xref: /openbmc/linux/block/bio.c (revision 2b8bd423)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 
22 #include <trace/events/block.h>
23 #include "blk.h"
24 #include "blk-rq-qos.h"
25 
26 /*
27  * Test patch to inline a certain number of bi_io_vec's inside the bio
28  * itself, to shrink a bio data allocation from two mempool calls to one
29  */
30 #define BIO_INLINE_VECS		4
31 
32 /*
33  * if you change this list, also change bvec_alloc or things will
34  * break badly! cannot be bigger than what you can fit into an
35  * unsigned short
36  */
37 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
38 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
39 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
40 };
41 #undef BV
42 
43 /*
44  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
45  * IO code that does not need private memory pools.
46  */
47 struct bio_set fs_bio_set;
48 EXPORT_SYMBOL(fs_bio_set);
49 
50 /*
51  * Our slab pool management
52  */
53 struct bio_slab {
54 	struct kmem_cache *slab;
55 	unsigned int slab_ref;
56 	unsigned int slab_size;
57 	char name[8];
58 };
59 static DEFINE_MUTEX(bio_slab_lock);
60 static struct bio_slab *bio_slabs;
61 static unsigned int bio_slab_nr, bio_slab_max;
62 
63 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
64 {
65 	unsigned int sz = sizeof(struct bio) + extra_size;
66 	struct kmem_cache *slab = NULL;
67 	struct bio_slab *bslab, *new_bio_slabs;
68 	unsigned int new_bio_slab_max;
69 	unsigned int i, entry = -1;
70 
71 	mutex_lock(&bio_slab_lock);
72 
73 	i = 0;
74 	while (i < bio_slab_nr) {
75 		bslab = &bio_slabs[i];
76 
77 		if (!bslab->slab && entry == -1)
78 			entry = i;
79 		else if (bslab->slab_size == sz) {
80 			slab = bslab->slab;
81 			bslab->slab_ref++;
82 			break;
83 		}
84 		i++;
85 	}
86 
87 	if (slab)
88 		goto out_unlock;
89 
90 	if (bio_slab_nr == bio_slab_max && entry == -1) {
91 		new_bio_slab_max = bio_slab_max << 1;
92 		new_bio_slabs = krealloc(bio_slabs,
93 					 new_bio_slab_max * sizeof(struct bio_slab),
94 					 GFP_KERNEL);
95 		if (!new_bio_slabs)
96 			goto out_unlock;
97 		bio_slab_max = new_bio_slab_max;
98 		bio_slabs = new_bio_slabs;
99 	}
100 	if (entry == -1)
101 		entry = bio_slab_nr++;
102 
103 	bslab = &bio_slabs[entry];
104 
105 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
106 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
107 				 SLAB_HWCACHE_ALIGN, NULL);
108 	if (!slab)
109 		goto out_unlock;
110 
111 	bslab->slab = slab;
112 	bslab->slab_ref = 1;
113 	bslab->slab_size = sz;
114 out_unlock:
115 	mutex_unlock(&bio_slab_lock);
116 	return slab;
117 }
118 
119 static void bio_put_slab(struct bio_set *bs)
120 {
121 	struct bio_slab *bslab = NULL;
122 	unsigned int i;
123 
124 	mutex_lock(&bio_slab_lock);
125 
126 	for (i = 0; i < bio_slab_nr; i++) {
127 		if (bs->bio_slab == bio_slabs[i].slab) {
128 			bslab = &bio_slabs[i];
129 			break;
130 		}
131 	}
132 
133 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
134 		goto out;
135 
136 	WARN_ON(!bslab->slab_ref);
137 
138 	if (--bslab->slab_ref)
139 		goto out;
140 
141 	kmem_cache_destroy(bslab->slab);
142 	bslab->slab = NULL;
143 
144 out:
145 	mutex_unlock(&bio_slab_lock);
146 }
147 
148 unsigned int bvec_nr_vecs(unsigned short idx)
149 {
150 	return bvec_slabs[--idx].nr_vecs;
151 }
152 
153 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
154 {
155 	if (!idx)
156 		return;
157 	idx--;
158 
159 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
160 
161 	if (idx == BVEC_POOL_MAX) {
162 		mempool_free(bv, pool);
163 	} else {
164 		struct biovec_slab *bvs = bvec_slabs + idx;
165 
166 		kmem_cache_free(bvs->slab, bv);
167 	}
168 }
169 
170 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
171 			   mempool_t *pool)
172 {
173 	struct bio_vec *bvl;
174 
175 	/*
176 	 * see comment near bvec_array define!
177 	 */
178 	switch (nr) {
179 	case 1:
180 		*idx = 0;
181 		break;
182 	case 2 ... 4:
183 		*idx = 1;
184 		break;
185 	case 5 ... 16:
186 		*idx = 2;
187 		break;
188 	case 17 ... 64:
189 		*idx = 3;
190 		break;
191 	case 65 ... 128:
192 		*idx = 4;
193 		break;
194 	case 129 ... BIO_MAX_PAGES:
195 		*idx = 5;
196 		break;
197 	default:
198 		return NULL;
199 	}
200 
201 	/*
202 	 * idx now points to the pool we want to allocate from. only the
203 	 * 1-vec entry pool is mempool backed.
204 	 */
205 	if (*idx == BVEC_POOL_MAX) {
206 fallback:
207 		bvl = mempool_alloc(pool, gfp_mask);
208 	} else {
209 		struct biovec_slab *bvs = bvec_slabs + *idx;
210 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
211 
212 		/*
213 		 * Make this allocation restricted and don't dump info on
214 		 * allocation failures, since we'll fallback to the mempool
215 		 * in case of failure.
216 		 */
217 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
218 
219 		/*
220 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
221 		 * is set, retry with the 1-entry mempool
222 		 */
223 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
224 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
225 			*idx = BVEC_POOL_MAX;
226 			goto fallback;
227 		}
228 	}
229 
230 	(*idx)++;
231 	return bvl;
232 }
233 
234 void bio_uninit(struct bio *bio)
235 {
236 	bio_disassociate_blkg(bio);
237 
238 	if (bio_integrity(bio))
239 		bio_integrity_free(bio);
240 }
241 EXPORT_SYMBOL(bio_uninit);
242 
243 static void bio_free(struct bio *bio)
244 {
245 	struct bio_set *bs = bio->bi_pool;
246 	void *p;
247 
248 	bio_uninit(bio);
249 
250 	if (bs) {
251 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
252 
253 		/*
254 		 * If we have front padding, adjust the bio pointer before freeing
255 		 */
256 		p = bio;
257 		p -= bs->front_pad;
258 
259 		mempool_free(p, &bs->bio_pool);
260 	} else {
261 		/* Bio was allocated by bio_kmalloc() */
262 		kfree(bio);
263 	}
264 }
265 
266 /*
267  * Users of this function have their own bio allocation. Subsequently,
268  * they must remember to pair any call to bio_init() with bio_uninit()
269  * when IO has completed, or when the bio is released.
270  */
271 void bio_init(struct bio *bio, struct bio_vec *table,
272 	      unsigned short max_vecs)
273 {
274 	memset(bio, 0, sizeof(*bio));
275 	atomic_set(&bio->__bi_remaining, 1);
276 	atomic_set(&bio->__bi_cnt, 1);
277 
278 	bio->bi_io_vec = table;
279 	bio->bi_max_vecs = max_vecs;
280 }
281 EXPORT_SYMBOL(bio_init);
282 
283 /**
284  * bio_reset - reinitialize a bio
285  * @bio:	bio to reset
286  *
287  * Description:
288  *   After calling bio_reset(), @bio will be in the same state as a freshly
289  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
290  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
291  *   comment in struct bio.
292  */
293 void bio_reset(struct bio *bio)
294 {
295 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
296 
297 	bio_uninit(bio);
298 
299 	memset(bio, 0, BIO_RESET_BYTES);
300 	bio->bi_flags = flags;
301 	atomic_set(&bio->__bi_remaining, 1);
302 }
303 EXPORT_SYMBOL(bio_reset);
304 
305 static struct bio *__bio_chain_endio(struct bio *bio)
306 {
307 	struct bio *parent = bio->bi_private;
308 
309 	if (!parent->bi_status)
310 		parent->bi_status = bio->bi_status;
311 	bio_put(bio);
312 	return parent;
313 }
314 
315 static void bio_chain_endio(struct bio *bio)
316 {
317 	bio_endio(__bio_chain_endio(bio));
318 }
319 
320 /**
321  * bio_chain - chain bio completions
322  * @bio: the target bio
323  * @parent: the @bio's parent bio
324  *
325  * The caller won't have a bi_end_io called when @bio completes - instead,
326  * @parent's bi_end_io won't be called until both @parent and @bio have
327  * completed; the chained bio will also be freed when it completes.
328  *
329  * The caller must not set bi_private or bi_end_io in @bio.
330  */
331 void bio_chain(struct bio *bio, struct bio *parent)
332 {
333 	BUG_ON(bio->bi_private || bio->bi_end_io);
334 
335 	bio->bi_private = parent;
336 	bio->bi_end_io	= bio_chain_endio;
337 	bio_inc_remaining(parent);
338 }
339 EXPORT_SYMBOL(bio_chain);
340 
341 static void bio_alloc_rescue(struct work_struct *work)
342 {
343 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
344 	struct bio *bio;
345 
346 	while (1) {
347 		spin_lock(&bs->rescue_lock);
348 		bio = bio_list_pop(&bs->rescue_list);
349 		spin_unlock(&bs->rescue_lock);
350 
351 		if (!bio)
352 			break;
353 
354 		generic_make_request(bio);
355 	}
356 }
357 
358 static void punt_bios_to_rescuer(struct bio_set *bs)
359 {
360 	struct bio_list punt, nopunt;
361 	struct bio *bio;
362 
363 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
364 		return;
365 	/*
366 	 * In order to guarantee forward progress we must punt only bios that
367 	 * were allocated from this bio_set; otherwise, if there was a bio on
368 	 * there for a stacking driver higher up in the stack, processing it
369 	 * could require allocating bios from this bio_set, and doing that from
370 	 * our own rescuer would be bad.
371 	 *
372 	 * Since bio lists are singly linked, pop them all instead of trying to
373 	 * remove from the middle of the list:
374 	 */
375 
376 	bio_list_init(&punt);
377 	bio_list_init(&nopunt);
378 
379 	while ((bio = bio_list_pop(&current->bio_list[0])))
380 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
381 	current->bio_list[0] = nopunt;
382 
383 	bio_list_init(&nopunt);
384 	while ((bio = bio_list_pop(&current->bio_list[1])))
385 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
386 	current->bio_list[1] = nopunt;
387 
388 	spin_lock(&bs->rescue_lock);
389 	bio_list_merge(&bs->rescue_list, &punt);
390 	spin_unlock(&bs->rescue_lock);
391 
392 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
393 }
394 
395 /**
396  * bio_alloc_bioset - allocate a bio for I/O
397  * @gfp_mask:   the GFP_* mask given to the slab allocator
398  * @nr_iovecs:	number of iovecs to pre-allocate
399  * @bs:		the bio_set to allocate from.
400  *
401  * Description:
402  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
403  *   backed by the @bs's mempool.
404  *
405  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
406  *   always be able to allocate a bio. This is due to the mempool guarantees.
407  *   To make this work, callers must never allocate more than 1 bio at a time
408  *   from this pool. Callers that need to allocate more than 1 bio must always
409  *   submit the previously allocated bio for IO before attempting to allocate
410  *   a new one. Failure to do so can cause deadlocks under memory pressure.
411  *
412  *   Note that when running under generic_make_request() (i.e. any block
413  *   driver), bios are not submitted until after you return - see the code in
414  *   generic_make_request() that converts recursion into iteration, to prevent
415  *   stack overflows.
416  *
417  *   This would normally mean allocating multiple bios under
418  *   generic_make_request() would be susceptible to deadlocks, but we have
419  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
420  *   thread.
421  *
422  *   However, we do not guarantee forward progress for allocations from other
423  *   mempools. Doing multiple allocations from the same mempool under
424  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
425  *   for per bio allocations.
426  *
427  *   RETURNS:
428  *   Pointer to new bio on success, NULL on failure.
429  */
430 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
431 			     struct bio_set *bs)
432 {
433 	gfp_t saved_gfp = gfp_mask;
434 	unsigned front_pad;
435 	unsigned inline_vecs;
436 	struct bio_vec *bvl = NULL;
437 	struct bio *bio;
438 	void *p;
439 
440 	if (!bs) {
441 		if (nr_iovecs > UIO_MAXIOV)
442 			return NULL;
443 
444 		p = kmalloc(sizeof(struct bio) +
445 			    nr_iovecs * sizeof(struct bio_vec),
446 			    gfp_mask);
447 		front_pad = 0;
448 		inline_vecs = nr_iovecs;
449 	} else {
450 		/* should not use nobvec bioset for nr_iovecs > 0 */
451 		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
452 				 nr_iovecs > 0))
453 			return NULL;
454 		/*
455 		 * generic_make_request() converts recursion to iteration; this
456 		 * means if we're running beneath it, any bios we allocate and
457 		 * submit will not be submitted (and thus freed) until after we
458 		 * return.
459 		 *
460 		 * This exposes us to a potential deadlock if we allocate
461 		 * multiple bios from the same bio_set() while running
462 		 * underneath generic_make_request(). If we were to allocate
463 		 * multiple bios (say a stacking block driver that was splitting
464 		 * bios), we would deadlock if we exhausted the mempool's
465 		 * reserve.
466 		 *
467 		 * We solve this, and guarantee forward progress, with a rescuer
468 		 * workqueue per bio_set. If we go to allocate and there are
469 		 * bios on current->bio_list, we first try the allocation
470 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
471 		 * bios we would be blocking to the rescuer workqueue before
472 		 * we retry with the original gfp_flags.
473 		 */
474 
475 		if (current->bio_list &&
476 		    (!bio_list_empty(&current->bio_list[0]) ||
477 		     !bio_list_empty(&current->bio_list[1])) &&
478 		    bs->rescue_workqueue)
479 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
480 
481 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
482 		if (!p && gfp_mask != saved_gfp) {
483 			punt_bios_to_rescuer(bs);
484 			gfp_mask = saved_gfp;
485 			p = mempool_alloc(&bs->bio_pool, gfp_mask);
486 		}
487 
488 		front_pad = bs->front_pad;
489 		inline_vecs = BIO_INLINE_VECS;
490 	}
491 
492 	if (unlikely(!p))
493 		return NULL;
494 
495 	bio = p + front_pad;
496 	bio_init(bio, NULL, 0);
497 
498 	if (nr_iovecs > inline_vecs) {
499 		unsigned long idx = 0;
500 
501 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
502 		if (!bvl && gfp_mask != saved_gfp) {
503 			punt_bios_to_rescuer(bs);
504 			gfp_mask = saved_gfp;
505 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
506 		}
507 
508 		if (unlikely(!bvl))
509 			goto err_free;
510 
511 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
512 	} else if (nr_iovecs) {
513 		bvl = bio->bi_inline_vecs;
514 	}
515 
516 	bio->bi_pool = bs;
517 	bio->bi_max_vecs = nr_iovecs;
518 	bio->bi_io_vec = bvl;
519 	return bio;
520 
521 err_free:
522 	mempool_free(p, &bs->bio_pool);
523 	return NULL;
524 }
525 EXPORT_SYMBOL(bio_alloc_bioset);
526 
527 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
528 {
529 	unsigned long flags;
530 	struct bio_vec bv;
531 	struct bvec_iter iter;
532 
533 	__bio_for_each_segment(bv, bio, iter, start) {
534 		char *data = bvec_kmap_irq(&bv, &flags);
535 		memset(data, 0, bv.bv_len);
536 		flush_dcache_page(bv.bv_page);
537 		bvec_kunmap_irq(data, &flags);
538 	}
539 }
540 EXPORT_SYMBOL(zero_fill_bio_iter);
541 
542 /**
543  * bio_truncate - truncate the bio to small size of @new_size
544  * @bio:	the bio to be truncated
545  * @new_size:	new size for truncating the bio
546  *
547  * Description:
548  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
549  *   REQ_OP_READ, zero the truncated part. This function should only
550  *   be used for handling corner cases, such as bio eod.
551  */
552 void bio_truncate(struct bio *bio, unsigned new_size)
553 {
554 	struct bio_vec bv;
555 	struct bvec_iter iter;
556 	unsigned int done = 0;
557 	bool truncated = false;
558 
559 	if (new_size >= bio->bi_iter.bi_size)
560 		return;
561 
562 	if (bio_op(bio) != REQ_OP_READ)
563 		goto exit;
564 
565 	bio_for_each_segment(bv, bio, iter) {
566 		if (done + bv.bv_len > new_size) {
567 			unsigned offset;
568 
569 			if (!truncated)
570 				offset = new_size - done;
571 			else
572 				offset = 0;
573 			zero_user(bv.bv_page, offset, bv.bv_len - offset);
574 			truncated = true;
575 		}
576 		done += bv.bv_len;
577 	}
578 
579  exit:
580 	/*
581 	 * Don't touch bvec table here and make it really immutable, since
582 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
583 	 * in its .end_bio() callback.
584 	 *
585 	 * It is enough to truncate bio by updating .bi_size since we can make
586 	 * correct bvec with the updated .bi_size for drivers.
587 	 */
588 	bio->bi_iter.bi_size = new_size;
589 }
590 
591 /**
592  * bio_put - release a reference to a bio
593  * @bio:   bio to release reference to
594  *
595  * Description:
596  *   Put a reference to a &struct bio, either one you have gotten with
597  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
598  **/
599 void bio_put(struct bio *bio)
600 {
601 	if (!bio_flagged(bio, BIO_REFFED))
602 		bio_free(bio);
603 	else {
604 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
605 
606 		/*
607 		 * last put frees it
608 		 */
609 		if (atomic_dec_and_test(&bio->__bi_cnt))
610 			bio_free(bio);
611 	}
612 }
613 EXPORT_SYMBOL(bio_put);
614 
615 /**
616  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
617  * 	@bio: destination bio
618  * 	@bio_src: bio to clone
619  *
620  *	Clone a &bio. Caller will own the returned bio, but not
621  *	the actual data it points to. Reference count of returned
622  * 	bio will be one.
623  *
624  * 	Caller must ensure that @bio_src is not freed before @bio.
625  */
626 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
627 {
628 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
629 
630 	/*
631 	 * most users will be overriding ->bi_disk with a new target,
632 	 * so we don't set nor calculate new physical/hw segment counts here
633 	 */
634 	bio->bi_disk = bio_src->bi_disk;
635 	bio->bi_partno = bio_src->bi_partno;
636 	bio_set_flag(bio, BIO_CLONED);
637 	if (bio_flagged(bio_src, BIO_THROTTLED))
638 		bio_set_flag(bio, BIO_THROTTLED);
639 	bio->bi_opf = bio_src->bi_opf;
640 	bio->bi_ioprio = bio_src->bi_ioprio;
641 	bio->bi_write_hint = bio_src->bi_write_hint;
642 	bio->bi_iter = bio_src->bi_iter;
643 	bio->bi_io_vec = bio_src->bi_io_vec;
644 
645 	bio_clone_blkg_association(bio, bio_src);
646 	blkcg_bio_issue_init(bio);
647 }
648 EXPORT_SYMBOL(__bio_clone_fast);
649 
650 /**
651  *	bio_clone_fast - clone a bio that shares the original bio's biovec
652  *	@bio: bio to clone
653  *	@gfp_mask: allocation priority
654  *	@bs: bio_set to allocate from
655  *
656  * 	Like __bio_clone_fast, only also allocates the returned bio
657  */
658 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
659 {
660 	struct bio *b;
661 
662 	b = bio_alloc_bioset(gfp_mask, 0, bs);
663 	if (!b)
664 		return NULL;
665 
666 	__bio_clone_fast(b, bio);
667 
668 	if (bio_integrity(bio)) {
669 		int ret;
670 
671 		ret = bio_integrity_clone(b, bio, gfp_mask);
672 
673 		if (ret < 0) {
674 			bio_put(b);
675 			return NULL;
676 		}
677 	}
678 
679 	return b;
680 }
681 EXPORT_SYMBOL(bio_clone_fast);
682 
683 const char *bio_devname(struct bio *bio, char *buf)
684 {
685 	return disk_name(bio->bi_disk, bio->bi_partno, buf);
686 }
687 EXPORT_SYMBOL(bio_devname);
688 
689 static inline bool page_is_mergeable(const struct bio_vec *bv,
690 		struct page *page, unsigned int len, unsigned int off,
691 		bool *same_page)
692 {
693 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
694 		bv->bv_offset + bv->bv_len - 1;
695 	phys_addr_t page_addr = page_to_phys(page);
696 
697 	if (vec_end_addr + 1 != page_addr + off)
698 		return false;
699 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
700 		return false;
701 
702 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
703 	if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
704 		return false;
705 	return true;
706 }
707 
708 static bool bio_try_merge_pc_page(struct request_queue *q, struct bio *bio,
709 		struct page *page, unsigned len, unsigned offset,
710 		bool *same_page)
711 {
712 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
713 	unsigned long mask = queue_segment_boundary(q);
714 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
715 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
716 
717 	if ((addr1 | mask) != (addr2 | mask))
718 		return false;
719 	if (bv->bv_len + len > queue_max_segment_size(q))
720 		return false;
721 	return __bio_try_merge_page(bio, page, len, offset, same_page);
722 }
723 
724 /**
725  *	__bio_add_pc_page	- attempt to add page to passthrough bio
726  *	@q: the target queue
727  *	@bio: destination bio
728  *	@page: page to add
729  *	@len: vec entry length
730  *	@offset: vec entry offset
731  *	@same_page: return if the merge happen inside the same page
732  *
733  *	Attempt to add a page to the bio_vec maplist. This can fail for a
734  *	number of reasons, such as the bio being full or target block device
735  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
736  *	so it is always possible to add a single page to an empty bio.
737  *
738  *	This should only be used by passthrough bios.
739  */
740 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
741 		struct page *page, unsigned int len, unsigned int offset,
742 		bool *same_page)
743 {
744 	struct bio_vec *bvec;
745 
746 	/*
747 	 * cloned bio must not modify vec list
748 	 */
749 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
750 		return 0;
751 
752 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
753 		return 0;
754 
755 	if (bio->bi_vcnt > 0) {
756 		if (bio_try_merge_pc_page(q, bio, page, len, offset, same_page))
757 			return len;
758 
759 		/*
760 		 * If the queue doesn't support SG gaps and adding this segment
761 		 * would create a gap, disallow it.
762 		 */
763 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
764 		if (bvec_gap_to_prev(q, bvec, offset))
765 			return 0;
766 	}
767 
768 	if (bio_full(bio, len))
769 		return 0;
770 
771 	if (bio->bi_vcnt >= queue_max_segments(q))
772 		return 0;
773 
774 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
775 	bvec->bv_page = page;
776 	bvec->bv_len = len;
777 	bvec->bv_offset = offset;
778 	bio->bi_vcnt++;
779 	bio->bi_iter.bi_size += len;
780 	return len;
781 }
782 
783 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
784 		struct page *page, unsigned int len, unsigned int offset)
785 {
786 	bool same_page = false;
787 	return __bio_add_pc_page(q, bio, page, len, offset, &same_page);
788 }
789 EXPORT_SYMBOL(bio_add_pc_page);
790 
791 /**
792  * __bio_try_merge_page - try appending data to an existing bvec.
793  * @bio: destination bio
794  * @page: start page to add
795  * @len: length of the data to add
796  * @off: offset of the data relative to @page
797  * @same_page: return if the segment has been merged inside the same page
798  *
799  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
800  * a useful optimisation for file systems with a block size smaller than the
801  * page size.
802  *
803  * Warn if (@len, @off) crosses pages in case that @same_page is true.
804  *
805  * Return %true on success or %false on failure.
806  */
807 bool __bio_try_merge_page(struct bio *bio, struct page *page,
808 		unsigned int len, unsigned int off, bool *same_page)
809 {
810 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
811 		return false;
812 
813 	if (bio->bi_vcnt > 0) {
814 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
815 
816 		if (page_is_mergeable(bv, page, len, off, same_page)) {
817 			if (bio->bi_iter.bi_size > UINT_MAX - len)
818 				return false;
819 			bv->bv_len += len;
820 			bio->bi_iter.bi_size += len;
821 			return true;
822 		}
823 	}
824 	return false;
825 }
826 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
827 
828 /**
829  * __bio_add_page - add page(s) to a bio in a new segment
830  * @bio: destination bio
831  * @page: start page to add
832  * @len: length of the data to add, may cross pages
833  * @off: offset of the data relative to @page, may cross pages
834  *
835  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
836  * that @bio has space for another bvec.
837  */
838 void __bio_add_page(struct bio *bio, struct page *page,
839 		unsigned int len, unsigned int off)
840 {
841 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
842 
843 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
844 	WARN_ON_ONCE(bio_full(bio, len));
845 
846 	bv->bv_page = page;
847 	bv->bv_offset = off;
848 	bv->bv_len = len;
849 
850 	bio->bi_iter.bi_size += len;
851 	bio->bi_vcnt++;
852 
853 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
854 		bio_set_flag(bio, BIO_WORKINGSET);
855 }
856 EXPORT_SYMBOL_GPL(__bio_add_page);
857 
858 /**
859  *	bio_add_page	-	attempt to add page(s) to bio
860  *	@bio: destination bio
861  *	@page: start page to add
862  *	@len: vec entry length, may cross pages
863  *	@offset: vec entry offset relative to @page, may cross pages
864  *
865  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
866  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
867  */
868 int bio_add_page(struct bio *bio, struct page *page,
869 		 unsigned int len, unsigned int offset)
870 {
871 	bool same_page = false;
872 
873 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
874 		if (bio_full(bio, len))
875 			return 0;
876 		__bio_add_page(bio, page, len, offset);
877 	}
878 	return len;
879 }
880 EXPORT_SYMBOL(bio_add_page);
881 
882 void bio_release_pages(struct bio *bio, bool mark_dirty)
883 {
884 	struct bvec_iter_all iter_all;
885 	struct bio_vec *bvec;
886 
887 	if (bio_flagged(bio, BIO_NO_PAGE_REF))
888 		return;
889 
890 	bio_for_each_segment_all(bvec, bio, iter_all) {
891 		if (mark_dirty && !PageCompound(bvec->bv_page))
892 			set_page_dirty_lock(bvec->bv_page);
893 		put_page(bvec->bv_page);
894 	}
895 }
896 
897 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
898 {
899 	const struct bio_vec *bv = iter->bvec;
900 	unsigned int len;
901 	size_t size;
902 
903 	if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
904 		return -EINVAL;
905 
906 	len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
907 	size = bio_add_page(bio, bv->bv_page, len,
908 				bv->bv_offset + iter->iov_offset);
909 	if (unlikely(size != len))
910 		return -EINVAL;
911 	iov_iter_advance(iter, size);
912 	return 0;
913 }
914 
915 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
916 
917 /**
918  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
919  * @bio: bio to add pages to
920  * @iter: iov iterator describing the region to be mapped
921  *
922  * Pins pages from *iter and appends them to @bio's bvec array. The
923  * pages will have to be released using put_page() when done.
924  * For multi-segment *iter, this function only adds pages from the
925  * the next non-empty segment of the iov iterator.
926  */
927 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
928 {
929 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
930 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
931 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
932 	struct page **pages = (struct page **)bv;
933 	bool same_page = false;
934 	ssize_t size, left;
935 	unsigned len, i;
936 	size_t offset;
937 
938 	/*
939 	 * Move page array up in the allocated memory for the bio vecs as far as
940 	 * possible so that we can start filling biovecs from the beginning
941 	 * without overwriting the temporary page array.
942 	*/
943 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
944 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
945 
946 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
947 	if (unlikely(size <= 0))
948 		return size ? size : -EFAULT;
949 
950 	for (left = size, i = 0; left > 0; left -= len, i++) {
951 		struct page *page = pages[i];
952 
953 		len = min_t(size_t, PAGE_SIZE - offset, left);
954 
955 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
956 			if (same_page)
957 				put_page(page);
958 		} else {
959 			if (WARN_ON_ONCE(bio_full(bio, len)))
960                                 return -EINVAL;
961 			__bio_add_page(bio, page, len, offset);
962 		}
963 		offset = 0;
964 	}
965 
966 	iov_iter_advance(iter, size);
967 	return 0;
968 }
969 
970 /**
971  * bio_iov_iter_get_pages - add user or kernel pages to a bio
972  * @bio: bio to add pages to
973  * @iter: iov iterator describing the region to be added
974  *
975  * This takes either an iterator pointing to user memory, or one pointing to
976  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
977  * map them into the kernel. On IO completion, the caller should put those
978  * pages. If we're adding kernel pages, and the caller told us it's safe to
979  * do so, we just have to add the pages to the bio directly. We don't grab an
980  * extra reference to those pages (the user should already have that), and we
981  * don't put the page on IO completion. The caller needs to check if the bio is
982  * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
983  * released.
984  *
985  * The function tries, but does not guarantee, to pin as many pages as
986  * fit into the bio, or are requested in *iter, whatever is smaller. If
987  * MM encounters an error pinning the requested pages, it stops. Error
988  * is returned only if 0 pages could be pinned.
989  */
990 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
991 {
992 	const bool is_bvec = iov_iter_is_bvec(iter);
993 	int ret;
994 
995 	if (WARN_ON_ONCE(bio->bi_vcnt))
996 		return -EINVAL;
997 
998 	do {
999 		if (is_bvec)
1000 			ret = __bio_iov_bvec_add_pages(bio, iter);
1001 		else
1002 			ret = __bio_iov_iter_get_pages(bio, iter);
1003 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1004 
1005 	if (is_bvec)
1006 		bio_set_flag(bio, BIO_NO_PAGE_REF);
1007 	return bio->bi_vcnt ? 0 : ret;
1008 }
1009 
1010 static void submit_bio_wait_endio(struct bio *bio)
1011 {
1012 	complete(bio->bi_private);
1013 }
1014 
1015 /**
1016  * submit_bio_wait - submit a bio, and wait until it completes
1017  * @bio: The &struct bio which describes the I/O
1018  *
1019  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1020  * bio_endio() on failure.
1021  *
1022  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1023  * result in bio reference to be consumed. The caller must drop the reference
1024  * on his own.
1025  */
1026 int submit_bio_wait(struct bio *bio)
1027 {
1028 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
1029 	unsigned long hang_check;
1030 
1031 	bio->bi_private = &done;
1032 	bio->bi_end_io = submit_bio_wait_endio;
1033 	bio->bi_opf |= REQ_SYNC;
1034 	submit_bio(bio);
1035 
1036 	/* Prevent hang_check timer from firing at us during very long I/O */
1037 	hang_check = sysctl_hung_task_timeout_secs;
1038 	if (hang_check)
1039 		while (!wait_for_completion_io_timeout(&done,
1040 					hang_check * (HZ/2)))
1041 			;
1042 	else
1043 		wait_for_completion_io(&done);
1044 
1045 	return blk_status_to_errno(bio->bi_status);
1046 }
1047 EXPORT_SYMBOL(submit_bio_wait);
1048 
1049 /**
1050  * bio_advance - increment/complete a bio by some number of bytes
1051  * @bio:	bio to advance
1052  * @bytes:	number of bytes to complete
1053  *
1054  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1055  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1056  * be updated on the last bvec as well.
1057  *
1058  * @bio will then represent the remaining, uncompleted portion of the io.
1059  */
1060 void bio_advance(struct bio *bio, unsigned bytes)
1061 {
1062 	if (bio_integrity(bio))
1063 		bio_integrity_advance(bio, bytes);
1064 
1065 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1066 }
1067 EXPORT_SYMBOL(bio_advance);
1068 
1069 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1070 			struct bio *src, struct bvec_iter *src_iter)
1071 {
1072 	struct bio_vec src_bv, dst_bv;
1073 	void *src_p, *dst_p;
1074 	unsigned bytes;
1075 
1076 	while (src_iter->bi_size && dst_iter->bi_size) {
1077 		src_bv = bio_iter_iovec(src, *src_iter);
1078 		dst_bv = bio_iter_iovec(dst, *dst_iter);
1079 
1080 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1081 
1082 		src_p = kmap_atomic(src_bv.bv_page);
1083 		dst_p = kmap_atomic(dst_bv.bv_page);
1084 
1085 		memcpy(dst_p + dst_bv.bv_offset,
1086 		       src_p + src_bv.bv_offset,
1087 		       bytes);
1088 
1089 		kunmap_atomic(dst_p);
1090 		kunmap_atomic(src_p);
1091 
1092 		flush_dcache_page(dst_bv.bv_page);
1093 
1094 		bio_advance_iter(src, src_iter, bytes);
1095 		bio_advance_iter(dst, dst_iter, bytes);
1096 	}
1097 }
1098 EXPORT_SYMBOL(bio_copy_data_iter);
1099 
1100 /**
1101  * bio_copy_data - copy contents of data buffers from one bio to another
1102  * @src: source bio
1103  * @dst: destination bio
1104  *
1105  * Stops when it reaches the end of either @src or @dst - that is, copies
1106  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1107  */
1108 void bio_copy_data(struct bio *dst, struct bio *src)
1109 {
1110 	struct bvec_iter src_iter = src->bi_iter;
1111 	struct bvec_iter dst_iter = dst->bi_iter;
1112 
1113 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1114 }
1115 EXPORT_SYMBOL(bio_copy_data);
1116 
1117 /**
1118  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1119  * another
1120  * @src: source bio list
1121  * @dst: destination bio list
1122  *
1123  * Stops when it reaches the end of either the @src list or @dst list - that is,
1124  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1125  * bios).
1126  */
1127 void bio_list_copy_data(struct bio *dst, struct bio *src)
1128 {
1129 	struct bvec_iter src_iter = src->bi_iter;
1130 	struct bvec_iter dst_iter = dst->bi_iter;
1131 
1132 	while (1) {
1133 		if (!src_iter.bi_size) {
1134 			src = src->bi_next;
1135 			if (!src)
1136 				break;
1137 
1138 			src_iter = src->bi_iter;
1139 		}
1140 
1141 		if (!dst_iter.bi_size) {
1142 			dst = dst->bi_next;
1143 			if (!dst)
1144 				break;
1145 
1146 			dst_iter = dst->bi_iter;
1147 		}
1148 
1149 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1150 	}
1151 }
1152 EXPORT_SYMBOL(bio_list_copy_data);
1153 
1154 struct bio_map_data {
1155 	int is_our_pages;
1156 	struct iov_iter iter;
1157 	struct iovec iov[];
1158 };
1159 
1160 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1161 					       gfp_t gfp_mask)
1162 {
1163 	struct bio_map_data *bmd;
1164 	if (data->nr_segs > UIO_MAXIOV)
1165 		return NULL;
1166 
1167 	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
1168 	if (!bmd)
1169 		return NULL;
1170 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1171 	bmd->iter = *data;
1172 	bmd->iter.iov = bmd->iov;
1173 	return bmd;
1174 }
1175 
1176 /**
1177  * bio_copy_from_iter - copy all pages from iov_iter to bio
1178  * @bio: The &struct bio which describes the I/O as destination
1179  * @iter: iov_iter as source
1180  *
1181  * Copy all pages from iov_iter to bio.
1182  * Returns 0 on success, or error on failure.
1183  */
1184 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1185 {
1186 	struct bio_vec *bvec;
1187 	struct bvec_iter_all iter_all;
1188 
1189 	bio_for_each_segment_all(bvec, bio, iter_all) {
1190 		ssize_t ret;
1191 
1192 		ret = copy_page_from_iter(bvec->bv_page,
1193 					  bvec->bv_offset,
1194 					  bvec->bv_len,
1195 					  iter);
1196 
1197 		if (!iov_iter_count(iter))
1198 			break;
1199 
1200 		if (ret < bvec->bv_len)
1201 			return -EFAULT;
1202 	}
1203 
1204 	return 0;
1205 }
1206 
1207 /**
1208  * bio_copy_to_iter - copy all pages from bio to iov_iter
1209  * @bio: The &struct bio which describes the I/O as source
1210  * @iter: iov_iter as destination
1211  *
1212  * Copy all pages from bio to iov_iter.
1213  * Returns 0 on success, or error on failure.
1214  */
1215 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1216 {
1217 	struct bio_vec *bvec;
1218 	struct bvec_iter_all iter_all;
1219 
1220 	bio_for_each_segment_all(bvec, bio, iter_all) {
1221 		ssize_t ret;
1222 
1223 		ret = copy_page_to_iter(bvec->bv_page,
1224 					bvec->bv_offset,
1225 					bvec->bv_len,
1226 					&iter);
1227 
1228 		if (!iov_iter_count(&iter))
1229 			break;
1230 
1231 		if (ret < bvec->bv_len)
1232 			return -EFAULT;
1233 	}
1234 
1235 	return 0;
1236 }
1237 
1238 void bio_free_pages(struct bio *bio)
1239 {
1240 	struct bio_vec *bvec;
1241 	struct bvec_iter_all iter_all;
1242 
1243 	bio_for_each_segment_all(bvec, bio, iter_all)
1244 		__free_page(bvec->bv_page);
1245 }
1246 EXPORT_SYMBOL(bio_free_pages);
1247 
1248 /**
1249  *	bio_uncopy_user	-	finish previously mapped bio
1250  *	@bio: bio being terminated
1251  *
1252  *	Free pages allocated from bio_copy_user_iov() and write back data
1253  *	to user space in case of a read.
1254  */
1255 int bio_uncopy_user(struct bio *bio)
1256 {
1257 	struct bio_map_data *bmd = bio->bi_private;
1258 	int ret = 0;
1259 
1260 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1261 		/*
1262 		 * if we're in a workqueue, the request is orphaned, so
1263 		 * don't copy into a random user address space, just free
1264 		 * and return -EINTR so user space doesn't expect any data.
1265 		 */
1266 		if (!current->mm)
1267 			ret = -EINTR;
1268 		else if (bio_data_dir(bio) == READ)
1269 			ret = bio_copy_to_iter(bio, bmd->iter);
1270 		if (bmd->is_our_pages)
1271 			bio_free_pages(bio);
1272 	}
1273 	kfree(bmd);
1274 	bio_put(bio);
1275 	return ret;
1276 }
1277 
1278 /**
1279  *	bio_copy_user_iov	-	copy user data to bio
1280  *	@q:		destination block queue
1281  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1282  *	@iter:		iovec iterator
1283  *	@gfp_mask:	memory allocation flags
1284  *
1285  *	Prepares and returns a bio for indirect user io, bouncing data
1286  *	to/from kernel pages as necessary. Must be paired with
1287  *	call bio_uncopy_user() on io completion.
1288  */
1289 struct bio *bio_copy_user_iov(struct request_queue *q,
1290 			      struct rq_map_data *map_data,
1291 			      struct iov_iter *iter,
1292 			      gfp_t gfp_mask)
1293 {
1294 	struct bio_map_data *bmd;
1295 	struct page *page;
1296 	struct bio *bio;
1297 	int i = 0, ret;
1298 	int nr_pages;
1299 	unsigned int len = iter->count;
1300 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1301 
1302 	bmd = bio_alloc_map_data(iter, gfp_mask);
1303 	if (!bmd)
1304 		return ERR_PTR(-ENOMEM);
1305 
1306 	/*
1307 	 * We need to do a deep copy of the iov_iter including the iovecs.
1308 	 * The caller provided iov might point to an on-stack or otherwise
1309 	 * shortlived one.
1310 	 */
1311 	bmd->is_our_pages = map_data ? 0 : 1;
1312 
1313 	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1314 	if (nr_pages > BIO_MAX_PAGES)
1315 		nr_pages = BIO_MAX_PAGES;
1316 
1317 	ret = -ENOMEM;
1318 	bio = bio_kmalloc(gfp_mask, nr_pages);
1319 	if (!bio)
1320 		goto out_bmd;
1321 
1322 	ret = 0;
1323 
1324 	if (map_data) {
1325 		nr_pages = 1 << map_data->page_order;
1326 		i = map_data->offset / PAGE_SIZE;
1327 	}
1328 	while (len) {
1329 		unsigned int bytes = PAGE_SIZE;
1330 
1331 		bytes -= offset;
1332 
1333 		if (bytes > len)
1334 			bytes = len;
1335 
1336 		if (map_data) {
1337 			if (i == map_data->nr_entries * nr_pages) {
1338 				ret = -ENOMEM;
1339 				break;
1340 			}
1341 
1342 			page = map_data->pages[i / nr_pages];
1343 			page += (i % nr_pages);
1344 
1345 			i++;
1346 		} else {
1347 			page = alloc_page(q->bounce_gfp | gfp_mask);
1348 			if (!page) {
1349 				ret = -ENOMEM;
1350 				break;
1351 			}
1352 		}
1353 
1354 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1355 			if (!map_data)
1356 				__free_page(page);
1357 			break;
1358 		}
1359 
1360 		len -= bytes;
1361 		offset = 0;
1362 	}
1363 
1364 	if (ret)
1365 		goto cleanup;
1366 
1367 	if (map_data)
1368 		map_data->offset += bio->bi_iter.bi_size;
1369 
1370 	/*
1371 	 * success
1372 	 */
1373 	if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1374 	    (map_data && map_data->from_user)) {
1375 		ret = bio_copy_from_iter(bio, iter);
1376 		if (ret)
1377 			goto cleanup;
1378 	} else {
1379 		if (bmd->is_our_pages)
1380 			zero_fill_bio(bio);
1381 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1382 	}
1383 
1384 	bio->bi_private = bmd;
1385 	if (map_data && map_data->null_mapped)
1386 		bio_set_flag(bio, BIO_NULL_MAPPED);
1387 	return bio;
1388 cleanup:
1389 	if (!map_data)
1390 		bio_free_pages(bio);
1391 	bio_put(bio);
1392 out_bmd:
1393 	kfree(bmd);
1394 	return ERR_PTR(ret);
1395 }
1396 
1397 /**
1398  *	bio_map_user_iov - map user iovec into bio
1399  *	@q:		the struct request_queue for the bio
1400  *	@iter:		iovec iterator
1401  *	@gfp_mask:	memory allocation flags
1402  *
1403  *	Map the user space address into a bio suitable for io to a block
1404  *	device. Returns an error pointer in case of error.
1405  */
1406 struct bio *bio_map_user_iov(struct request_queue *q,
1407 			     struct iov_iter *iter,
1408 			     gfp_t gfp_mask)
1409 {
1410 	int j;
1411 	struct bio *bio;
1412 	int ret;
1413 
1414 	if (!iov_iter_count(iter))
1415 		return ERR_PTR(-EINVAL);
1416 
1417 	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1418 	if (!bio)
1419 		return ERR_PTR(-ENOMEM);
1420 
1421 	while (iov_iter_count(iter)) {
1422 		struct page **pages;
1423 		ssize_t bytes;
1424 		size_t offs, added = 0;
1425 		int npages;
1426 
1427 		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1428 		if (unlikely(bytes <= 0)) {
1429 			ret = bytes ? bytes : -EFAULT;
1430 			goto out_unmap;
1431 		}
1432 
1433 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1434 
1435 		if (unlikely(offs & queue_dma_alignment(q))) {
1436 			ret = -EINVAL;
1437 			j = 0;
1438 		} else {
1439 			for (j = 0; j < npages; j++) {
1440 				struct page *page = pages[j];
1441 				unsigned int n = PAGE_SIZE - offs;
1442 				bool same_page = false;
1443 
1444 				if (n > bytes)
1445 					n = bytes;
1446 
1447 				if (!__bio_add_pc_page(q, bio, page, n, offs,
1448 						&same_page)) {
1449 					if (same_page)
1450 						put_page(page);
1451 					break;
1452 				}
1453 
1454 				added += n;
1455 				bytes -= n;
1456 				offs = 0;
1457 			}
1458 			iov_iter_advance(iter, added);
1459 		}
1460 		/*
1461 		 * release the pages we didn't map into the bio, if any
1462 		 */
1463 		while (j < npages)
1464 			put_page(pages[j++]);
1465 		kvfree(pages);
1466 		/* couldn't stuff something into bio? */
1467 		if (bytes)
1468 			break;
1469 	}
1470 
1471 	bio_set_flag(bio, BIO_USER_MAPPED);
1472 
1473 	/*
1474 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1475 	 * it would normally disappear when its bi_end_io is run.
1476 	 * however, we need it for the unmap, so grab an extra
1477 	 * reference to it
1478 	 */
1479 	bio_get(bio);
1480 	return bio;
1481 
1482  out_unmap:
1483 	bio_release_pages(bio, false);
1484 	bio_put(bio);
1485 	return ERR_PTR(ret);
1486 }
1487 
1488 /**
1489  *	bio_unmap_user	-	unmap a bio
1490  *	@bio:		the bio being unmapped
1491  *
1492  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1493  *	process context.
1494  *
1495  *	bio_unmap_user() may sleep.
1496  */
1497 void bio_unmap_user(struct bio *bio)
1498 {
1499 	bio_release_pages(bio, bio_data_dir(bio) == READ);
1500 	bio_put(bio);
1501 	bio_put(bio);
1502 }
1503 
1504 static void bio_invalidate_vmalloc_pages(struct bio *bio)
1505 {
1506 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
1507 	if (bio->bi_private && !op_is_write(bio_op(bio))) {
1508 		unsigned long i, len = 0;
1509 
1510 		for (i = 0; i < bio->bi_vcnt; i++)
1511 			len += bio->bi_io_vec[i].bv_len;
1512 		invalidate_kernel_vmap_range(bio->bi_private, len);
1513 	}
1514 #endif
1515 }
1516 
1517 static void bio_map_kern_endio(struct bio *bio)
1518 {
1519 	bio_invalidate_vmalloc_pages(bio);
1520 	bio_put(bio);
1521 }
1522 
1523 /**
1524  *	bio_map_kern	-	map kernel address into bio
1525  *	@q: the struct request_queue for the bio
1526  *	@data: pointer to buffer to map
1527  *	@len: length in bytes
1528  *	@gfp_mask: allocation flags for bio allocation
1529  *
1530  *	Map the kernel address into a bio suitable for io to a block
1531  *	device. Returns an error pointer in case of error.
1532  */
1533 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1534 			 gfp_t gfp_mask)
1535 {
1536 	unsigned long kaddr = (unsigned long)data;
1537 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1538 	unsigned long start = kaddr >> PAGE_SHIFT;
1539 	const int nr_pages = end - start;
1540 	bool is_vmalloc = is_vmalloc_addr(data);
1541 	struct page *page;
1542 	int offset, i;
1543 	struct bio *bio;
1544 
1545 	bio = bio_kmalloc(gfp_mask, nr_pages);
1546 	if (!bio)
1547 		return ERR_PTR(-ENOMEM);
1548 
1549 	if (is_vmalloc) {
1550 		flush_kernel_vmap_range(data, len);
1551 		bio->bi_private = data;
1552 	}
1553 
1554 	offset = offset_in_page(kaddr);
1555 	for (i = 0; i < nr_pages; i++) {
1556 		unsigned int bytes = PAGE_SIZE - offset;
1557 
1558 		if (len <= 0)
1559 			break;
1560 
1561 		if (bytes > len)
1562 			bytes = len;
1563 
1564 		if (!is_vmalloc)
1565 			page = virt_to_page(data);
1566 		else
1567 			page = vmalloc_to_page(data);
1568 		if (bio_add_pc_page(q, bio, page, bytes,
1569 				    offset) < bytes) {
1570 			/* we don't support partial mappings */
1571 			bio_put(bio);
1572 			return ERR_PTR(-EINVAL);
1573 		}
1574 
1575 		data += bytes;
1576 		len -= bytes;
1577 		offset = 0;
1578 	}
1579 
1580 	bio->bi_end_io = bio_map_kern_endio;
1581 	return bio;
1582 }
1583 
1584 static void bio_copy_kern_endio(struct bio *bio)
1585 {
1586 	bio_free_pages(bio);
1587 	bio_put(bio);
1588 }
1589 
1590 static void bio_copy_kern_endio_read(struct bio *bio)
1591 {
1592 	char *p = bio->bi_private;
1593 	struct bio_vec *bvec;
1594 	struct bvec_iter_all iter_all;
1595 
1596 	bio_for_each_segment_all(bvec, bio, iter_all) {
1597 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1598 		p += bvec->bv_len;
1599 	}
1600 
1601 	bio_copy_kern_endio(bio);
1602 }
1603 
1604 /**
1605  *	bio_copy_kern	-	copy kernel address into bio
1606  *	@q: the struct request_queue for the bio
1607  *	@data: pointer to buffer to copy
1608  *	@len: length in bytes
1609  *	@gfp_mask: allocation flags for bio and page allocation
1610  *	@reading: data direction is READ
1611  *
1612  *	copy the kernel address into a bio suitable for io to a block
1613  *	device. Returns an error pointer in case of error.
1614  */
1615 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1616 			  gfp_t gfp_mask, int reading)
1617 {
1618 	unsigned long kaddr = (unsigned long)data;
1619 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1620 	unsigned long start = kaddr >> PAGE_SHIFT;
1621 	struct bio *bio;
1622 	void *p = data;
1623 	int nr_pages = 0;
1624 
1625 	/*
1626 	 * Overflow, abort
1627 	 */
1628 	if (end < start)
1629 		return ERR_PTR(-EINVAL);
1630 
1631 	nr_pages = end - start;
1632 	bio = bio_kmalloc(gfp_mask, nr_pages);
1633 	if (!bio)
1634 		return ERR_PTR(-ENOMEM);
1635 
1636 	while (len) {
1637 		struct page *page;
1638 		unsigned int bytes = PAGE_SIZE;
1639 
1640 		if (bytes > len)
1641 			bytes = len;
1642 
1643 		page = alloc_page(q->bounce_gfp | gfp_mask);
1644 		if (!page)
1645 			goto cleanup;
1646 
1647 		if (!reading)
1648 			memcpy(page_address(page), p, bytes);
1649 
1650 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1651 			break;
1652 
1653 		len -= bytes;
1654 		p += bytes;
1655 	}
1656 
1657 	if (reading) {
1658 		bio->bi_end_io = bio_copy_kern_endio_read;
1659 		bio->bi_private = data;
1660 	} else {
1661 		bio->bi_end_io = bio_copy_kern_endio;
1662 	}
1663 
1664 	return bio;
1665 
1666 cleanup:
1667 	bio_free_pages(bio);
1668 	bio_put(bio);
1669 	return ERR_PTR(-ENOMEM);
1670 }
1671 
1672 /*
1673  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1674  * for performing direct-IO in BIOs.
1675  *
1676  * The problem is that we cannot run set_page_dirty() from interrupt context
1677  * because the required locks are not interrupt-safe.  So what we can do is to
1678  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1679  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1680  * in process context.
1681  *
1682  * We special-case compound pages here: normally this means reads into hugetlb
1683  * pages.  The logic in here doesn't really work right for compound pages
1684  * because the VM does not uniformly chase down the head page in all cases.
1685  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1686  * handle them at all.  So we skip compound pages here at an early stage.
1687  *
1688  * Note that this code is very hard to test under normal circumstances because
1689  * direct-io pins the pages with get_user_pages().  This makes
1690  * is_page_cache_freeable return false, and the VM will not clean the pages.
1691  * But other code (eg, flusher threads) could clean the pages if they are mapped
1692  * pagecache.
1693  *
1694  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1695  * deferred bio dirtying paths.
1696  */
1697 
1698 /*
1699  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1700  */
1701 void bio_set_pages_dirty(struct bio *bio)
1702 {
1703 	struct bio_vec *bvec;
1704 	struct bvec_iter_all iter_all;
1705 
1706 	bio_for_each_segment_all(bvec, bio, iter_all) {
1707 		if (!PageCompound(bvec->bv_page))
1708 			set_page_dirty_lock(bvec->bv_page);
1709 	}
1710 }
1711 
1712 /*
1713  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1714  * If they are, then fine.  If, however, some pages are clean then they must
1715  * have been written out during the direct-IO read.  So we take another ref on
1716  * the BIO and re-dirty the pages in process context.
1717  *
1718  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1719  * here on.  It will run one put_page() against each page and will run one
1720  * bio_put() against the BIO.
1721  */
1722 
1723 static void bio_dirty_fn(struct work_struct *work);
1724 
1725 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1726 static DEFINE_SPINLOCK(bio_dirty_lock);
1727 static struct bio *bio_dirty_list;
1728 
1729 /*
1730  * This runs in process context
1731  */
1732 static void bio_dirty_fn(struct work_struct *work)
1733 {
1734 	struct bio *bio, *next;
1735 
1736 	spin_lock_irq(&bio_dirty_lock);
1737 	next = bio_dirty_list;
1738 	bio_dirty_list = NULL;
1739 	spin_unlock_irq(&bio_dirty_lock);
1740 
1741 	while ((bio = next) != NULL) {
1742 		next = bio->bi_private;
1743 
1744 		bio_release_pages(bio, true);
1745 		bio_put(bio);
1746 	}
1747 }
1748 
1749 void bio_check_pages_dirty(struct bio *bio)
1750 {
1751 	struct bio_vec *bvec;
1752 	unsigned long flags;
1753 	struct bvec_iter_all iter_all;
1754 
1755 	bio_for_each_segment_all(bvec, bio, iter_all) {
1756 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1757 			goto defer;
1758 	}
1759 
1760 	bio_release_pages(bio, false);
1761 	bio_put(bio);
1762 	return;
1763 defer:
1764 	spin_lock_irqsave(&bio_dirty_lock, flags);
1765 	bio->bi_private = bio_dirty_list;
1766 	bio_dirty_list = bio;
1767 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1768 	schedule_work(&bio_dirty_work);
1769 }
1770 
1771 void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
1772 {
1773 	unsigned long stamp;
1774 again:
1775 	stamp = READ_ONCE(part->stamp);
1776 	if (unlikely(stamp != now)) {
1777 		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1778 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1779 		}
1780 	}
1781 	if (part->partno) {
1782 		part = &part_to_disk(part)->part0;
1783 		goto again;
1784 	}
1785 }
1786 
1787 void generic_start_io_acct(struct request_queue *q, int op,
1788 			   unsigned long sectors, struct hd_struct *part)
1789 {
1790 	const int sgrp = op_stat_group(op);
1791 
1792 	part_stat_lock();
1793 
1794 	update_io_ticks(part, jiffies, false);
1795 	part_stat_inc(part, ios[sgrp]);
1796 	part_stat_add(part, sectors[sgrp], sectors);
1797 	part_inc_in_flight(q, part, op_is_write(op));
1798 
1799 	part_stat_unlock();
1800 }
1801 EXPORT_SYMBOL(generic_start_io_acct);
1802 
1803 void generic_end_io_acct(struct request_queue *q, int req_op,
1804 			 struct hd_struct *part, unsigned long start_time)
1805 {
1806 	unsigned long now = jiffies;
1807 	unsigned long duration = now - start_time;
1808 	const int sgrp = op_stat_group(req_op);
1809 
1810 	part_stat_lock();
1811 
1812 	update_io_ticks(part, now, true);
1813 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1814 	part_stat_add(part, time_in_queue, duration);
1815 	part_dec_in_flight(q, part, op_is_write(req_op));
1816 
1817 	part_stat_unlock();
1818 }
1819 EXPORT_SYMBOL(generic_end_io_acct);
1820 
1821 static inline bool bio_remaining_done(struct bio *bio)
1822 {
1823 	/*
1824 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1825 	 * we always end io on the first invocation.
1826 	 */
1827 	if (!bio_flagged(bio, BIO_CHAIN))
1828 		return true;
1829 
1830 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1831 
1832 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1833 		bio_clear_flag(bio, BIO_CHAIN);
1834 		return true;
1835 	}
1836 
1837 	return false;
1838 }
1839 
1840 /**
1841  * bio_endio - end I/O on a bio
1842  * @bio:	bio
1843  *
1844  * Description:
1845  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1846  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1847  *   bio unless they own it and thus know that it has an end_io function.
1848  *
1849  *   bio_endio() can be called several times on a bio that has been chained
1850  *   using bio_chain().  The ->bi_end_io() function will only be called the
1851  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1852  *   generated if BIO_TRACE_COMPLETION is set.
1853  **/
1854 void bio_endio(struct bio *bio)
1855 {
1856 again:
1857 	if (!bio_remaining_done(bio))
1858 		return;
1859 	if (!bio_integrity_endio(bio))
1860 		return;
1861 
1862 	if (bio->bi_disk)
1863 		rq_qos_done_bio(bio->bi_disk->queue, bio);
1864 
1865 	/*
1866 	 * Need to have a real endio function for chained bios, otherwise
1867 	 * various corner cases will break (like stacking block devices that
1868 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1869 	 * recursion and blowing the stack. Tail call optimization would
1870 	 * handle this, but compiling with frame pointers also disables
1871 	 * gcc's sibling call optimization.
1872 	 */
1873 	if (bio->bi_end_io == bio_chain_endio) {
1874 		bio = __bio_chain_endio(bio);
1875 		goto again;
1876 	}
1877 
1878 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1879 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1880 					 blk_status_to_errno(bio->bi_status));
1881 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1882 	}
1883 
1884 	blk_throtl_bio_endio(bio);
1885 	/* release cgroup info */
1886 	bio_uninit(bio);
1887 	if (bio->bi_end_io)
1888 		bio->bi_end_io(bio);
1889 }
1890 EXPORT_SYMBOL(bio_endio);
1891 
1892 /**
1893  * bio_split - split a bio
1894  * @bio:	bio to split
1895  * @sectors:	number of sectors to split from the front of @bio
1896  * @gfp:	gfp mask
1897  * @bs:		bio set to allocate from
1898  *
1899  * Allocates and returns a new bio which represents @sectors from the start of
1900  * @bio, and updates @bio to represent the remaining sectors.
1901  *
1902  * Unless this is a discard request the newly allocated bio will point
1903  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1904  * neither @bio nor @bs are freed before the split bio.
1905  */
1906 struct bio *bio_split(struct bio *bio, int sectors,
1907 		      gfp_t gfp, struct bio_set *bs)
1908 {
1909 	struct bio *split;
1910 
1911 	BUG_ON(sectors <= 0);
1912 	BUG_ON(sectors >= bio_sectors(bio));
1913 
1914 	split = bio_clone_fast(bio, gfp, bs);
1915 	if (!split)
1916 		return NULL;
1917 
1918 	split->bi_iter.bi_size = sectors << 9;
1919 
1920 	if (bio_integrity(split))
1921 		bio_integrity_trim(split);
1922 
1923 	bio_advance(bio, split->bi_iter.bi_size);
1924 
1925 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1926 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1927 
1928 	return split;
1929 }
1930 EXPORT_SYMBOL(bio_split);
1931 
1932 /**
1933  * bio_trim - trim a bio
1934  * @bio:	bio to trim
1935  * @offset:	number of sectors to trim from the front of @bio
1936  * @size:	size we want to trim @bio to, in sectors
1937  */
1938 void bio_trim(struct bio *bio, int offset, int size)
1939 {
1940 	/* 'bio' is a cloned bio which we need to trim to match
1941 	 * the given offset and size.
1942 	 */
1943 
1944 	size <<= 9;
1945 	if (offset == 0 && size == bio->bi_iter.bi_size)
1946 		return;
1947 
1948 	bio_advance(bio, offset << 9);
1949 	bio->bi_iter.bi_size = size;
1950 
1951 	if (bio_integrity(bio))
1952 		bio_integrity_trim(bio);
1953 
1954 }
1955 EXPORT_SYMBOL_GPL(bio_trim);
1956 
1957 /*
1958  * create memory pools for biovec's in a bio_set.
1959  * use the global biovec slabs created for general use.
1960  */
1961 int biovec_init_pool(mempool_t *pool, int pool_entries)
1962 {
1963 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1964 
1965 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1966 }
1967 
1968 /*
1969  * bioset_exit - exit a bioset initialized with bioset_init()
1970  *
1971  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1972  * kzalloc()).
1973  */
1974 void bioset_exit(struct bio_set *bs)
1975 {
1976 	if (bs->rescue_workqueue)
1977 		destroy_workqueue(bs->rescue_workqueue);
1978 	bs->rescue_workqueue = NULL;
1979 
1980 	mempool_exit(&bs->bio_pool);
1981 	mempool_exit(&bs->bvec_pool);
1982 
1983 	bioset_integrity_free(bs);
1984 	if (bs->bio_slab)
1985 		bio_put_slab(bs);
1986 	bs->bio_slab = NULL;
1987 }
1988 EXPORT_SYMBOL(bioset_exit);
1989 
1990 /**
1991  * bioset_init - Initialize a bio_set
1992  * @bs:		pool to initialize
1993  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1994  * @front_pad:	Number of bytes to allocate in front of the returned bio
1995  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1996  *              and %BIOSET_NEED_RESCUER
1997  *
1998  * Description:
1999  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
2000  *    to ask for a number of bytes to be allocated in front of the bio.
2001  *    Front pad allocation is useful for embedding the bio inside
2002  *    another structure, to avoid allocating extra data to go with the bio.
2003  *    Note that the bio must be embedded at the END of that structure always,
2004  *    or things will break badly.
2005  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
2006  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
2007  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
2008  *    dispatch queued requests when the mempool runs out of space.
2009  *
2010  */
2011 int bioset_init(struct bio_set *bs,
2012 		unsigned int pool_size,
2013 		unsigned int front_pad,
2014 		int flags)
2015 {
2016 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
2017 
2018 	bs->front_pad = front_pad;
2019 
2020 	spin_lock_init(&bs->rescue_lock);
2021 	bio_list_init(&bs->rescue_list);
2022 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
2023 
2024 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
2025 	if (!bs->bio_slab)
2026 		return -ENOMEM;
2027 
2028 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
2029 		goto bad;
2030 
2031 	if ((flags & BIOSET_NEED_BVECS) &&
2032 	    biovec_init_pool(&bs->bvec_pool, pool_size))
2033 		goto bad;
2034 
2035 	if (!(flags & BIOSET_NEED_RESCUER))
2036 		return 0;
2037 
2038 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2039 	if (!bs->rescue_workqueue)
2040 		goto bad;
2041 
2042 	return 0;
2043 bad:
2044 	bioset_exit(bs);
2045 	return -ENOMEM;
2046 }
2047 EXPORT_SYMBOL(bioset_init);
2048 
2049 /*
2050  * Initialize and setup a new bio_set, based on the settings from
2051  * another bio_set.
2052  */
2053 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2054 {
2055 	int flags;
2056 
2057 	flags = 0;
2058 	if (src->bvec_pool.min_nr)
2059 		flags |= BIOSET_NEED_BVECS;
2060 	if (src->rescue_workqueue)
2061 		flags |= BIOSET_NEED_RESCUER;
2062 
2063 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2064 }
2065 EXPORT_SYMBOL(bioset_init_from_src);
2066 
2067 #ifdef CONFIG_BLK_CGROUP
2068 
2069 /**
2070  * bio_disassociate_blkg - puts back the blkg reference if associated
2071  * @bio: target bio
2072  *
2073  * Helper to disassociate the blkg from @bio if a blkg is associated.
2074  */
2075 void bio_disassociate_blkg(struct bio *bio)
2076 {
2077 	if (bio->bi_blkg) {
2078 		blkg_put(bio->bi_blkg);
2079 		bio->bi_blkg = NULL;
2080 	}
2081 }
2082 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2083 
2084 /**
2085  * __bio_associate_blkg - associate a bio with the a blkg
2086  * @bio: target bio
2087  * @blkg: the blkg to associate
2088  *
2089  * This tries to associate @bio with the specified @blkg.  Association failure
2090  * is handled by walking up the blkg tree.  Therefore, the blkg associated can
2091  * be anything between @blkg and the root_blkg.  This situation only happens
2092  * when a cgroup is dying and then the remaining bios will spill to the closest
2093  * alive blkg.
2094  *
2095  * A reference will be taken on the @blkg and will be released when @bio is
2096  * freed.
2097  */
2098 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2099 {
2100 	bio_disassociate_blkg(bio);
2101 
2102 	bio->bi_blkg = blkg_tryget_closest(blkg);
2103 }
2104 
2105 /**
2106  * bio_associate_blkg_from_css - associate a bio with a specified css
2107  * @bio: target bio
2108  * @css: target css
2109  *
2110  * Associate @bio with the blkg found by combining the css's blkg and the
2111  * request_queue of the @bio.  This falls back to the queue's root_blkg if
2112  * the association fails with the css.
2113  */
2114 void bio_associate_blkg_from_css(struct bio *bio,
2115 				 struct cgroup_subsys_state *css)
2116 {
2117 	struct request_queue *q = bio->bi_disk->queue;
2118 	struct blkcg_gq *blkg;
2119 
2120 	rcu_read_lock();
2121 
2122 	if (!css || !css->parent)
2123 		blkg = q->root_blkg;
2124 	else
2125 		blkg = blkg_lookup_create(css_to_blkcg(css), q);
2126 
2127 	__bio_associate_blkg(bio, blkg);
2128 
2129 	rcu_read_unlock();
2130 }
2131 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2132 
2133 #ifdef CONFIG_MEMCG
2134 /**
2135  * bio_associate_blkg_from_page - associate a bio with the page's blkg
2136  * @bio: target bio
2137  * @page: the page to lookup the blkcg from
2138  *
2139  * Associate @bio with the blkg from @page's owning memcg and the respective
2140  * request_queue.  If cgroup_e_css returns %NULL, fall back to the queue's
2141  * root_blkg.
2142  */
2143 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2144 {
2145 	struct cgroup_subsys_state *css;
2146 
2147 	if (!page->mem_cgroup)
2148 		return;
2149 
2150 	rcu_read_lock();
2151 
2152 	css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2153 	bio_associate_blkg_from_css(bio, css);
2154 
2155 	rcu_read_unlock();
2156 }
2157 #endif /* CONFIG_MEMCG */
2158 
2159 /**
2160  * bio_associate_blkg - associate a bio with a blkg
2161  * @bio: target bio
2162  *
2163  * Associate @bio with the blkg found from the bio's css and request_queue.
2164  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2165  * already associated, the css is reused and association redone as the
2166  * request_queue may have changed.
2167  */
2168 void bio_associate_blkg(struct bio *bio)
2169 {
2170 	struct cgroup_subsys_state *css;
2171 
2172 	rcu_read_lock();
2173 
2174 	if (bio->bi_blkg)
2175 		css = &bio_blkcg(bio)->css;
2176 	else
2177 		css = blkcg_css();
2178 
2179 	bio_associate_blkg_from_css(bio, css);
2180 
2181 	rcu_read_unlock();
2182 }
2183 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2184 
2185 /**
2186  * bio_clone_blkg_association - clone blkg association from src to dst bio
2187  * @dst: destination bio
2188  * @src: source bio
2189  */
2190 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2191 {
2192 	rcu_read_lock();
2193 
2194 	if (src->bi_blkg)
2195 		__bio_associate_blkg(dst, src->bi_blkg);
2196 
2197 	rcu_read_unlock();
2198 }
2199 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2200 #endif /* CONFIG_BLK_CGROUP */
2201 
2202 static void __init biovec_init_slabs(void)
2203 {
2204 	int i;
2205 
2206 	for (i = 0; i < BVEC_POOL_NR; i++) {
2207 		int size;
2208 		struct biovec_slab *bvs = bvec_slabs + i;
2209 
2210 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2211 			bvs->slab = NULL;
2212 			continue;
2213 		}
2214 
2215 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2216 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2217                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2218 	}
2219 }
2220 
2221 static int __init init_bio(void)
2222 {
2223 	bio_slab_max = 2;
2224 	bio_slab_nr = 0;
2225 	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2226 			    GFP_KERNEL);
2227 
2228 	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2229 
2230 	if (!bio_slabs)
2231 		panic("bio: can't allocate bios\n");
2232 
2233 	bio_integrity_init();
2234 	biovec_init_slabs();
2235 
2236 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2237 		panic("bio: can't allocate bios\n");
2238 
2239 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2240 		panic("bio: can't create integrity pool\n");
2241 
2242 	return 0;
2243 }
2244 subsys_initcall(init_bio);
2245