xref: /openbmc/linux/block/bio.c (revision 3b005bf6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
22 #include <linux/xarray.h>
23 
24 #include <trace/events/block.h>
25 #include "blk.h"
26 #include "blk-rq-qos.h"
27 
28 struct bio_alloc_cache {
29 	struct bio		*free_list;
30 	unsigned int		nr;
31 };
32 
33 static struct biovec_slab {
34 	int nr_vecs;
35 	char *name;
36 	struct kmem_cache *slab;
37 } bvec_slabs[] __read_mostly = {
38 	{ .nr_vecs = 16, .name = "biovec-16" },
39 	{ .nr_vecs = 64, .name = "biovec-64" },
40 	{ .nr_vecs = 128, .name = "biovec-128" },
41 	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
42 };
43 
44 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45 {
46 	switch (nr_vecs) {
47 	/* smaller bios use inline vecs */
48 	case 5 ... 16:
49 		return &bvec_slabs[0];
50 	case 17 ... 64:
51 		return &bvec_slabs[1];
52 	case 65 ... 128:
53 		return &bvec_slabs[2];
54 	case 129 ... BIO_MAX_VECS:
55 		return &bvec_slabs[3];
56 	default:
57 		BUG();
58 		return NULL;
59 	}
60 }
61 
62 /*
63  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64  * IO code that does not need private memory pools.
65  */
66 struct bio_set fs_bio_set;
67 EXPORT_SYMBOL(fs_bio_set);
68 
69 /*
70  * Our slab pool management
71  */
72 struct bio_slab {
73 	struct kmem_cache *slab;
74 	unsigned int slab_ref;
75 	unsigned int slab_size;
76 	char name[8];
77 };
78 static DEFINE_MUTEX(bio_slab_lock);
79 static DEFINE_XARRAY(bio_slabs);
80 
81 static struct bio_slab *create_bio_slab(unsigned int size)
82 {
83 	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
84 
85 	if (!bslab)
86 		return NULL;
87 
88 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 	bslab->slab = kmem_cache_create(bslab->name, size,
90 			ARCH_KMALLOC_MINALIGN,
91 			SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
92 	if (!bslab->slab)
93 		goto fail_alloc_slab;
94 
95 	bslab->slab_ref = 1;
96 	bslab->slab_size = size;
97 
98 	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
99 		return bslab;
100 
101 	kmem_cache_destroy(bslab->slab);
102 
103 fail_alloc_slab:
104 	kfree(bslab);
105 	return NULL;
106 }
107 
108 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
109 {
110 	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
111 }
112 
113 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
114 {
115 	unsigned int size = bs_bio_slab_size(bs);
116 	struct bio_slab *bslab;
117 
118 	mutex_lock(&bio_slab_lock);
119 	bslab = xa_load(&bio_slabs, size);
120 	if (bslab)
121 		bslab->slab_ref++;
122 	else
123 		bslab = create_bio_slab(size);
124 	mutex_unlock(&bio_slab_lock);
125 
126 	if (bslab)
127 		return bslab->slab;
128 	return NULL;
129 }
130 
131 static void bio_put_slab(struct bio_set *bs)
132 {
133 	struct bio_slab *bslab = NULL;
134 	unsigned int slab_size = bs_bio_slab_size(bs);
135 
136 	mutex_lock(&bio_slab_lock);
137 
138 	bslab = xa_load(&bio_slabs, slab_size);
139 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
140 		goto out;
141 
142 	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
143 
144 	WARN_ON(!bslab->slab_ref);
145 
146 	if (--bslab->slab_ref)
147 		goto out;
148 
149 	xa_erase(&bio_slabs, slab_size);
150 
151 	kmem_cache_destroy(bslab->slab);
152 	kfree(bslab);
153 
154 out:
155 	mutex_unlock(&bio_slab_lock);
156 }
157 
158 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
159 {
160 	BUG_ON(nr_vecs > BIO_MAX_VECS);
161 
162 	if (nr_vecs == BIO_MAX_VECS)
163 		mempool_free(bv, pool);
164 	else if (nr_vecs > BIO_INLINE_VECS)
165 		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
166 }
167 
168 /*
169  * Make the first allocation restricted and don't dump info on allocation
170  * failures, since we'll fall back to the mempool in case of failure.
171  */
172 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
173 {
174 	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
175 		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
176 }
177 
178 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
179 		gfp_t gfp_mask)
180 {
181 	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
182 
183 	if (WARN_ON_ONCE(!bvs))
184 		return NULL;
185 
186 	/*
187 	 * Upgrade the nr_vecs request to take full advantage of the allocation.
188 	 * We also rely on this in the bvec_free path.
189 	 */
190 	*nr_vecs = bvs->nr_vecs;
191 
192 	/*
193 	 * Try a slab allocation first for all smaller allocations.  If that
194 	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
195 	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
196 	 */
197 	if (*nr_vecs < BIO_MAX_VECS) {
198 		struct bio_vec *bvl;
199 
200 		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
201 		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
202 			return bvl;
203 		*nr_vecs = BIO_MAX_VECS;
204 	}
205 
206 	return mempool_alloc(pool, gfp_mask);
207 }
208 
209 void bio_uninit(struct bio *bio)
210 {
211 #ifdef CONFIG_BLK_CGROUP
212 	if (bio->bi_blkg) {
213 		blkg_put(bio->bi_blkg);
214 		bio->bi_blkg = NULL;
215 	}
216 #endif
217 	if (bio_integrity(bio))
218 		bio_integrity_free(bio);
219 
220 	bio_crypt_free_ctx(bio);
221 }
222 EXPORT_SYMBOL(bio_uninit);
223 
224 static void bio_free(struct bio *bio)
225 {
226 	struct bio_set *bs = bio->bi_pool;
227 	void *p;
228 
229 	bio_uninit(bio);
230 
231 	if (bs) {
232 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
233 
234 		/*
235 		 * If we have front padding, adjust the bio pointer before freeing
236 		 */
237 		p = bio;
238 		p -= bs->front_pad;
239 
240 		mempool_free(p, &bs->bio_pool);
241 	} else {
242 		/* Bio was allocated by bio_kmalloc() */
243 		kfree(bio);
244 	}
245 }
246 
247 /*
248  * Users of this function have their own bio allocation. Subsequently,
249  * they must remember to pair any call to bio_init() with bio_uninit()
250  * when IO has completed, or when the bio is released.
251  */
252 void bio_init(struct bio *bio, struct bio_vec *table,
253 	      unsigned short max_vecs)
254 {
255 	bio->bi_next = NULL;
256 	bio->bi_bdev = NULL;
257 	bio->bi_opf = 0;
258 	bio->bi_flags = 0;
259 	bio->bi_ioprio = 0;
260 	bio->bi_write_hint = 0;
261 	bio->bi_status = 0;
262 	bio->bi_iter.bi_sector = 0;
263 	bio->bi_iter.bi_size = 0;
264 	bio->bi_iter.bi_idx = 0;
265 	bio->bi_iter.bi_bvec_done = 0;
266 	bio->bi_end_io = NULL;
267 	bio->bi_private = NULL;
268 #ifdef CONFIG_BLK_CGROUP
269 	bio->bi_blkg = NULL;
270 	bio->bi_issue.value = 0;
271 #ifdef CONFIG_BLK_CGROUP_IOCOST
272 	bio->bi_iocost_cost = 0;
273 #endif
274 #endif
275 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
276 	bio->bi_crypt_context = NULL;
277 #endif
278 #ifdef CONFIG_BLK_DEV_INTEGRITY
279 	bio->bi_integrity = NULL;
280 #endif
281 	bio->bi_vcnt = 0;
282 
283 	atomic_set(&bio->__bi_remaining, 1);
284 	atomic_set(&bio->__bi_cnt, 1);
285 	bio->bi_cookie = BLK_QC_T_NONE;
286 
287 	bio->bi_max_vecs = max_vecs;
288 	bio->bi_io_vec = table;
289 	bio->bi_pool = NULL;
290 }
291 EXPORT_SYMBOL(bio_init);
292 
293 /**
294  * bio_reset - reinitialize a bio
295  * @bio:	bio to reset
296  *
297  * Description:
298  *   After calling bio_reset(), @bio will be in the same state as a freshly
299  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
300  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
301  *   comment in struct bio.
302  */
303 void bio_reset(struct bio *bio)
304 {
305 	bio_uninit(bio);
306 	memset(bio, 0, BIO_RESET_BYTES);
307 	atomic_set(&bio->__bi_remaining, 1);
308 }
309 EXPORT_SYMBOL(bio_reset);
310 
311 static struct bio *__bio_chain_endio(struct bio *bio)
312 {
313 	struct bio *parent = bio->bi_private;
314 
315 	if (bio->bi_status && !parent->bi_status)
316 		parent->bi_status = bio->bi_status;
317 	bio_put(bio);
318 	return parent;
319 }
320 
321 static void bio_chain_endio(struct bio *bio)
322 {
323 	bio_endio(__bio_chain_endio(bio));
324 }
325 
326 /**
327  * bio_chain - chain bio completions
328  * @bio: the target bio
329  * @parent: the parent bio of @bio
330  *
331  * The caller won't have a bi_end_io called when @bio completes - instead,
332  * @parent's bi_end_io won't be called until both @parent and @bio have
333  * completed; the chained bio will also be freed when it completes.
334  *
335  * The caller must not set bi_private or bi_end_io in @bio.
336  */
337 void bio_chain(struct bio *bio, struct bio *parent)
338 {
339 	BUG_ON(bio->bi_private || bio->bi_end_io);
340 
341 	bio->bi_private = parent;
342 	bio->bi_end_io	= bio_chain_endio;
343 	bio_inc_remaining(parent);
344 }
345 EXPORT_SYMBOL(bio_chain);
346 
347 struct bio *blk_next_bio(struct bio *bio, unsigned int nr_pages, gfp_t gfp)
348 {
349 	struct bio *new = bio_alloc(gfp, nr_pages);
350 
351 	if (bio) {
352 		bio_chain(bio, new);
353 		submit_bio(bio);
354 	}
355 
356 	return new;
357 }
358 EXPORT_SYMBOL_GPL(blk_next_bio);
359 
360 static void bio_alloc_rescue(struct work_struct *work)
361 {
362 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
363 	struct bio *bio;
364 
365 	while (1) {
366 		spin_lock(&bs->rescue_lock);
367 		bio = bio_list_pop(&bs->rescue_list);
368 		spin_unlock(&bs->rescue_lock);
369 
370 		if (!bio)
371 			break;
372 
373 		submit_bio_noacct(bio);
374 	}
375 }
376 
377 static void punt_bios_to_rescuer(struct bio_set *bs)
378 {
379 	struct bio_list punt, nopunt;
380 	struct bio *bio;
381 
382 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
383 		return;
384 	/*
385 	 * In order to guarantee forward progress we must punt only bios that
386 	 * were allocated from this bio_set; otherwise, if there was a bio on
387 	 * there for a stacking driver higher up in the stack, processing it
388 	 * could require allocating bios from this bio_set, and doing that from
389 	 * our own rescuer would be bad.
390 	 *
391 	 * Since bio lists are singly linked, pop them all instead of trying to
392 	 * remove from the middle of the list:
393 	 */
394 
395 	bio_list_init(&punt);
396 	bio_list_init(&nopunt);
397 
398 	while ((bio = bio_list_pop(&current->bio_list[0])))
399 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
400 	current->bio_list[0] = nopunt;
401 
402 	bio_list_init(&nopunt);
403 	while ((bio = bio_list_pop(&current->bio_list[1])))
404 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
405 	current->bio_list[1] = nopunt;
406 
407 	spin_lock(&bs->rescue_lock);
408 	bio_list_merge(&bs->rescue_list, &punt);
409 	spin_unlock(&bs->rescue_lock);
410 
411 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
412 }
413 
414 /**
415  * bio_alloc_bioset - allocate a bio for I/O
416  * @gfp_mask:   the GFP_* mask given to the slab allocator
417  * @nr_iovecs:	number of iovecs to pre-allocate
418  * @bs:		the bio_set to allocate from.
419  *
420  * Allocate a bio from the mempools in @bs.
421  *
422  * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
423  * allocate a bio.  This is due to the mempool guarantees.  To make this work,
424  * callers must never allocate more than 1 bio at a time from the general pool.
425  * Callers that need to allocate more than 1 bio must always submit the
426  * previously allocated bio for IO before attempting to allocate a new one.
427  * Failure to do so can cause deadlocks under memory pressure.
428  *
429  * Note that when running under submit_bio_noacct() (i.e. any block driver),
430  * bios are not submitted until after you return - see the code in
431  * submit_bio_noacct() that converts recursion into iteration, to prevent
432  * stack overflows.
433  *
434  * This would normally mean allocating multiple bios under submit_bio_noacct()
435  * would be susceptible to deadlocks, but we have
436  * deadlock avoidance code that resubmits any blocked bios from a rescuer
437  * thread.
438  *
439  * However, we do not guarantee forward progress for allocations from other
440  * mempools. Doing multiple allocations from the same mempool under
441  * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
442  * for per bio allocations.
443  *
444  * Returns: Pointer to new bio on success, NULL on failure.
445  */
446 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
447 			     struct bio_set *bs)
448 {
449 	gfp_t saved_gfp = gfp_mask;
450 	struct bio *bio;
451 	void *p;
452 
453 	/* should not use nobvec bioset for nr_iovecs > 0 */
454 	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
455 		return NULL;
456 
457 	/*
458 	 * submit_bio_noacct() converts recursion to iteration; this means if
459 	 * we're running beneath it, any bios we allocate and submit will not be
460 	 * submitted (and thus freed) until after we return.
461 	 *
462 	 * This exposes us to a potential deadlock if we allocate multiple bios
463 	 * from the same bio_set() while running underneath submit_bio_noacct().
464 	 * If we were to allocate multiple bios (say a stacking block driver
465 	 * that was splitting bios), we would deadlock if we exhausted the
466 	 * mempool's reserve.
467 	 *
468 	 * We solve this, and guarantee forward progress, with a rescuer
469 	 * workqueue per bio_set. If we go to allocate and there are bios on
470 	 * current->bio_list, we first try the allocation without
471 	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
472 	 * blocking to the rescuer workqueue before we retry with the original
473 	 * gfp_flags.
474 	 */
475 	if (current->bio_list &&
476 	    (!bio_list_empty(&current->bio_list[0]) ||
477 	     !bio_list_empty(&current->bio_list[1])) &&
478 	    bs->rescue_workqueue)
479 		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
480 
481 	p = mempool_alloc(&bs->bio_pool, gfp_mask);
482 	if (!p && gfp_mask != saved_gfp) {
483 		punt_bios_to_rescuer(bs);
484 		gfp_mask = saved_gfp;
485 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
486 	}
487 	if (unlikely(!p))
488 		return NULL;
489 
490 	bio = p + bs->front_pad;
491 	if (nr_iovecs > BIO_INLINE_VECS) {
492 		struct bio_vec *bvl = NULL;
493 
494 		bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
495 		if (!bvl && gfp_mask != saved_gfp) {
496 			punt_bios_to_rescuer(bs);
497 			gfp_mask = saved_gfp;
498 			bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
499 		}
500 		if (unlikely(!bvl))
501 			goto err_free;
502 
503 		bio_init(bio, bvl, nr_iovecs);
504 	} else if (nr_iovecs) {
505 		bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
506 	} else {
507 		bio_init(bio, NULL, 0);
508 	}
509 
510 	bio->bi_pool = bs;
511 	return bio;
512 
513 err_free:
514 	mempool_free(p, &bs->bio_pool);
515 	return NULL;
516 }
517 EXPORT_SYMBOL(bio_alloc_bioset);
518 
519 /**
520  * bio_kmalloc - kmalloc a bio for I/O
521  * @gfp_mask:   the GFP_* mask given to the slab allocator
522  * @nr_iovecs:	number of iovecs to pre-allocate
523  *
524  * Use kmalloc to allocate and initialize a bio.
525  *
526  * Returns: Pointer to new bio on success, NULL on failure.
527  */
528 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
529 {
530 	struct bio *bio;
531 
532 	if (nr_iovecs > UIO_MAXIOV)
533 		return NULL;
534 
535 	bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
536 	if (unlikely(!bio))
537 		return NULL;
538 	bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
539 	bio->bi_pool = NULL;
540 	return bio;
541 }
542 EXPORT_SYMBOL(bio_kmalloc);
543 
544 void zero_fill_bio(struct bio *bio)
545 {
546 	struct bio_vec bv;
547 	struct bvec_iter iter;
548 
549 	bio_for_each_segment(bv, bio, iter)
550 		memzero_bvec(&bv);
551 }
552 EXPORT_SYMBOL(zero_fill_bio);
553 
554 /**
555  * bio_truncate - truncate the bio to small size of @new_size
556  * @bio:	the bio to be truncated
557  * @new_size:	new size for truncating the bio
558  *
559  * Description:
560  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
561  *   REQ_OP_READ, zero the truncated part. This function should only
562  *   be used for handling corner cases, such as bio eod.
563  */
564 static void bio_truncate(struct bio *bio, unsigned new_size)
565 {
566 	struct bio_vec bv;
567 	struct bvec_iter iter;
568 	unsigned int done = 0;
569 	bool truncated = false;
570 
571 	if (new_size >= bio->bi_iter.bi_size)
572 		return;
573 
574 	if (bio_op(bio) != REQ_OP_READ)
575 		goto exit;
576 
577 	bio_for_each_segment(bv, bio, iter) {
578 		if (done + bv.bv_len > new_size) {
579 			unsigned offset;
580 
581 			if (!truncated)
582 				offset = new_size - done;
583 			else
584 				offset = 0;
585 			zero_user(bv.bv_page, bv.bv_offset + offset,
586 				  bv.bv_len - offset);
587 			truncated = true;
588 		}
589 		done += bv.bv_len;
590 	}
591 
592  exit:
593 	/*
594 	 * Don't touch bvec table here and make it really immutable, since
595 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
596 	 * in its .end_bio() callback.
597 	 *
598 	 * It is enough to truncate bio by updating .bi_size since we can make
599 	 * correct bvec with the updated .bi_size for drivers.
600 	 */
601 	bio->bi_iter.bi_size = new_size;
602 }
603 
604 /**
605  * guard_bio_eod - truncate a BIO to fit the block device
606  * @bio:	bio to truncate
607  *
608  * This allows us to do IO even on the odd last sectors of a device, even if the
609  * block size is some multiple of the physical sector size.
610  *
611  * We'll just truncate the bio to the size of the device, and clear the end of
612  * the buffer head manually.  Truly out-of-range accesses will turn into actual
613  * I/O errors, this only handles the "we need to be able to do I/O at the final
614  * sector" case.
615  */
616 void guard_bio_eod(struct bio *bio)
617 {
618 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
619 
620 	if (!maxsector)
621 		return;
622 
623 	/*
624 	 * If the *whole* IO is past the end of the device,
625 	 * let it through, and the IO layer will turn it into
626 	 * an EIO.
627 	 */
628 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
629 		return;
630 
631 	maxsector -= bio->bi_iter.bi_sector;
632 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
633 		return;
634 
635 	bio_truncate(bio, maxsector << 9);
636 }
637 
638 #define ALLOC_CACHE_MAX		512
639 #define ALLOC_CACHE_SLACK	 64
640 
641 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
642 				  unsigned int nr)
643 {
644 	unsigned int i = 0;
645 	struct bio *bio;
646 
647 	while ((bio = cache->free_list) != NULL) {
648 		cache->free_list = bio->bi_next;
649 		cache->nr--;
650 		bio_free(bio);
651 		if (++i == nr)
652 			break;
653 	}
654 }
655 
656 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
657 {
658 	struct bio_set *bs;
659 
660 	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
661 	if (bs->cache) {
662 		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
663 
664 		bio_alloc_cache_prune(cache, -1U);
665 	}
666 	return 0;
667 }
668 
669 static void bio_alloc_cache_destroy(struct bio_set *bs)
670 {
671 	int cpu;
672 
673 	if (!bs->cache)
674 		return;
675 
676 	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
677 	for_each_possible_cpu(cpu) {
678 		struct bio_alloc_cache *cache;
679 
680 		cache = per_cpu_ptr(bs->cache, cpu);
681 		bio_alloc_cache_prune(cache, -1U);
682 	}
683 	free_percpu(bs->cache);
684 }
685 
686 /**
687  * bio_put - release a reference to a bio
688  * @bio:   bio to release reference to
689  *
690  * Description:
691  *   Put a reference to a &struct bio, either one you have gotten with
692  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
693  **/
694 void bio_put(struct bio *bio)
695 {
696 	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
697 		BUG_ON(!atomic_read(&bio->__bi_cnt));
698 		if (!atomic_dec_and_test(&bio->__bi_cnt))
699 			return;
700 	}
701 
702 	if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
703 		struct bio_alloc_cache *cache;
704 
705 		bio_uninit(bio);
706 		cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
707 		bio->bi_next = cache->free_list;
708 		cache->free_list = bio;
709 		if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
710 			bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
711 		put_cpu();
712 	} else {
713 		bio_free(bio);
714 	}
715 }
716 EXPORT_SYMBOL(bio_put);
717 
718 /**
719  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
720  * 	@bio: destination bio
721  * 	@bio_src: bio to clone
722  *
723  *	Clone a &bio. Caller will own the returned bio, but not
724  *	the actual data it points to. Reference count of returned
725  * 	bio will be one.
726  *
727  * 	Caller must ensure that @bio_src is not freed before @bio.
728  */
729 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
730 {
731 	WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
732 
733 	/*
734 	 * most users will be overriding ->bi_bdev with a new target,
735 	 * so we don't set nor calculate new physical/hw segment counts here
736 	 */
737 	bio->bi_bdev = bio_src->bi_bdev;
738 	bio_set_flag(bio, BIO_CLONED);
739 	if (bio_flagged(bio_src, BIO_THROTTLED))
740 		bio_set_flag(bio, BIO_THROTTLED);
741 	if (bio_flagged(bio_src, BIO_REMAPPED))
742 		bio_set_flag(bio, BIO_REMAPPED);
743 	bio->bi_opf = bio_src->bi_opf;
744 	bio->bi_ioprio = bio_src->bi_ioprio;
745 	bio->bi_write_hint = bio_src->bi_write_hint;
746 	bio->bi_iter = bio_src->bi_iter;
747 	bio->bi_io_vec = bio_src->bi_io_vec;
748 
749 	bio_clone_blkg_association(bio, bio_src);
750 	blkcg_bio_issue_init(bio);
751 }
752 EXPORT_SYMBOL(__bio_clone_fast);
753 
754 /**
755  *	bio_clone_fast - clone a bio that shares the original bio's biovec
756  *	@bio: bio to clone
757  *	@gfp_mask: allocation priority
758  *	@bs: bio_set to allocate from
759  *
760  * 	Like __bio_clone_fast, only also allocates the returned bio
761  */
762 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
763 {
764 	struct bio *b;
765 
766 	b = bio_alloc_bioset(gfp_mask, 0, bs);
767 	if (!b)
768 		return NULL;
769 
770 	__bio_clone_fast(b, bio);
771 
772 	if (bio_crypt_clone(b, bio, gfp_mask) < 0)
773 		goto err_put;
774 
775 	if (bio_integrity(bio) &&
776 	    bio_integrity_clone(b, bio, gfp_mask) < 0)
777 		goto err_put;
778 
779 	return b;
780 
781 err_put:
782 	bio_put(b);
783 	return NULL;
784 }
785 EXPORT_SYMBOL(bio_clone_fast);
786 
787 const char *bio_devname(struct bio *bio, char *buf)
788 {
789 	return bdevname(bio->bi_bdev, buf);
790 }
791 EXPORT_SYMBOL(bio_devname);
792 
793 /**
794  * bio_full - check if the bio is full
795  * @bio:	bio to check
796  * @len:	length of one segment to be added
797  *
798  * Return true if @bio is full and one segment with @len bytes can't be
799  * added to the bio, otherwise return false
800  */
801 static inline bool bio_full(struct bio *bio, unsigned len)
802 {
803 	if (bio->bi_vcnt >= bio->bi_max_vecs)
804 		return true;
805 	if (bio->bi_iter.bi_size > UINT_MAX - len)
806 		return true;
807 	return false;
808 }
809 
810 static inline bool page_is_mergeable(const struct bio_vec *bv,
811 		struct page *page, unsigned int len, unsigned int off,
812 		bool *same_page)
813 {
814 	size_t bv_end = bv->bv_offset + bv->bv_len;
815 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
816 	phys_addr_t page_addr = page_to_phys(page);
817 
818 	if (vec_end_addr + 1 != page_addr + off)
819 		return false;
820 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
821 		return false;
822 
823 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
824 	if (*same_page)
825 		return true;
826 	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
827 }
828 
829 /**
830  * __bio_try_merge_page - try appending data to an existing bvec.
831  * @bio: destination bio
832  * @page: start page to add
833  * @len: length of the data to add
834  * @off: offset of the data relative to @page
835  * @same_page: return if the segment has been merged inside the same page
836  *
837  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
838  * useful optimisation for file systems with a block size smaller than the
839  * page size.
840  *
841  * Warn if (@len, @off) crosses pages in case that @same_page is true.
842  *
843  * Return %true on success or %false on failure.
844  */
845 static bool __bio_try_merge_page(struct bio *bio, struct page *page,
846 		unsigned int len, unsigned int off, bool *same_page)
847 {
848 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
849 		return false;
850 
851 	if (bio->bi_vcnt > 0) {
852 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
853 
854 		if (page_is_mergeable(bv, page, len, off, same_page)) {
855 			if (bio->bi_iter.bi_size > UINT_MAX - len) {
856 				*same_page = false;
857 				return false;
858 			}
859 			bv->bv_len += len;
860 			bio->bi_iter.bi_size += len;
861 			return true;
862 		}
863 	}
864 	return false;
865 }
866 
867 /*
868  * Try to merge a page into a segment, while obeying the hardware segment
869  * size limit.  This is not for normal read/write bios, but for passthrough
870  * or Zone Append operations that we can't split.
871  */
872 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
873 				 struct page *page, unsigned len,
874 				 unsigned offset, bool *same_page)
875 {
876 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
877 	unsigned long mask = queue_segment_boundary(q);
878 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
879 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
880 
881 	if ((addr1 | mask) != (addr2 | mask))
882 		return false;
883 	if (bv->bv_len + len > queue_max_segment_size(q))
884 		return false;
885 	return __bio_try_merge_page(bio, page, len, offset, same_page);
886 }
887 
888 /**
889  * bio_add_hw_page - attempt to add a page to a bio with hw constraints
890  * @q: the target queue
891  * @bio: destination bio
892  * @page: page to add
893  * @len: vec entry length
894  * @offset: vec entry offset
895  * @max_sectors: maximum number of sectors that can be added
896  * @same_page: return if the segment has been merged inside the same page
897  *
898  * Add a page to a bio while respecting the hardware max_sectors, max_segment
899  * and gap limitations.
900  */
901 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
902 		struct page *page, unsigned int len, unsigned int offset,
903 		unsigned int max_sectors, bool *same_page)
904 {
905 	struct bio_vec *bvec;
906 
907 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
908 		return 0;
909 
910 	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
911 		return 0;
912 
913 	if (bio->bi_vcnt > 0) {
914 		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
915 			return len;
916 
917 		/*
918 		 * If the queue doesn't support SG gaps and adding this segment
919 		 * would create a gap, disallow it.
920 		 */
921 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
922 		if (bvec_gap_to_prev(q, bvec, offset))
923 			return 0;
924 	}
925 
926 	if (bio_full(bio, len))
927 		return 0;
928 
929 	if (bio->bi_vcnt >= queue_max_segments(q))
930 		return 0;
931 
932 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
933 	bvec->bv_page = page;
934 	bvec->bv_len = len;
935 	bvec->bv_offset = offset;
936 	bio->bi_vcnt++;
937 	bio->bi_iter.bi_size += len;
938 	return len;
939 }
940 
941 /**
942  * bio_add_pc_page	- attempt to add page to passthrough bio
943  * @q: the target queue
944  * @bio: destination bio
945  * @page: page to add
946  * @len: vec entry length
947  * @offset: vec entry offset
948  *
949  * Attempt to add a page to the bio_vec maplist. This can fail for a
950  * number of reasons, such as the bio being full or target block device
951  * limitations. The target block device must allow bio's up to PAGE_SIZE,
952  * so it is always possible to add a single page to an empty bio.
953  *
954  * This should only be used by passthrough bios.
955  */
956 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
957 		struct page *page, unsigned int len, unsigned int offset)
958 {
959 	bool same_page = false;
960 	return bio_add_hw_page(q, bio, page, len, offset,
961 			queue_max_hw_sectors(q), &same_page);
962 }
963 EXPORT_SYMBOL(bio_add_pc_page);
964 
965 /**
966  * bio_add_zone_append_page - attempt to add page to zone-append bio
967  * @bio: destination bio
968  * @page: page to add
969  * @len: vec entry length
970  * @offset: vec entry offset
971  *
972  * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
973  * for a zone-append request. This can fail for a number of reasons, such as the
974  * bio being full or the target block device is not a zoned block device or
975  * other limitations of the target block device. The target block device must
976  * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
977  * to an empty bio.
978  *
979  * Returns: number of bytes added to the bio, or 0 in case of a failure.
980  */
981 int bio_add_zone_append_page(struct bio *bio, struct page *page,
982 			     unsigned int len, unsigned int offset)
983 {
984 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
985 	bool same_page = false;
986 
987 	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
988 		return 0;
989 
990 	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
991 		return 0;
992 
993 	return bio_add_hw_page(q, bio, page, len, offset,
994 			       queue_max_zone_append_sectors(q), &same_page);
995 }
996 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
997 
998 /**
999  * __bio_add_page - add page(s) to a bio in a new segment
1000  * @bio: destination bio
1001  * @page: start page to add
1002  * @len: length of the data to add, may cross pages
1003  * @off: offset of the data relative to @page, may cross pages
1004  *
1005  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
1006  * that @bio has space for another bvec.
1007  */
1008 void __bio_add_page(struct bio *bio, struct page *page,
1009 		unsigned int len, unsigned int off)
1010 {
1011 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
1012 
1013 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
1014 	WARN_ON_ONCE(bio_full(bio, len));
1015 
1016 	bv->bv_page = page;
1017 	bv->bv_offset = off;
1018 	bv->bv_len = len;
1019 
1020 	bio->bi_iter.bi_size += len;
1021 	bio->bi_vcnt++;
1022 
1023 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
1024 		bio_set_flag(bio, BIO_WORKINGSET);
1025 }
1026 EXPORT_SYMBOL_GPL(__bio_add_page);
1027 
1028 /**
1029  *	bio_add_page	-	attempt to add page(s) to bio
1030  *	@bio: destination bio
1031  *	@page: start page to add
1032  *	@len: vec entry length, may cross pages
1033  *	@offset: vec entry offset relative to @page, may cross pages
1034  *
1035  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1036  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1037  */
1038 int bio_add_page(struct bio *bio, struct page *page,
1039 		 unsigned int len, unsigned int offset)
1040 {
1041 	bool same_page = false;
1042 
1043 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1044 		if (bio_full(bio, len))
1045 			return 0;
1046 		__bio_add_page(bio, page, len, offset);
1047 	}
1048 	return len;
1049 }
1050 EXPORT_SYMBOL(bio_add_page);
1051 
1052 /**
1053  * bio_add_folio - Attempt to add part of a folio to a bio.
1054  * @bio: BIO to add to.
1055  * @folio: Folio to add.
1056  * @len: How many bytes from the folio to add.
1057  * @off: First byte in this folio to add.
1058  *
1059  * Filesystems that use folios can call this function instead of calling
1060  * bio_add_page() for each page in the folio.  If @off is bigger than
1061  * PAGE_SIZE, this function can create a bio_vec that starts in a page
1062  * after the bv_page.  BIOs do not support folios that are 4GiB or larger.
1063  *
1064  * Return: Whether the addition was successful.
1065  */
1066 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1067 		   size_t off)
1068 {
1069 	if (len > UINT_MAX || off > UINT_MAX)
1070 		return 0;
1071 	return bio_add_page(bio, &folio->page, len, off) > 0;
1072 }
1073 
1074 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1075 {
1076 	struct bvec_iter_all iter_all;
1077 	struct bio_vec *bvec;
1078 
1079 	bio_for_each_segment_all(bvec, bio, iter_all) {
1080 		if (mark_dirty && !PageCompound(bvec->bv_page))
1081 			set_page_dirty_lock(bvec->bv_page);
1082 		put_page(bvec->bv_page);
1083 	}
1084 }
1085 EXPORT_SYMBOL_GPL(__bio_release_pages);
1086 
1087 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1088 {
1089 	size_t size = iov_iter_count(iter);
1090 
1091 	WARN_ON_ONCE(bio->bi_max_vecs);
1092 
1093 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1094 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1095 		size_t max_sectors = queue_max_zone_append_sectors(q);
1096 
1097 		size = min(size, max_sectors << SECTOR_SHIFT);
1098 	}
1099 
1100 	bio->bi_vcnt = iter->nr_segs;
1101 	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1102 	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1103 	bio->bi_iter.bi_size = size;
1104 	bio_set_flag(bio, BIO_NO_PAGE_REF);
1105 	bio_set_flag(bio, BIO_CLONED);
1106 }
1107 
1108 static void bio_put_pages(struct page **pages, size_t size, size_t off)
1109 {
1110 	size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1111 
1112 	for (i = 0; i < nr; i++)
1113 		put_page(pages[i]);
1114 }
1115 
1116 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
1117 
1118 /**
1119  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1120  * @bio: bio to add pages to
1121  * @iter: iov iterator describing the region to be mapped
1122  *
1123  * Pins pages from *iter and appends them to @bio's bvec array. The
1124  * pages will have to be released using put_page() when done.
1125  * For multi-segment *iter, this function only adds pages from the
1126  * next non-empty segment of the iov iterator.
1127  */
1128 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1129 {
1130 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1131 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1132 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1133 	struct page **pages = (struct page **)bv;
1134 	bool same_page = false;
1135 	ssize_t size, left;
1136 	unsigned len, i;
1137 	size_t offset;
1138 
1139 	/*
1140 	 * Move page array up in the allocated memory for the bio vecs as far as
1141 	 * possible so that we can start filling biovecs from the beginning
1142 	 * without overwriting the temporary page array.
1143 	*/
1144 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1145 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1146 
1147 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1148 	if (unlikely(size <= 0))
1149 		return size ? size : -EFAULT;
1150 
1151 	for (left = size, i = 0; left > 0; left -= len, i++) {
1152 		struct page *page = pages[i];
1153 
1154 		len = min_t(size_t, PAGE_SIZE - offset, left);
1155 
1156 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1157 			if (same_page)
1158 				put_page(page);
1159 		} else {
1160 			if (WARN_ON_ONCE(bio_full(bio, len))) {
1161 				bio_put_pages(pages + i, left, offset);
1162 				return -EINVAL;
1163 			}
1164 			__bio_add_page(bio, page, len, offset);
1165 		}
1166 		offset = 0;
1167 	}
1168 
1169 	iov_iter_advance(iter, size);
1170 	return 0;
1171 }
1172 
1173 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1174 {
1175 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1176 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1177 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1178 	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1179 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1180 	struct page **pages = (struct page **)bv;
1181 	ssize_t size, left;
1182 	unsigned len, i;
1183 	size_t offset;
1184 	int ret = 0;
1185 
1186 	if (WARN_ON_ONCE(!max_append_sectors))
1187 		return 0;
1188 
1189 	/*
1190 	 * Move page array up in the allocated memory for the bio vecs as far as
1191 	 * possible so that we can start filling biovecs from the beginning
1192 	 * without overwriting the temporary page array.
1193 	 */
1194 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1195 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1196 
1197 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1198 	if (unlikely(size <= 0))
1199 		return size ? size : -EFAULT;
1200 
1201 	for (left = size, i = 0; left > 0; left -= len, i++) {
1202 		struct page *page = pages[i];
1203 		bool same_page = false;
1204 
1205 		len = min_t(size_t, PAGE_SIZE - offset, left);
1206 		if (bio_add_hw_page(q, bio, page, len, offset,
1207 				max_append_sectors, &same_page) != len) {
1208 			bio_put_pages(pages + i, left, offset);
1209 			ret = -EINVAL;
1210 			break;
1211 		}
1212 		if (same_page)
1213 			put_page(page);
1214 		offset = 0;
1215 	}
1216 
1217 	iov_iter_advance(iter, size - left);
1218 	return ret;
1219 }
1220 
1221 /**
1222  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1223  * @bio: bio to add pages to
1224  * @iter: iov iterator describing the region to be added
1225  *
1226  * This takes either an iterator pointing to user memory, or one pointing to
1227  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1228  * map them into the kernel. On IO completion, the caller should put those
1229  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1230  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1231  * to ensure the bvecs and pages stay referenced until the submitted I/O is
1232  * completed by a call to ->ki_complete() or returns with an error other than
1233  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1234  * on IO completion. If it isn't, then pages should be released.
1235  *
1236  * The function tries, but does not guarantee, to pin as many pages as
1237  * fit into the bio, or are requested in @iter, whatever is smaller. If
1238  * MM encounters an error pinning the requested pages, it stops. Error
1239  * is returned only if 0 pages could be pinned.
1240  *
1241  * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1242  * responsible for setting BIO_WORKINGSET if necessary.
1243  */
1244 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1245 {
1246 	int ret = 0;
1247 
1248 	if (iov_iter_is_bvec(iter)) {
1249 		bio_iov_bvec_set(bio, iter);
1250 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1251 		return 0;
1252 	}
1253 
1254 	do {
1255 		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1256 			ret = __bio_iov_append_get_pages(bio, iter);
1257 		else
1258 			ret = __bio_iov_iter_get_pages(bio, iter);
1259 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1260 
1261 	/* don't account direct I/O as memory stall */
1262 	bio_clear_flag(bio, BIO_WORKINGSET);
1263 	return bio->bi_vcnt ? 0 : ret;
1264 }
1265 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1266 
1267 static void submit_bio_wait_endio(struct bio *bio)
1268 {
1269 	complete(bio->bi_private);
1270 }
1271 
1272 /**
1273  * submit_bio_wait - submit a bio, and wait until it completes
1274  * @bio: The &struct bio which describes the I/O
1275  *
1276  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1277  * bio_endio() on failure.
1278  *
1279  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1280  * result in bio reference to be consumed. The caller must drop the reference
1281  * on his own.
1282  */
1283 int submit_bio_wait(struct bio *bio)
1284 {
1285 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1286 			bio->bi_bdev->bd_disk->lockdep_map);
1287 	unsigned long hang_check;
1288 
1289 	bio->bi_private = &done;
1290 	bio->bi_end_io = submit_bio_wait_endio;
1291 	bio->bi_opf |= REQ_SYNC;
1292 	submit_bio(bio);
1293 
1294 	/* Prevent hang_check timer from firing at us during very long I/O */
1295 	hang_check = sysctl_hung_task_timeout_secs;
1296 	if (hang_check)
1297 		while (!wait_for_completion_io_timeout(&done,
1298 					hang_check * (HZ/2)))
1299 			;
1300 	else
1301 		wait_for_completion_io(&done);
1302 
1303 	return blk_status_to_errno(bio->bi_status);
1304 }
1305 EXPORT_SYMBOL(submit_bio_wait);
1306 
1307 void __bio_advance(struct bio *bio, unsigned bytes)
1308 {
1309 	if (bio_integrity(bio))
1310 		bio_integrity_advance(bio, bytes);
1311 
1312 	bio_crypt_advance(bio, bytes);
1313 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1314 }
1315 EXPORT_SYMBOL(__bio_advance);
1316 
1317 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1318 			struct bio *src, struct bvec_iter *src_iter)
1319 {
1320 	while (src_iter->bi_size && dst_iter->bi_size) {
1321 		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1322 		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1323 		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1324 		void *src_buf;
1325 
1326 		src_buf = bvec_kmap_local(&src_bv);
1327 		memcpy_to_bvec(&dst_bv, src_buf);
1328 		kunmap_local(src_buf);
1329 
1330 		bio_advance_iter_single(src, src_iter, bytes);
1331 		bio_advance_iter_single(dst, dst_iter, bytes);
1332 	}
1333 }
1334 EXPORT_SYMBOL(bio_copy_data_iter);
1335 
1336 /**
1337  * bio_copy_data - copy contents of data buffers from one bio to another
1338  * @src: source bio
1339  * @dst: destination bio
1340  *
1341  * Stops when it reaches the end of either @src or @dst - that is, copies
1342  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1343  */
1344 void bio_copy_data(struct bio *dst, struct bio *src)
1345 {
1346 	struct bvec_iter src_iter = src->bi_iter;
1347 	struct bvec_iter dst_iter = dst->bi_iter;
1348 
1349 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1350 }
1351 EXPORT_SYMBOL(bio_copy_data);
1352 
1353 void bio_free_pages(struct bio *bio)
1354 {
1355 	struct bio_vec *bvec;
1356 	struct bvec_iter_all iter_all;
1357 
1358 	bio_for_each_segment_all(bvec, bio, iter_all)
1359 		__free_page(bvec->bv_page);
1360 }
1361 EXPORT_SYMBOL(bio_free_pages);
1362 
1363 /*
1364  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1365  * for performing direct-IO in BIOs.
1366  *
1367  * The problem is that we cannot run set_page_dirty() from interrupt context
1368  * because the required locks are not interrupt-safe.  So what we can do is to
1369  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1370  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1371  * in process context.
1372  *
1373  * We special-case compound pages here: normally this means reads into hugetlb
1374  * pages.  The logic in here doesn't really work right for compound pages
1375  * because the VM does not uniformly chase down the head page in all cases.
1376  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1377  * handle them at all.  So we skip compound pages here at an early stage.
1378  *
1379  * Note that this code is very hard to test under normal circumstances because
1380  * direct-io pins the pages with get_user_pages().  This makes
1381  * is_page_cache_freeable return false, and the VM will not clean the pages.
1382  * But other code (eg, flusher threads) could clean the pages if they are mapped
1383  * pagecache.
1384  *
1385  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1386  * deferred bio dirtying paths.
1387  */
1388 
1389 /*
1390  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1391  */
1392 void bio_set_pages_dirty(struct bio *bio)
1393 {
1394 	struct bio_vec *bvec;
1395 	struct bvec_iter_all iter_all;
1396 
1397 	bio_for_each_segment_all(bvec, bio, iter_all) {
1398 		if (!PageCompound(bvec->bv_page))
1399 			set_page_dirty_lock(bvec->bv_page);
1400 	}
1401 }
1402 
1403 /*
1404  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1405  * If they are, then fine.  If, however, some pages are clean then they must
1406  * have been written out during the direct-IO read.  So we take another ref on
1407  * the BIO and re-dirty the pages in process context.
1408  *
1409  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1410  * here on.  It will run one put_page() against each page and will run one
1411  * bio_put() against the BIO.
1412  */
1413 
1414 static void bio_dirty_fn(struct work_struct *work);
1415 
1416 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1417 static DEFINE_SPINLOCK(bio_dirty_lock);
1418 static struct bio *bio_dirty_list;
1419 
1420 /*
1421  * This runs in process context
1422  */
1423 static void bio_dirty_fn(struct work_struct *work)
1424 {
1425 	struct bio *bio, *next;
1426 
1427 	spin_lock_irq(&bio_dirty_lock);
1428 	next = bio_dirty_list;
1429 	bio_dirty_list = NULL;
1430 	spin_unlock_irq(&bio_dirty_lock);
1431 
1432 	while ((bio = next) != NULL) {
1433 		next = bio->bi_private;
1434 
1435 		bio_release_pages(bio, true);
1436 		bio_put(bio);
1437 	}
1438 }
1439 
1440 void bio_check_pages_dirty(struct bio *bio)
1441 {
1442 	struct bio_vec *bvec;
1443 	unsigned long flags;
1444 	struct bvec_iter_all iter_all;
1445 
1446 	bio_for_each_segment_all(bvec, bio, iter_all) {
1447 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1448 			goto defer;
1449 	}
1450 
1451 	bio_release_pages(bio, false);
1452 	bio_put(bio);
1453 	return;
1454 defer:
1455 	spin_lock_irqsave(&bio_dirty_lock, flags);
1456 	bio->bi_private = bio_dirty_list;
1457 	bio_dirty_list = bio;
1458 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1459 	schedule_work(&bio_dirty_work);
1460 }
1461 
1462 static inline bool bio_remaining_done(struct bio *bio)
1463 {
1464 	/*
1465 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1466 	 * we always end io on the first invocation.
1467 	 */
1468 	if (!bio_flagged(bio, BIO_CHAIN))
1469 		return true;
1470 
1471 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1472 
1473 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1474 		bio_clear_flag(bio, BIO_CHAIN);
1475 		return true;
1476 	}
1477 
1478 	return false;
1479 }
1480 
1481 /**
1482  * bio_endio - end I/O on a bio
1483  * @bio:	bio
1484  *
1485  * Description:
1486  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1487  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1488  *   bio unless they own it and thus know that it has an end_io function.
1489  *
1490  *   bio_endio() can be called several times on a bio that has been chained
1491  *   using bio_chain().  The ->bi_end_io() function will only be called the
1492  *   last time.
1493  **/
1494 void bio_endio(struct bio *bio)
1495 {
1496 again:
1497 	if (!bio_remaining_done(bio))
1498 		return;
1499 	if (!bio_integrity_endio(bio))
1500 		return;
1501 
1502 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACKED))
1503 		rq_qos_done_bio(bdev_get_queue(bio->bi_bdev), bio);
1504 
1505 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1506 		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1507 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1508 	}
1509 
1510 	/*
1511 	 * Need to have a real endio function for chained bios, otherwise
1512 	 * various corner cases will break (like stacking block devices that
1513 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1514 	 * recursion and blowing the stack. Tail call optimization would
1515 	 * handle this, but compiling with frame pointers also disables
1516 	 * gcc's sibling call optimization.
1517 	 */
1518 	if (bio->bi_end_io == bio_chain_endio) {
1519 		bio = __bio_chain_endio(bio);
1520 		goto again;
1521 	}
1522 
1523 	blk_throtl_bio_endio(bio);
1524 	/* release cgroup info */
1525 	bio_uninit(bio);
1526 	if (bio->bi_end_io)
1527 		bio->bi_end_io(bio);
1528 }
1529 EXPORT_SYMBOL(bio_endio);
1530 
1531 /**
1532  * bio_split - split a bio
1533  * @bio:	bio to split
1534  * @sectors:	number of sectors to split from the front of @bio
1535  * @gfp:	gfp mask
1536  * @bs:		bio set to allocate from
1537  *
1538  * Allocates and returns a new bio which represents @sectors from the start of
1539  * @bio, and updates @bio to represent the remaining sectors.
1540  *
1541  * Unless this is a discard request the newly allocated bio will point
1542  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1543  * neither @bio nor @bs are freed before the split bio.
1544  */
1545 struct bio *bio_split(struct bio *bio, int sectors,
1546 		      gfp_t gfp, struct bio_set *bs)
1547 {
1548 	struct bio *split;
1549 
1550 	BUG_ON(sectors <= 0);
1551 	BUG_ON(sectors >= bio_sectors(bio));
1552 
1553 	/* Zone append commands cannot be split */
1554 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1555 		return NULL;
1556 
1557 	split = bio_clone_fast(bio, gfp, bs);
1558 	if (!split)
1559 		return NULL;
1560 
1561 	split->bi_iter.bi_size = sectors << 9;
1562 
1563 	if (bio_integrity(split))
1564 		bio_integrity_trim(split);
1565 
1566 	bio_advance(bio, split->bi_iter.bi_size);
1567 
1568 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1569 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1570 
1571 	return split;
1572 }
1573 EXPORT_SYMBOL(bio_split);
1574 
1575 /**
1576  * bio_trim - trim a bio
1577  * @bio:	bio to trim
1578  * @offset:	number of sectors to trim from the front of @bio
1579  * @size:	size we want to trim @bio to, in sectors
1580  *
1581  * This function is typically used for bios that are cloned and submitted
1582  * to the underlying device in parts.
1583  */
1584 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1585 {
1586 	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1587 			 offset + size > bio->bi_iter.bi_size))
1588 		return;
1589 
1590 	size <<= 9;
1591 	if (offset == 0 && size == bio->bi_iter.bi_size)
1592 		return;
1593 
1594 	bio_advance(bio, offset << 9);
1595 	bio->bi_iter.bi_size = size;
1596 
1597 	if (bio_integrity(bio))
1598 		bio_integrity_trim(bio);
1599 }
1600 EXPORT_SYMBOL_GPL(bio_trim);
1601 
1602 /*
1603  * create memory pools for biovec's in a bio_set.
1604  * use the global biovec slabs created for general use.
1605  */
1606 int biovec_init_pool(mempool_t *pool, int pool_entries)
1607 {
1608 	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1609 
1610 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1611 }
1612 
1613 /*
1614  * bioset_exit - exit a bioset initialized with bioset_init()
1615  *
1616  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1617  * kzalloc()).
1618  */
1619 void bioset_exit(struct bio_set *bs)
1620 {
1621 	bio_alloc_cache_destroy(bs);
1622 	if (bs->rescue_workqueue)
1623 		destroy_workqueue(bs->rescue_workqueue);
1624 	bs->rescue_workqueue = NULL;
1625 
1626 	mempool_exit(&bs->bio_pool);
1627 	mempool_exit(&bs->bvec_pool);
1628 
1629 	bioset_integrity_free(bs);
1630 	if (bs->bio_slab)
1631 		bio_put_slab(bs);
1632 	bs->bio_slab = NULL;
1633 }
1634 EXPORT_SYMBOL(bioset_exit);
1635 
1636 /**
1637  * bioset_init - Initialize a bio_set
1638  * @bs:		pool to initialize
1639  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1640  * @front_pad:	Number of bytes to allocate in front of the returned bio
1641  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1642  *              and %BIOSET_NEED_RESCUER
1643  *
1644  * Description:
1645  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1646  *    to ask for a number of bytes to be allocated in front of the bio.
1647  *    Front pad allocation is useful for embedding the bio inside
1648  *    another structure, to avoid allocating extra data to go with the bio.
1649  *    Note that the bio must be embedded at the END of that structure always,
1650  *    or things will break badly.
1651  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1652  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1653  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1654  *    dispatch queued requests when the mempool runs out of space.
1655  *
1656  */
1657 int bioset_init(struct bio_set *bs,
1658 		unsigned int pool_size,
1659 		unsigned int front_pad,
1660 		int flags)
1661 {
1662 	bs->front_pad = front_pad;
1663 	if (flags & BIOSET_NEED_BVECS)
1664 		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1665 	else
1666 		bs->back_pad = 0;
1667 
1668 	spin_lock_init(&bs->rescue_lock);
1669 	bio_list_init(&bs->rescue_list);
1670 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1671 
1672 	bs->bio_slab = bio_find_or_create_slab(bs);
1673 	if (!bs->bio_slab)
1674 		return -ENOMEM;
1675 
1676 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1677 		goto bad;
1678 
1679 	if ((flags & BIOSET_NEED_BVECS) &&
1680 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1681 		goto bad;
1682 
1683 	if (flags & BIOSET_NEED_RESCUER) {
1684 		bs->rescue_workqueue = alloc_workqueue("bioset",
1685 							WQ_MEM_RECLAIM, 0);
1686 		if (!bs->rescue_workqueue)
1687 			goto bad;
1688 	}
1689 	if (flags & BIOSET_PERCPU_CACHE) {
1690 		bs->cache = alloc_percpu(struct bio_alloc_cache);
1691 		if (!bs->cache)
1692 			goto bad;
1693 		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1694 	}
1695 
1696 	return 0;
1697 bad:
1698 	bioset_exit(bs);
1699 	return -ENOMEM;
1700 }
1701 EXPORT_SYMBOL(bioset_init);
1702 
1703 /*
1704  * Initialize and setup a new bio_set, based on the settings from
1705  * another bio_set.
1706  */
1707 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1708 {
1709 	int flags;
1710 
1711 	flags = 0;
1712 	if (src->bvec_pool.min_nr)
1713 		flags |= BIOSET_NEED_BVECS;
1714 	if (src->rescue_workqueue)
1715 		flags |= BIOSET_NEED_RESCUER;
1716 
1717 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1718 }
1719 EXPORT_SYMBOL(bioset_init_from_src);
1720 
1721 /**
1722  * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
1723  * @kiocb:	kiocb describing the IO
1724  * @nr_vecs:	number of iovecs to pre-allocate
1725  * @bs:		bio_set to allocate from
1726  *
1727  * Description:
1728  *    Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
1729  *    used to check if we should dip into the per-cpu bio_set allocation
1730  *    cache. The allocation uses GFP_KERNEL internally. On return, the
1731  *    bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
1732  *    MUST be done from process context, not hard/soft IRQ.
1733  *
1734  */
1735 struct bio *bio_alloc_kiocb(struct kiocb *kiocb, unsigned short nr_vecs,
1736 			    struct bio_set *bs)
1737 {
1738 	struct bio_alloc_cache *cache;
1739 	struct bio *bio;
1740 
1741 	if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
1742 		return bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1743 
1744 	cache = per_cpu_ptr(bs->cache, get_cpu());
1745 	if (cache->free_list) {
1746 		bio = cache->free_list;
1747 		cache->free_list = bio->bi_next;
1748 		cache->nr--;
1749 		put_cpu();
1750 		bio_init(bio, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs);
1751 		bio->bi_pool = bs;
1752 		bio_set_flag(bio, BIO_PERCPU_CACHE);
1753 		return bio;
1754 	}
1755 	put_cpu();
1756 	bio = bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1757 	bio_set_flag(bio, BIO_PERCPU_CACHE);
1758 	return bio;
1759 }
1760 EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
1761 
1762 static int __init init_bio(void)
1763 {
1764 	int i;
1765 
1766 	bio_integrity_init();
1767 
1768 	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1769 		struct biovec_slab *bvs = bvec_slabs + i;
1770 
1771 		bvs->slab = kmem_cache_create(bvs->name,
1772 				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1773 				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1774 	}
1775 
1776 	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1777 					bio_cpu_dead);
1778 
1779 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1780 		panic("bio: can't allocate bios\n");
1781 
1782 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1783 		panic("bio: can't create integrity pool\n");
1784 
1785 	return 0;
1786 }
1787 subsys_initcall(init_bio);
1788