1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 4 */ 5 #include <linux/mm.h> 6 #include <linux/swap.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/uio.h> 10 #include <linux/iocontext.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/mempool.h> 16 #include <linux/workqueue.h> 17 #include <linux/cgroup.h> 18 #include <linux/highmem.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/blk-crypto.h> 21 #include <linux/xarray.h> 22 23 #include <trace/events/block.h> 24 #include "blk.h" 25 #include "blk-rq-qos.h" 26 #include "blk-cgroup.h" 27 28 struct bio_alloc_cache { 29 struct bio *free_list; 30 unsigned int nr; 31 }; 32 33 static struct biovec_slab { 34 int nr_vecs; 35 char *name; 36 struct kmem_cache *slab; 37 } bvec_slabs[] __read_mostly = { 38 { .nr_vecs = 16, .name = "biovec-16" }, 39 { .nr_vecs = 64, .name = "biovec-64" }, 40 { .nr_vecs = 128, .name = "biovec-128" }, 41 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" }, 42 }; 43 44 static struct biovec_slab *biovec_slab(unsigned short nr_vecs) 45 { 46 switch (nr_vecs) { 47 /* smaller bios use inline vecs */ 48 case 5 ... 16: 49 return &bvec_slabs[0]; 50 case 17 ... 64: 51 return &bvec_slabs[1]; 52 case 65 ... 128: 53 return &bvec_slabs[2]; 54 case 129 ... BIO_MAX_VECS: 55 return &bvec_slabs[3]; 56 default: 57 BUG(); 58 return NULL; 59 } 60 } 61 62 /* 63 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 64 * IO code that does not need private memory pools. 65 */ 66 struct bio_set fs_bio_set; 67 EXPORT_SYMBOL(fs_bio_set); 68 69 /* 70 * Our slab pool management 71 */ 72 struct bio_slab { 73 struct kmem_cache *slab; 74 unsigned int slab_ref; 75 unsigned int slab_size; 76 char name[8]; 77 }; 78 static DEFINE_MUTEX(bio_slab_lock); 79 static DEFINE_XARRAY(bio_slabs); 80 81 static struct bio_slab *create_bio_slab(unsigned int size) 82 { 83 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL); 84 85 if (!bslab) 86 return NULL; 87 88 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size); 89 bslab->slab = kmem_cache_create(bslab->name, size, 90 ARCH_KMALLOC_MINALIGN, 91 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL); 92 if (!bslab->slab) 93 goto fail_alloc_slab; 94 95 bslab->slab_ref = 1; 96 bslab->slab_size = size; 97 98 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL))) 99 return bslab; 100 101 kmem_cache_destroy(bslab->slab); 102 103 fail_alloc_slab: 104 kfree(bslab); 105 return NULL; 106 } 107 108 static inline unsigned int bs_bio_slab_size(struct bio_set *bs) 109 { 110 return bs->front_pad + sizeof(struct bio) + bs->back_pad; 111 } 112 113 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs) 114 { 115 unsigned int size = bs_bio_slab_size(bs); 116 struct bio_slab *bslab; 117 118 mutex_lock(&bio_slab_lock); 119 bslab = xa_load(&bio_slabs, size); 120 if (bslab) 121 bslab->slab_ref++; 122 else 123 bslab = create_bio_slab(size); 124 mutex_unlock(&bio_slab_lock); 125 126 if (bslab) 127 return bslab->slab; 128 return NULL; 129 } 130 131 static void bio_put_slab(struct bio_set *bs) 132 { 133 struct bio_slab *bslab = NULL; 134 unsigned int slab_size = bs_bio_slab_size(bs); 135 136 mutex_lock(&bio_slab_lock); 137 138 bslab = xa_load(&bio_slabs, slab_size); 139 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 140 goto out; 141 142 WARN_ON_ONCE(bslab->slab != bs->bio_slab); 143 144 WARN_ON(!bslab->slab_ref); 145 146 if (--bslab->slab_ref) 147 goto out; 148 149 xa_erase(&bio_slabs, slab_size); 150 151 kmem_cache_destroy(bslab->slab); 152 kfree(bslab); 153 154 out: 155 mutex_unlock(&bio_slab_lock); 156 } 157 158 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs) 159 { 160 BUG_ON(nr_vecs > BIO_MAX_VECS); 161 162 if (nr_vecs == BIO_MAX_VECS) 163 mempool_free(bv, pool); 164 else if (nr_vecs > BIO_INLINE_VECS) 165 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv); 166 } 167 168 /* 169 * Make the first allocation restricted and don't dump info on allocation 170 * failures, since we'll fall back to the mempool in case of failure. 171 */ 172 static inline gfp_t bvec_alloc_gfp(gfp_t gfp) 173 { 174 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) | 175 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 176 } 177 178 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 179 gfp_t gfp_mask) 180 { 181 struct biovec_slab *bvs = biovec_slab(*nr_vecs); 182 183 if (WARN_ON_ONCE(!bvs)) 184 return NULL; 185 186 /* 187 * Upgrade the nr_vecs request to take full advantage of the allocation. 188 * We also rely on this in the bvec_free path. 189 */ 190 *nr_vecs = bvs->nr_vecs; 191 192 /* 193 * Try a slab allocation first for all smaller allocations. If that 194 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool. 195 * The mempool is sized to handle up to BIO_MAX_VECS entries. 196 */ 197 if (*nr_vecs < BIO_MAX_VECS) { 198 struct bio_vec *bvl; 199 200 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask)); 201 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 202 return bvl; 203 *nr_vecs = BIO_MAX_VECS; 204 } 205 206 return mempool_alloc(pool, gfp_mask); 207 } 208 209 void bio_uninit(struct bio *bio) 210 { 211 #ifdef CONFIG_BLK_CGROUP 212 if (bio->bi_blkg) { 213 blkg_put(bio->bi_blkg); 214 bio->bi_blkg = NULL; 215 } 216 #endif 217 if (bio_integrity(bio)) 218 bio_integrity_free(bio); 219 220 bio_crypt_free_ctx(bio); 221 } 222 EXPORT_SYMBOL(bio_uninit); 223 224 static void bio_free(struct bio *bio) 225 { 226 struct bio_set *bs = bio->bi_pool; 227 void *p = bio; 228 229 WARN_ON_ONCE(!bs); 230 231 bio_uninit(bio); 232 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs); 233 mempool_free(p - bs->front_pad, &bs->bio_pool); 234 } 235 236 /* 237 * Users of this function have their own bio allocation. Subsequently, 238 * they must remember to pair any call to bio_init() with bio_uninit() 239 * when IO has completed, or when the bio is released. 240 */ 241 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table, 242 unsigned short max_vecs, unsigned int opf) 243 { 244 bio->bi_next = NULL; 245 bio->bi_bdev = bdev; 246 bio->bi_opf = opf; 247 bio->bi_flags = 0; 248 bio->bi_ioprio = 0; 249 bio->bi_status = 0; 250 bio->bi_iter.bi_sector = 0; 251 bio->bi_iter.bi_size = 0; 252 bio->bi_iter.bi_idx = 0; 253 bio->bi_iter.bi_bvec_done = 0; 254 bio->bi_end_io = NULL; 255 bio->bi_private = NULL; 256 #ifdef CONFIG_BLK_CGROUP 257 bio->bi_blkg = NULL; 258 bio->bi_issue.value = 0; 259 if (bdev) 260 bio_associate_blkg(bio); 261 #ifdef CONFIG_BLK_CGROUP_IOCOST 262 bio->bi_iocost_cost = 0; 263 #endif 264 #endif 265 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 266 bio->bi_crypt_context = NULL; 267 #endif 268 #ifdef CONFIG_BLK_DEV_INTEGRITY 269 bio->bi_integrity = NULL; 270 #endif 271 bio->bi_vcnt = 0; 272 273 atomic_set(&bio->__bi_remaining, 1); 274 atomic_set(&bio->__bi_cnt, 1); 275 bio->bi_cookie = BLK_QC_T_NONE; 276 277 bio->bi_max_vecs = max_vecs; 278 bio->bi_io_vec = table; 279 bio->bi_pool = NULL; 280 } 281 EXPORT_SYMBOL(bio_init); 282 283 /** 284 * bio_reset - reinitialize a bio 285 * @bio: bio to reset 286 * @bdev: block device to use the bio for 287 * @opf: operation and flags for bio 288 * 289 * Description: 290 * After calling bio_reset(), @bio will be in the same state as a freshly 291 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 292 * preserved are the ones that are initialized by bio_alloc_bioset(). See 293 * comment in struct bio. 294 */ 295 void bio_reset(struct bio *bio, struct block_device *bdev, unsigned int opf) 296 { 297 bio_uninit(bio); 298 memset(bio, 0, BIO_RESET_BYTES); 299 atomic_set(&bio->__bi_remaining, 1); 300 bio->bi_bdev = bdev; 301 if (bio->bi_bdev) 302 bio_associate_blkg(bio); 303 bio->bi_opf = opf; 304 } 305 EXPORT_SYMBOL(bio_reset); 306 307 static struct bio *__bio_chain_endio(struct bio *bio) 308 { 309 struct bio *parent = bio->bi_private; 310 311 if (bio->bi_status && !parent->bi_status) 312 parent->bi_status = bio->bi_status; 313 bio_put(bio); 314 return parent; 315 } 316 317 static void bio_chain_endio(struct bio *bio) 318 { 319 bio_endio(__bio_chain_endio(bio)); 320 } 321 322 /** 323 * bio_chain - chain bio completions 324 * @bio: the target bio 325 * @parent: the parent bio of @bio 326 * 327 * The caller won't have a bi_end_io called when @bio completes - instead, 328 * @parent's bi_end_io won't be called until both @parent and @bio have 329 * completed; the chained bio will also be freed when it completes. 330 * 331 * The caller must not set bi_private or bi_end_io in @bio. 332 */ 333 void bio_chain(struct bio *bio, struct bio *parent) 334 { 335 BUG_ON(bio->bi_private || bio->bi_end_io); 336 337 bio->bi_private = parent; 338 bio->bi_end_io = bio_chain_endio; 339 bio_inc_remaining(parent); 340 } 341 EXPORT_SYMBOL(bio_chain); 342 343 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev, 344 unsigned int nr_pages, unsigned int opf, gfp_t gfp) 345 { 346 struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp); 347 348 if (bio) { 349 bio_chain(bio, new); 350 submit_bio(bio); 351 } 352 353 return new; 354 } 355 EXPORT_SYMBOL_GPL(blk_next_bio); 356 357 static void bio_alloc_rescue(struct work_struct *work) 358 { 359 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 360 struct bio *bio; 361 362 while (1) { 363 spin_lock(&bs->rescue_lock); 364 bio = bio_list_pop(&bs->rescue_list); 365 spin_unlock(&bs->rescue_lock); 366 367 if (!bio) 368 break; 369 370 submit_bio_noacct(bio); 371 } 372 } 373 374 static void punt_bios_to_rescuer(struct bio_set *bs) 375 { 376 struct bio_list punt, nopunt; 377 struct bio *bio; 378 379 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 380 return; 381 /* 382 * In order to guarantee forward progress we must punt only bios that 383 * were allocated from this bio_set; otherwise, if there was a bio on 384 * there for a stacking driver higher up in the stack, processing it 385 * could require allocating bios from this bio_set, and doing that from 386 * our own rescuer would be bad. 387 * 388 * Since bio lists are singly linked, pop them all instead of trying to 389 * remove from the middle of the list: 390 */ 391 392 bio_list_init(&punt); 393 bio_list_init(&nopunt); 394 395 while ((bio = bio_list_pop(¤t->bio_list[0]))) 396 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 397 current->bio_list[0] = nopunt; 398 399 bio_list_init(&nopunt); 400 while ((bio = bio_list_pop(¤t->bio_list[1]))) 401 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 402 current->bio_list[1] = nopunt; 403 404 spin_lock(&bs->rescue_lock); 405 bio_list_merge(&bs->rescue_list, &punt); 406 spin_unlock(&bs->rescue_lock); 407 408 queue_work(bs->rescue_workqueue, &bs->rescue_work); 409 } 410 411 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev, 412 unsigned short nr_vecs, unsigned int opf, gfp_t gfp, 413 struct bio_set *bs) 414 { 415 struct bio_alloc_cache *cache; 416 struct bio *bio; 417 418 cache = per_cpu_ptr(bs->cache, get_cpu()); 419 if (!cache->free_list) { 420 put_cpu(); 421 return NULL; 422 } 423 bio = cache->free_list; 424 cache->free_list = bio->bi_next; 425 cache->nr--; 426 put_cpu(); 427 428 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf); 429 bio->bi_pool = bs; 430 return bio; 431 } 432 433 /** 434 * bio_alloc_bioset - allocate a bio for I/O 435 * @bdev: block device to allocate the bio for (can be %NULL) 436 * @nr_vecs: number of bvecs to pre-allocate 437 * @opf: operation and flags for bio 438 * @gfp_mask: the GFP_* mask given to the slab allocator 439 * @bs: the bio_set to allocate from. 440 * 441 * Allocate a bio from the mempools in @bs. 442 * 443 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to 444 * allocate a bio. This is due to the mempool guarantees. To make this work, 445 * callers must never allocate more than 1 bio at a time from the general pool. 446 * Callers that need to allocate more than 1 bio must always submit the 447 * previously allocated bio for IO before attempting to allocate a new one. 448 * Failure to do so can cause deadlocks under memory pressure. 449 * 450 * Note that when running under submit_bio_noacct() (i.e. any block driver), 451 * bios are not submitted until after you return - see the code in 452 * submit_bio_noacct() that converts recursion into iteration, to prevent 453 * stack overflows. 454 * 455 * This would normally mean allocating multiple bios under submit_bio_noacct() 456 * would be susceptible to deadlocks, but we have 457 * deadlock avoidance code that resubmits any blocked bios from a rescuer 458 * thread. 459 * 460 * However, we do not guarantee forward progress for allocations from other 461 * mempools. Doing multiple allocations from the same mempool under 462 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad 463 * for per bio allocations. 464 * 465 * If REQ_ALLOC_CACHE is set, the final put of the bio MUST be done from process 466 * context, not hard/soft IRQ. 467 * 468 * Returns: Pointer to new bio on success, NULL on failure. 469 */ 470 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs, 471 unsigned int opf, gfp_t gfp_mask, 472 struct bio_set *bs) 473 { 474 gfp_t saved_gfp = gfp_mask; 475 struct bio *bio; 476 void *p; 477 478 /* should not use nobvec bioset for nr_vecs > 0 */ 479 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0)) 480 return NULL; 481 482 if (opf & REQ_ALLOC_CACHE) { 483 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) { 484 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf, 485 gfp_mask, bs); 486 if (bio) 487 return bio; 488 /* 489 * No cached bio available, bio returned below marked with 490 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache. 491 */ 492 } else { 493 opf &= ~REQ_ALLOC_CACHE; 494 } 495 } 496 497 /* 498 * submit_bio_noacct() converts recursion to iteration; this means if 499 * we're running beneath it, any bios we allocate and submit will not be 500 * submitted (and thus freed) until after we return. 501 * 502 * This exposes us to a potential deadlock if we allocate multiple bios 503 * from the same bio_set() while running underneath submit_bio_noacct(). 504 * If we were to allocate multiple bios (say a stacking block driver 505 * that was splitting bios), we would deadlock if we exhausted the 506 * mempool's reserve. 507 * 508 * We solve this, and guarantee forward progress, with a rescuer 509 * workqueue per bio_set. If we go to allocate and there are bios on 510 * current->bio_list, we first try the allocation without 511 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be 512 * blocking to the rescuer workqueue before we retry with the original 513 * gfp_flags. 514 */ 515 if (current->bio_list && 516 (!bio_list_empty(¤t->bio_list[0]) || 517 !bio_list_empty(¤t->bio_list[1])) && 518 bs->rescue_workqueue) 519 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 520 521 p = mempool_alloc(&bs->bio_pool, gfp_mask); 522 if (!p && gfp_mask != saved_gfp) { 523 punt_bios_to_rescuer(bs); 524 gfp_mask = saved_gfp; 525 p = mempool_alloc(&bs->bio_pool, gfp_mask); 526 } 527 if (unlikely(!p)) 528 return NULL; 529 530 bio = p + bs->front_pad; 531 if (nr_vecs > BIO_INLINE_VECS) { 532 struct bio_vec *bvl = NULL; 533 534 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); 535 if (!bvl && gfp_mask != saved_gfp) { 536 punt_bios_to_rescuer(bs); 537 gfp_mask = saved_gfp; 538 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); 539 } 540 if (unlikely(!bvl)) 541 goto err_free; 542 543 bio_init(bio, bdev, bvl, nr_vecs, opf); 544 } else if (nr_vecs) { 545 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf); 546 } else { 547 bio_init(bio, bdev, NULL, 0, opf); 548 } 549 550 bio->bi_pool = bs; 551 return bio; 552 553 err_free: 554 mempool_free(p, &bs->bio_pool); 555 return NULL; 556 } 557 EXPORT_SYMBOL(bio_alloc_bioset); 558 559 /** 560 * bio_kmalloc - kmalloc a bio 561 * @nr_vecs: number of bio_vecs to allocate 562 * @gfp_mask: the GFP_* mask given to the slab allocator 563 * 564 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized 565 * using bio_init() before use. To free a bio returned from this function use 566 * kfree() after calling bio_uninit(). A bio returned from this function can 567 * be reused by calling bio_uninit() before calling bio_init() again. 568 * 569 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this 570 * function are not backed by a mempool can can fail. Do not use this function 571 * for allocations in the file system I/O path. 572 * 573 * Returns: Pointer to new bio on success, NULL on failure. 574 */ 575 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask) 576 { 577 struct bio *bio; 578 579 if (nr_vecs > UIO_MAXIOV) 580 return NULL; 581 return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask); 582 } 583 EXPORT_SYMBOL(bio_kmalloc); 584 585 void zero_fill_bio(struct bio *bio) 586 { 587 struct bio_vec bv; 588 struct bvec_iter iter; 589 590 bio_for_each_segment(bv, bio, iter) 591 memzero_bvec(&bv); 592 } 593 EXPORT_SYMBOL(zero_fill_bio); 594 595 /** 596 * bio_truncate - truncate the bio to small size of @new_size 597 * @bio: the bio to be truncated 598 * @new_size: new size for truncating the bio 599 * 600 * Description: 601 * Truncate the bio to new size of @new_size. If bio_op(bio) is 602 * REQ_OP_READ, zero the truncated part. This function should only 603 * be used for handling corner cases, such as bio eod. 604 */ 605 static void bio_truncate(struct bio *bio, unsigned new_size) 606 { 607 struct bio_vec bv; 608 struct bvec_iter iter; 609 unsigned int done = 0; 610 bool truncated = false; 611 612 if (new_size >= bio->bi_iter.bi_size) 613 return; 614 615 if (bio_op(bio) != REQ_OP_READ) 616 goto exit; 617 618 bio_for_each_segment(bv, bio, iter) { 619 if (done + bv.bv_len > new_size) { 620 unsigned offset; 621 622 if (!truncated) 623 offset = new_size - done; 624 else 625 offset = 0; 626 zero_user(bv.bv_page, bv.bv_offset + offset, 627 bv.bv_len - offset); 628 truncated = true; 629 } 630 done += bv.bv_len; 631 } 632 633 exit: 634 /* 635 * Don't touch bvec table here and make it really immutable, since 636 * fs bio user has to retrieve all pages via bio_for_each_segment_all 637 * in its .end_bio() callback. 638 * 639 * It is enough to truncate bio by updating .bi_size since we can make 640 * correct bvec with the updated .bi_size for drivers. 641 */ 642 bio->bi_iter.bi_size = new_size; 643 } 644 645 /** 646 * guard_bio_eod - truncate a BIO to fit the block device 647 * @bio: bio to truncate 648 * 649 * This allows us to do IO even on the odd last sectors of a device, even if the 650 * block size is some multiple of the physical sector size. 651 * 652 * We'll just truncate the bio to the size of the device, and clear the end of 653 * the buffer head manually. Truly out-of-range accesses will turn into actual 654 * I/O errors, this only handles the "we need to be able to do I/O at the final 655 * sector" case. 656 */ 657 void guard_bio_eod(struct bio *bio) 658 { 659 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 660 661 if (!maxsector) 662 return; 663 664 /* 665 * If the *whole* IO is past the end of the device, 666 * let it through, and the IO layer will turn it into 667 * an EIO. 668 */ 669 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 670 return; 671 672 maxsector -= bio->bi_iter.bi_sector; 673 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 674 return; 675 676 bio_truncate(bio, maxsector << 9); 677 } 678 679 #define ALLOC_CACHE_MAX 512 680 #define ALLOC_CACHE_SLACK 64 681 682 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache, 683 unsigned int nr) 684 { 685 unsigned int i = 0; 686 struct bio *bio; 687 688 while ((bio = cache->free_list) != NULL) { 689 cache->free_list = bio->bi_next; 690 cache->nr--; 691 bio_free(bio); 692 if (++i == nr) 693 break; 694 } 695 } 696 697 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node) 698 { 699 struct bio_set *bs; 700 701 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead); 702 if (bs->cache) { 703 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu); 704 705 bio_alloc_cache_prune(cache, -1U); 706 } 707 return 0; 708 } 709 710 static void bio_alloc_cache_destroy(struct bio_set *bs) 711 { 712 int cpu; 713 714 if (!bs->cache) 715 return; 716 717 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 718 for_each_possible_cpu(cpu) { 719 struct bio_alloc_cache *cache; 720 721 cache = per_cpu_ptr(bs->cache, cpu); 722 bio_alloc_cache_prune(cache, -1U); 723 } 724 free_percpu(bs->cache); 725 bs->cache = NULL; 726 } 727 728 /** 729 * bio_put - release a reference to a bio 730 * @bio: bio to release reference to 731 * 732 * Description: 733 * Put a reference to a &struct bio, either one you have gotten with 734 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 735 **/ 736 void bio_put(struct bio *bio) 737 { 738 if (unlikely(bio_flagged(bio, BIO_REFFED))) { 739 BUG_ON(!atomic_read(&bio->__bi_cnt)); 740 if (!atomic_dec_and_test(&bio->__bi_cnt)) 741 return; 742 } 743 744 if (bio->bi_opf & REQ_ALLOC_CACHE) { 745 struct bio_alloc_cache *cache; 746 747 bio_uninit(bio); 748 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu()); 749 bio->bi_next = cache->free_list; 750 cache->free_list = bio; 751 if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK) 752 bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK); 753 put_cpu(); 754 } else { 755 bio_free(bio); 756 } 757 } 758 EXPORT_SYMBOL(bio_put); 759 760 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp) 761 { 762 bio_set_flag(bio, BIO_CLONED); 763 if (bio_flagged(bio_src, BIO_THROTTLED)) 764 bio_set_flag(bio, BIO_THROTTLED); 765 bio->bi_ioprio = bio_src->bi_ioprio; 766 bio->bi_iter = bio_src->bi_iter; 767 768 if (bio->bi_bdev) { 769 if (bio->bi_bdev == bio_src->bi_bdev && 770 bio_flagged(bio_src, BIO_REMAPPED)) 771 bio_set_flag(bio, BIO_REMAPPED); 772 bio_clone_blkg_association(bio, bio_src); 773 } 774 775 if (bio_crypt_clone(bio, bio_src, gfp) < 0) 776 return -ENOMEM; 777 if (bio_integrity(bio_src) && 778 bio_integrity_clone(bio, bio_src, gfp) < 0) 779 return -ENOMEM; 780 return 0; 781 } 782 783 /** 784 * bio_alloc_clone - clone a bio that shares the original bio's biovec 785 * @bdev: block_device to clone onto 786 * @bio_src: bio to clone from 787 * @gfp: allocation priority 788 * @bs: bio_set to allocate from 789 * 790 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned 791 * bio, but not the actual data it points to. 792 * 793 * The caller must ensure that the return bio is not freed before @bio_src. 794 */ 795 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src, 796 gfp_t gfp, struct bio_set *bs) 797 { 798 struct bio *bio; 799 800 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs); 801 if (!bio) 802 return NULL; 803 804 if (__bio_clone(bio, bio_src, gfp) < 0) { 805 bio_put(bio); 806 return NULL; 807 } 808 bio->bi_io_vec = bio_src->bi_io_vec; 809 810 return bio; 811 } 812 EXPORT_SYMBOL(bio_alloc_clone); 813 814 /** 815 * bio_init_clone - clone a bio that shares the original bio's biovec 816 * @bdev: block_device to clone onto 817 * @bio: bio to clone into 818 * @bio_src: bio to clone from 819 * @gfp: allocation priority 820 * 821 * Initialize a new bio in caller provided memory that is a clone of @bio_src. 822 * The caller owns the returned bio, but not the actual data it points to. 823 * 824 * The caller must ensure that @bio_src is not freed before @bio. 825 */ 826 int bio_init_clone(struct block_device *bdev, struct bio *bio, 827 struct bio *bio_src, gfp_t gfp) 828 { 829 int ret; 830 831 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf); 832 ret = __bio_clone(bio, bio_src, gfp); 833 if (ret) 834 bio_uninit(bio); 835 return ret; 836 } 837 EXPORT_SYMBOL(bio_init_clone); 838 839 /** 840 * bio_full - check if the bio is full 841 * @bio: bio to check 842 * @len: length of one segment to be added 843 * 844 * Return true if @bio is full and one segment with @len bytes can't be 845 * added to the bio, otherwise return false 846 */ 847 static inline bool bio_full(struct bio *bio, unsigned len) 848 { 849 if (bio->bi_vcnt >= bio->bi_max_vecs) 850 return true; 851 if (bio->bi_iter.bi_size > UINT_MAX - len) 852 return true; 853 return false; 854 } 855 856 static inline bool page_is_mergeable(const struct bio_vec *bv, 857 struct page *page, unsigned int len, unsigned int off, 858 bool *same_page) 859 { 860 size_t bv_end = bv->bv_offset + bv->bv_len; 861 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1; 862 phys_addr_t page_addr = page_to_phys(page); 863 864 if (vec_end_addr + 1 != page_addr + off) 865 return false; 866 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 867 return false; 868 869 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); 870 if (*same_page) 871 return true; 872 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE); 873 } 874 875 /** 876 * __bio_try_merge_page - try appending data to an existing bvec. 877 * @bio: destination bio 878 * @page: start page to add 879 * @len: length of the data to add 880 * @off: offset of the data relative to @page 881 * @same_page: return if the segment has been merged inside the same page 882 * 883 * Try to add the data at @page + @off to the last bvec of @bio. This is a 884 * useful optimisation for file systems with a block size smaller than the 885 * page size. 886 * 887 * Warn if (@len, @off) crosses pages in case that @same_page is true. 888 * 889 * Return %true on success or %false on failure. 890 */ 891 static bool __bio_try_merge_page(struct bio *bio, struct page *page, 892 unsigned int len, unsigned int off, bool *same_page) 893 { 894 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 895 return false; 896 897 if (bio->bi_vcnt > 0) { 898 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 899 900 if (page_is_mergeable(bv, page, len, off, same_page)) { 901 if (bio->bi_iter.bi_size > UINT_MAX - len) { 902 *same_page = false; 903 return false; 904 } 905 bv->bv_len += len; 906 bio->bi_iter.bi_size += len; 907 return true; 908 } 909 } 910 return false; 911 } 912 913 /* 914 * Try to merge a page into a segment, while obeying the hardware segment 915 * size limit. This is not for normal read/write bios, but for passthrough 916 * or Zone Append operations that we can't split. 917 */ 918 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio, 919 struct page *page, unsigned len, 920 unsigned offset, bool *same_page) 921 { 922 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 923 unsigned long mask = queue_segment_boundary(q); 924 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; 925 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 926 927 if ((addr1 | mask) != (addr2 | mask)) 928 return false; 929 if (bv->bv_len + len > queue_max_segment_size(q)) 930 return false; 931 return __bio_try_merge_page(bio, page, len, offset, same_page); 932 } 933 934 /** 935 * bio_add_hw_page - attempt to add a page to a bio with hw constraints 936 * @q: the target queue 937 * @bio: destination bio 938 * @page: page to add 939 * @len: vec entry length 940 * @offset: vec entry offset 941 * @max_sectors: maximum number of sectors that can be added 942 * @same_page: return if the segment has been merged inside the same page 943 * 944 * Add a page to a bio while respecting the hardware max_sectors, max_segment 945 * and gap limitations. 946 */ 947 int bio_add_hw_page(struct request_queue *q, struct bio *bio, 948 struct page *page, unsigned int len, unsigned int offset, 949 unsigned int max_sectors, bool *same_page) 950 { 951 struct bio_vec *bvec; 952 953 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 954 return 0; 955 956 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors) 957 return 0; 958 959 if (bio->bi_vcnt > 0) { 960 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page)) 961 return len; 962 963 /* 964 * If the queue doesn't support SG gaps and adding this segment 965 * would create a gap, disallow it. 966 */ 967 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 968 if (bvec_gap_to_prev(q, bvec, offset)) 969 return 0; 970 } 971 972 if (bio_full(bio, len)) 973 return 0; 974 975 if (bio->bi_vcnt >= queue_max_segments(q)) 976 return 0; 977 978 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 979 bvec->bv_page = page; 980 bvec->bv_len = len; 981 bvec->bv_offset = offset; 982 bio->bi_vcnt++; 983 bio->bi_iter.bi_size += len; 984 return len; 985 } 986 987 /** 988 * bio_add_pc_page - attempt to add page to passthrough bio 989 * @q: the target queue 990 * @bio: destination bio 991 * @page: page to add 992 * @len: vec entry length 993 * @offset: vec entry offset 994 * 995 * Attempt to add a page to the bio_vec maplist. This can fail for a 996 * number of reasons, such as the bio being full or target block device 997 * limitations. The target block device must allow bio's up to PAGE_SIZE, 998 * so it is always possible to add a single page to an empty bio. 999 * 1000 * This should only be used by passthrough bios. 1001 */ 1002 int bio_add_pc_page(struct request_queue *q, struct bio *bio, 1003 struct page *page, unsigned int len, unsigned int offset) 1004 { 1005 bool same_page = false; 1006 return bio_add_hw_page(q, bio, page, len, offset, 1007 queue_max_hw_sectors(q), &same_page); 1008 } 1009 EXPORT_SYMBOL(bio_add_pc_page); 1010 1011 /** 1012 * bio_add_zone_append_page - attempt to add page to zone-append bio 1013 * @bio: destination bio 1014 * @page: page to add 1015 * @len: vec entry length 1016 * @offset: vec entry offset 1017 * 1018 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted 1019 * for a zone-append request. This can fail for a number of reasons, such as the 1020 * bio being full or the target block device is not a zoned block device or 1021 * other limitations of the target block device. The target block device must 1022 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page 1023 * to an empty bio. 1024 * 1025 * Returns: number of bytes added to the bio, or 0 in case of a failure. 1026 */ 1027 int bio_add_zone_append_page(struct bio *bio, struct page *page, 1028 unsigned int len, unsigned int offset) 1029 { 1030 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1031 bool same_page = false; 1032 1033 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND)) 1034 return 0; 1035 1036 if (WARN_ON_ONCE(!blk_queue_is_zoned(q))) 1037 return 0; 1038 1039 return bio_add_hw_page(q, bio, page, len, offset, 1040 queue_max_zone_append_sectors(q), &same_page); 1041 } 1042 EXPORT_SYMBOL_GPL(bio_add_zone_append_page); 1043 1044 /** 1045 * __bio_add_page - add page(s) to a bio in a new segment 1046 * @bio: destination bio 1047 * @page: start page to add 1048 * @len: length of the data to add, may cross pages 1049 * @off: offset of the data relative to @page, may cross pages 1050 * 1051 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 1052 * that @bio has space for another bvec. 1053 */ 1054 void __bio_add_page(struct bio *bio, struct page *page, 1055 unsigned int len, unsigned int off) 1056 { 1057 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt]; 1058 1059 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 1060 WARN_ON_ONCE(bio_full(bio, len)); 1061 1062 bv->bv_page = page; 1063 bv->bv_offset = off; 1064 bv->bv_len = len; 1065 1066 bio->bi_iter.bi_size += len; 1067 bio->bi_vcnt++; 1068 1069 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page))) 1070 bio_set_flag(bio, BIO_WORKINGSET); 1071 } 1072 EXPORT_SYMBOL_GPL(__bio_add_page); 1073 1074 /** 1075 * bio_add_page - attempt to add page(s) to bio 1076 * @bio: destination bio 1077 * @page: start page to add 1078 * @len: vec entry length, may cross pages 1079 * @offset: vec entry offset relative to @page, may cross pages 1080 * 1081 * Attempt to add page(s) to the bio_vec maplist. This will only fail 1082 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 1083 */ 1084 int bio_add_page(struct bio *bio, struct page *page, 1085 unsigned int len, unsigned int offset) 1086 { 1087 bool same_page = false; 1088 1089 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { 1090 if (bio_full(bio, len)) 1091 return 0; 1092 __bio_add_page(bio, page, len, offset); 1093 } 1094 return len; 1095 } 1096 EXPORT_SYMBOL(bio_add_page); 1097 1098 /** 1099 * bio_add_folio - Attempt to add part of a folio to a bio. 1100 * @bio: BIO to add to. 1101 * @folio: Folio to add. 1102 * @len: How many bytes from the folio to add. 1103 * @off: First byte in this folio to add. 1104 * 1105 * Filesystems that use folios can call this function instead of calling 1106 * bio_add_page() for each page in the folio. If @off is bigger than 1107 * PAGE_SIZE, this function can create a bio_vec that starts in a page 1108 * after the bv_page. BIOs do not support folios that are 4GiB or larger. 1109 * 1110 * Return: Whether the addition was successful. 1111 */ 1112 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len, 1113 size_t off) 1114 { 1115 if (len > UINT_MAX || off > UINT_MAX) 1116 return false; 1117 return bio_add_page(bio, &folio->page, len, off) > 0; 1118 } 1119 1120 void __bio_release_pages(struct bio *bio, bool mark_dirty) 1121 { 1122 struct bvec_iter_all iter_all; 1123 struct bio_vec *bvec; 1124 1125 bio_for_each_segment_all(bvec, bio, iter_all) { 1126 if (mark_dirty && !PageCompound(bvec->bv_page)) 1127 set_page_dirty_lock(bvec->bv_page); 1128 put_page(bvec->bv_page); 1129 } 1130 } 1131 EXPORT_SYMBOL_GPL(__bio_release_pages); 1132 1133 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter) 1134 { 1135 size_t size = iov_iter_count(iter); 1136 1137 WARN_ON_ONCE(bio->bi_max_vecs); 1138 1139 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 1140 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1141 size_t max_sectors = queue_max_zone_append_sectors(q); 1142 1143 size = min(size, max_sectors << SECTOR_SHIFT); 1144 } 1145 1146 bio->bi_vcnt = iter->nr_segs; 1147 bio->bi_io_vec = (struct bio_vec *)iter->bvec; 1148 bio->bi_iter.bi_bvec_done = iter->iov_offset; 1149 bio->bi_iter.bi_size = size; 1150 bio_set_flag(bio, BIO_NO_PAGE_REF); 1151 bio_set_flag(bio, BIO_CLONED); 1152 } 1153 1154 static void bio_put_pages(struct page **pages, size_t size, size_t off) 1155 { 1156 size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE); 1157 1158 for (i = 0; i < nr; i++) 1159 put_page(pages[i]); 1160 } 1161 1162 static int bio_iov_add_page(struct bio *bio, struct page *page, 1163 unsigned int len, unsigned int offset) 1164 { 1165 bool same_page = false; 1166 1167 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { 1168 if (WARN_ON_ONCE(bio_full(bio, len))) 1169 return -EINVAL; 1170 __bio_add_page(bio, page, len, offset); 1171 return 0; 1172 } 1173 1174 if (same_page) 1175 put_page(page); 1176 return 0; 1177 } 1178 1179 static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page, 1180 unsigned int len, unsigned int offset) 1181 { 1182 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1183 bool same_page = false; 1184 1185 if (bio_add_hw_page(q, bio, page, len, offset, 1186 queue_max_zone_append_sectors(q), &same_page) != len) 1187 return -EINVAL; 1188 if (same_page) 1189 put_page(page); 1190 return 0; 1191 } 1192 1193 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 1194 1195 /** 1196 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 1197 * @bio: bio to add pages to 1198 * @iter: iov iterator describing the region to be mapped 1199 * 1200 * Pins pages from *iter and appends them to @bio's bvec array. The 1201 * pages will have to be released using put_page() when done. 1202 * For multi-segment *iter, this function only adds pages from the 1203 * next non-empty segment of the iov iterator. 1204 */ 1205 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1206 { 1207 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 1208 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 1209 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 1210 struct page **pages = (struct page **)bv; 1211 ssize_t size, left; 1212 unsigned len, i; 1213 size_t offset; 1214 1215 /* 1216 * Move page array up in the allocated memory for the bio vecs as far as 1217 * possible so that we can start filling biovecs from the beginning 1218 * without overwriting the temporary page array. 1219 */ 1220 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 1221 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 1222 1223 /* 1224 * Each segment in the iov is required to be a block size multiple. 1225 * However, we may not be able to get the entire segment if it spans 1226 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the 1227 * result to ensure the bio's total size is correct. The remainder of 1228 * the iov data will be picked up in the next bio iteration. 1229 */ 1230 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 1231 if (size > 0) 1232 size = ALIGN_DOWN(size, bdev_logical_block_size(bio->bi_bdev)); 1233 if (unlikely(size <= 0)) 1234 return size ? size : -EFAULT; 1235 1236 for (left = size, i = 0; left > 0; left -= len, i++) { 1237 struct page *page = pages[i]; 1238 int ret; 1239 1240 len = min_t(size_t, PAGE_SIZE - offset, left); 1241 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 1242 ret = bio_iov_add_zone_append_page(bio, page, len, 1243 offset); 1244 else 1245 ret = bio_iov_add_page(bio, page, len, offset); 1246 1247 if (ret) { 1248 bio_put_pages(pages + i, left, offset); 1249 return ret; 1250 } 1251 offset = 0; 1252 } 1253 1254 iov_iter_advance(iter, size); 1255 return 0; 1256 } 1257 1258 /** 1259 * bio_iov_iter_get_pages - add user or kernel pages to a bio 1260 * @bio: bio to add pages to 1261 * @iter: iov iterator describing the region to be added 1262 * 1263 * This takes either an iterator pointing to user memory, or one pointing to 1264 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 1265 * map them into the kernel. On IO completion, the caller should put those 1266 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided 1267 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs 1268 * to ensure the bvecs and pages stay referenced until the submitted I/O is 1269 * completed by a call to ->ki_complete() or returns with an error other than 1270 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF 1271 * on IO completion. If it isn't, then pages should be released. 1272 * 1273 * The function tries, but does not guarantee, to pin as many pages as 1274 * fit into the bio, or are requested in @iter, whatever is smaller. If 1275 * MM encounters an error pinning the requested pages, it stops. Error 1276 * is returned only if 0 pages could be pinned. 1277 * 1278 * It's intended for direct IO, so doesn't do PSI tracking, the caller is 1279 * responsible for setting BIO_WORKINGSET if necessary. 1280 */ 1281 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1282 { 1283 int ret = 0; 1284 1285 if (iov_iter_is_bvec(iter)) { 1286 bio_iov_bvec_set(bio, iter); 1287 iov_iter_advance(iter, bio->bi_iter.bi_size); 1288 return 0; 1289 } 1290 1291 do { 1292 ret = __bio_iov_iter_get_pages(bio, iter); 1293 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); 1294 1295 /* don't account direct I/O as memory stall */ 1296 bio_clear_flag(bio, BIO_WORKINGSET); 1297 return bio->bi_vcnt ? 0 : ret; 1298 } 1299 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 1300 1301 static void submit_bio_wait_endio(struct bio *bio) 1302 { 1303 complete(bio->bi_private); 1304 } 1305 1306 /** 1307 * submit_bio_wait - submit a bio, and wait until it completes 1308 * @bio: The &struct bio which describes the I/O 1309 * 1310 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 1311 * bio_endio() on failure. 1312 * 1313 * WARNING: Unlike to how submit_bio() is usually used, this function does not 1314 * result in bio reference to be consumed. The caller must drop the reference 1315 * on his own. 1316 */ 1317 int submit_bio_wait(struct bio *bio) 1318 { 1319 DECLARE_COMPLETION_ONSTACK_MAP(done, 1320 bio->bi_bdev->bd_disk->lockdep_map); 1321 unsigned long hang_check; 1322 1323 bio->bi_private = &done; 1324 bio->bi_end_io = submit_bio_wait_endio; 1325 bio->bi_opf |= REQ_SYNC; 1326 submit_bio(bio); 1327 1328 /* Prevent hang_check timer from firing at us during very long I/O */ 1329 hang_check = sysctl_hung_task_timeout_secs; 1330 if (hang_check) 1331 while (!wait_for_completion_io_timeout(&done, 1332 hang_check * (HZ/2))) 1333 ; 1334 else 1335 wait_for_completion_io(&done); 1336 1337 return blk_status_to_errno(bio->bi_status); 1338 } 1339 EXPORT_SYMBOL(submit_bio_wait); 1340 1341 void __bio_advance(struct bio *bio, unsigned bytes) 1342 { 1343 if (bio_integrity(bio)) 1344 bio_integrity_advance(bio, bytes); 1345 1346 bio_crypt_advance(bio, bytes); 1347 bio_advance_iter(bio, &bio->bi_iter, bytes); 1348 } 1349 EXPORT_SYMBOL(__bio_advance); 1350 1351 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 1352 struct bio *src, struct bvec_iter *src_iter) 1353 { 1354 while (src_iter->bi_size && dst_iter->bi_size) { 1355 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter); 1356 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter); 1357 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len); 1358 void *src_buf = bvec_kmap_local(&src_bv); 1359 void *dst_buf = bvec_kmap_local(&dst_bv); 1360 1361 memcpy(dst_buf, src_buf, bytes); 1362 1363 kunmap_local(dst_buf); 1364 kunmap_local(src_buf); 1365 1366 bio_advance_iter_single(src, src_iter, bytes); 1367 bio_advance_iter_single(dst, dst_iter, bytes); 1368 } 1369 } 1370 EXPORT_SYMBOL(bio_copy_data_iter); 1371 1372 /** 1373 * bio_copy_data - copy contents of data buffers from one bio to another 1374 * @src: source bio 1375 * @dst: destination bio 1376 * 1377 * Stops when it reaches the end of either @src or @dst - that is, copies 1378 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1379 */ 1380 void bio_copy_data(struct bio *dst, struct bio *src) 1381 { 1382 struct bvec_iter src_iter = src->bi_iter; 1383 struct bvec_iter dst_iter = dst->bi_iter; 1384 1385 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1386 } 1387 EXPORT_SYMBOL(bio_copy_data); 1388 1389 void bio_free_pages(struct bio *bio) 1390 { 1391 struct bio_vec *bvec; 1392 struct bvec_iter_all iter_all; 1393 1394 bio_for_each_segment_all(bvec, bio, iter_all) 1395 __free_page(bvec->bv_page); 1396 } 1397 EXPORT_SYMBOL(bio_free_pages); 1398 1399 /* 1400 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1401 * for performing direct-IO in BIOs. 1402 * 1403 * The problem is that we cannot run set_page_dirty() from interrupt context 1404 * because the required locks are not interrupt-safe. So what we can do is to 1405 * mark the pages dirty _before_ performing IO. And in interrupt context, 1406 * check that the pages are still dirty. If so, fine. If not, redirty them 1407 * in process context. 1408 * 1409 * We special-case compound pages here: normally this means reads into hugetlb 1410 * pages. The logic in here doesn't really work right for compound pages 1411 * because the VM does not uniformly chase down the head page in all cases. 1412 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1413 * handle them at all. So we skip compound pages here at an early stage. 1414 * 1415 * Note that this code is very hard to test under normal circumstances because 1416 * direct-io pins the pages with get_user_pages(). This makes 1417 * is_page_cache_freeable return false, and the VM will not clean the pages. 1418 * But other code (eg, flusher threads) could clean the pages if they are mapped 1419 * pagecache. 1420 * 1421 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1422 * deferred bio dirtying paths. 1423 */ 1424 1425 /* 1426 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1427 */ 1428 void bio_set_pages_dirty(struct bio *bio) 1429 { 1430 struct bio_vec *bvec; 1431 struct bvec_iter_all iter_all; 1432 1433 bio_for_each_segment_all(bvec, bio, iter_all) { 1434 if (!PageCompound(bvec->bv_page)) 1435 set_page_dirty_lock(bvec->bv_page); 1436 } 1437 } 1438 1439 /* 1440 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1441 * If they are, then fine. If, however, some pages are clean then they must 1442 * have been written out during the direct-IO read. So we take another ref on 1443 * the BIO and re-dirty the pages in process context. 1444 * 1445 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1446 * here on. It will run one put_page() against each page and will run one 1447 * bio_put() against the BIO. 1448 */ 1449 1450 static void bio_dirty_fn(struct work_struct *work); 1451 1452 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1453 static DEFINE_SPINLOCK(bio_dirty_lock); 1454 static struct bio *bio_dirty_list; 1455 1456 /* 1457 * This runs in process context 1458 */ 1459 static void bio_dirty_fn(struct work_struct *work) 1460 { 1461 struct bio *bio, *next; 1462 1463 spin_lock_irq(&bio_dirty_lock); 1464 next = bio_dirty_list; 1465 bio_dirty_list = NULL; 1466 spin_unlock_irq(&bio_dirty_lock); 1467 1468 while ((bio = next) != NULL) { 1469 next = bio->bi_private; 1470 1471 bio_release_pages(bio, true); 1472 bio_put(bio); 1473 } 1474 } 1475 1476 void bio_check_pages_dirty(struct bio *bio) 1477 { 1478 struct bio_vec *bvec; 1479 unsigned long flags; 1480 struct bvec_iter_all iter_all; 1481 1482 bio_for_each_segment_all(bvec, bio, iter_all) { 1483 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page)) 1484 goto defer; 1485 } 1486 1487 bio_release_pages(bio, false); 1488 bio_put(bio); 1489 return; 1490 defer: 1491 spin_lock_irqsave(&bio_dirty_lock, flags); 1492 bio->bi_private = bio_dirty_list; 1493 bio_dirty_list = bio; 1494 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1495 schedule_work(&bio_dirty_work); 1496 } 1497 1498 static inline bool bio_remaining_done(struct bio *bio) 1499 { 1500 /* 1501 * If we're not chaining, then ->__bi_remaining is always 1 and 1502 * we always end io on the first invocation. 1503 */ 1504 if (!bio_flagged(bio, BIO_CHAIN)) 1505 return true; 1506 1507 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1508 1509 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1510 bio_clear_flag(bio, BIO_CHAIN); 1511 return true; 1512 } 1513 1514 return false; 1515 } 1516 1517 /** 1518 * bio_endio - end I/O on a bio 1519 * @bio: bio 1520 * 1521 * Description: 1522 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1523 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1524 * bio unless they own it and thus know that it has an end_io function. 1525 * 1526 * bio_endio() can be called several times on a bio that has been chained 1527 * using bio_chain(). The ->bi_end_io() function will only be called the 1528 * last time. 1529 **/ 1530 void bio_endio(struct bio *bio) 1531 { 1532 again: 1533 if (!bio_remaining_done(bio)) 1534 return; 1535 if (!bio_integrity_endio(bio)) 1536 return; 1537 1538 rq_qos_done_bio(bio); 1539 1540 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1541 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio); 1542 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1543 } 1544 1545 /* 1546 * Need to have a real endio function for chained bios, otherwise 1547 * various corner cases will break (like stacking block devices that 1548 * save/restore bi_end_io) - however, we want to avoid unbounded 1549 * recursion and blowing the stack. Tail call optimization would 1550 * handle this, but compiling with frame pointers also disables 1551 * gcc's sibling call optimization. 1552 */ 1553 if (bio->bi_end_io == bio_chain_endio) { 1554 bio = __bio_chain_endio(bio); 1555 goto again; 1556 } 1557 1558 blk_throtl_bio_endio(bio); 1559 /* release cgroup info */ 1560 bio_uninit(bio); 1561 if (bio->bi_end_io) 1562 bio->bi_end_io(bio); 1563 } 1564 EXPORT_SYMBOL(bio_endio); 1565 1566 /** 1567 * bio_split - split a bio 1568 * @bio: bio to split 1569 * @sectors: number of sectors to split from the front of @bio 1570 * @gfp: gfp mask 1571 * @bs: bio set to allocate from 1572 * 1573 * Allocates and returns a new bio which represents @sectors from the start of 1574 * @bio, and updates @bio to represent the remaining sectors. 1575 * 1576 * Unless this is a discard request the newly allocated bio will point 1577 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that 1578 * neither @bio nor @bs are freed before the split bio. 1579 */ 1580 struct bio *bio_split(struct bio *bio, int sectors, 1581 gfp_t gfp, struct bio_set *bs) 1582 { 1583 struct bio *split; 1584 1585 BUG_ON(sectors <= 0); 1586 BUG_ON(sectors >= bio_sectors(bio)); 1587 1588 /* Zone append commands cannot be split */ 1589 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND)) 1590 return NULL; 1591 1592 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs); 1593 if (!split) 1594 return NULL; 1595 1596 split->bi_iter.bi_size = sectors << 9; 1597 1598 if (bio_integrity(split)) 1599 bio_integrity_trim(split); 1600 1601 bio_advance(bio, split->bi_iter.bi_size); 1602 1603 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1604 bio_set_flag(split, BIO_TRACE_COMPLETION); 1605 1606 return split; 1607 } 1608 EXPORT_SYMBOL(bio_split); 1609 1610 /** 1611 * bio_trim - trim a bio 1612 * @bio: bio to trim 1613 * @offset: number of sectors to trim from the front of @bio 1614 * @size: size we want to trim @bio to, in sectors 1615 * 1616 * This function is typically used for bios that are cloned and submitted 1617 * to the underlying device in parts. 1618 */ 1619 void bio_trim(struct bio *bio, sector_t offset, sector_t size) 1620 { 1621 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS || 1622 offset + size > bio_sectors(bio))) 1623 return; 1624 1625 size <<= 9; 1626 if (offset == 0 && size == bio->bi_iter.bi_size) 1627 return; 1628 1629 bio_advance(bio, offset << 9); 1630 bio->bi_iter.bi_size = size; 1631 1632 if (bio_integrity(bio)) 1633 bio_integrity_trim(bio); 1634 } 1635 EXPORT_SYMBOL_GPL(bio_trim); 1636 1637 /* 1638 * create memory pools for biovec's in a bio_set. 1639 * use the global biovec slabs created for general use. 1640 */ 1641 int biovec_init_pool(mempool_t *pool, int pool_entries) 1642 { 1643 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1; 1644 1645 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1646 } 1647 1648 /* 1649 * bioset_exit - exit a bioset initialized with bioset_init() 1650 * 1651 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1652 * kzalloc()). 1653 */ 1654 void bioset_exit(struct bio_set *bs) 1655 { 1656 bio_alloc_cache_destroy(bs); 1657 if (bs->rescue_workqueue) 1658 destroy_workqueue(bs->rescue_workqueue); 1659 bs->rescue_workqueue = NULL; 1660 1661 mempool_exit(&bs->bio_pool); 1662 mempool_exit(&bs->bvec_pool); 1663 1664 bioset_integrity_free(bs); 1665 if (bs->bio_slab) 1666 bio_put_slab(bs); 1667 bs->bio_slab = NULL; 1668 } 1669 EXPORT_SYMBOL(bioset_exit); 1670 1671 /** 1672 * bioset_init - Initialize a bio_set 1673 * @bs: pool to initialize 1674 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1675 * @front_pad: Number of bytes to allocate in front of the returned bio 1676 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1677 * and %BIOSET_NEED_RESCUER 1678 * 1679 * Description: 1680 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1681 * to ask for a number of bytes to be allocated in front of the bio. 1682 * Front pad allocation is useful for embedding the bio inside 1683 * another structure, to avoid allocating extra data to go with the bio. 1684 * Note that the bio must be embedded at the END of that structure always, 1685 * or things will break badly. 1686 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1687 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone(). 1688 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used 1689 * to dispatch queued requests when the mempool runs out of space. 1690 * 1691 */ 1692 int bioset_init(struct bio_set *bs, 1693 unsigned int pool_size, 1694 unsigned int front_pad, 1695 int flags) 1696 { 1697 bs->front_pad = front_pad; 1698 if (flags & BIOSET_NEED_BVECS) 1699 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1700 else 1701 bs->back_pad = 0; 1702 1703 spin_lock_init(&bs->rescue_lock); 1704 bio_list_init(&bs->rescue_list); 1705 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1706 1707 bs->bio_slab = bio_find_or_create_slab(bs); 1708 if (!bs->bio_slab) 1709 return -ENOMEM; 1710 1711 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 1712 goto bad; 1713 1714 if ((flags & BIOSET_NEED_BVECS) && 1715 biovec_init_pool(&bs->bvec_pool, pool_size)) 1716 goto bad; 1717 1718 if (flags & BIOSET_NEED_RESCUER) { 1719 bs->rescue_workqueue = alloc_workqueue("bioset", 1720 WQ_MEM_RECLAIM, 0); 1721 if (!bs->rescue_workqueue) 1722 goto bad; 1723 } 1724 if (flags & BIOSET_PERCPU_CACHE) { 1725 bs->cache = alloc_percpu(struct bio_alloc_cache); 1726 if (!bs->cache) 1727 goto bad; 1728 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 1729 } 1730 1731 return 0; 1732 bad: 1733 bioset_exit(bs); 1734 return -ENOMEM; 1735 } 1736 EXPORT_SYMBOL(bioset_init); 1737 1738 static int __init init_bio(void) 1739 { 1740 int i; 1741 1742 bio_integrity_init(); 1743 1744 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) { 1745 struct biovec_slab *bvs = bvec_slabs + i; 1746 1747 bvs->slab = kmem_cache_create(bvs->name, 1748 bvs->nr_vecs * sizeof(struct bio_vec), 0, 1749 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1750 } 1751 1752 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL, 1753 bio_cpu_dead); 1754 1755 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS)) 1756 panic("bio: can't allocate bios\n"); 1757 1758 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) 1759 panic("bio: can't create integrity pool\n"); 1760 1761 return 0; 1762 } 1763 subsys_initcall(init_bio); 1764