 	mutex_unlock(&bio_slab_lock);
146 }
147 
148 unsigned int bvec_nr_vecs(unsigned short idx)
149 {
150 	return bvec_slabs[--idx].nr_vecs;
151 }
152 
153 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
154 {
155 	if (!idx)
156 		return;
157 	idx--;
158 
159 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
160 
161 	if (idx == BVEC_POOL_MAX) {
162 		mempool_free(bv, pool);
163 	} else {
164 		struct biovec_slab *bvs = bvec_slabs + idx;
165 
166 		kmem_cache_free(bvs->slab, bv);
167 	}
168 }
169 
170 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
171 			   mempool_t *pool)
172 {
173 	struct bio_vec *bvl;
174 
175 	/*
176 	 * see comment near bvec_array define!
177 	 */
178 	switch (nr) {
179 	case 1:
180 		*idx = 0;
181 		break;
182 	case 2 ... 4:
183 		*idx = 1;
184 		break;
185 	case 5 ... 16:
186 		*idx = 2;
187 		break;
188 	case 17 ... 64:
189 		*idx = 3;
190 		break;
191 	case 65 ... 128:
192 		*idx = 4;
193 		break;
194 	case 129 ... BIO_MAX_PAGES:
195 		*idx = 5;
196 		break;
197 	default:
198 		return NULL;
199 	}
200 
201 	/*
202 	 * idx now points to the pool we want to allocate from. only the
203 	 * 1-vec entry pool is mempool backed.
204 	 */
205 	if (*idx == BVEC_POOL_MAX) {
206 fallback:
207 		bvl = mempool_alloc(pool, gfp_mask);
208 	} else {
209 		struct biovec_slab *bvs = bvec_slabs + *idx;
210 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
211 
212 		/*
213 		 * Make this allocation restricted and don't dump info on
214 		 * allocation failures, since we'll fallback to the mempool
215 		 * in case of failure.
216 		 */
217 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
218 
219 		/*
220 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
221 		 * is set, retry with the 1-entry mempool
222 		 */
223 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
224 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
225 			*idx = BVEC_POOL_MAX;
226 			goto fallback;
227 		}
228 	}
229 
230 	(*idx)++;
231 	return bvl;
232 }
233 
234 void bio_uninit(struct bio *bio)
235 {
236 	bio_disassociate_blkg(bio);
237 
238 	if (bio_integrity(bio))
239 		bio_integrity_free(bio);
240 }
241 EXPORT_SYMBOL(bio_uninit);
242 
243 static void bio_free(struct bio *bio)
244 {
245 	struct bio_set *bs = bio->bi_pool;
246 	void *p;
247 
248 	bio_uninit(bio);
249 
250 	if (bs) {
251 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
252 
253 		/*
254 		 * If we have front padding, adjust the bio pointer before freeing
255 		 */
256 		p = bio;
257 		p -= bs->front_pad;
258 
259 		mempool_free(p, &bs->bio_pool);
260 	} else {
261 		/* Bio was allocated by bio_kmalloc() */
262 		kfree(bio);
263 	}
264 }
265 
266 /*
267  * Users of this function have their own bio allocation. Subsequently,
268  * they must remember to pair any call to bio_init() with bio_uninit()
269  * when IO has completed, or when the bio is released.
270  */
271 void bio_init(struct bio *bio, struct bio_vec *table,
272 	      unsigned short max_vecs)
273 {
274 	memset(bio, 0, sizeof(*bio));
275 	atomic_set(&bio->__bi_remaining, 1);
276 	atomic_set(&bio->__bi_cnt, 1);
277 
278 	bio->bi_io_vec = table;
279 	bio->bi_max_vecs = max_vecs;
280 }
281 EXPORT_SYMBOL(bio_init);
282 
283 /**
284  * bio_reset - reinitialize a bio
285  * @bio:	bio to reset
286  *
287  * Description:
288  *   After calling bio_reset(), @bio will be in the same state as a freshly
289  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
290  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
291  *   comment in struct bio.
292  */
293 void bio_reset(struct bio *bio)
294 {
295 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
296 
297 	bio_uninit(bio);
298 
299 	memset(bio, 0, BIO_RESET_BYTES);
300 	bio->bi_flags = flags;
301 	atomic_set(&bio->__bi_remaining, 1);
302 }
303 EXPORT_SYMBOL(bio_reset);
304 
305 static struct bio *__bio_chain_endio(struct bio *bio)
306 {
307 	struct bio *parent = bio->bi_private;
308 
309 	if (!parent->bi_status)
310 		parent->bi_status = bio->bi_status;
311 	bio_put(bio);
312 	return parent;
313 }
314 
315 static void bio_chain_endio(struct bio *bio)
316 {
317 	bio_endio(__bio_chain_endio(bio));
318 }
319 
320 /**
321  * bio_chain - chain bio completions
322  * @bio: the target bio
323  * @parent: the @bio's parent bio
324  *
325  * The caller won't have a bi_end_io called when @bio completes - instead,
326  * @parent's bi_end_io won't be called until both @parent and @bio have
327  * completed; the chained bio will also be freed when it completes.
328  *
329  * The caller must not set bi_private or bi_end_io in @bio.
330  */
331 void bio_chain(struct bio *bio, struct bio *parent)
332 {
333 	BUG_ON(bio->bi_private || bio->bi_end_io);
334 
335 	bio->bi_private = parent;
336 	bio->bi_end_io	= bio_chain_endio;
337 	bio_inc_remaining(parent);
338 }
339 EXPORT_SYMBOL(bio_chain);
340 
341 static void bio_alloc_rescue(struct work_struct *work)
342 {
343 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
344 	struct bio *bio;
345 
346 	while (1) {
347 		spin_lock(&bs->rescue_lock);
348 		bio = bio_list_pop(&bs->rescue_list);
349 		spin_unlock(&bs->rescue_lock);
350 
351 		if (!bio)
352 			break;
353 
354 		generic_make_request(bio);
355 	}
356 }
357 
358 static void punt_bios_to_rescuer(struct bio_set *bs)
359 {
360 	struct bio_list punt, nopunt;
361 	struct bio *bio;
362 
363 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
364 		return;
365 	/*
366 	 * In order to guarantee forward progress we must punt only bios that
367 	 * were allocated from this bio_set; otherwise, if there was a bio on
368 	 * there for a stacking driver higher up in the stack, processing it
369 	 * could require allocating bios from this bio_set, and doing that from
370 	 * our own rescuer would be bad.
371 	 *
372 	 * Since bio lists are singly linked, pop them all instead of trying to
373 	 * remove from the middle of the list:
374 	 */
375 
376 	bio_list_init(&punt);
377 	bio_list_init(&nopunt);
378 
379 	while ((bio = bio_list_pop(&current->bio_list[0])))
380 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
381 	current->bio_list[0] = nopunt;
382 
383 	bio_list_init(&nopunt);
384 	while ((bio = bio_list_pop(&current->bio_list[1])))
385 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
386 	current->bio_list[1] = nopunt;
387 
388 	spin_lock(&bs->rescue_lock);
389 	bio_list_merge(&bs->rescue_list, &punt);
390 	spin_unlock(&bs->rescue_lock);
391 
392 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
393 }
394 
395 /**
396  * bio_alloc_bioset - allocate a bio for I/O
397  * @gfp_mask:   the GFP_* mask given to the slab allocator
398  * @nr_iovecs:	number of iovecs to pre-allocate
399  * @bs:		the bio_set to allocate from.
400  *
401  * Description:
402  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
403  *   backed by the @bs's mempool.
404  *
405  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
406  *   always be able to allocate a bio. This is due to the mempool guarantees.
407  *   To make this work, callers must never allocate more than 1 bio at a time
408  *   from this pool. Callers that need to allocate more than 1 bio must always
409  *   submit the previously allocated bio for IO before attempting to allocate
410  *   a new one. Failure to do so can cause deadlocks under memory pressure.
411  *
412  *   Note that when running under generic_make_request() (i.e. any block
413  *   driver), bios are not submitted until after you return - see the code in
414  *   generic_make_request() that converts recursion into iteration, to prevent
415  *   stack overflows.
416  *
417  *   This would normally mean allocating multiple bios under
418  *   generic_make_request() would be susceptible to deadlocks, but we have
419  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
420  *   thread.
421  *
422  *   However, we do not guarantee forward progress for allocations from other
423  *   mempools. Doing multiple allocations from the same mempool under
424  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
425  *   for per bio allocations.
426  *
427  *   RETURNS:
428  *   Pointer to new bio on success, NULL on failure.
429  */
430 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
431 			     struct bio_set *bs)
432 {
433 	gfp_t saved_gfp = gfp_mask;
434 	unsigned front_pad;
435 	unsigned inline_vecs;
436 	struct bio_vec *bvl = NULL;
437 	struct bio *bio;
438 	void *p;
439 
440 	if (!bs) {
441 		if (nr_iovecs > UIO_MAXIOV)
442 			return NULL;
443 
444 		p = kmalloc(sizeof(struct bio) +
445 			    nr_iovecs * sizeof(struct bio_vec),
446 			    gfp_mask);
447 		front_pad = 0;
448 		inline_vecs = nr_iovecs;
449 	} else {
450 		/* should not use nobvec bioset for nr_iovecs > 0 */
451 		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
452 				 nr_iovecs > 0))
453 			return NULL;
454 		/*
455 		 * generic_make_request() converts recursion to iteration; this
456 		 * means if we're running beneath it, any bios we allocate and
457 		 * submit will not be submitted (and thus freed) until after we
458 		 * return.
459 		 *
460 		 * This exposes us to a potential deadlock if we allocate
461 		 * multiple bios from the same bio_set() while running
462 		 * underneath generic_make_request(). If we were to allocate
463 		 * multiple bios (say a stacking block driver that was splitting
464 		 * bios), we would deadlock if we exhausted the mempool's
465 		 * reserve.
466 		 *
467 		 * We solve this, and guarantee forward progress, with a rescuer
468 		 * workqueue per bio_set. If we go to allocate and there are
469 		 * bios on current->bio_list, we first try the allocation
470 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
471 		 * bios we would be blocking to the rescuer workqueue before
472 		 * we retry with the original gfp_flags.
473 		 */
474 
475 		if (current->bio_list &&
476 		    (!bio_list_empty(&current->bio_list[0]) ||
477 		     !bio_list_empty(&current->bio_list[1])) &&
478 		    bs->rescue_workqueue)
479 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
480 
481 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
482 		if (!p && gfp_mask != saved_gfp) {
483 			punt_bios_to_rescuer(bs);
484 			gfp_mask = saved_gfp;
485 			p = mempool_alloc(&bs->bio_pool, gfp_mask);
486 		}
487 
488 		front_pad = bs->front_pad;
489 		inline_vecs = BIO_INLINE_VECS;
490 	}
491 
492 	if (unlikely(!p))
493 		return NULL;
494 
495 	bio = p + front_pad;
496 	bio_init(bio, NULL, 0);
497 
498 	if (nr_iovecs > inline_vecs) {
499 		unsigned long idx = 0;
500 
501 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
502 		if (!bvl && gfp_mask != saved_gfp) {
503 			punt_bios_to_rescuer(bs);
504 			gfp_mask = saved_gfp;
505 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
506 		}
507 
508 		if (unlikely(!bvl))
509 			goto err_free;
510 
511 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
512 	} else if (nr_iovecs) {
513 		bvl = bio->bi_inline_vecs;
514 	}
515 
516 	bio->bi_pool = bs;
517 	bio->bi_max_vecs = nr_iovecs;
518 	bio->bi_io_vec = bvl;
519 	return bio;
520 
521 err_free:
522 	mempool_free(p, &bs->bio_pool);
523 	return NULL;
524 }
525 EXPORT_SYMBOL(bio_alloc_bioset);
526 
527 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
528 {
529 	unsigned long flags;
530 	struct bio_vec bv;
531 	struct bvec_iter iter;
532 
533 	__bio_for_each_segment(bv, bio, iter, start) {
534 		char *data = bvec_kmap_irq(&bv, &flags);
535 		memset(data, 0, bv.bv_len);
536 		flush_dcache_page(bv.bv_page);
537 		bvec_kunmap_irq(data, &flags);
538 	}
539 }
540 EXPORT_SYMBOL(zero_fill_bio_iter);
541 
542 /**
543  * bio_truncate - truncate the bio to small size of @new_size
544  * @bio:	the bio to be truncated
545  * @new_size:	new size for truncating the bio
546  *
547  * Description:
548  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
549  *   REQ_OP_READ, zero the truncated part. This function should only
550  *   be used for handling corner cases, such as bio eod.
551  */
552 void bio_truncate(struct bio *bio, unsigned new_size)
553 {
554 	struct bio_vec bv;
555 	struct bvec_iter iter;
556 	unsigned int done = 0;
557 	bool truncated = false;
558 
559 	if (new_size >= bio->bi_iter.bi_size)
560 		return;
561 
562 	if (bio_op(bio) != REQ_OP_READ)
563 		goto exit;
564 
565 	bio_for_each_segment(bv, bio, iter) {
566 		if (done + bv.bv_len > new_size) {
567 			unsigned offset;
568 
569 			if (!truncated)
570 				offset = new_size - done;
571 			else
572 				offset = 0;
573 			zero_user(bv.bv_page, offset, bv.bv_len - offset);
574 			truncated = true;
575 		}
576 		done += bv.bv_len;
577 	}
578 
579  exit:
580 	/*
581 	 * Don't touch bvec table here and make it really immutable, since
582 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
583 	 * in its .end_bio() callback.
584 	 *
585 	 * It is enough to truncate bio by updating .bi_size since we can make
586 	 * correct bvec with the updated .bi_size for drivers.
587 	 */
588 	bio->bi_iter.bi_size = new_size;
589 }
590 
591 /**
592  * guard_bio_eod - truncate a BIO to fit the block device
593  * @bio:	bio to truncate
594  *
595  * This allows us to do IO even on the odd last sectors of a device, even if the
596  * block size is some multiple of the physical sector size.
597  *
598  * We'll just truncate the bio to the size of the device, and clear the end of
599  * the buffer head manually.  Truly out-of-range accesses will turn into actual
600  * I/O errors, this only handles the "we need to be able to do I/O at the final
601  * sector" case.
602  */
603 void guard_bio_eod(struct bio *bio)
604 {
605 	sector_t maxsector;
606 	struct hd_struct *part;
607 
608 	rcu_read_lock();
609 	part = __disk_get_part(bio->bi_disk, bio->bi_partno);
610 	if (part)
611 		maxsector = part_nr_sects_read(part);
612 	else
613 		maxsector = get_capacity(bio->bi_disk);
614 	rcu_read_unlock();
615 
616 	if (!maxsector)
617 		return;
618 
619 	/*
620 	 * If the *whole* IO is past the end of the device,
621 	 * let it through, and the IO layer will turn it into
622 	 * an EIO.
623 	 */
624 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
625 		return;
626 
627 	maxsector -= bio->bi_iter.bi_sector;
628 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
629 		return;
630 
631 	bio_truncate(bio, maxsector << 9);
632 }
633 
634 /**
635  * bio_put - release a reference to a bio
636  * @bio:   bio to release reference to
637  *
638  * Description:
639  *   Put a reference to a &struct bio, either one you have gotten with
640  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
641  **/
642 void bio_put(struct bio *bio)
643 {
644 	if (!bio_flagged(bio, BIO_REFFED))
645 		bio_free(bio);
646 	else {
647 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
648 
649 		/*
650 		 * last put frees it
651 		 */
652 		if (atomic_dec_and_test(&bio->__bi_cnt))
653 			bio_free(bio);
654 	}
655 }
656 EXPORT_SYMBOL(bio_put);
657 
658 /**
659  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
660  * 	@bio: destination bio
661  * 	@bio_src: bio to clone
662  *
663  *	Clone a &bio. Caller will own the returned bio, but not
664  *	the actual data it points to. Reference count of returned
665  * 	bio will be one.
666  *
667  * 	Caller must ensure that @bio_src is not freed before @bio.
668  */
669 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
670 {
671 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
672 
673 	/*
674 	 * most users will be overriding ->bi_disk with a new target,
675 	 * so we don't set nor calculate new physical/hw segment counts here
676 	 */
677 	bio->bi_disk = bio_src->bi_disk;
678 	bio->bi_partno = bio_src->bi_partno;
679 	bio_set_flag(bio, BIO_CLONED);
680 	if (bio_flagged(bio_src, BIO_THROTTLED))
681 		bio_set_flag(bio, BIO_THROTTLED);
682 	bio->bi_opf = bio_src->bi_opf;
683 	bio->bi_ioprio = bio_src->bi_ioprio;
684 	bio->bi_write_hint = bio_src->bi_write_hint;
685 	bio->bi_iter = bio_src->bi_iter;
686 	bio->bi_io_vec = bio_src->bi_io_vec;
687 
688 	bio_clone_blkg_association(bio, bio_src);
689 	blkcg_bio_issue_init(bio);
690 }
691 EXPORT_SYMBOL(__bio_clone_fast);
692 
693 /**
694  *	bio_clone_fast - clone a bio that shares the original bio's biovec
695  *	@bio: bio to clone
696  *	@gfp_mask: allocation priority
697  *	@bs: bio_set to allocate from
698  *
699  * 	Like __bio_clone_fast, only also allocates the returned bio
700  */
701 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
702 {
703 	struct bio *b;
704 
705 	b = bio_alloc_bioset(gfp_mask, 0, bs);
706 	if (!b)
707 		return NULL;
708 
709 	__bio_clone_fast(b, bio);
710 
711 	if (bio_integrity(bio)) {
712 		int ret;
713 
714 		ret = bio_integrity_clone(b, bio, gfp_mask);
715 
716 		if (ret < 0) {
717 			bio_put(b);
718 			return NULL;
719 		}
720 	}
721 
722 	return b;
723 }
724 EXPORT_SYMBOL(bio_clone_fast);
725 
726 const char *bio_devname(struct bio *bio, char *buf)
727 {
728 	return disk_name(bio->bi_disk, bio->bi_partno, buf);
729 }
730 EXPORT_SYMBOL(bio_devname);
731 
732 static inline bool page_is_mergeable(const struct bio_vec *bv,
733 		struct page *page, unsigned int len, unsigned int off,
734 		bool *same_page)
735 {
736 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
737 		bv->bv_offset + bv->bv_len - 1;
738 	phys_addr_t page_addr = page_to_phys(page);
739 
740 	if (vec_end_addr + 1 != page_addr + off)
741 		return false;
742 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
743 		return false;
744 
745 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
746 	if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
747 		return false;
748 	return true;
749 }
750 
751 static bool bio_try_merge_pc_page(struct request_queue *q, struct bio *bio,
752 		struct page *page, unsigned len, unsigned offset,
753 		bool *same_page)
754 {
755 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
756 	unsigned long mask = queue_segment_boundary(q);
757 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
758 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
759 
760 	if ((addr1 | mask) != (addr2 | mask))
761 		return false;
762 	if (bv->bv_len + len > queue_max_segment_size(q))
763 		return false;
764 	return __bio_try_merge_page(bio, page, len, offset, same_page);
765 }
766 
767 /**
768  *	__bio_add_pc_page	- attempt to add page to passthrough bio
769  *	@q: the target queue
770  *	@bio: destination bio
771  *	@page: page to add
772  *	@len: vec entry length
773  *	@offset: vec entry offset
774  *	@same_page: return if the merge happen inside the same page
775  *
776  *	Attempt to add a page to the bio_vec maplist. This can fail for a
777  *	number of reasons, such as the bio being full or target block device
778  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
779  *	so it is always possible to add a single page to an empty bio.
780  *
781  *	This should only be used by passthrough bios.
782  */
783 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
784 		struct page *page, unsigned int len, unsigned int offset,
785 		bool *same_page)
786 {
787 	struct bio_vec *bvec;
788 
789 	/*
790 	 * cloned bio must not modify vec list
791 	 */
792 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
793 		return 0;
794 
795 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
796 		return 0;
797 
798 	if (bio->bi_vcnt > 0) {
799 		if (bio_try_merge_pc_page(q, bio, page, len, offset, same_page))
800 			return len;
801 
802 		/*
803 		 * If the queue doesn't support SG gaps and adding this segment
804 		 * would create a gap, disallow it.
805 		 */
806 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
807 		if (bvec_gap_to_prev(q, bvec, offset))
808 			return 0;
809 	}
810 
811 	if (bio_full(bio, len))
812 		return 0;
813 
814 	if (bio->bi_vcnt >= queue_max_segments(q))
815 		return 0;
816 
817 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
818 	bvec->bv_page = page;
819 	bvec->bv_len = len;
820 	bvec->bv_offset = offset;
821 	bio->bi_vcnt++;
822 	bio->bi_iter.bi_size += len;
823 	return len;
824 }
825 
826 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
827 		struct page *page, unsigned int len, unsigned int offset)
828 {
829 	bool same_page = false;
830 	return __bio_add_pc_page(q, bio, page, len, offset, &same_page);
831 }
832 EXPORT_SYMBOL(bio_add_pc_page);
833 
834 /**
835  * __bio_try_merge_page - try appending data to an existing bvec.
836  * @bio: destination bio
837  * @page: start page to add
838  * @len: length of the data to add
839  * @off: offset of the data relative to @page
840  * @same_page: return if the segment has been merged inside the same page
841  *
842  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
843  * a useful optimisation for file systems with a block size smaller than the
844  * page size.
845  *
846  * Warn if (@len, @off) crosses pages in case that @same_page is true.
847  *
848  * Return %true on success or %false on failure.
849  */
850 bool __bio_try_merge_page(struct bio *bio, struct page *page,
851 		unsigned int len, unsigned int off, bool *same_page)
852 {
853 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
854 		return false;
855 
856 	if (bio->bi_vcnt > 0) {
857 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
858 
859 		if (page_is_mergeable(bv, page, len, off, same_page)) {
860 			if (bio->bi_iter.bi_size > UINT_MAX - len)
861 				return false;
862 			bv->bv_len += len;
863 			bio->bi_iter.bi_size += len;
864 			return true;
865 		}
866 	}
867 	return false;
868 }
869 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
870 
871 /**
872  * __bio_add_page - add page(s) to a bio in a new segment
873  * @bio: destination bio
874  * @page: start page to add
875  * @len: length of the data to add, may cross pages
876  * @off: offset of the data relative to @page, may cross pages
877  *
878  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
879  * that @bio has space for another bvec.
880  */
881 void __bio_add_page(struct bio *bio, struct page *page,
882 		unsigned int len, unsigned int off)
883 {
884 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
885 
886 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
887 	WARN_ON_ONCE(bio_full(bio, len));
888 
889 	bv->bv_page = page;
890 	bv->bv_offset = off;
891 	bv->bv_len = len;
892 
893 	bio->bi_iter.bi_size += len;
894 	bio->bi_vcnt++;
895 
896 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
897 		bio_set_flag(bio, BIO_WORKINGSET);
898 }
899 EXPORT_SYMBOL_GPL(__bio_add_page);
900 
901 /**
902  *	bio_add_page	-	attempt to add page(s) to bio
903  *	@bio: destination bio
904  *	@page: start page to add
905  *	@len: vec entry length, may cross pages
906  *	@offset: vec entry offset relative to @page, may cross pages
907  *
908  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
909  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
910  */
911 int bio_add_page(struct bio *bio, struct page *page,
912 		 unsigned int len, unsigned int offset)
913 {
914 	bool same_page = false;
915 
916 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
917 		if (bio_full(bio, len))
918 			return 0;
919 		__bio_add_page(bio, page, len, offset);
920 	}
921 	return len;
922 }
923 EXPORT_SYMBOL(bio_add_page);
924 
925 void bio_release_pages(struct bio *bio, bool mark_dirty)
926 {
927 	struct bvec_iter_all iter_all;
928 	struct bio_vec *bvec;
929 
930 	if (bio_flagged(bio, BIO_NO_PAGE_REF))
931 		return;
932 
933 	bio_for_each_segment_all(bvec, bio, iter_all) {
934 		if (mark_dirty && !PageCompound(bvec->bv_page))
935 			set_page_dirty_lock(bvec->bv_page);
936 		put_page(bvec->bv_page);
937 	}
938 }
939 
940 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
941 {
942 	const struct bio_vec *bv = iter->bvec;
943 	unsigned int len;
944 	size_t size;
945 
946 	if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
947 		return -EINVAL;
948 
949 	len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
950 	size = bio_add_page(bio, bv->bv_page, len,
951 				bv->bv_offset + iter->iov_offset);
952 	if (unlikely(size != len))
953 		return -EINVAL;
954 	iov_iter_advance(iter, size);
955 	return 0;
956 }
957 
958 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
959 
960 /**
961  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
962  * @bio: bio to add pages to
963  * @iter: iov iterator describing the region to be mapped
964  *
965  * Pins pages from *iter and appends them to @bio's bvec array. The
966  * pages will have to be released using put_page() when done.
967  * For multi-segment *iter, this function only adds pages from the
968  * the next non-empty segment of the iov iterator.
969  */
970 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
971 {
972 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
973 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
974 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
975 	struct page **pages = (struct page **)bv;
976 	bool same_page = false;
977 	ssize_t size, left;
978 	unsigned len, i;
979 	size_t offset;
980 
981 	/*
982 	 * Move page array up in the allocated memory for the bio vecs as far as
983 	 * possible so that we can start filling biovecs from the beginning
984 	 * without overwriting the temporary page array.
985 	*/
986 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
987 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
988 
989 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
990 	if (unlikely(size <= 0))
991 		return size ? size : -EFAULT;
992 
993 	for (left = size, i = 0; left > 0; left -= len, i++) {
994 		struct page *page = pages[i];
995 
996 		len = min_t(size_t, PAGE_SIZE - offset, left);
997 
998 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
999 			if (same_page)
1000 				put_page(page);
1001 		} else {
1002 			if (WARN_ON_ONCE(bio_full(bio, len)))
1003                                 return -EINVAL;
1004 			__bio_add_page(bio, page, len, offset);
1005 		}
1006 		offset = 0;
1007 	}
1008 
1009 	iov_iter_advance(iter, size);
1010 	return 0;
1011 }
1012 
1013 /**
1014  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1015  * @bio: bio to add pages to
1016  * @iter: iov iterator describing the region to be added
1017  *
1018  * This takes either an iterator pointing to user memory, or one pointing to
1019  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1020  * map them into the kernel. On IO completion, the caller should put those
1021  * pages. If we're adding kernel pages, and the caller told us it's safe to
1022  * do so, we just have to add the pages to the bio directly. We don't grab an
1023  * extra reference to those pages (the user should already have that), and we
1024  * don't put the page on IO completion. The caller needs to check if the bio is
1025  * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
1026  * released.
1027  *
1028  * The function tries, but does not guarantee, to pin as many pages as
1029  * fit into the bio, or are requested in *iter, whatever is smaller. If
1030  * MM encounters an error pinning the requested pages, it stops. Error
1031  * is returned only if 0 pages could be pinned.
1032  */
1033 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1034 {
1035 	const bool is_bvec = iov_iter_is_bvec(iter);
1036 	int ret;
1037 
1038 	if (WARN_ON_ONCE(bio->bi_vcnt))
1039 		return -EINVAL;
1040 
1041 	do {
1042 		if (is_bvec)
1043 			ret = __bio_iov_bvec_add_pages(bio, iter);
1044 		else
1045 			ret = __bio_iov_iter_get_pages(bio, iter);
1046 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1047 
1048 	if (is_bvec)
1049 		bio_set_flag(bio, BIO_NO_PAGE_REF);
1050 	return bio->bi_vcnt ? 0 : ret;
1051 }
1052 
1053 static void submit_bio_wait_endio(struct bio *bio)
1054 {
1055 	complete(bio->bi_private);
1056 }
1057 
1058 /**
1059  * submit_bio_wait - submit a bio, and wait until it completes
1060  * @bio: The &struct bio which describes the I/O
1061  *
1062  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1063  * bio_endio() on failure.
1064  *
1065  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1066  * result in bio reference to be consumed. The caller must drop the reference
1067  * on his own.
1068  */
1069 int submit_bio_wait(struct bio *bio)
1070 {
1071 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
1072 	unsigned long hang_check;
1073 
1074 	bio->bi_private = &done;
1075 	bio->bi_end_io = submit_bio_wait_endio;
1076 	bio->bi_opf |= REQ_SYNC;
1077 	submit_bio(bio);
1078 
1079 	/* Prevent hang_check timer from firing at us during very long I/O */
1080 	hang_check = sysctl_hung_task_timeout_secs;
1081 	if (hang_check)
1082 		while (!wait_for_completion_io_timeout(&done,
1083 					hang_check * (HZ/2)))
1084 			;
1085 	else
1086 		wait_for_completion_io(&done);
1087 
1088 	return blk_status_to_errno(bio->bi_status);
1089 }
1090 EXPORT_SYMBOL(submit_bio_wait);
1091 
1092 /**
1093  * bio_advance - increment/complete a bio by some number of bytes
1094  * @bio:	bio to advance
1095  * @bytes:	number of bytes to complete
1096  *
1097  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1098  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1099  * be updated on the last bvec as well.
1100  *
1101  * @bio will then represent the remaining, uncompleted portion of the io.
1102  */
1103 void bio_advance(struct bio *bio, unsigned bytes)
1104 {
1105 	if (bio_integrity(bio))
1106 		bio_integrity_advance(bio, bytes);
1107 
1108 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1109 }
1110 EXPORT_SYMBOL(bio_advance);
1111 
1112 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1113 			struct bio *src, struct bvec_iter *src_iter)
1114 {
1115 	struct bio_vec src_bv, dst_bv;
1116 	void *src_p, *dst_p;
1117 	unsigned bytes;
1118 
1119 	while (src_iter->bi_size && dst_iter->bi_size) {
1120 		src_bv = bio_iter_iovec(src, *src_iter);
1121 		dst_bv = bio_iter_iovec(dst, *dst_iter);
1122 
1123 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1124 
1125 		src_p = kmap_atomic(src_bv.bv_page);
1126 		dst_p = kmap_atomic(dst_bv.bv_page);
1127 
1128 		memcpy(dst_p + dst_bv.bv_offset,
1129 		       src_p + src_bv.bv_offset,
1130 		       bytes);
1131 
1132 		kunmap_atomic(dst_p);
1133 		kunmap_atomic(src_p);
1134 
1135 		flush_dcache_page(dst_bv.bv_page);
1136 
1137 		bio_advance_iter(src, src_iter, bytes);
1138 		bio_advance_iter(dst, dst_iter, bytes);
1139 	}
1140 }
1141 EXPORT_SYMBOL(bio_copy_data_iter);
1142 
1143 /**
1144  * bio_copy_data - copy contents of data buffers from one bio to another
1145  * @src: source bio
1146  * @dst: destination bio
1147  *
1148  * Stops when it reaches the end of either @src or @dst - that is, copies
1149  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1150  */
1151 void bio_copy_data(struct bio *dst, struct bio *src)
1152 {
1153 	struct bvec_iter src_iter = src->bi_iter;
1154 	struct bvec_iter dst_iter = dst->bi_iter;
1155 
1156 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1157 }
1158 EXPORT_SYMBOL(bio_copy_data);
1159 
1160 /**
1161  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1162  * another
1163  * @src: source bio list
1164  * @dst: destination bio list
1165  *
1166  * Stops when it reaches the end of either the @src list or @dst list - that is,
1167  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1168  * bios).
1169  */
1170 void bio_list_copy_data(struct bio *dst, struct bio *src)
1171 {
1172 	struct bvec_iter src_iter = src->bi_iter;
1173 	struct bvec_iter dst_iter = dst->bi_iter;
1174 
1175 	while (1) {
1176 		if (!src_iter.bi_size) {
1177 			src = src->bi_next;
1178 			if (!src)
1179 				break;
1180 
1181 			src_iter = src->bi_iter;
1182 		}
1183 
1184 		if (!dst_iter.bi_size) {
1185 			dst = dst->bi_next;
1186 			if (!dst)
1187 				break;
1188 
1189 			dst_iter = dst->bi_iter;
1190 		}
1191 
1192 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1193 	}
1194 }
1195 EXPORT_SYMBOL(bio_list_copy_data);
1196 
1197 struct bio_map_data {
1198 	int is_our_pages;
1199 	struct iov_iter iter;
1200 	struct iovec iov[];
1201 };
1202 
1203 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1204 					       gfp_t gfp_mask)
1205 {
1206 	struct bio_map_data *bmd;
1207 	if (data->nr_segs > UIO_MAXIOV)
1208 		return NULL;
1209 
1210 	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
1211 	if (!bmd)
1212 		return NULL;
1213 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1214 	bmd->iter = *data;
1215 	bmd->iter.iov = bmd->iov;
1216 	return bmd;
1217 }
1218 
1219 /**
1220  * bio_copy_from_iter - copy all pages from iov_iter to bio
1221  * @bio: The &struct bio which describes the I/O as destination
1222  * @iter: iov_iter as source
1223  *
1224  * Copy all pages from iov_iter to bio.
1225  * Returns 0 on success, or error on failure.
1226  */
1227 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1228 {
1229 	struct bio_vec *bvec;
1230 	struct bvec_iter_all iter_all;
1231 
1232 	bio_for_each_segment_all(bvec, bio, iter_all) {
1233 		ssize_t ret;
1234 
1235 		ret = copy_page_from_iter(bvec->bv_page,
1236 					  bvec->bv_offset,
1237 					  bvec->bv_len,
1238 					  iter);
1239 
1240 		if (!iov_iter_count(iter))
1241 			break;
1242 
1243 		if (ret < bvec->bv_len)
1244 			return -EFAULT;
1245 	}
1246 
1247 	return 0;
1248 }
1249 
1250 /**
1251  * bio_copy_to_iter - copy all pages from bio to iov_iter
1252  * @bio: The &struct bio which describes the I/O as source
1253  * @iter: iov_iter as destination
1254  *
1255  * Copy all pages from bio to iov_iter.
1256  * Returns 0 on success, or error on failure.
1257  */
1258 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1259 {
1260 	struct bio_vec *bvec;
1261 	struct bvec_iter_all iter_all;
1262 
1263 	bio_for_each_segment_all(bvec, bio, iter_all) {
1264 		ssize_t ret;
1265 
1266 		ret = copy_page_to_iter(bvec->bv_page,
1267 					bvec->bv_offset,
1268 					bvec->bv_len,
1269 					&iter);
1270 
1271 		if (!iov_iter_count(&iter))
1272 			break;
1273 
1274 		if (ret < bvec->bv_len)
1275 			return -EFAULT;
1276 	}
1277 
1278 	return 0;
1279 }
1280 
1281 void bio_free_pages(struct bio *bio)
1282 {
1283 	struct bio_vec *bvec;
1284 	struct bvec_iter_all iter_all;
1285 
1286 	bio_for_each_segment_all(bvec, bio, iter_all)
1287 		__free_page(bvec->bv_page);
1288 }
1289 EXPORT_SYMBOL(bio_free_pages);
1290 
1291 /**
1292  *	bio_uncopy_user	-	finish previously mapped bio
1293  *	@bio: bio being terminated
1294  *
1295  *	Free pages allocated from bio_copy_user_iov() and write back data
1296  *	to user space in case of a read.
1297  */
1298 int bio_uncopy_user(struct bio *bio)
1299 {
1300 	struct bio_map_data *bmd = bio->bi_private;
1301 	int ret = 0;
1302 
1303 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1304 		/*
1305 		 * if we're in a workqueue, the request is orphaned, so
1306 		 * don't copy into a random user address space, just free
1307 		 * and return -EINTR so user space doesn't expect any data.
1308 		 */
1309 		if (!current->mm)
1310 			ret = -EINTR;
1311 		else if (bio_data_dir(bio) == READ)
1312 			ret = bio_copy_to_iter(bio, bmd->iter);
1313 		if (bmd->is_our_pages)
1314 			bio_free_pages(bio);
1315 	}
1316 	kfree(bmd);
1317 	bio_put(bio);
1318 	return ret;
1319 }
1320 
1321 /**
1322  *	bio_copy_user_iov	-	copy user data to bio
1323  *	@q:		destination block queue
1324  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1325  *	@iter:		iovec iterator
1326  *	@gfp_mask:	memory allocation flags
1327  *
1328  *	Prepares and returns a bio for indirect user io, bouncing data
1329  *	to/from kernel pages as necessary. Must be paired with
1330  *	call bio_uncopy_user() on io completion.
1331  */
1332 struct bio *bio_copy_user_iov(struct request_queue *q,
1333 			      struct rq_map_data *map_data,
1334 			      struct iov_iter *iter,
1335 			      gfp_t gfp_mask)
1336 {
1337 	struct bio_map_data *bmd;
1338 	struct page *page;
1339 	struct bio *bio;
1340 	int i = 0, ret;
1341 	int nr_pages;
1342 	unsigned int len = iter->count;
1343 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1344 
1345 	bmd = bio_alloc_map_data(iter, gfp_mask);
1346 	if (!bmd)
1347 		return ERR_PTR(-ENOMEM);
1348 
1349 	/*
1350 	 * We need to do a deep copy of the iov_iter including the iovecs.
1351 	 * The caller provided iov might point to an on-stack or otherwise
1352 	 * shortlived one.
1353 	 */
1354 	bmd->is_our_pages = map_data ? 0 : 1;
1355 
1356 	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1357 	if (nr_pages > BIO_MAX_PAGES)
1358 		nr_pages = BIO_MAX_PAGES;
1359 
1360 	ret = -ENOMEM;
1361 	bio = bio_kmalloc(gfp_mask, nr_pages);
1362 	if (!bio)
1363 		goto out_bmd;
1364 
1365 	ret = 0;
1366 
1367 	if (map_data) {
1368 		nr_pages = 1 << map_data->page_order;
1369 		i = map_data->offset / PAGE_SIZE;
1370 	}
1371 	while (len) {
1372 		unsigned int bytes = PAGE_SIZE;
1373 
1374 		bytes -= offset;
1375 
1376 		if (bytes > len)
1377 			bytes = len;
1378 
1379 		if (map_data) {
1380 			if (i == map_data->nr_entries * nr_pages) {
1381 				ret = -ENOMEM;
1382 				break;
1383 			}
1384 
1385 			page = map_data->pages[i / nr_pages];
1386 			page += (i % nr_pages);
1387 
1388 			i++;
1389 		} else {
1390 			page = alloc_page(q->bounce_gfp | gfp_mask);
1391 			if (!page) {
1392 				ret = -ENOMEM;
1393 				break;
1394 			}
1395 		}
1396 
1397 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1398 			if (!map_data)
1399 				__free_page(page);
1400 			break;
1401 		}
1402 
1403 		len -= bytes;
1404 		offset = 0;
1405 	}
1406 
1407 	if (ret)
1408 		goto cleanup;
1409 
1410 	if (map_data)
1411 		map_data->offset += bio->bi_iter.bi_size;
1412 
1413 	/*
1414 	 * success
1415 	 */
1416 	if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1417 	    (map_data && map_data->from_user)) {
1418 		ret = bio_copy_from_iter(bio, iter);
1419 		if (ret)
1420 			goto cleanup;
1421 	} else {
1422 		if (bmd->is_our_pages)
1423 			zero_fill_bio(bio);
1424 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1425 	}
1426 
1427 	bio->bi_private = bmd;
1428 	if (map_data && map_data->null_mapped)
1429 		bio_set_flag(bio, BIO_NULL_MAPPED);
1430 	return bio;
1431 cleanup:
1432 	if (!map_data)
1433 		bio_free_pages(bio);
1434 	bio_put(bio);
1435 out_bmd:
1436 	kfree(bmd);
1437 	return ERR_PTR(ret);
1438 }
1439 
1440 /**
1441  *	bio_map_user_iov - map user iovec into bio
1442  *	@q:		the struct request_queue for the bio
1443  *	@iter:		iovec iterator
1444  *	@gfp_mask:	memory allocation flags
1445  *
1446  *	Map the user space address into a bio suitable for io to a block
1447  *	device. Returns an error pointer in case of error.
1448  */
1449 struct bio *bio_map_user_iov(struct request_queue *q,
1450 			     struct iov_iter *iter,
1451 			     gfp_t gfp_mask)
1452 {
1453 	int j;
1454 	struct bio *bio;
1455 	int ret;
1456 
1457 	if (!iov_iter_count(iter))
1458 		return ERR_PTR(-EINVAL);
1459 
1460 	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1461 	if (!bio)
1462 		return ERR_PTR(-ENOMEM);
1463 
1464 	while (iov_iter_count(iter)) {
1465 		struct page **pages;
1466 		ssize_t bytes;
1467 		size_t offs, added = 0;
1468 		int npages;
1469 
1470 		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1471 		if (unlikely(bytes <= 0)) {
1472 			ret = bytes ? bytes : -EFAULT;
1473 			goto out_unmap;
1474 		}
1475 
1476 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1477 
1478 		if (unlikely(offs & queue_dma_alignment(q))) {
1479 			ret = -EINVAL;
1480 			j = 0;
1481 		} else {
1482 			for (j = 0; j < npages; j++) {
1483 				struct page *page = pages[j];
1484 				unsigned int n = PAGE_SIZE - offs;
1485 				bool same_page = false;
1486 
1487 				if (n > bytes)
1488 					n = bytes;
1489 
1490 				if (!__bio_add_pc_page(q, bio, page, n, offs,
1491 						&same_page)) {
1492 					if (same_page)
1493 						put_page(page);
1494 					break;
1495 				}
1496 
1497 				added += n;
1498 				bytes -= n;
1499 				offs = 0;
1500 			}
1501 			iov_iter_advance(iter, added);
1502 		}
1503 		/*
1504 		 * release the pages we didn't map into the bio, if any
1505 		 */
1506 		while (j < npages)
1507 			put_page(pages[j++]);
1508 		kvfree(pages);
1509 		/* couldn't stuff something into bio? */
1510 		if (bytes)
1511 			break;
1512 	}
1513 
1514 	bio_set_flag(bio, BIO_USER_MAPPED);
1515 
1516 	/*
1517 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1518 	 * it would normally disappear when its bi_end_io is run.
1519 	 * however, we need it for the unmap, so grab an extra
1520 	 * reference to it
1521 	 */
1522 	bio_get(bio);
1523 	return bio;
1524 
1525  out_unmap:
1526 	bio_release_pages(bio, false);
1527 	bio_put(bio);
1528 	return ERR_PTR(ret);
1529 }
1530 
1531 /**
1532  *	bio_unmap_user	-	unmap a bio
1533  *	@bio:		the bio being unmapped
1534  *
1535  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1536  *	process context.
1537  *
1538  *	bio_unmap_user() may sleep.
1539  */
1540 void bio_unmap_user(struct bio *bio)
1541 {
1542 	bio_release_pages(bio, bio_data_dir(bio) == READ);
1543 	bio_put(bio);
1544 	bio_put(bio);
1545 }
1546 
1547 static void bio_invalidate_vmalloc_pages(struct bio *bio)
1548 {
1549 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
1550 	if (bio->bi_private && !op_is_write(bio_op(bio))) {
1551 		unsigned long i, len = 0;
1552 
1553 		for (i = 0; i < bio->bi_vcnt; i++)
1554 			len += bio->bi_io_vec[i].bv_len;
1555 		invalidate_kernel_vmap_range(bio->bi_private, len);
1556 	}
1557 #endif
1558 }
1559 
1560 static void bio_map_kern_endio(struct bio *bio)
1561 {
1562 	bio_invalidate_vmalloc_pages(bio);
1563 	bio_put(bio);
1564 }
1565 
1566 /**
1567  *	bio_map_kern	-	map kernel address into bio
1568  *	@q: the struct request_queue for the bio
1569  *	@data: pointer to buffer to map
1570  *	@len: length in bytes
1571  *	@gfp_mask: allocation flags for bio allocation
1572  *
1573  *	Map the kernel address into a bio suitable for io to a block
1574  *	device. Returns an error pointer in case of error.
1575  */
1576 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1577 			 gfp_t gfp_mask)
1578 {
1579 	unsigned long kaddr = (unsigned long)data;
1580 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1581 	unsigned long start = kaddr >> PAGE_SHIFT;
1582 	const int nr_pages = end - start;
1583 	bool is_vmalloc = is_vmalloc_addr(data);
1584 	struct page *page;
1585 	int offset, i;
1586 	struct bio *bio;
1587 
1588 	bio = bio_kmalloc(gfp_mask, nr_pages);
1589 	if (!bio)
1590 		return ERR_PTR(-ENOMEM);
1591 
1592 	if (is_vmalloc) {
1593 		flush_kernel_vmap_range(data, len);
1594 		bio->bi_private = data;
1595 	}
1596 
1597 	offset = offset_in_page(kaddr);
1598 	for (i = 0; i < nr_pages; i++) {
1599 		unsigned int bytes = PAGE_SIZE - offset;
1600 
1601 		if (len <= 0)
1602 			break;
1603 
1604 		if (bytes > len)
1605 			bytes = len;
1606 
1607 		if (!is_vmalloc)
1608 			page = virt_to_page(data);
1609 		else
1610 			page = vmalloc_to_page(data);
1611 		if (bio_add_pc_page(q, bio, page, bytes,
1612 				    offset) < bytes) {
1613 			/* we don't support partial mappings */
1614 			bio_put(bio);
1615 			return ERR_PTR(-EINVAL);
1616 		}
1617 
1618 		data += bytes;
1619 		len -= bytes;
1620 		offset = 0;
1621 	}
1622 
1623 	bio->bi_end_io = bio_map_kern_endio;
1624 	return bio;
1625 }
1626 
1627 static void bio_copy_kern_endio(struct bio *bio)
1628 {
1629 	bio_free_pages(bio);
1630 	bio_put(bio);
1631 }
1632 
1633 static void bio_copy_kern_endio_read(struct bio *bio)
1634 {
1635 	char *p = bio->bi_private;
1636 	struct bio_vec *bvec;
1637 	struct bvec_iter_all iter_all;
1638 
1639 	bio_for_each_segment_all(bvec, bio, iter_all) {
1640 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1641 		p += bvec->bv_len;
1642 	}
1643 
1644 	bio_copy_kern_endio(bio);
1645 }
1646 
1647 /**
1648  *	bio_copy_kern	-	copy kernel address into bio
1649  *	@q: the struct request_queue for the bio
1650  *	@data: pointer to buffer to copy
1651  *	@len: length in bytes
1652  *	@gfp_mask: allocation flags for bio and page allocation
1653  *	@reading: data direction is READ
1654  *
1655  *	copy the kernel address into a bio suitable for io to a block
1656  *	device. Returns an error pointer in case of error.
1657  */
1658 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1659 			  gfp_t gfp_mask, int reading)
1660 {
1661 	unsigned long kaddr = (unsigned long)data;
1662 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1663 	unsigned long start = kaddr >> PAGE_SHIFT;
1664 	struct bio *bio;
1665 	void *p = data;
1666 	int nr_pages = 0;
1667 
1668 	/*
1669 	 * Overflow, abort
1670 	 */
1671 	if (end < start)
1672 		return ERR_PTR(-EINVAL);
1673 
1674 	nr_pages = end - start;
1675 	bio = bio_kmalloc(gfp_mask, nr_pages);
1676 	if (!bio)
1677 		return ERR_PTR(-ENOMEM);
1678 
1679 	while (len) {
1680 		struct page *page;
1681 		unsigned int bytes = PAGE_SIZE;
1682 
1683 		if (bytes > len)
1684 			bytes = len;
1685 
1686 		page = alloc_page(q->bounce_gfp | gfp_mask);
1687 		if (!page)
1688 			goto cleanup;
1689 
1690 		if (!reading)
1691 			memcpy(page_address(page), p, bytes);
1692 
1693 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1694 			break;
1695 
1696 		len -= bytes;
1697 		p += bytes;
1698 	}
1699 
1700 	if (reading) {
1701 		bio->bi_end_io = bio_copy_kern_endio_read;
1702 		bio->bi_private = data;
1703 	} else {
1704 		bio->bi_end_io = bio_copy_kern_endio;
1705 	}
1706 
1707 	return bio;
1708 
1709 cleanup:
1710 	bio_free_pages(bio);
1711 	bio_put(bio);
1712 	return ERR_PTR(-ENOMEM);
1713 }
1714 
1715 /*
1716  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1717  * for performing direct-IO in BIOs.
1718  *
1719  * The problem is that we cannot run set_page_dirty() from interrupt context
1720  * because the required locks are not interrupt-safe.  So what we can do is to
1721  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1722  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1723  * in process context.
1724  *
1725  * We special-case compound pages here: normally this means reads into hugetlb
1726  * pages.  The logic in here doesn't really work right for compound pages
1727  * because the VM does not uniformly chase down the head page in all cases.
1728  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1729  * handle them at all.  So we skip compound pages here at an early stage.
1730  *
1731  * Note that this code is very hard to test under normal circumstances because
1732  * direct-io pins the pages with get_user_pages().  This makes
1733  * is_page_cache_freeable return false, and the VM will not clean the pages.
1734  * But other code (eg, flusher threads) could clean the pages if they are mapped
1735  * pagecache.
1736  *
1737  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1738  * deferred bio dirtying paths.
1739  */
1740 
1741 /*
1742  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1743  */
1744 void bio_set_pages_dirty(struct bio *bio)
1745 {
1746 	struct bio_vec *bvec;
1747 	struct bvec_iter_all iter_all;
1748 
1749 	bio_for_each_segment_all(bvec, bio, iter_all) {
1750 		if (!PageCompound(bvec->bv_page))
1751 			set_page_dirty_lock(bvec->bv_page);
1752 	}
1753 }
1754 
1755 /*
1756  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1757  * If they are, then fine.  If, however, some pages are clean then they must
1758  * have been written out during the direct-IO read.  So we take another ref on
1759  * the BIO and re-dirty the pages in process context.
1760  *
1761  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1762  * here on.  It will run one put_page() against each page and will run one
1763  * bio_put() against the BIO.
1764  */
1765 
1766 static void bio_dirty_fn(struct work_struct *work);
1767 
1768 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1769 static DEFINE_SPINLOCK(bio_dirty_lock);
1770 static struct bio *bio_dirty_list;
1771 
1772 /*
1773  * This runs in process context
1774  */
1775 static void bio_dirty_fn(struct work_struct *work)
1776 {
1777 	struct bio *bio, *next;
1778 
1779 	spin_lock_irq(&bio_dirty_lock);
1780 	next = bio_dirty_list;
1781 	bio_dirty_list = NULL;
1782 	spin_unlock_irq(&bio_dirty_lock);
1783 
1784 	while ((bio = next) != NULL) {
1785 		next = bio->bi_private;
1786 
1787 		bio_release_pages(bio, true);
1788 		bio_put(bio);
1789 	}
1790 }
1791 
1792 void bio_check_pages_dirty(struct bio *bio)
1793 {
1794 	struct bio_vec *bvec;
1795 	unsigned long flags;
1796 	struct bvec_iter_all iter_all;
1797 
1798 	bio_for_each_segment_all(bvec, bio, iter_all) {
1799 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1800 			goto defer;
1801 	}
1802 
1803 	bio_release_pages(bio, false);
1804 	bio_put(bio);
1805 	return;
1806 defer:
1807 	spin_lock_irqsave(&bio_dirty_lock, flags);
1808 	bio->bi_private = bio_dirty_list;
1809 	bio_dirty_list = bio;
1810 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1811 	schedule_work(&bio_dirty_work);
1812 }
1813 
1814 void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
1815 {
1816 	unsigned long stamp;
1817 again:
1818 	stamp = READ_ONCE(part->stamp);
1819 	if (unlikely(stamp != now)) {
1820 		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1821 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1822 		}
1823 	}
1824 	if (part->partno) {
1825 		part = &part_to_disk(part)->part0;
1826 		goto again;
1827 	}
1828 }
1829 
1830 void generic_start_io_acct(struct request_queue *q, int op,
1831 			   unsigned long sectors, struct hd_struct *part)
1832 {
1833 	const int sgrp = op_stat_group(op);
1834 
1835 	part_stat_lock();
1836 
1837 	update_io_ticks(part, jiffies, false);
1838 	part_stat_inc(part, ios[sgrp]);
1839 	part_stat_add(part, sectors[sgrp], sectors);
1840 	part_inc_in_flight(q, part, op_is_write(op));
1841 
1842 	part_stat_unlock();
1843 }
1844 EXPORT_SYMBOL(generic_start_io_acct);
1845 
1846 void generic_end_io_acct(struct request_queue *q, int req_op,
1847 			 struct hd_struct *part, unsigned long start_time)
1848 {
1849 	unsigned long now = jiffies;
1850 	unsigned long duration = now - start_time;
1851 	const int sgrp = op_stat_group(req_op);
1852 
1853 	part_stat_lock();
1854 
1855 	update_io_ticks(part, now, true);
1856 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1857 	part_dec_in_flight(q, part, op_is_write(req_op));
1858 
1859 	part_stat_unlock();
1860 }
1861 EXPORT_SYMBOL(generic_end_io_acct);
1862 
1863 static inline bool bio_remaining_done(struct bio *bio)
1864 {
1865 	/*
1866 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1867 	 * we always end io on the first invocation.
1868 	 */
1869 	if (!bio_flagged(bio, BIO_CHAIN))
1870 		return true;
1871 
1872 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1873 
1874 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1875 		bio_clear_flag(bio, BIO_CHAIN);
1876 		return true;
1877 	}
1878 
1879 	return false;
1880 }
1881 
1882 /**
1883  * bio_endio - end I/O on a bio
1884  * @bio:	bio
1885  *
1886  * Description:
1887  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1888  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1889  *   bio unless they own it and thus know that it has an end_io function.
1890  *
1891  *   bio_endio() can be called several times on a bio that has been chained
1892  *   using bio_chain().  The ->bi_end_io() function will only be called the
1893  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1894  *   generated if BIO_TRACE_COMPLETION is set.
1895  **/
1896 void bio_endio(struct bio *bio)
1897 {
1898 again:
1899 	if (!bio_remaining_done(bio))
1900 		return;
1901 	if (!bio_integrity_endio(bio))
1902 		return;
1903 
1904 	if (bio->bi_disk)
1905 		rq_qos_done_bio(bio->bi_disk->queue, bio);
1906 
1907 	/*
1908 	 * Need to have a real endio function for chained bios, otherwise
1909 	 * various corner cases will break (like stacking block devices that
1910 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1911 	 * recursion and blowing the stack. Tail call optimization would
1912 	 * handle this, but compiling with frame pointers also disables
1913 	 * gcc's sibling call optimization.
1914 	 */
1915 	if (bio->bi_end_io == bio_chain_endio) {
1916 		bio = __bio_chain_endio(bio);
1917 		goto again;
1918 	}
1919 
1920 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1921 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1922 					 blk_status_to_errno(bio->bi_status));
1923 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1924 	}
1925 
1926 	blk_throtl_bio_endio(bio);
1927 	/* release cgroup info */
1928 	bio_uninit(bio);
1929 	if (bio->bi_end_io)
1930 		bio->bi_end_io(bio);
1931 }
1932 EXPORT_SYMBOL(bio_endio);
1933 
1934 /**
1935  * bio_split - split a bio
1936  * @bio:	bio to split
1937  * @sectors:	number of sectors to split from the front of @bio
1938  * @gfp:	gfp mask
1939  * @bs:		bio set to allocate from
1940  *
1941  * Allocates and returns a new bio which represents @sectors from the start of
1942  * @bio, and updates @bio to represent the remaining sectors.
1943  *
1944  * Unless this is a discard request the newly allocated bio will point
1945  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1946  * neither @bio nor @bs are freed before the split bio.
1947  */
1948 struct bio *bio_split(struct bio *bio, int sectors,
1949 		      gfp_t gfp, struct bio_set *bs)
1950 {
1951 	struct bio *split;
1952 
1953 	BUG_ON(sectors <= 0);
1954 	BUG_ON(sectors >= bio_sectors(bio));
1955 
1956 	split = bio_clone_fast(bio, gfp, bs);
1957 	if (!split)
1958 		return NULL;
1959 
1960 	split->bi_iter.bi_size = sectors << 9;
1961 
1962 	if (bio_integrity(split))
1963 		bio_integrity_trim(split);
1964 
1965 	bio_advance(bio, split->bi_iter.bi_size);
1966 
1967 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1968 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1969 
1970 	return split;
1971 }
1972 EXPORT_SYMBOL(bio_split);
1973 
1974 /**
1975  * bio_trim - trim a bio
1976  * @bio:	bio to trim
1977  * @offset:	number of sectors to trim from the front of @bio
1978  * @size:	size we want to trim @bio to, in sectors
1979  */
1980 void bio_trim(struct bio *bio, int offset, int size)
1981 {
1982 	/* 'bio' is a cloned bio which we need to trim to match
1983 	 * the given offset and size.
1984 	 */
1985 
1986 	size <<= 9;
1987 	if (offset == 0 && size == bio->bi_iter.bi_size)
1988 		return;
1989 
1990 	bio_advance(bio, offset << 9);
1991 	bio->bi_iter.bi_size = size;
1992 
1993 	if (bio_integrity(bio))
1994 		bio_integrity_trim(bio);
1995 
1996 }
1997 EXPORT_SYMBOL_GPL(bio_trim);
1998 
1999 /*
2000  * create memory pools for biovec's in a bio_set.
2001  * use the global biovec slabs created for general use.
2002  */
2003 int biovec_init_pool(mempool_t *pool, int pool_entries)
2004 {
2005 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
2006 
2007 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
2008 }
2009 
2010 /*
2011  * bioset_exit - exit a bioset initialized with bioset_init()
2012  *
2013  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
2014  * kzalloc()).
2015  */
2016 void bioset_exit(struct bio_set *bs)
2017 {
2018 	if (bs->rescue_workqueue)
2019 		destroy_workqueue(bs->rescue_workqueue);
2020 	bs->rescue_workqueue = NULL;
2021 
2022 	mempool_exit(&bs->bio_pool);
2023 	mempool_exit(&bs->bvec_pool);
2024 
2025 	bioset_integrity_free(bs);
2026 	if (bs->bio_slab)
2027 		bio_put_slab(bs);
2028 	bs->bio_slab = NULL;
2029 }
2030 EXPORT_SYMBOL(bioset_exit);
2031 
2032 /**
2033  * bioset_init - Initialize a bio_set
2034  * @bs:		pool to initialize
2035  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
2036  * @front_pad:	Number of bytes to allocate in front of the returned bio
2037  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
2038  *              and %BIOSET_NEED_RESCUER
2039  *
2040  * Description:
2041  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
2042  *    to ask for a number of bytes to be allocated in front of the bio.
2043  *    Front pad allocation is useful for embedding the bio inside
2044  *    another structure, to avoid allocating extra data to go with the bio.
2045  *    Note that the bio must be embedded at the END of that structure always,
2046  *    or things will break badly.
2047  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
2048  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
2049  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
2050  *    dispatch queued requests when the mempool runs out of space.
2051  *
2052  */
2053 int bioset_init(struct bio_set *bs,
2054 		unsigned int pool_size,
2055 		unsigned int front_pad,
2056 		int flags)
2057 {
2058 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
2059 
2060 	bs->front_pad = front_pad;
2061 
2062 	spin_lock_init(&bs->rescue_lock);
2063 	bio_list_init(&bs->rescue_list);
2064 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
2065 
2066 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
2067 	if (!bs->bio_slab)
2068 		return -ENOMEM;
2069 
2070 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
2071 		goto bad;
2072 
2073 	if ((flags & BIOSET_NEED_BVECS) &&
2074 	    biovec_init_pool(&bs->bvec_pool, pool_size))
2075 		goto bad;
2076 
2077 	if (!(flags & BIOSET_NEED_RESCUER))
2078 		return 0;
2079 
2080 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2081 	if (!bs->rescue_workqueue)
2082 		goto bad;
2083 
2084 	return 0;
2085 bad:
2086 	bioset_exit(bs);
2087 	return -ENOMEM;
2088 }
2089 EXPORT_SYMBOL(bioset_init);
2090 
2091 /*
2092  * Initialize and setup a new bio_set, based on the settings from
2093  * another bio_set.
2094  */
2095 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2096 {
2097 	int flags;
2098 
2099 	flags = 0;
2100 	if (src->bvec_pool.min_nr)
2101 		flags |= BIOSET_NEED_BVECS;
2102 	if (src->rescue_workqueue)
2103 		flags |= BIOSET_NEED_RESCUER;
2104 
2105 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2106 }
2107 EXPORT_SYMBOL(bioset_init_from_src);
2108 
2109 #ifdef CONFIG_BLK_CGROUP
2110 
2111 /**
2112  * bio_disassociate_blkg - puts back the blkg reference if associated
2113  * @bio: target bio
2114  *
2115  * Helper to disassociate the blkg from @bio if a blkg is associated.
2116  */
2117 void bio_disassociate_blkg(struct bio *bio)
2118 {
2119 	if (bio->bi_blkg) {
2120 		blkg_put(bio->bi_blkg);
2121 		bio->bi_blkg = NULL;
2122 	}
2123 }
2124 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2125 
2126 /**
2127  * __bio_associate_blkg - associate a bio with the a blkg
2128  * @bio: target bio
2129  * @blkg: the blkg to associate
2130  *
2131  * This tries to associate @bio with the specified @blkg.  Association failure
2132  * is handled by walking up the blkg tree.  Therefore, the blkg associated can
2133  * be anything between @blkg and the root_blkg.  This situation only happens
2134  * when a cgroup is dying and then the remaining bios will spill to the closest
2135  * alive blkg.
2136  *
2137  * A reference will be taken on the @blkg and will be released when @bio is
2138  * freed.
2139  */
2140 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2141 {
2142 	bio_disassociate_blkg(bio);
2143 
2144 	bio->bi_blkg = blkg_tryget_closest(blkg);
2145 }
2146 
2147 /**
2148  * bio_associate_blkg_from_css - associate a bio with a specified css
2149  * @bio: target bio
2150  * @css: target css
2151  *
2152  * Associate @bio with the blkg found by combining the css's blkg and the
2153  * request_queue of the @bio.  This falls back to the queue's root_blkg if
2154  * the association fails with the css.
2155  */
2156 void bio_associate_blkg_from_css(struct bio *bio,
2157 				 struct cgroup_subsys_state *css)
2158 {
2159 	struct request_queue *q = bio->bi_disk->queue;
2160 	struct blkcg_gq *blkg;
2161 
2162 	rcu_read_lock();
2163 
2164 	if (!css || !css->parent)
2165 		blkg = q->root_blkg;
2166 	else
2167 		blkg = blkg_lookup_create(css_to_blkcg(css), q);
2168 
2169 	__bio_associate_blkg(bio, blkg);
2170 
2171 	rcu_read_unlock();
2172 }
2173 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2174 
2175 #ifdef CONFIG_MEMCG
2176 /**
2177  * bio_associate_blkg_from_page - associate a bio with the page's blkg
2178  * @bio: target bio
2179  * @page: the page to lookup the blkcg from
2180  *
2181  * Associate @bio with the blkg from @page's owning memcg and the respective
2182  * request_queue.  If cgroup_e_css returns %NULL, fall back to the queue's
2183  * root_blkg.
2184  */
2185 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2186 {
2187 	struct cgroup_subsys_state *css;
2188 
2189 	if (!page->mem_cgroup)
2190 		return;
2191 
2192 	rcu_read_lock();
2193 
2194 	css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2195 	bio_associate_blkg_from_css(bio, css);
2196 
2197 	rcu_read_unlock();
2198 }
2199 #endif /* CONFIG_MEMCG */
2200 
2201 /**
2202  * bio_associate_blkg - associate a bio with a blkg
2203  * @bio: target bio
2204  *
2205  * Associate @bio with the blkg found from the bio's css and request_queue.
2206  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2207  * already associated, the css is reused and association redone as the
2208  * request_queue may have changed.
2209  */
2210 void bio_associate_blkg(struct bio *bio)
2211 {
2212 	struct cgroup_subsys_state *css;
2213 
2214 	rcu_read_lock();
2215 
2216 	if (bio->bi_blkg)
2217 		css = &bio_blkcg(bio)->css;
2218 	else
2219 		css = blkcg_css();
2220 
2221 	bio_associate_blkg_from_css(bio, css);
2222 
2223 	rcu_read_unlock();
2224 }
2225 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2226 
2227 /**
2228  * bio_clone_blkg_association - clone blkg association from src to dst bio
2229  * @dst: destination bio
2230  * @src: source bio
2231  */
2232 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2233 {
2234 	rcu_read_lock();
2235 
2236 	if (src->bi_blkg)
2237 		__bio_associate_blkg(dst, src->bi_blkg);
2238 
2239 	rcu_read_unlock();
2240 }
2241 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2242 #endif /* CONFIG_BLK_CGROUP */
2243 
2244 static void __init biovec_init_slabs(void)
2245 {
2246 	int i;
2247 
2248 	for (i = 0; i < BVEC_POOL_NR; i++) {
2249 		int size;
2250 		struct biovec_slab *bvs = bvec_slabs + i;
2251 
2252 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2253 			bvs->slab = NULL;
2254 			continue;
2255 		}
2256 
2257 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2258 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2259                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2260 	}
2261 }
2262 
2263 static int __init init_bio(void)
2264 {
2265 	bio_slab_max = 2;
2266 	bio_slab_nr = 0;
2267 	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2268 			    GFP_KERNEL);
2269 
2270 	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2271 
2272 	if (!bio_slabs)
2273 		panic("bio: can't allocate bios\n");
2274 
2275 	bio_integrity_init();
2276 	biovec_init_slabs();
2277 
2278 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2279 		panic("bio: can't allocate bios\n");
2280 
2281 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2282 		panic("bio: can't create integrity pool\n");
2283 
2284 	return 0;
2285 }
2286 subsys_initcall(init_bio);
2287