xref: /openbmc/linux/block/bio.c (revision 3932b9ca)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <scsi/sg.h>		/* for struct sg_iovec */
32 
33 #include <trace/events/block.h>
34 
35 /*
36  * Test patch to inline a certain number of bi_io_vec's inside the bio
37  * itself, to shrink a bio data allocation from two mempool calls to one
38  */
39 #define BIO_INLINE_VECS		4
40 
41 /*
42  * if you change this list, also change bvec_alloc or things will
43  * break badly! cannot be bigger than what you can fit into an
44  * unsigned short
45  */
46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
48 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 };
50 #undef BV
51 
52 /*
53  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54  * IO code that does not need private memory pools.
55  */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58 
59 /*
60  * Our slab pool management
61  */
62 struct bio_slab {
63 	struct kmem_cache *slab;
64 	unsigned int slab_ref;
65 	unsigned int slab_size;
66 	char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71 
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 	unsigned int sz = sizeof(struct bio) + extra_size;
75 	struct kmem_cache *slab = NULL;
76 	struct bio_slab *bslab, *new_bio_slabs;
77 	unsigned int new_bio_slab_max;
78 	unsigned int i, entry = -1;
79 
80 	mutex_lock(&bio_slab_lock);
81 
82 	i = 0;
83 	while (i < bio_slab_nr) {
84 		bslab = &bio_slabs[i];
85 
86 		if (!bslab->slab && entry == -1)
87 			entry = i;
88 		else if (bslab->slab_size == sz) {
89 			slab = bslab->slab;
90 			bslab->slab_ref++;
91 			break;
92 		}
93 		i++;
94 	}
95 
96 	if (slab)
97 		goto out_unlock;
98 
99 	if (bio_slab_nr == bio_slab_max && entry == -1) {
100 		new_bio_slab_max = bio_slab_max << 1;
101 		new_bio_slabs = krealloc(bio_slabs,
102 					 new_bio_slab_max * sizeof(struct bio_slab),
103 					 GFP_KERNEL);
104 		if (!new_bio_slabs)
105 			goto out_unlock;
106 		bio_slab_max = new_bio_slab_max;
107 		bio_slabs = new_bio_slabs;
108 	}
109 	if (entry == -1)
110 		entry = bio_slab_nr++;
111 
112 	bslab = &bio_slabs[entry];
113 
114 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 				 SLAB_HWCACHE_ALIGN, NULL);
117 	if (!slab)
118 		goto out_unlock;
119 
120 	bslab->slab = slab;
121 	bslab->slab_ref = 1;
122 	bslab->slab_size = sz;
123 out_unlock:
124 	mutex_unlock(&bio_slab_lock);
125 	return slab;
126 }
127 
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 	struct bio_slab *bslab = NULL;
131 	unsigned int i;
132 
133 	mutex_lock(&bio_slab_lock);
134 
135 	for (i = 0; i < bio_slab_nr; i++) {
136 		if (bs->bio_slab == bio_slabs[i].slab) {
137 			bslab = &bio_slabs[i];
138 			break;
139 		}
140 	}
141 
142 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 		goto out;
144 
145 	WARN_ON(!bslab->slab_ref);
146 
147 	if (--bslab->slab_ref)
148 		goto out;
149 
150 	kmem_cache_destroy(bslab->slab);
151 	bslab->slab = NULL;
152 
153 out:
154 	mutex_unlock(&bio_slab_lock);
155 }
156 
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 	return bvec_slabs[idx].nr_vecs;
160 }
161 
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
165 
166 	if (idx == BIOVEC_MAX_IDX)
167 		mempool_free(bv, pool);
168 	else {
169 		struct biovec_slab *bvs = bvec_slabs + idx;
170 
171 		kmem_cache_free(bvs->slab, bv);
172 	}
173 }
174 
175 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
176 			   mempool_t *pool)
177 {
178 	struct bio_vec *bvl;
179 
180 	/*
181 	 * see comment near bvec_array define!
182 	 */
183 	switch (nr) {
184 	case 1:
185 		*idx = 0;
186 		break;
187 	case 2 ... 4:
188 		*idx = 1;
189 		break;
190 	case 5 ... 16:
191 		*idx = 2;
192 		break;
193 	case 17 ... 64:
194 		*idx = 3;
195 		break;
196 	case 65 ... 128:
197 		*idx = 4;
198 		break;
199 	case 129 ... BIO_MAX_PAGES:
200 		*idx = 5;
201 		break;
202 	default:
203 		return NULL;
204 	}
205 
206 	/*
207 	 * idx now points to the pool we want to allocate from. only the
208 	 * 1-vec entry pool is mempool backed.
209 	 */
210 	if (*idx == BIOVEC_MAX_IDX) {
211 fallback:
212 		bvl = mempool_alloc(pool, gfp_mask);
213 	} else {
214 		struct biovec_slab *bvs = bvec_slabs + *idx;
215 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
216 
217 		/*
218 		 * Make this allocation restricted and don't dump info on
219 		 * allocation failures, since we'll fallback to the mempool
220 		 * in case of failure.
221 		 */
222 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
223 
224 		/*
225 		 * Try a slab allocation. If this fails and __GFP_WAIT
226 		 * is set, retry with the 1-entry mempool
227 		 */
228 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
229 		if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
230 			*idx = BIOVEC_MAX_IDX;
231 			goto fallback;
232 		}
233 	}
234 
235 	return bvl;
236 }
237 
238 static void __bio_free(struct bio *bio)
239 {
240 	bio_disassociate_task(bio);
241 
242 	if (bio_integrity(bio))
243 		bio_integrity_free(bio);
244 }
245 
246 static void bio_free(struct bio *bio)
247 {
248 	struct bio_set *bs = bio->bi_pool;
249 	void *p;
250 
251 	__bio_free(bio);
252 
253 	if (bs) {
254 		if (bio_flagged(bio, BIO_OWNS_VEC))
255 			bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
256 
257 		/*
258 		 * If we have front padding, adjust the bio pointer before freeing
259 		 */
260 		p = bio;
261 		p -= bs->front_pad;
262 
263 		mempool_free(p, bs->bio_pool);
264 	} else {
265 		/* Bio was allocated by bio_kmalloc() */
266 		kfree(bio);
267 	}
268 }
269 
270 void bio_init(struct bio *bio)
271 {
272 	memset(bio, 0, sizeof(*bio));
273 	bio->bi_flags = 1 << BIO_UPTODATE;
274 	atomic_set(&bio->bi_remaining, 1);
275 	atomic_set(&bio->bi_cnt, 1);
276 }
277 EXPORT_SYMBOL(bio_init);
278 
279 /**
280  * bio_reset - reinitialize a bio
281  * @bio:	bio to reset
282  *
283  * Description:
284  *   After calling bio_reset(), @bio will be in the same state as a freshly
285  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
286  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
287  *   comment in struct bio.
288  */
289 void bio_reset(struct bio *bio)
290 {
291 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
292 
293 	__bio_free(bio);
294 
295 	memset(bio, 0, BIO_RESET_BYTES);
296 	bio->bi_flags = flags|(1 << BIO_UPTODATE);
297 	atomic_set(&bio->bi_remaining, 1);
298 }
299 EXPORT_SYMBOL(bio_reset);
300 
301 static void bio_chain_endio(struct bio *bio, int error)
302 {
303 	bio_endio(bio->bi_private, error);
304 	bio_put(bio);
305 }
306 
307 /**
308  * bio_chain - chain bio completions
309  * @bio: the target bio
310  * @parent: the @bio's parent bio
311  *
312  * The caller won't have a bi_end_io called when @bio completes - instead,
313  * @parent's bi_end_io won't be called until both @parent and @bio have
314  * completed; the chained bio will also be freed when it completes.
315  *
316  * The caller must not set bi_private or bi_end_io in @bio.
317  */
318 void bio_chain(struct bio *bio, struct bio *parent)
319 {
320 	BUG_ON(bio->bi_private || bio->bi_end_io);
321 
322 	bio->bi_private = parent;
323 	bio->bi_end_io	= bio_chain_endio;
324 	atomic_inc(&parent->bi_remaining);
325 }
326 EXPORT_SYMBOL(bio_chain);
327 
328 static void bio_alloc_rescue(struct work_struct *work)
329 {
330 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
331 	struct bio *bio;
332 
333 	while (1) {
334 		spin_lock(&bs->rescue_lock);
335 		bio = bio_list_pop(&bs->rescue_list);
336 		spin_unlock(&bs->rescue_lock);
337 
338 		if (!bio)
339 			break;
340 
341 		generic_make_request(bio);
342 	}
343 }
344 
345 static void punt_bios_to_rescuer(struct bio_set *bs)
346 {
347 	struct bio_list punt, nopunt;
348 	struct bio *bio;
349 
350 	/*
351 	 * In order to guarantee forward progress we must punt only bios that
352 	 * were allocated from this bio_set; otherwise, if there was a bio on
353 	 * there for a stacking driver higher up in the stack, processing it
354 	 * could require allocating bios from this bio_set, and doing that from
355 	 * our own rescuer would be bad.
356 	 *
357 	 * Since bio lists are singly linked, pop them all instead of trying to
358 	 * remove from the middle of the list:
359 	 */
360 
361 	bio_list_init(&punt);
362 	bio_list_init(&nopunt);
363 
364 	while ((bio = bio_list_pop(current->bio_list)))
365 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
366 
367 	*current->bio_list = nopunt;
368 
369 	spin_lock(&bs->rescue_lock);
370 	bio_list_merge(&bs->rescue_list, &punt);
371 	spin_unlock(&bs->rescue_lock);
372 
373 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
374 }
375 
376 /**
377  * bio_alloc_bioset - allocate a bio for I/O
378  * @gfp_mask:   the GFP_ mask given to the slab allocator
379  * @nr_iovecs:	number of iovecs to pre-allocate
380  * @bs:		the bio_set to allocate from.
381  *
382  * Description:
383  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
384  *   backed by the @bs's mempool.
385  *
386  *   When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
387  *   able to allocate a bio. This is due to the mempool guarantees. To make this
388  *   work, callers must never allocate more than 1 bio at a time from this pool.
389  *   Callers that need to allocate more than 1 bio must always submit the
390  *   previously allocated bio for IO before attempting to allocate a new one.
391  *   Failure to do so can cause deadlocks under memory pressure.
392  *
393  *   Note that when running under generic_make_request() (i.e. any block
394  *   driver), bios are not submitted until after you return - see the code in
395  *   generic_make_request() that converts recursion into iteration, to prevent
396  *   stack overflows.
397  *
398  *   This would normally mean allocating multiple bios under
399  *   generic_make_request() would be susceptible to deadlocks, but we have
400  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
401  *   thread.
402  *
403  *   However, we do not guarantee forward progress for allocations from other
404  *   mempools. Doing multiple allocations from the same mempool under
405  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
406  *   for per bio allocations.
407  *
408  *   RETURNS:
409  *   Pointer to new bio on success, NULL on failure.
410  */
411 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
412 {
413 	gfp_t saved_gfp = gfp_mask;
414 	unsigned front_pad;
415 	unsigned inline_vecs;
416 	unsigned long idx = BIO_POOL_NONE;
417 	struct bio_vec *bvl = NULL;
418 	struct bio *bio;
419 	void *p;
420 
421 	if (!bs) {
422 		if (nr_iovecs > UIO_MAXIOV)
423 			return NULL;
424 
425 		p = kmalloc(sizeof(struct bio) +
426 			    nr_iovecs * sizeof(struct bio_vec),
427 			    gfp_mask);
428 		front_pad = 0;
429 		inline_vecs = nr_iovecs;
430 	} else {
431 		/*
432 		 * generic_make_request() converts recursion to iteration; this
433 		 * means if we're running beneath it, any bios we allocate and
434 		 * submit will not be submitted (and thus freed) until after we
435 		 * return.
436 		 *
437 		 * This exposes us to a potential deadlock if we allocate
438 		 * multiple bios from the same bio_set() while running
439 		 * underneath generic_make_request(). If we were to allocate
440 		 * multiple bios (say a stacking block driver that was splitting
441 		 * bios), we would deadlock if we exhausted the mempool's
442 		 * reserve.
443 		 *
444 		 * We solve this, and guarantee forward progress, with a rescuer
445 		 * workqueue per bio_set. If we go to allocate and there are
446 		 * bios on current->bio_list, we first try the allocation
447 		 * without __GFP_WAIT; if that fails, we punt those bios we
448 		 * would be blocking to the rescuer workqueue before we retry
449 		 * with the original gfp_flags.
450 		 */
451 
452 		if (current->bio_list && !bio_list_empty(current->bio_list))
453 			gfp_mask &= ~__GFP_WAIT;
454 
455 		p = mempool_alloc(bs->bio_pool, gfp_mask);
456 		if (!p && gfp_mask != saved_gfp) {
457 			punt_bios_to_rescuer(bs);
458 			gfp_mask = saved_gfp;
459 			p = mempool_alloc(bs->bio_pool, gfp_mask);
460 		}
461 
462 		front_pad = bs->front_pad;
463 		inline_vecs = BIO_INLINE_VECS;
464 	}
465 
466 	if (unlikely(!p))
467 		return NULL;
468 
469 	bio = p + front_pad;
470 	bio_init(bio);
471 
472 	if (nr_iovecs > inline_vecs) {
473 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
474 		if (!bvl && gfp_mask != saved_gfp) {
475 			punt_bios_to_rescuer(bs);
476 			gfp_mask = saved_gfp;
477 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
478 		}
479 
480 		if (unlikely(!bvl))
481 			goto err_free;
482 
483 		bio->bi_flags |= 1 << BIO_OWNS_VEC;
484 	} else if (nr_iovecs) {
485 		bvl = bio->bi_inline_vecs;
486 	}
487 
488 	bio->bi_pool = bs;
489 	bio->bi_flags |= idx << BIO_POOL_OFFSET;
490 	bio->bi_max_vecs = nr_iovecs;
491 	bio->bi_io_vec = bvl;
492 	return bio;
493 
494 err_free:
495 	mempool_free(p, bs->bio_pool);
496 	return NULL;
497 }
498 EXPORT_SYMBOL(bio_alloc_bioset);
499 
500 void zero_fill_bio(struct bio *bio)
501 {
502 	unsigned long flags;
503 	struct bio_vec bv;
504 	struct bvec_iter iter;
505 
506 	bio_for_each_segment(bv, bio, iter) {
507 		char *data = bvec_kmap_irq(&bv, &flags);
508 		memset(data, 0, bv.bv_len);
509 		flush_dcache_page(bv.bv_page);
510 		bvec_kunmap_irq(data, &flags);
511 	}
512 }
513 EXPORT_SYMBOL(zero_fill_bio);
514 
515 /**
516  * bio_put - release a reference to a bio
517  * @bio:   bio to release reference to
518  *
519  * Description:
520  *   Put a reference to a &struct bio, either one you have gotten with
521  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
522  **/
523 void bio_put(struct bio *bio)
524 {
525 	BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
526 
527 	/*
528 	 * last put frees it
529 	 */
530 	if (atomic_dec_and_test(&bio->bi_cnt))
531 		bio_free(bio);
532 }
533 EXPORT_SYMBOL(bio_put);
534 
535 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
536 {
537 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
538 		blk_recount_segments(q, bio);
539 
540 	return bio->bi_phys_segments;
541 }
542 EXPORT_SYMBOL(bio_phys_segments);
543 
544 /**
545  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
546  * 	@bio: destination bio
547  * 	@bio_src: bio to clone
548  *
549  *	Clone a &bio. Caller will own the returned bio, but not
550  *	the actual data it points to. Reference count of returned
551  * 	bio will be one.
552  *
553  * 	Caller must ensure that @bio_src is not freed before @bio.
554  */
555 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
556 {
557 	BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
558 
559 	/*
560 	 * most users will be overriding ->bi_bdev with a new target,
561 	 * so we don't set nor calculate new physical/hw segment counts here
562 	 */
563 	bio->bi_bdev = bio_src->bi_bdev;
564 	bio->bi_flags |= 1 << BIO_CLONED;
565 	bio->bi_rw = bio_src->bi_rw;
566 	bio->bi_iter = bio_src->bi_iter;
567 	bio->bi_io_vec = bio_src->bi_io_vec;
568 }
569 EXPORT_SYMBOL(__bio_clone_fast);
570 
571 /**
572  *	bio_clone_fast - clone a bio that shares the original bio's biovec
573  *	@bio: bio to clone
574  *	@gfp_mask: allocation priority
575  *	@bs: bio_set to allocate from
576  *
577  * 	Like __bio_clone_fast, only also allocates the returned bio
578  */
579 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
580 {
581 	struct bio *b;
582 
583 	b = bio_alloc_bioset(gfp_mask, 0, bs);
584 	if (!b)
585 		return NULL;
586 
587 	__bio_clone_fast(b, bio);
588 
589 	if (bio_integrity(bio)) {
590 		int ret;
591 
592 		ret = bio_integrity_clone(b, bio, gfp_mask);
593 
594 		if (ret < 0) {
595 			bio_put(b);
596 			return NULL;
597 		}
598 	}
599 
600 	return b;
601 }
602 EXPORT_SYMBOL(bio_clone_fast);
603 
604 /**
605  * 	bio_clone_bioset - clone a bio
606  * 	@bio_src: bio to clone
607  *	@gfp_mask: allocation priority
608  *	@bs: bio_set to allocate from
609  *
610  *	Clone bio. Caller will own the returned bio, but not the actual data it
611  *	points to. Reference count of returned bio will be one.
612  */
613 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
614 			     struct bio_set *bs)
615 {
616 	struct bvec_iter iter;
617 	struct bio_vec bv;
618 	struct bio *bio;
619 
620 	/*
621 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
622 	 * bio_src->bi_io_vec to bio->bi_io_vec.
623 	 *
624 	 * We can't do that anymore, because:
625 	 *
626 	 *  - The point of cloning the biovec is to produce a bio with a biovec
627 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
628 	 *
629 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
630 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
631 	 *    But the clone should succeed as long as the number of biovecs we
632 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
633 	 *
634 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
635 	 *    that does not own the bio - reason being drivers don't use it for
636 	 *    iterating over the biovec anymore, so expecting it to be kept up
637 	 *    to date (i.e. for clones that share the parent biovec) is just
638 	 *    asking for trouble and would force extra work on
639 	 *    __bio_clone_fast() anyways.
640 	 */
641 
642 	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
643 	if (!bio)
644 		return NULL;
645 
646 	bio->bi_bdev		= bio_src->bi_bdev;
647 	bio->bi_rw		= bio_src->bi_rw;
648 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
649 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
650 
651 	if (bio->bi_rw & REQ_DISCARD)
652 		goto integrity_clone;
653 
654 	if (bio->bi_rw & REQ_WRITE_SAME) {
655 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
656 		goto integrity_clone;
657 	}
658 
659 	bio_for_each_segment(bv, bio_src, iter)
660 		bio->bi_io_vec[bio->bi_vcnt++] = bv;
661 
662 integrity_clone:
663 	if (bio_integrity(bio_src)) {
664 		int ret;
665 
666 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
667 		if (ret < 0) {
668 			bio_put(bio);
669 			return NULL;
670 		}
671 	}
672 
673 	return bio;
674 }
675 EXPORT_SYMBOL(bio_clone_bioset);
676 
677 /**
678  *	bio_get_nr_vecs		- return approx number of vecs
679  *	@bdev:  I/O target
680  *
681  *	Return the approximate number of pages we can send to this target.
682  *	There's no guarantee that you will be able to fit this number of pages
683  *	into a bio, it does not account for dynamic restrictions that vary
684  *	on offset.
685  */
686 int bio_get_nr_vecs(struct block_device *bdev)
687 {
688 	struct request_queue *q = bdev_get_queue(bdev);
689 	int nr_pages;
690 
691 	nr_pages = min_t(unsigned,
692 		     queue_max_segments(q),
693 		     queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
694 
695 	return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
696 
697 }
698 EXPORT_SYMBOL(bio_get_nr_vecs);
699 
700 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
701 			  *page, unsigned int len, unsigned int offset,
702 			  unsigned int max_sectors)
703 {
704 	int retried_segments = 0;
705 	struct bio_vec *bvec;
706 
707 	/*
708 	 * cloned bio must not modify vec list
709 	 */
710 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
711 		return 0;
712 
713 	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
714 		return 0;
715 
716 	/*
717 	 * For filesystems with a blocksize smaller than the pagesize
718 	 * we will often be called with the same page as last time and
719 	 * a consecutive offset.  Optimize this special case.
720 	 */
721 	if (bio->bi_vcnt > 0) {
722 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
723 
724 		if (page == prev->bv_page &&
725 		    offset == prev->bv_offset + prev->bv_len) {
726 			unsigned int prev_bv_len = prev->bv_len;
727 			prev->bv_len += len;
728 
729 			if (q->merge_bvec_fn) {
730 				struct bvec_merge_data bvm = {
731 					/* prev_bvec is already charged in
732 					   bi_size, discharge it in order to
733 					   simulate merging updated prev_bvec
734 					   as new bvec. */
735 					.bi_bdev = bio->bi_bdev,
736 					.bi_sector = bio->bi_iter.bi_sector,
737 					.bi_size = bio->bi_iter.bi_size -
738 						prev_bv_len,
739 					.bi_rw = bio->bi_rw,
740 				};
741 
742 				if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
743 					prev->bv_len -= len;
744 					return 0;
745 				}
746 			}
747 
748 			goto done;
749 		}
750 
751 		/*
752 		 * If the queue doesn't support SG gaps and adding this
753 		 * offset would create a gap, disallow it.
754 		 */
755 		if (q->queue_flags & (1 << QUEUE_FLAG_SG_GAPS) &&
756 		    bvec_gap_to_prev(prev, offset))
757 			return 0;
758 	}
759 
760 	if (bio->bi_vcnt >= bio->bi_max_vecs)
761 		return 0;
762 
763 	/*
764 	 * we might lose a segment or two here, but rather that than
765 	 * make this too complex.
766 	 */
767 
768 	while (bio->bi_phys_segments >= queue_max_segments(q)) {
769 
770 		if (retried_segments)
771 			return 0;
772 
773 		retried_segments = 1;
774 		blk_recount_segments(q, bio);
775 	}
776 
777 	/*
778 	 * setup the new entry, we might clear it again later if we
779 	 * cannot add the page
780 	 */
781 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
782 	bvec->bv_page = page;
783 	bvec->bv_len = len;
784 	bvec->bv_offset = offset;
785 
786 	/*
787 	 * if queue has other restrictions (eg varying max sector size
788 	 * depending on offset), it can specify a merge_bvec_fn in the
789 	 * queue to get further control
790 	 */
791 	if (q->merge_bvec_fn) {
792 		struct bvec_merge_data bvm = {
793 			.bi_bdev = bio->bi_bdev,
794 			.bi_sector = bio->bi_iter.bi_sector,
795 			.bi_size = bio->bi_iter.bi_size,
796 			.bi_rw = bio->bi_rw,
797 		};
798 
799 		/*
800 		 * merge_bvec_fn() returns number of bytes it can accept
801 		 * at this offset
802 		 */
803 		if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
804 			bvec->bv_page = NULL;
805 			bvec->bv_len = 0;
806 			bvec->bv_offset = 0;
807 			return 0;
808 		}
809 	}
810 
811 	/* If we may be able to merge these biovecs, force a recount */
812 	if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
813 		bio->bi_flags &= ~(1 << BIO_SEG_VALID);
814 
815 	bio->bi_vcnt++;
816 	bio->bi_phys_segments++;
817  done:
818 	bio->bi_iter.bi_size += len;
819 	return len;
820 }
821 
822 /**
823  *	bio_add_pc_page	-	attempt to add page to bio
824  *	@q: the target queue
825  *	@bio: destination bio
826  *	@page: page to add
827  *	@len: vec entry length
828  *	@offset: vec entry offset
829  *
830  *	Attempt to add a page to the bio_vec maplist. This can fail for a
831  *	number of reasons, such as the bio being full or target block device
832  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
833  *	so it is always possible to add a single page to an empty bio.
834  *
835  *	This should only be used by REQ_PC bios.
836  */
837 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
838 		    unsigned int len, unsigned int offset)
839 {
840 	return __bio_add_page(q, bio, page, len, offset,
841 			      queue_max_hw_sectors(q));
842 }
843 EXPORT_SYMBOL(bio_add_pc_page);
844 
845 /**
846  *	bio_add_page	-	attempt to add page to bio
847  *	@bio: destination bio
848  *	@page: page to add
849  *	@len: vec entry length
850  *	@offset: vec entry offset
851  *
852  *	Attempt to add a page to the bio_vec maplist. This can fail for a
853  *	number of reasons, such as the bio being full or target block device
854  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
855  *	so it is always possible to add a single page to an empty bio.
856  */
857 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
858 		 unsigned int offset)
859 {
860 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
861 	unsigned int max_sectors;
862 
863 	max_sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
864 	if ((max_sectors < (len >> 9)) && !bio->bi_iter.bi_size)
865 		max_sectors = len >> 9;
866 
867 	return __bio_add_page(q, bio, page, len, offset, max_sectors);
868 }
869 EXPORT_SYMBOL(bio_add_page);
870 
871 struct submit_bio_ret {
872 	struct completion event;
873 	int error;
874 };
875 
876 static void submit_bio_wait_endio(struct bio *bio, int error)
877 {
878 	struct submit_bio_ret *ret = bio->bi_private;
879 
880 	ret->error = error;
881 	complete(&ret->event);
882 }
883 
884 /**
885  * submit_bio_wait - submit a bio, and wait until it completes
886  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
887  * @bio: The &struct bio which describes the I/O
888  *
889  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
890  * bio_endio() on failure.
891  */
892 int submit_bio_wait(int rw, struct bio *bio)
893 {
894 	struct submit_bio_ret ret;
895 
896 	rw |= REQ_SYNC;
897 	init_completion(&ret.event);
898 	bio->bi_private = &ret;
899 	bio->bi_end_io = submit_bio_wait_endio;
900 	submit_bio(rw, bio);
901 	wait_for_completion(&ret.event);
902 
903 	return ret.error;
904 }
905 EXPORT_SYMBOL(submit_bio_wait);
906 
907 /**
908  * bio_advance - increment/complete a bio by some number of bytes
909  * @bio:	bio to advance
910  * @bytes:	number of bytes to complete
911  *
912  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
913  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
914  * be updated on the last bvec as well.
915  *
916  * @bio will then represent the remaining, uncompleted portion of the io.
917  */
918 void bio_advance(struct bio *bio, unsigned bytes)
919 {
920 	if (bio_integrity(bio))
921 		bio_integrity_advance(bio, bytes);
922 
923 	bio_advance_iter(bio, &bio->bi_iter, bytes);
924 }
925 EXPORT_SYMBOL(bio_advance);
926 
927 /**
928  * bio_alloc_pages - allocates a single page for each bvec in a bio
929  * @bio: bio to allocate pages for
930  * @gfp_mask: flags for allocation
931  *
932  * Allocates pages up to @bio->bi_vcnt.
933  *
934  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
935  * freed.
936  */
937 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
938 {
939 	int i;
940 	struct bio_vec *bv;
941 
942 	bio_for_each_segment_all(bv, bio, i) {
943 		bv->bv_page = alloc_page(gfp_mask);
944 		if (!bv->bv_page) {
945 			while (--bv >= bio->bi_io_vec)
946 				__free_page(bv->bv_page);
947 			return -ENOMEM;
948 		}
949 	}
950 
951 	return 0;
952 }
953 EXPORT_SYMBOL(bio_alloc_pages);
954 
955 /**
956  * bio_copy_data - copy contents of data buffers from one chain of bios to
957  * another
958  * @src: source bio list
959  * @dst: destination bio list
960  *
961  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
962  * @src and @dst as linked lists of bios.
963  *
964  * Stops when it reaches the end of either @src or @dst - that is, copies
965  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
966  */
967 void bio_copy_data(struct bio *dst, struct bio *src)
968 {
969 	struct bvec_iter src_iter, dst_iter;
970 	struct bio_vec src_bv, dst_bv;
971 	void *src_p, *dst_p;
972 	unsigned bytes;
973 
974 	src_iter = src->bi_iter;
975 	dst_iter = dst->bi_iter;
976 
977 	while (1) {
978 		if (!src_iter.bi_size) {
979 			src = src->bi_next;
980 			if (!src)
981 				break;
982 
983 			src_iter = src->bi_iter;
984 		}
985 
986 		if (!dst_iter.bi_size) {
987 			dst = dst->bi_next;
988 			if (!dst)
989 				break;
990 
991 			dst_iter = dst->bi_iter;
992 		}
993 
994 		src_bv = bio_iter_iovec(src, src_iter);
995 		dst_bv = bio_iter_iovec(dst, dst_iter);
996 
997 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
998 
999 		src_p = kmap_atomic(src_bv.bv_page);
1000 		dst_p = kmap_atomic(dst_bv.bv_page);
1001 
1002 		memcpy(dst_p + dst_bv.bv_offset,
1003 		       src_p + src_bv.bv_offset,
1004 		       bytes);
1005 
1006 		kunmap_atomic(dst_p);
1007 		kunmap_atomic(src_p);
1008 
1009 		bio_advance_iter(src, &src_iter, bytes);
1010 		bio_advance_iter(dst, &dst_iter, bytes);
1011 	}
1012 }
1013 EXPORT_SYMBOL(bio_copy_data);
1014 
1015 struct bio_map_data {
1016 	int nr_sgvecs;
1017 	int is_our_pages;
1018 	struct sg_iovec sgvecs[];
1019 };
1020 
1021 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
1022 			     const struct sg_iovec *iov, int iov_count,
1023 			     int is_our_pages)
1024 {
1025 	memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
1026 	bmd->nr_sgvecs = iov_count;
1027 	bmd->is_our_pages = is_our_pages;
1028 	bio->bi_private = bmd;
1029 }
1030 
1031 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1032 					       gfp_t gfp_mask)
1033 {
1034 	if (iov_count > UIO_MAXIOV)
1035 		return NULL;
1036 
1037 	return kmalloc(sizeof(struct bio_map_data) +
1038 		       sizeof(struct sg_iovec) * iov_count, gfp_mask);
1039 }
1040 
1041 static int __bio_copy_iov(struct bio *bio, const struct sg_iovec *iov, int iov_count,
1042 			  int to_user, int from_user, int do_free_page)
1043 {
1044 	int ret = 0, i;
1045 	struct bio_vec *bvec;
1046 	int iov_idx = 0;
1047 	unsigned int iov_off = 0;
1048 
1049 	bio_for_each_segment_all(bvec, bio, i) {
1050 		char *bv_addr = page_address(bvec->bv_page);
1051 		unsigned int bv_len = bvec->bv_len;
1052 
1053 		while (bv_len && iov_idx < iov_count) {
1054 			unsigned int bytes;
1055 			char __user *iov_addr;
1056 
1057 			bytes = min_t(unsigned int,
1058 				      iov[iov_idx].iov_len - iov_off, bv_len);
1059 			iov_addr = iov[iov_idx].iov_base + iov_off;
1060 
1061 			if (!ret) {
1062 				if (to_user)
1063 					ret = copy_to_user(iov_addr, bv_addr,
1064 							   bytes);
1065 
1066 				if (from_user)
1067 					ret = copy_from_user(bv_addr, iov_addr,
1068 							     bytes);
1069 
1070 				if (ret)
1071 					ret = -EFAULT;
1072 			}
1073 
1074 			bv_len -= bytes;
1075 			bv_addr += bytes;
1076 			iov_addr += bytes;
1077 			iov_off += bytes;
1078 
1079 			if (iov[iov_idx].iov_len == iov_off) {
1080 				iov_idx++;
1081 				iov_off = 0;
1082 			}
1083 		}
1084 
1085 		if (do_free_page)
1086 			__free_page(bvec->bv_page);
1087 	}
1088 
1089 	return ret;
1090 }
1091 
1092 /**
1093  *	bio_uncopy_user	-	finish previously mapped bio
1094  *	@bio: bio being terminated
1095  *
1096  *	Free pages allocated from bio_copy_user() and write back data
1097  *	to user space in case of a read.
1098  */
1099 int bio_uncopy_user(struct bio *bio)
1100 {
1101 	struct bio_map_data *bmd = bio->bi_private;
1102 	struct bio_vec *bvec;
1103 	int ret = 0, i;
1104 
1105 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1106 		/*
1107 		 * if we're in a workqueue, the request is orphaned, so
1108 		 * don't copy into a random user address space, just free.
1109 		 */
1110 		if (current->mm)
1111 			ret = __bio_copy_iov(bio, bmd->sgvecs, bmd->nr_sgvecs,
1112 					     bio_data_dir(bio) == READ,
1113 					     0, bmd->is_our_pages);
1114 		else if (bmd->is_our_pages)
1115 			bio_for_each_segment_all(bvec, bio, i)
1116 				__free_page(bvec->bv_page);
1117 	}
1118 	kfree(bmd);
1119 	bio_put(bio);
1120 	return ret;
1121 }
1122 EXPORT_SYMBOL(bio_uncopy_user);
1123 
1124 /**
1125  *	bio_copy_user_iov	-	copy user data to bio
1126  *	@q: destination block queue
1127  *	@map_data: pointer to the rq_map_data holding pages (if necessary)
1128  *	@iov:	the iovec.
1129  *	@iov_count: number of elements in the iovec
1130  *	@write_to_vm: bool indicating writing to pages or not
1131  *	@gfp_mask: memory allocation flags
1132  *
1133  *	Prepares and returns a bio for indirect user io, bouncing data
1134  *	to/from kernel pages as necessary. Must be paired with
1135  *	call bio_uncopy_user() on io completion.
1136  */
1137 struct bio *bio_copy_user_iov(struct request_queue *q,
1138 			      struct rq_map_data *map_data,
1139 			      const struct sg_iovec *iov, int iov_count,
1140 			      int write_to_vm, gfp_t gfp_mask)
1141 {
1142 	struct bio_map_data *bmd;
1143 	struct bio_vec *bvec;
1144 	struct page *page;
1145 	struct bio *bio;
1146 	int i, ret;
1147 	int nr_pages = 0;
1148 	unsigned int len = 0;
1149 	unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1150 
1151 	for (i = 0; i < iov_count; i++) {
1152 		unsigned long uaddr;
1153 		unsigned long end;
1154 		unsigned long start;
1155 
1156 		uaddr = (unsigned long)iov[i].iov_base;
1157 		end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1158 		start = uaddr >> PAGE_SHIFT;
1159 
1160 		/*
1161 		 * Overflow, abort
1162 		 */
1163 		if (end < start)
1164 			return ERR_PTR(-EINVAL);
1165 
1166 		nr_pages += end - start;
1167 		len += iov[i].iov_len;
1168 	}
1169 
1170 	if (offset)
1171 		nr_pages++;
1172 
1173 	bmd = bio_alloc_map_data(iov_count, gfp_mask);
1174 	if (!bmd)
1175 		return ERR_PTR(-ENOMEM);
1176 
1177 	ret = -ENOMEM;
1178 	bio = bio_kmalloc(gfp_mask, nr_pages);
1179 	if (!bio)
1180 		goto out_bmd;
1181 
1182 	if (!write_to_vm)
1183 		bio->bi_rw |= REQ_WRITE;
1184 
1185 	ret = 0;
1186 
1187 	if (map_data) {
1188 		nr_pages = 1 << map_data->page_order;
1189 		i = map_data->offset / PAGE_SIZE;
1190 	}
1191 	while (len) {
1192 		unsigned int bytes = PAGE_SIZE;
1193 
1194 		bytes -= offset;
1195 
1196 		if (bytes > len)
1197 			bytes = len;
1198 
1199 		if (map_data) {
1200 			if (i == map_data->nr_entries * nr_pages) {
1201 				ret = -ENOMEM;
1202 				break;
1203 			}
1204 
1205 			page = map_data->pages[i / nr_pages];
1206 			page += (i % nr_pages);
1207 
1208 			i++;
1209 		} else {
1210 			page = alloc_page(q->bounce_gfp | gfp_mask);
1211 			if (!page) {
1212 				ret = -ENOMEM;
1213 				break;
1214 			}
1215 		}
1216 
1217 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1218 			break;
1219 
1220 		len -= bytes;
1221 		offset = 0;
1222 	}
1223 
1224 	if (ret)
1225 		goto cleanup;
1226 
1227 	/*
1228 	 * success
1229 	 */
1230 	if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1231 	    (map_data && map_data->from_user)) {
1232 		ret = __bio_copy_iov(bio, iov, iov_count, 0, 1, 0);
1233 		if (ret)
1234 			goto cleanup;
1235 	}
1236 
1237 	bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1238 	return bio;
1239 cleanup:
1240 	if (!map_data)
1241 		bio_for_each_segment_all(bvec, bio, i)
1242 			__free_page(bvec->bv_page);
1243 
1244 	bio_put(bio);
1245 out_bmd:
1246 	kfree(bmd);
1247 	return ERR_PTR(ret);
1248 }
1249 
1250 /**
1251  *	bio_copy_user	-	copy user data to bio
1252  *	@q: destination block queue
1253  *	@map_data: pointer to the rq_map_data holding pages (if necessary)
1254  *	@uaddr: start of user address
1255  *	@len: length in bytes
1256  *	@write_to_vm: bool indicating writing to pages or not
1257  *	@gfp_mask: memory allocation flags
1258  *
1259  *	Prepares and returns a bio for indirect user io, bouncing data
1260  *	to/from kernel pages as necessary. Must be paired with
1261  *	call bio_uncopy_user() on io completion.
1262  */
1263 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1264 			  unsigned long uaddr, unsigned int len,
1265 			  int write_to_vm, gfp_t gfp_mask)
1266 {
1267 	struct sg_iovec iov;
1268 
1269 	iov.iov_base = (void __user *)uaddr;
1270 	iov.iov_len = len;
1271 
1272 	return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
1273 }
1274 EXPORT_SYMBOL(bio_copy_user);
1275 
1276 static struct bio *__bio_map_user_iov(struct request_queue *q,
1277 				      struct block_device *bdev,
1278 				      const struct sg_iovec *iov, int iov_count,
1279 				      int write_to_vm, gfp_t gfp_mask)
1280 {
1281 	int i, j;
1282 	int nr_pages = 0;
1283 	struct page **pages;
1284 	struct bio *bio;
1285 	int cur_page = 0;
1286 	int ret, offset;
1287 
1288 	for (i = 0; i < iov_count; i++) {
1289 		unsigned long uaddr = (unsigned long)iov[i].iov_base;
1290 		unsigned long len = iov[i].iov_len;
1291 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1292 		unsigned long start = uaddr >> PAGE_SHIFT;
1293 
1294 		/*
1295 		 * Overflow, abort
1296 		 */
1297 		if (end < start)
1298 			return ERR_PTR(-EINVAL);
1299 
1300 		nr_pages += end - start;
1301 		/*
1302 		 * buffer must be aligned to at least hardsector size for now
1303 		 */
1304 		if (uaddr & queue_dma_alignment(q))
1305 			return ERR_PTR(-EINVAL);
1306 	}
1307 
1308 	if (!nr_pages)
1309 		return ERR_PTR(-EINVAL);
1310 
1311 	bio = bio_kmalloc(gfp_mask, nr_pages);
1312 	if (!bio)
1313 		return ERR_PTR(-ENOMEM);
1314 
1315 	ret = -ENOMEM;
1316 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1317 	if (!pages)
1318 		goto out;
1319 
1320 	for (i = 0; i < iov_count; i++) {
1321 		unsigned long uaddr = (unsigned long)iov[i].iov_base;
1322 		unsigned long len = iov[i].iov_len;
1323 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1324 		unsigned long start = uaddr >> PAGE_SHIFT;
1325 		const int local_nr_pages = end - start;
1326 		const int page_limit = cur_page + local_nr_pages;
1327 
1328 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1329 				write_to_vm, &pages[cur_page]);
1330 		if (ret < local_nr_pages) {
1331 			ret = -EFAULT;
1332 			goto out_unmap;
1333 		}
1334 
1335 		offset = uaddr & ~PAGE_MASK;
1336 		for (j = cur_page; j < page_limit; j++) {
1337 			unsigned int bytes = PAGE_SIZE - offset;
1338 
1339 			if (len <= 0)
1340 				break;
1341 
1342 			if (bytes > len)
1343 				bytes = len;
1344 
1345 			/*
1346 			 * sorry...
1347 			 */
1348 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1349 					    bytes)
1350 				break;
1351 
1352 			len -= bytes;
1353 			offset = 0;
1354 		}
1355 
1356 		cur_page = j;
1357 		/*
1358 		 * release the pages we didn't map into the bio, if any
1359 		 */
1360 		while (j < page_limit)
1361 			page_cache_release(pages[j++]);
1362 	}
1363 
1364 	kfree(pages);
1365 
1366 	/*
1367 	 * set data direction, and check if mapped pages need bouncing
1368 	 */
1369 	if (!write_to_vm)
1370 		bio->bi_rw |= REQ_WRITE;
1371 
1372 	bio->bi_bdev = bdev;
1373 	bio->bi_flags |= (1 << BIO_USER_MAPPED);
1374 	return bio;
1375 
1376  out_unmap:
1377 	for (i = 0; i < nr_pages; i++) {
1378 		if(!pages[i])
1379 			break;
1380 		page_cache_release(pages[i]);
1381 	}
1382  out:
1383 	kfree(pages);
1384 	bio_put(bio);
1385 	return ERR_PTR(ret);
1386 }
1387 
1388 /**
1389  *	bio_map_user	-	map user address into bio
1390  *	@q: the struct request_queue for the bio
1391  *	@bdev: destination block device
1392  *	@uaddr: start of user address
1393  *	@len: length in bytes
1394  *	@write_to_vm: bool indicating writing to pages or not
1395  *	@gfp_mask: memory allocation flags
1396  *
1397  *	Map the user space address into a bio suitable for io to a block
1398  *	device. Returns an error pointer in case of error.
1399  */
1400 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1401 			 unsigned long uaddr, unsigned int len, int write_to_vm,
1402 			 gfp_t gfp_mask)
1403 {
1404 	struct sg_iovec iov;
1405 
1406 	iov.iov_base = (void __user *)uaddr;
1407 	iov.iov_len = len;
1408 
1409 	return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1410 }
1411 EXPORT_SYMBOL(bio_map_user);
1412 
1413 /**
1414  *	bio_map_user_iov - map user sg_iovec table into bio
1415  *	@q: the struct request_queue for the bio
1416  *	@bdev: destination block device
1417  *	@iov:	the iovec.
1418  *	@iov_count: number of elements in the iovec
1419  *	@write_to_vm: bool indicating writing to pages or not
1420  *	@gfp_mask: memory allocation flags
1421  *
1422  *	Map the user space address into a bio suitable for io to a block
1423  *	device. Returns an error pointer in case of error.
1424  */
1425 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1426 			     const struct sg_iovec *iov, int iov_count,
1427 			     int write_to_vm, gfp_t gfp_mask)
1428 {
1429 	struct bio *bio;
1430 
1431 	bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1432 				 gfp_mask);
1433 	if (IS_ERR(bio))
1434 		return bio;
1435 
1436 	/*
1437 	 * subtle -- if __bio_map_user() ended up bouncing a bio,
1438 	 * it would normally disappear when its bi_end_io is run.
1439 	 * however, we need it for the unmap, so grab an extra
1440 	 * reference to it
1441 	 */
1442 	bio_get(bio);
1443 
1444 	return bio;
1445 }
1446 
1447 static void __bio_unmap_user(struct bio *bio)
1448 {
1449 	struct bio_vec *bvec;
1450 	int i;
1451 
1452 	/*
1453 	 * make sure we dirty pages we wrote to
1454 	 */
1455 	bio_for_each_segment_all(bvec, bio, i) {
1456 		if (bio_data_dir(bio) == READ)
1457 			set_page_dirty_lock(bvec->bv_page);
1458 
1459 		page_cache_release(bvec->bv_page);
1460 	}
1461 
1462 	bio_put(bio);
1463 }
1464 
1465 /**
1466  *	bio_unmap_user	-	unmap a bio
1467  *	@bio:		the bio being unmapped
1468  *
1469  *	Unmap a bio previously mapped by bio_map_user(). Must be called with
1470  *	a process context.
1471  *
1472  *	bio_unmap_user() may sleep.
1473  */
1474 void bio_unmap_user(struct bio *bio)
1475 {
1476 	__bio_unmap_user(bio);
1477 	bio_put(bio);
1478 }
1479 EXPORT_SYMBOL(bio_unmap_user);
1480 
1481 static void bio_map_kern_endio(struct bio *bio, int err)
1482 {
1483 	bio_put(bio);
1484 }
1485 
1486 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1487 				  unsigned int len, gfp_t gfp_mask)
1488 {
1489 	unsigned long kaddr = (unsigned long)data;
1490 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1491 	unsigned long start = kaddr >> PAGE_SHIFT;
1492 	const int nr_pages = end - start;
1493 	int offset, i;
1494 	struct bio *bio;
1495 
1496 	bio = bio_kmalloc(gfp_mask, nr_pages);
1497 	if (!bio)
1498 		return ERR_PTR(-ENOMEM);
1499 
1500 	offset = offset_in_page(kaddr);
1501 	for (i = 0; i < nr_pages; i++) {
1502 		unsigned int bytes = PAGE_SIZE - offset;
1503 
1504 		if (len <= 0)
1505 			break;
1506 
1507 		if (bytes > len)
1508 			bytes = len;
1509 
1510 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1511 				    offset) < bytes)
1512 			break;
1513 
1514 		data += bytes;
1515 		len -= bytes;
1516 		offset = 0;
1517 	}
1518 
1519 	bio->bi_end_io = bio_map_kern_endio;
1520 	return bio;
1521 }
1522 
1523 /**
1524  *	bio_map_kern	-	map kernel address into bio
1525  *	@q: the struct request_queue for the bio
1526  *	@data: pointer to buffer to map
1527  *	@len: length in bytes
1528  *	@gfp_mask: allocation flags for bio allocation
1529  *
1530  *	Map the kernel address into a bio suitable for io to a block
1531  *	device. Returns an error pointer in case of error.
1532  */
1533 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1534 			 gfp_t gfp_mask)
1535 {
1536 	struct bio *bio;
1537 
1538 	bio = __bio_map_kern(q, data, len, gfp_mask);
1539 	if (IS_ERR(bio))
1540 		return bio;
1541 
1542 	if (bio->bi_iter.bi_size == len)
1543 		return bio;
1544 
1545 	/*
1546 	 * Don't support partial mappings.
1547 	 */
1548 	bio_put(bio);
1549 	return ERR_PTR(-EINVAL);
1550 }
1551 EXPORT_SYMBOL(bio_map_kern);
1552 
1553 static void bio_copy_kern_endio(struct bio *bio, int err)
1554 {
1555 	struct bio_vec *bvec;
1556 	const int read = bio_data_dir(bio) == READ;
1557 	struct bio_map_data *bmd = bio->bi_private;
1558 	int i;
1559 	char *p = bmd->sgvecs[0].iov_base;
1560 
1561 	bio_for_each_segment_all(bvec, bio, i) {
1562 		char *addr = page_address(bvec->bv_page);
1563 
1564 		if (read)
1565 			memcpy(p, addr, bvec->bv_len);
1566 
1567 		__free_page(bvec->bv_page);
1568 		p += bvec->bv_len;
1569 	}
1570 
1571 	kfree(bmd);
1572 	bio_put(bio);
1573 }
1574 
1575 /**
1576  *	bio_copy_kern	-	copy kernel address into bio
1577  *	@q: the struct request_queue for the bio
1578  *	@data: pointer to buffer to copy
1579  *	@len: length in bytes
1580  *	@gfp_mask: allocation flags for bio and page allocation
1581  *	@reading: data direction is READ
1582  *
1583  *	copy the kernel address into a bio suitable for io to a block
1584  *	device. Returns an error pointer in case of error.
1585  */
1586 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1587 			  gfp_t gfp_mask, int reading)
1588 {
1589 	struct bio *bio;
1590 	struct bio_vec *bvec;
1591 	int i;
1592 
1593 	bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1594 	if (IS_ERR(bio))
1595 		return bio;
1596 
1597 	if (!reading) {
1598 		void *p = data;
1599 
1600 		bio_for_each_segment_all(bvec, bio, i) {
1601 			char *addr = page_address(bvec->bv_page);
1602 
1603 			memcpy(addr, p, bvec->bv_len);
1604 			p += bvec->bv_len;
1605 		}
1606 	}
1607 
1608 	bio->bi_end_io = bio_copy_kern_endio;
1609 
1610 	return bio;
1611 }
1612 EXPORT_SYMBOL(bio_copy_kern);
1613 
1614 /*
1615  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1616  * for performing direct-IO in BIOs.
1617  *
1618  * The problem is that we cannot run set_page_dirty() from interrupt context
1619  * because the required locks are not interrupt-safe.  So what we can do is to
1620  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1621  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1622  * in process context.
1623  *
1624  * We special-case compound pages here: normally this means reads into hugetlb
1625  * pages.  The logic in here doesn't really work right for compound pages
1626  * because the VM does not uniformly chase down the head page in all cases.
1627  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1628  * handle them at all.  So we skip compound pages here at an early stage.
1629  *
1630  * Note that this code is very hard to test under normal circumstances because
1631  * direct-io pins the pages with get_user_pages().  This makes
1632  * is_page_cache_freeable return false, and the VM will not clean the pages.
1633  * But other code (eg, flusher threads) could clean the pages if they are mapped
1634  * pagecache.
1635  *
1636  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1637  * deferred bio dirtying paths.
1638  */
1639 
1640 /*
1641  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1642  */
1643 void bio_set_pages_dirty(struct bio *bio)
1644 {
1645 	struct bio_vec *bvec;
1646 	int i;
1647 
1648 	bio_for_each_segment_all(bvec, bio, i) {
1649 		struct page *page = bvec->bv_page;
1650 
1651 		if (page && !PageCompound(page))
1652 			set_page_dirty_lock(page);
1653 	}
1654 }
1655 
1656 static void bio_release_pages(struct bio *bio)
1657 {
1658 	struct bio_vec *bvec;
1659 	int i;
1660 
1661 	bio_for_each_segment_all(bvec, bio, i) {
1662 		struct page *page = bvec->bv_page;
1663 
1664 		if (page)
1665 			put_page(page);
1666 	}
1667 }
1668 
1669 /*
1670  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1671  * If they are, then fine.  If, however, some pages are clean then they must
1672  * have been written out during the direct-IO read.  So we take another ref on
1673  * the BIO and the offending pages and re-dirty the pages in process context.
1674  *
1675  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1676  * here on.  It will run one page_cache_release() against each page and will
1677  * run one bio_put() against the BIO.
1678  */
1679 
1680 static void bio_dirty_fn(struct work_struct *work);
1681 
1682 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1683 static DEFINE_SPINLOCK(bio_dirty_lock);
1684 static struct bio *bio_dirty_list;
1685 
1686 /*
1687  * This runs in process context
1688  */
1689 static void bio_dirty_fn(struct work_struct *work)
1690 {
1691 	unsigned long flags;
1692 	struct bio *bio;
1693 
1694 	spin_lock_irqsave(&bio_dirty_lock, flags);
1695 	bio = bio_dirty_list;
1696 	bio_dirty_list = NULL;
1697 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1698 
1699 	while (bio) {
1700 		struct bio *next = bio->bi_private;
1701 
1702 		bio_set_pages_dirty(bio);
1703 		bio_release_pages(bio);
1704 		bio_put(bio);
1705 		bio = next;
1706 	}
1707 }
1708 
1709 void bio_check_pages_dirty(struct bio *bio)
1710 {
1711 	struct bio_vec *bvec;
1712 	int nr_clean_pages = 0;
1713 	int i;
1714 
1715 	bio_for_each_segment_all(bvec, bio, i) {
1716 		struct page *page = bvec->bv_page;
1717 
1718 		if (PageDirty(page) || PageCompound(page)) {
1719 			page_cache_release(page);
1720 			bvec->bv_page = NULL;
1721 		} else {
1722 			nr_clean_pages++;
1723 		}
1724 	}
1725 
1726 	if (nr_clean_pages) {
1727 		unsigned long flags;
1728 
1729 		spin_lock_irqsave(&bio_dirty_lock, flags);
1730 		bio->bi_private = bio_dirty_list;
1731 		bio_dirty_list = bio;
1732 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1733 		schedule_work(&bio_dirty_work);
1734 	} else {
1735 		bio_put(bio);
1736 	}
1737 }
1738 
1739 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1740 void bio_flush_dcache_pages(struct bio *bi)
1741 {
1742 	struct bio_vec bvec;
1743 	struct bvec_iter iter;
1744 
1745 	bio_for_each_segment(bvec, bi, iter)
1746 		flush_dcache_page(bvec.bv_page);
1747 }
1748 EXPORT_SYMBOL(bio_flush_dcache_pages);
1749 #endif
1750 
1751 /**
1752  * bio_endio - end I/O on a bio
1753  * @bio:	bio
1754  * @error:	error, if any
1755  *
1756  * Description:
1757  *   bio_endio() will end I/O on the whole bio. bio_endio() is the
1758  *   preferred way to end I/O on a bio, it takes care of clearing
1759  *   BIO_UPTODATE on error. @error is 0 on success, and and one of the
1760  *   established -Exxxx (-EIO, for instance) error values in case
1761  *   something went wrong. No one should call bi_end_io() directly on a
1762  *   bio unless they own it and thus know that it has an end_io
1763  *   function.
1764  **/
1765 void bio_endio(struct bio *bio, int error)
1766 {
1767 	while (bio) {
1768 		BUG_ON(atomic_read(&bio->bi_remaining) <= 0);
1769 
1770 		if (error)
1771 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
1772 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1773 			error = -EIO;
1774 
1775 		if (!atomic_dec_and_test(&bio->bi_remaining))
1776 			return;
1777 
1778 		/*
1779 		 * Need to have a real endio function for chained bios,
1780 		 * otherwise various corner cases will break (like stacking
1781 		 * block devices that save/restore bi_end_io) - however, we want
1782 		 * to avoid unbounded recursion and blowing the stack. Tail call
1783 		 * optimization would handle this, but compiling with frame
1784 		 * pointers also disables gcc's sibling call optimization.
1785 		 */
1786 		if (bio->bi_end_io == bio_chain_endio) {
1787 			struct bio *parent = bio->bi_private;
1788 			bio_put(bio);
1789 			bio = parent;
1790 		} else {
1791 			if (bio->bi_end_io)
1792 				bio->bi_end_io(bio, error);
1793 			bio = NULL;
1794 		}
1795 	}
1796 }
1797 EXPORT_SYMBOL(bio_endio);
1798 
1799 /**
1800  * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining
1801  * @bio:	bio
1802  * @error:	error, if any
1803  *
1804  * For code that has saved and restored bi_end_io; thing hard before using this
1805  * function, probably you should've cloned the entire bio.
1806  **/
1807 void bio_endio_nodec(struct bio *bio, int error)
1808 {
1809 	atomic_inc(&bio->bi_remaining);
1810 	bio_endio(bio, error);
1811 }
1812 EXPORT_SYMBOL(bio_endio_nodec);
1813 
1814 /**
1815  * bio_split - split a bio
1816  * @bio:	bio to split
1817  * @sectors:	number of sectors to split from the front of @bio
1818  * @gfp:	gfp mask
1819  * @bs:		bio set to allocate from
1820  *
1821  * Allocates and returns a new bio which represents @sectors from the start of
1822  * @bio, and updates @bio to represent the remaining sectors.
1823  *
1824  * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
1825  * responsibility to ensure that @bio is not freed before the split.
1826  */
1827 struct bio *bio_split(struct bio *bio, int sectors,
1828 		      gfp_t gfp, struct bio_set *bs)
1829 {
1830 	struct bio *split = NULL;
1831 
1832 	BUG_ON(sectors <= 0);
1833 	BUG_ON(sectors >= bio_sectors(bio));
1834 
1835 	split = bio_clone_fast(bio, gfp, bs);
1836 	if (!split)
1837 		return NULL;
1838 
1839 	split->bi_iter.bi_size = sectors << 9;
1840 
1841 	if (bio_integrity(split))
1842 		bio_integrity_trim(split, 0, sectors);
1843 
1844 	bio_advance(bio, split->bi_iter.bi_size);
1845 
1846 	return split;
1847 }
1848 EXPORT_SYMBOL(bio_split);
1849 
1850 /**
1851  * bio_trim - trim a bio
1852  * @bio:	bio to trim
1853  * @offset:	number of sectors to trim from the front of @bio
1854  * @size:	size we want to trim @bio to, in sectors
1855  */
1856 void bio_trim(struct bio *bio, int offset, int size)
1857 {
1858 	/* 'bio' is a cloned bio which we need to trim to match
1859 	 * the given offset and size.
1860 	 */
1861 
1862 	size <<= 9;
1863 	if (offset == 0 && size == bio->bi_iter.bi_size)
1864 		return;
1865 
1866 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1867 
1868 	bio_advance(bio, offset << 9);
1869 
1870 	bio->bi_iter.bi_size = size;
1871 }
1872 EXPORT_SYMBOL_GPL(bio_trim);
1873 
1874 /*
1875  * create memory pools for biovec's in a bio_set.
1876  * use the global biovec slabs created for general use.
1877  */
1878 mempool_t *biovec_create_pool(int pool_entries)
1879 {
1880 	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1881 
1882 	return mempool_create_slab_pool(pool_entries, bp->slab);
1883 }
1884 
1885 void bioset_free(struct bio_set *bs)
1886 {
1887 	if (bs->rescue_workqueue)
1888 		destroy_workqueue(bs->rescue_workqueue);
1889 
1890 	if (bs->bio_pool)
1891 		mempool_destroy(bs->bio_pool);
1892 
1893 	if (bs->bvec_pool)
1894 		mempool_destroy(bs->bvec_pool);
1895 
1896 	bioset_integrity_free(bs);
1897 	bio_put_slab(bs);
1898 
1899 	kfree(bs);
1900 }
1901 EXPORT_SYMBOL(bioset_free);
1902 
1903 /**
1904  * bioset_create  - Create a bio_set
1905  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1906  * @front_pad:	Number of bytes to allocate in front of the returned bio
1907  *
1908  * Description:
1909  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1910  *    to ask for a number of bytes to be allocated in front of the bio.
1911  *    Front pad allocation is useful for embedding the bio inside
1912  *    another structure, to avoid allocating extra data to go with the bio.
1913  *    Note that the bio must be embedded at the END of that structure always,
1914  *    or things will break badly.
1915  */
1916 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1917 {
1918 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1919 	struct bio_set *bs;
1920 
1921 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1922 	if (!bs)
1923 		return NULL;
1924 
1925 	bs->front_pad = front_pad;
1926 
1927 	spin_lock_init(&bs->rescue_lock);
1928 	bio_list_init(&bs->rescue_list);
1929 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1930 
1931 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1932 	if (!bs->bio_slab) {
1933 		kfree(bs);
1934 		return NULL;
1935 	}
1936 
1937 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1938 	if (!bs->bio_pool)
1939 		goto bad;
1940 
1941 	bs->bvec_pool = biovec_create_pool(pool_size);
1942 	if (!bs->bvec_pool)
1943 		goto bad;
1944 
1945 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1946 	if (!bs->rescue_workqueue)
1947 		goto bad;
1948 
1949 	return bs;
1950 bad:
1951 	bioset_free(bs);
1952 	return NULL;
1953 }
1954 EXPORT_SYMBOL(bioset_create);
1955 
1956 #ifdef CONFIG_BLK_CGROUP
1957 /**
1958  * bio_associate_current - associate a bio with %current
1959  * @bio: target bio
1960  *
1961  * Associate @bio with %current if it hasn't been associated yet.  Block
1962  * layer will treat @bio as if it were issued by %current no matter which
1963  * task actually issues it.
1964  *
1965  * This function takes an extra reference of @task's io_context and blkcg
1966  * which will be put when @bio is released.  The caller must own @bio,
1967  * ensure %current->io_context exists, and is responsible for synchronizing
1968  * calls to this function.
1969  */
1970 int bio_associate_current(struct bio *bio)
1971 {
1972 	struct io_context *ioc;
1973 	struct cgroup_subsys_state *css;
1974 
1975 	if (bio->bi_ioc)
1976 		return -EBUSY;
1977 
1978 	ioc = current->io_context;
1979 	if (!ioc)
1980 		return -ENOENT;
1981 
1982 	/* acquire active ref on @ioc and associate */
1983 	get_io_context_active(ioc);
1984 	bio->bi_ioc = ioc;
1985 
1986 	/* associate blkcg if exists */
1987 	rcu_read_lock();
1988 	css = task_css(current, blkio_cgrp_id);
1989 	if (css && css_tryget_online(css))
1990 		bio->bi_css = css;
1991 	rcu_read_unlock();
1992 
1993 	return 0;
1994 }
1995 
1996 /**
1997  * bio_disassociate_task - undo bio_associate_current()
1998  * @bio: target bio
1999  */
2000 void bio_disassociate_task(struct bio *bio)
2001 {
2002 	if (bio->bi_ioc) {
2003 		put_io_context(bio->bi_ioc);
2004 		bio->bi_ioc = NULL;
2005 	}
2006 	if (bio->bi_css) {
2007 		css_put(bio->bi_css);
2008 		bio->bi_css = NULL;
2009 	}
2010 }
2011 
2012 #endif /* CONFIG_BLK_CGROUP */
2013 
2014 static void __init biovec_init_slabs(void)
2015 {
2016 	int i;
2017 
2018 	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2019 		int size;
2020 		struct biovec_slab *bvs = bvec_slabs + i;
2021 
2022 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2023 			bvs->slab = NULL;
2024 			continue;
2025 		}
2026 
2027 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2028 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2029                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2030 	}
2031 }
2032 
2033 static int __init init_bio(void)
2034 {
2035 	bio_slab_max = 2;
2036 	bio_slab_nr = 0;
2037 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2038 	if (!bio_slabs)
2039 		panic("bio: can't allocate bios\n");
2040 
2041 	bio_integrity_init();
2042 	biovec_init_slabs();
2043 
2044 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2045 	if (!fs_bio_set)
2046 		panic("bio: can't allocate bios\n");
2047 
2048 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2049 		panic("bio: can't create integrity pool\n");
2050 
2051 	return 0;
2052 }
2053 subsys_initcall(init_bio);
2054