1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 4 */ 5 #include <linux/mm.h> 6 #include <linux/swap.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/uio.h> 10 #include <linux/iocontext.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/mempool.h> 16 #include <linux/workqueue.h> 17 #include <linux/cgroup.h> 18 #include <linux/blk-cgroup.h> 19 #include <linux/highmem.h> 20 21 #include <trace/events/block.h> 22 #include "blk.h" 23 #include "blk-rq-qos.h" 24 25 /* 26 * Test patch to inline a certain number of bi_io_vec's inside the bio 27 * itself, to shrink a bio data allocation from two mempool calls to one 28 */ 29 #define BIO_INLINE_VECS 4 30 31 /* 32 * if you change this list, also change bvec_alloc or things will 33 * break badly! cannot be bigger than what you can fit into an 34 * unsigned short 35 */ 36 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n } 37 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { 38 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max), 39 }; 40 #undef BV 41 42 /* 43 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 44 * IO code that does not need private memory pools. 45 */ 46 struct bio_set fs_bio_set; 47 EXPORT_SYMBOL(fs_bio_set); 48 49 /* 50 * Our slab pool management 51 */ 52 struct bio_slab { 53 struct kmem_cache *slab; 54 unsigned int slab_ref; 55 unsigned int slab_size; 56 char name[8]; 57 }; 58 static DEFINE_MUTEX(bio_slab_lock); 59 static struct bio_slab *bio_slabs; 60 static unsigned int bio_slab_nr, bio_slab_max; 61 62 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 63 { 64 unsigned int sz = sizeof(struct bio) + extra_size; 65 struct kmem_cache *slab = NULL; 66 struct bio_slab *bslab, *new_bio_slabs; 67 unsigned int new_bio_slab_max; 68 unsigned int i, entry = -1; 69 70 mutex_lock(&bio_slab_lock); 71 72 i = 0; 73 while (i < bio_slab_nr) { 74 bslab = &bio_slabs[i]; 75 76 if (!bslab->slab && entry == -1) 77 entry = i; 78 else if (bslab->slab_size == sz) { 79 slab = bslab->slab; 80 bslab->slab_ref++; 81 break; 82 } 83 i++; 84 } 85 86 if (slab) 87 goto out_unlock; 88 89 if (bio_slab_nr == bio_slab_max && entry == -1) { 90 new_bio_slab_max = bio_slab_max << 1; 91 new_bio_slabs = krealloc(bio_slabs, 92 new_bio_slab_max * sizeof(struct bio_slab), 93 GFP_KERNEL); 94 if (!new_bio_slabs) 95 goto out_unlock; 96 bio_slab_max = new_bio_slab_max; 97 bio_slabs = new_bio_slabs; 98 } 99 if (entry == -1) 100 entry = bio_slab_nr++; 101 102 bslab = &bio_slabs[entry]; 103 104 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 105 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, 106 SLAB_HWCACHE_ALIGN, NULL); 107 if (!slab) 108 goto out_unlock; 109 110 bslab->slab = slab; 111 bslab->slab_ref = 1; 112 bslab->slab_size = sz; 113 out_unlock: 114 mutex_unlock(&bio_slab_lock); 115 return slab; 116 } 117 118 static void bio_put_slab(struct bio_set *bs) 119 { 120 struct bio_slab *bslab = NULL; 121 unsigned int i; 122 123 mutex_lock(&bio_slab_lock); 124 125 for (i = 0; i < bio_slab_nr; i++) { 126 if (bs->bio_slab == bio_slabs[i].slab) { 127 bslab = &bio_slabs[i]; 128 break; 129 } 130 } 131 132 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 133 goto out; 134 135 WARN_ON(!bslab->slab_ref); 136 137 if (--bslab->slab_ref) 138 goto out; 139 140 kmem_cache_destroy(bslab->slab); 141 bslab->slab = NULL; 142 143 out: 144 mutex_unlock(&bio_slab_lock); 145 } 146 147 unsigned int bvec_nr_vecs(unsigned short idx) 148 { 149 return bvec_slabs[--idx].nr_vecs; 150 } 151 152 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 153 { 154 if (!idx) 155 return; 156 idx--; 157 158 BIO_BUG_ON(idx >= BVEC_POOL_NR); 159 160 if (idx == BVEC_POOL_MAX) { 161 mempool_free(bv, pool); 162 } else { 163 struct biovec_slab *bvs = bvec_slabs + idx; 164 165 kmem_cache_free(bvs->slab, bv); 166 } 167 } 168 169 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 170 mempool_t *pool) 171 { 172 struct bio_vec *bvl; 173 174 /* 175 * see comment near bvec_array define! 176 */ 177 switch (nr) { 178 case 1: 179 *idx = 0; 180 break; 181 case 2 ... 4: 182 *idx = 1; 183 break; 184 case 5 ... 16: 185 *idx = 2; 186 break; 187 case 17 ... 64: 188 *idx = 3; 189 break; 190 case 65 ... 128: 191 *idx = 4; 192 break; 193 case 129 ... BIO_MAX_PAGES: 194 *idx = 5; 195 break; 196 default: 197 return NULL; 198 } 199 200 /* 201 * idx now points to the pool we want to allocate from. only the 202 * 1-vec entry pool is mempool backed. 203 */ 204 if (*idx == BVEC_POOL_MAX) { 205 fallback: 206 bvl = mempool_alloc(pool, gfp_mask); 207 } else { 208 struct biovec_slab *bvs = bvec_slabs + *idx; 209 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); 210 211 /* 212 * Make this allocation restricted and don't dump info on 213 * allocation failures, since we'll fallback to the mempool 214 * in case of failure. 215 */ 216 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 217 218 /* 219 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM 220 * is set, retry with the 1-entry mempool 221 */ 222 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 223 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { 224 *idx = BVEC_POOL_MAX; 225 goto fallback; 226 } 227 } 228 229 (*idx)++; 230 return bvl; 231 } 232 233 void bio_uninit(struct bio *bio) 234 { 235 bio_disassociate_blkg(bio); 236 237 if (bio_integrity(bio)) 238 bio_integrity_free(bio); 239 } 240 EXPORT_SYMBOL(bio_uninit); 241 242 static void bio_free(struct bio *bio) 243 { 244 struct bio_set *bs = bio->bi_pool; 245 void *p; 246 247 bio_uninit(bio); 248 249 if (bs) { 250 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); 251 252 /* 253 * If we have front padding, adjust the bio pointer before freeing 254 */ 255 p = bio; 256 p -= bs->front_pad; 257 258 mempool_free(p, &bs->bio_pool); 259 } else { 260 /* Bio was allocated by bio_kmalloc() */ 261 kfree(bio); 262 } 263 } 264 265 /* 266 * Users of this function have their own bio allocation. Subsequently, 267 * they must remember to pair any call to bio_init() with bio_uninit() 268 * when IO has completed, or when the bio is released. 269 */ 270 void bio_init(struct bio *bio, struct bio_vec *table, 271 unsigned short max_vecs) 272 { 273 memset(bio, 0, sizeof(*bio)); 274 atomic_set(&bio->__bi_remaining, 1); 275 atomic_set(&bio->__bi_cnt, 1); 276 277 bio->bi_io_vec = table; 278 bio->bi_max_vecs = max_vecs; 279 } 280 EXPORT_SYMBOL(bio_init); 281 282 /** 283 * bio_reset - reinitialize a bio 284 * @bio: bio to reset 285 * 286 * Description: 287 * After calling bio_reset(), @bio will be in the same state as a freshly 288 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 289 * preserved are the ones that are initialized by bio_alloc_bioset(). See 290 * comment in struct bio. 291 */ 292 void bio_reset(struct bio *bio) 293 { 294 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 295 296 bio_uninit(bio); 297 298 memset(bio, 0, BIO_RESET_BYTES); 299 bio->bi_flags = flags; 300 atomic_set(&bio->__bi_remaining, 1); 301 } 302 EXPORT_SYMBOL(bio_reset); 303 304 static struct bio *__bio_chain_endio(struct bio *bio) 305 { 306 struct bio *parent = bio->bi_private; 307 308 if (!parent->bi_status) 309 parent->bi_status = bio->bi_status; 310 bio_put(bio); 311 return parent; 312 } 313 314 static void bio_chain_endio(struct bio *bio) 315 { 316 bio_endio(__bio_chain_endio(bio)); 317 } 318 319 /** 320 * bio_chain - chain bio completions 321 * @bio: the target bio 322 * @parent: the @bio's parent bio 323 * 324 * The caller won't have a bi_end_io called when @bio completes - instead, 325 * @parent's bi_end_io won't be called until both @parent and @bio have 326 * completed; the chained bio will also be freed when it completes. 327 * 328 * The caller must not set bi_private or bi_end_io in @bio. 329 */ 330 void bio_chain(struct bio *bio, struct bio *parent) 331 { 332 BUG_ON(bio->bi_private || bio->bi_end_io); 333 334 bio->bi_private = parent; 335 bio->bi_end_io = bio_chain_endio; 336 bio_inc_remaining(parent); 337 } 338 EXPORT_SYMBOL(bio_chain); 339 340 static void bio_alloc_rescue(struct work_struct *work) 341 { 342 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 343 struct bio *bio; 344 345 while (1) { 346 spin_lock(&bs->rescue_lock); 347 bio = bio_list_pop(&bs->rescue_list); 348 spin_unlock(&bs->rescue_lock); 349 350 if (!bio) 351 break; 352 353 generic_make_request(bio); 354 } 355 } 356 357 static void punt_bios_to_rescuer(struct bio_set *bs) 358 { 359 struct bio_list punt, nopunt; 360 struct bio *bio; 361 362 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 363 return; 364 /* 365 * In order to guarantee forward progress we must punt only bios that 366 * were allocated from this bio_set; otherwise, if there was a bio on 367 * there for a stacking driver higher up in the stack, processing it 368 * could require allocating bios from this bio_set, and doing that from 369 * our own rescuer would be bad. 370 * 371 * Since bio lists are singly linked, pop them all instead of trying to 372 * remove from the middle of the list: 373 */ 374 375 bio_list_init(&punt); 376 bio_list_init(&nopunt); 377 378 while ((bio = bio_list_pop(¤t->bio_list[0]))) 379 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 380 current->bio_list[0] = nopunt; 381 382 bio_list_init(&nopunt); 383 while ((bio = bio_list_pop(¤t->bio_list[1]))) 384 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 385 current->bio_list[1] = nopunt; 386 387 spin_lock(&bs->rescue_lock); 388 bio_list_merge(&bs->rescue_list, &punt); 389 spin_unlock(&bs->rescue_lock); 390 391 queue_work(bs->rescue_workqueue, &bs->rescue_work); 392 } 393 394 /** 395 * bio_alloc_bioset - allocate a bio for I/O 396 * @gfp_mask: the GFP_* mask given to the slab allocator 397 * @nr_iovecs: number of iovecs to pre-allocate 398 * @bs: the bio_set to allocate from. 399 * 400 * Description: 401 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 402 * backed by the @bs's mempool. 403 * 404 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will 405 * always be able to allocate a bio. This is due to the mempool guarantees. 406 * To make this work, callers must never allocate more than 1 bio at a time 407 * from this pool. Callers that need to allocate more than 1 bio must always 408 * submit the previously allocated bio for IO before attempting to allocate 409 * a new one. Failure to do so can cause deadlocks under memory pressure. 410 * 411 * Note that when running under generic_make_request() (i.e. any block 412 * driver), bios are not submitted until after you return - see the code in 413 * generic_make_request() that converts recursion into iteration, to prevent 414 * stack overflows. 415 * 416 * This would normally mean allocating multiple bios under 417 * generic_make_request() would be susceptible to deadlocks, but we have 418 * deadlock avoidance code that resubmits any blocked bios from a rescuer 419 * thread. 420 * 421 * However, we do not guarantee forward progress for allocations from other 422 * mempools. Doing multiple allocations from the same mempool under 423 * generic_make_request() should be avoided - instead, use bio_set's front_pad 424 * for per bio allocations. 425 * 426 * RETURNS: 427 * Pointer to new bio on success, NULL on failure. 428 */ 429 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs, 430 struct bio_set *bs) 431 { 432 gfp_t saved_gfp = gfp_mask; 433 unsigned front_pad; 434 unsigned inline_vecs; 435 struct bio_vec *bvl = NULL; 436 struct bio *bio; 437 void *p; 438 439 if (!bs) { 440 if (nr_iovecs > UIO_MAXIOV) 441 return NULL; 442 443 p = kmalloc(sizeof(struct bio) + 444 nr_iovecs * sizeof(struct bio_vec), 445 gfp_mask); 446 front_pad = 0; 447 inline_vecs = nr_iovecs; 448 } else { 449 /* should not use nobvec bioset for nr_iovecs > 0 */ 450 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && 451 nr_iovecs > 0)) 452 return NULL; 453 /* 454 * generic_make_request() converts recursion to iteration; this 455 * means if we're running beneath it, any bios we allocate and 456 * submit will not be submitted (and thus freed) until after we 457 * return. 458 * 459 * This exposes us to a potential deadlock if we allocate 460 * multiple bios from the same bio_set() while running 461 * underneath generic_make_request(). If we were to allocate 462 * multiple bios (say a stacking block driver that was splitting 463 * bios), we would deadlock if we exhausted the mempool's 464 * reserve. 465 * 466 * We solve this, and guarantee forward progress, with a rescuer 467 * workqueue per bio_set. If we go to allocate and there are 468 * bios on current->bio_list, we first try the allocation 469 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those 470 * bios we would be blocking to the rescuer workqueue before 471 * we retry with the original gfp_flags. 472 */ 473 474 if (current->bio_list && 475 (!bio_list_empty(¤t->bio_list[0]) || 476 !bio_list_empty(¤t->bio_list[1])) && 477 bs->rescue_workqueue) 478 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 479 480 p = mempool_alloc(&bs->bio_pool, gfp_mask); 481 if (!p && gfp_mask != saved_gfp) { 482 punt_bios_to_rescuer(bs); 483 gfp_mask = saved_gfp; 484 p = mempool_alloc(&bs->bio_pool, gfp_mask); 485 } 486 487 front_pad = bs->front_pad; 488 inline_vecs = BIO_INLINE_VECS; 489 } 490 491 if (unlikely(!p)) 492 return NULL; 493 494 bio = p + front_pad; 495 bio_init(bio, NULL, 0); 496 497 if (nr_iovecs > inline_vecs) { 498 unsigned long idx = 0; 499 500 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); 501 if (!bvl && gfp_mask != saved_gfp) { 502 punt_bios_to_rescuer(bs); 503 gfp_mask = saved_gfp; 504 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); 505 } 506 507 if (unlikely(!bvl)) 508 goto err_free; 509 510 bio->bi_flags |= idx << BVEC_POOL_OFFSET; 511 } else if (nr_iovecs) { 512 bvl = bio->bi_inline_vecs; 513 } 514 515 bio->bi_pool = bs; 516 bio->bi_max_vecs = nr_iovecs; 517 bio->bi_io_vec = bvl; 518 return bio; 519 520 err_free: 521 mempool_free(p, &bs->bio_pool); 522 return NULL; 523 } 524 EXPORT_SYMBOL(bio_alloc_bioset); 525 526 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start) 527 { 528 unsigned long flags; 529 struct bio_vec bv; 530 struct bvec_iter iter; 531 532 __bio_for_each_segment(bv, bio, iter, start) { 533 char *data = bvec_kmap_irq(&bv, &flags); 534 memset(data, 0, bv.bv_len); 535 flush_dcache_page(bv.bv_page); 536 bvec_kunmap_irq(data, &flags); 537 } 538 } 539 EXPORT_SYMBOL(zero_fill_bio_iter); 540 541 /** 542 * bio_truncate - truncate the bio to small size of @new_size 543 * @bio: the bio to be truncated 544 * @new_size: new size for truncating the bio 545 * 546 * Description: 547 * Truncate the bio to new size of @new_size. If bio_op(bio) is 548 * REQ_OP_READ, zero the truncated part. This function should only 549 * be used for handling corner cases, such as bio eod. 550 */ 551 void bio_truncate(struct bio *bio, unsigned new_size) 552 { 553 struct bio_vec bv; 554 struct bvec_iter iter; 555 unsigned int done = 0; 556 bool truncated = false; 557 558 if (new_size >= bio->bi_iter.bi_size) 559 return; 560 561 if (bio_op(bio) != REQ_OP_READ) 562 goto exit; 563 564 bio_for_each_segment(bv, bio, iter) { 565 if (done + bv.bv_len > new_size) { 566 unsigned offset; 567 568 if (!truncated) 569 offset = new_size - done; 570 else 571 offset = 0; 572 zero_user(bv.bv_page, offset, bv.bv_len - offset); 573 truncated = true; 574 } 575 done += bv.bv_len; 576 } 577 578 exit: 579 /* 580 * Don't touch bvec table here and make it really immutable, since 581 * fs bio user has to retrieve all pages via bio_for_each_segment_all 582 * in its .end_bio() callback. 583 * 584 * It is enough to truncate bio by updating .bi_size since we can make 585 * correct bvec with the updated .bi_size for drivers. 586 */ 587 bio->bi_iter.bi_size = new_size; 588 } 589 590 /** 591 * bio_put - release a reference to a bio 592 * @bio: bio to release reference to 593 * 594 * Description: 595 * Put a reference to a &struct bio, either one you have gotten with 596 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 597 **/ 598 void bio_put(struct bio *bio) 599 { 600 if (!bio_flagged(bio, BIO_REFFED)) 601 bio_free(bio); 602 else { 603 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 604 605 /* 606 * last put frees it 607 */ 608 if (atomic_dec_and_test(&bio->__bi_cnt)) 609 bio_free(bio); 610 } 611 } 612 EXPORT_SYMBOL(bio_put); 613 614 /** 615 * __bio_clone_fast - clone a bio that shares the original bio's biovec 616 * @bio: destination bio 617 * @bio_src: bio to clone 618 * 619 * Clone a &bio. Caller will own the returned bio, but not 620 * the actual data it points to. Reference count of returned 621 * bio will be one. 622 * 623 * Caller must ensure that @bio_src is not freed before @bio. 624 */ 625 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 626 { 627 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); 628 629 /* 630 * most users will be overriding ->bi_disk with a new target, 631 * so we don't set nor calculate new physical/hw segment counts here 632 */ 633 bio->bi_disk = bio_src->bi_disk; 634 bio->bi_partno = bio_src->bi_partno; 635 bio_set_flag(bio, BIO_CLONED); 636 if (bio_flagged(bio_src, BIO_THROTTLED)) 637 bio_set_flag(bio, BIO_THROTTLED); 638 bio->bi_opf = bio_src->bi_opf; 639 bio->bi_ioprio = bio_src->bi_ioprio; 640 bio->bi_write_hint = bio_src->bi_write_hint; 641 bio->bi_iter = bio_src->bi_iter; 642 bio->bi_io_vec = bio_src->bi_io_vec; 643 644 bio_clone_blkg_association(bio, bio_src); 645 blkcg_bio_issue_init(bio); 646 } 647 EXPORT_SYMBOL(__bio_clone_fast); 648 649 /** 650 * bio_clone_fast - clone a bio that shares the original bio's biovec 651 * @bio: bio to clone 652 * @gfp_mask: allocation priority 653 * @bs: bio_set to allocate from 654 * 655 * Like __bio_clone_fast, only also allocates the returned bio 656 */ 657 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 658 { 659 struct bio *b; 660 661 b = bio_alloc_bioset(gfp_mask, 0, bs); 662 if (!b) 663 return NULL; 664 665 __bio_clone_fast(b, bio); 666 667 if (bio_integrity(bio)) { 668 int ret; 669 670 ret = bio_integrity_clone(b, bio, gfp_mask); 671 672 if (ret < 0) { 673 bio_put(b); 674 return NULL; 675 } 676 } 677 678 return b; 679 } 680 EXPORT_SYMBOL(bio_clone_fast); 681 682 static inline bool page_is_mergeable(const struct bio_vec *bv, 683 struct page *page, unsigned int len, unsigned int off, 684 bool *same_page) 685 { 686 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + 687 bv->bv_offset + bv->bv_len - 1; 688 phys_addr_t page_addr = page_to_phys(page); 689 690 if (vec_end_addr + 1 != page_addr + off) 691 return false; 692 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 693 return false; 694 695 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); 696 if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page) 697 return false; 698 return true; 699 } 700 701 static bool bio_try_merge_pc_page(struct request_queue *q, struct bio *bio, 702 struct page *page, unsigned len, unsigned offset, 703 bool *same_page) 704 { 705 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 706 unsigned long mask = queue_segment_boundary(q); 707 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; 708 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 709 710 if ((addr1 | mask) != (addr2 | mask)) 711 return false; 712 if (bv->bv_len + len > queue_max_segment_size(q)) 713 return false; 714 return __bio_try_merge_page(bio, page, len, offset, same_page); 715 } 716 717 /** 718 * __bio_add_pc_page - attempt to add page to passthrough bio 719 * @q: the target queue 720 * @bio: destination bio 721 * @page: page to add 722 * @len: vec entry length 723 * @offset: vec entry offset 724 * @same_page: return if the merge happen inside the same page 725 * 726 * Attempt to add a page to the bio_vec maplist. This can fail for a 727 * number of reasons, such as the bio being full or target block device 728 * limitations. The target block device must allow bio's up to PAGE_SIZE, 729 * so it is always possible to add a single page to an empty bio. 730 * 731 * This should only be used by passthrough bios. 732 */ 733 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio, 734 struct page *page, unsigned int len, unsigned int offset, 735 bool *same_page) 736 { 737 struct bio_vec *bvec; 738 739 /* 740 * cloned bio must not modify vec list 741 */ 742 if (unlikely(bio_flagged(bio, BIO_CLONED))) 743 return 0; 744 745 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q)) 746 return 0; 747 748 if (bio->bi_vcnt > 0) { 749 if (bio_try_merge_pc_page(q, bio, page, len, offset, same_page)) 750 return len; 751 752 /* 753 * If the queue doesn't support SG gaps and adding this segment 754 * would create a gap, disallow it. 755 */ 756 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 757 if (bvec_gap_to_prev(q, bvec, offset)) 758 return 0; 759 } 760 761 if (bio_full(bio, len)) 762 return 0; 763 764 if (bio->bi_vcnt >= queue_max_segments(q)) 765 return 0; 766 767 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 768 bvec->bv_page = page; 769 bvec->bv_len = len; 770 bvec->bv_offset = offset; 771 bio->bi_vcnt++; 772 bio->bi_iter.bi_size += len; 773 return len; 774 } 775 776 int bio_add_pc_page(struct request_queue *q, struct bio *bio, 777 struct page *page, unsigned int len, unsigned int offset) 778 { 779 bool same_page = false; 780 return __bio_add_pc_page(q, bio, page, len, offset, &same_page); 781 } 782 EXPORT_SYMBOL(bio_add_pc_page); 783 784 /** 785 * __bio_try_merge_page - try appending data to an existing bvec. 786 * @bio: destination bio 787 * @page: start page to add 788 * @len: length of the data to add 789 * @off: offset of the data relative to @page 790 * @same_page: return if the segment has been merged inside the same page 791 * 792 * Try to add the data at @page + @off to the last bvec of @bio. This is a 793 * a useful optimisation for file systems with a block size smaller than the 794 * page size. 795 * 796 * Warn if (@len, @off) crosses pages in case that @same_page is true. 797 * 798 * Return %true on success or %false on failure. 799 */ 800 bool __bio_try_merge_page(struct bio *bio, struct page *page, 801 unsigned int len, unsigned int off, bool *same_page) 802 { 803 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 804 return false; 805 806 if (bio->bi_vcnt > 0) { 807 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 808 809 if (page_is_mergeable(bv, page, len, off, same_page)) { 810 if (bio->bi_iter.bi_size > UINT_MAX - len) 811 return false; 812 bv->bv_len += len; 813 bio->bi_iter.bi_size += len; 814 return true; 815 } 816 } 817 return false; 818 } 819 EXPORT_SYMBOL_GPL(__bio_try_merge_page); 820 821 /** 822 * __bio_add_page - add page(s) to a bio in a new segment 823 * @bio: destination bio 824 * @page: start page to add 825 * @len: length of the data to add, may cross pages 826 * @off: offset of the data relative to @page, may cross pages 827 * 828 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 829 * that @bio has space for another bvec. 830 */ 831 void __bio_add_page(struct bio *bio, struct page *page, 832 unsigned int len, unsigned int off) 833 { 834 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt]; 835 836 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 837 WARN_ON_ONCE(bio_full(bio, len)); 838 839 bv->bv_page = page; 840 bv->bv_offset = off; 841 bv->bv_len = len; 842 843 bio->bi_iter.bi_size += len; 844 bio->bi_vcnt++; 845 846 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page))) 847 bio_set_flag(bio, BIO_WORKINGSET); 848 } 849 EXPORT_SYMBOL_GPL(__bio_add_page); 850 851 /** 852 * bio_add_page - attempt to add page(s) to bio 853 * @bio: destination bio 854 * @page: start page to add 855 * @len: vec entry length, may cross pages 856 * @offset: vec entry offset relative to @page, may cross pages 857 * 858 * Attempt to add page(s) to the bio_vec maplist. This will only fail 859 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 860 */ 861 int bio_add_page(struct bio *bio, struct page *page, 862 unsigned int len, unsigned int offset) 863 { 864 bool same_page = false; 865 866 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { 867 if (bio_full(bio, len)) 868 return 0; 869 __bio_add_page(bio, page, len, offset); 870 } 871 return len; 872 } 873 EXPORT_SYMBOL(bio_add_page); 874 875 void bio_release_pages(struct bio *bio, bool mark_dirty) 876 { 877 struct bvec_iter_all iter_all; 878 struct bio_vec *bvec; 879 880 if (bio_flagged(bio, BIO_NO_PAGE_REF)) 881 return; 882 883 bio_for_each_segment_all(bvec, bio, iter_all) { 884 if (mark_dirty && !PageCompound(bvec->bv_page)) 885 set_page_dirty_lock(bvec->bv_page); 886 put_page(bvec->bv_page); 887 } 888 } 889 890 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter) 891 { 892 const struct bio_vec *bv = iter->bvec; 893 unsigned int len; 894 size_t size; 895 896 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len)) 897 return -EINVAL; 898 899 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count); 900 size = bio_add_page(bio, bv->bv_page, len, 901 bv->bv_offset + iter->iov_offset); 902 if (unlikely(size != len)) 903 return -EINVAL; 904 iov_iter_advance(iter, size); 905 return 0; 906 } 907 908 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 909 910 /** 911 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 912 * @bio: bio to add pages to 913 * @iter: iov iterator describing the region to be mapped 914 * 915 * Pins pages from *iter and appends them to @bio's bvec array. The 916 * pages will have to be released using put_page() when done. 917 * For multi-segment *iter, this function only adds pages from the 918 * the next non-empty segment of the iov iterator. 919 */ 920 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 921 { 922 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 923 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 924 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 925 struct page **pages = (struct page **)bv; 926 bool same_page = false; 927 ssize_t size, left; 928 unsigned len, i; 929 size_t offset; 930 931 /* 932 * Move page array up in the allocated memory for the bio vecs as far as 933 * possible so that we can start filling biovecs from the beginning 934 * without overwriting the temporary page array. 935 */ 936 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 937 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 938 939 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 940 if (unlikely(size <= 0)) 941 return size ? size : -EFAULT; 942 943 for (left = size, i = 0; left > 0; left -= len, i++) { 944 struct page *page = pages[i]; 945 946 len = min_t(size_t, PAGE_SIZE - offset, left); 947 948 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) { 949 if (same_page) 950 put_page(page); 951 } else { 952 if (WARN_ON_ONCE(bio_full(bio, len))) 953 return -EINVAL; 954 __bio_add_page(bio, page, len, offset); 955 } 956 offset = 0; 957 } 958 959 iov_iter_advance(iter, size); 960 return 0; 961 } 962 963 /** 964 * bio_iov_iter_get_pages - add user or kernel pages to a bio 965 * @bio: bio to add pages to 966 * @iter: iov iterator describing the region to be added 967 * 968 * This takes either an iterator pointing to user memory, or one pointing to 969 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 970 * map them into the kernel. On IO completion, the caller should put those 971 * pages. If we're adding kernel pages, and the caller told us it's safe to 972 * do so, we just have to add the pages to the bio directly. We don't grab an 973 * extra reference to those pages (the user should already have that), and we 974 * don't put the page on IO completion. The caller needs to check if the bio is 975 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be 976 * released. 977 * 978 * The function tries, but does not guarantee, to pin as many pages as 979 * fit into the bio, or are requested in *iter, whatever is smaller. If 980 * MM encounters an error pinning the requested pages, it stops. Error 981 * is returned only if 0 pages could be pinned. 982 */ 983 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 984 { 985 const bool is_bvec = iov_iter_is_bvec(iter); 986 int ret; 987 988 if (WARN_ON_ONCE(bio->bi_vcnt)) 989 return -EINVAL; 990 991 do { 992 if (is_bvec) 993 ret = __bio_iov_bvec_add_pages(bio, iter); 994 else 995 ret = __bio_iov_iter_get_pages(bio, iter); 996 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); 997 998 if (is_bvec) 999 bio_set_flag(bio, BIO_NO_PAGE_REF); 1000 return bio->bi_vcnt ? 0 : ret; 1001 } 1002 1003 static void submit_bio_wait_endio(struct bio *bio) 1004 { 1005 complete(bio->bi_private); 1006 } 1007 1008 /** 1009 * submit_bio_wait - submit a bio, and wait until it completes 1010 * @bio: The &struct bio which describes the I/O 1011 * 1012 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 1013 * bio_endio() on failure. 1014 * 1015 * WARNING: Unlike to how submit_bio() is usually used, this function does not 1016 * result in bio reference to be consumed. The caller must drop the reference 1017 * on his own. 1018 */ 1019 int submit_bio_wait(struct bio *bio) 1020 { 1021 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map); 1022 1023 bio->bi_private = &done; 1024 bio->bi_end_io = submit_bio_wait_endio; 1025 bio->bi_opf |= REQ_SYNC; 1026 submit_bio(bio); 1027 wait_for_completion_io(&done); 1028 1029 return blk_status_to_errno(bio->bi_status); 1030 } 1031 EXPORT_SYMBOL(submit_bio_wait); 1032 1033 /** 1034 * bio_advance - increment/complete a bio by some number of bytes 1035 * @bio: bio to advance 1036 * @bytes: number of bytes to complete 1037 * 1038 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 1039 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 1040 * be updated on the last bvec as well. 1041 * 1042 * @bio will then represent the remaining, uncompleted portion of the io. 1043 */ 1044 void bio_advance(struct bio *bio, unsigned bytes) 1045 { 1046 if (bio_integrity(bio)) 1047 bio_integrity_advance(bio, bytes); 1048 1049 bio_advance_iter(bio, &bio->bi_iter, bytes); 1050 } 1051 EXPORT_SYMBOL(bio_advance); 1052 1053 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 1054 struct bio *src, struct bvec_iter *src_iter) 1055 { 1056 struct bio_vec src_bv, dst_bv; 1057 void *src_p, *dst_p; 1058 unsigned bytes; 1059 1060 while (src_iter->bi_size && dst_iter->bi_size) { 1061 src_bv = bio_iter_iovec(src, *src_iter); 1062 dst_bv = bio_iter_iovec(dst, *dst_iter); 1063 1064 bytes = min(src_bv.bv_len, dst_bv.bv_len); 1065 1066 src_p = kmap_atomic(src_bv.bv_page); 1067 dst_p = kmap_atomic(dst_bv.bv_page); 1068 1069 memcpy(dst_p + dst_bv.bv_offset, 1070 src_p + src_bv.bv_offset, 1071 bytes); 1072 1073 kunmap_atomic(dst_p); 1074 kunmap_atomic(src_p); 1075 1076 flush_dcache_page(dst_bv.bv_page); 1077 1078 bio_advance_iter(src, src_iter, bytes); 1079 bio_advance_iter(dst, dst_iter, bytes); 1080 } 1081 } 1082 EXPORT_SYMBOL(bio_copy_data_iter); 1083 1084 /** 1085 * bio_copy_data - copy contents of data buffers from one bio to another 1086 * @src: source bio 1087 * @dst: destination bio 1088 * 1089 * Stops when it reaches the end of either @src or @dst - that is, copies 1090 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1091 */ 1092 void bio_copy_data(struct bio *dst, struct bio *src) 1093 { 1094 struct bvec_iter src_iter = src->bi_iter; 1095 struct bvec_iter dst_iter = dst->bi_iter; 1096 1097 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1098 } 1099 EXPORT_SYMBOL(bio_copy_data); 1100 1101 /** 1102 * bio_list_copy_data - copy contents of data buffers from one chain of bios to 1103 * another 1104 * @src: source bio list 1105 * @dst: destination bio list 1106 * 1107 * Stops when it reaches the end of either the @src list or @dst list - that is, 1108 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of 1109 * bios). 1110 */ 1111 void bio_list_copy_data(struct bio *dst, struct bio *src) 1112 { 1113 struct bvec_iter src_iter = src->bi_iter; 1114 struct bvec_iter dst_iter = dst->bi_iter; 1115 1116 while (1) { 1117 if (!src_iter.bi_size) { 1118 src = src->bi_next; 1119 if (!src) 1120 break; 1121 1122 src_iter = src->bi_iter; 1123 } 1124 1125 if (!dst_iter.bi_size) { 1126 dst = dst->bi_next; 1127 if (!dst) 1128 break; 1129 1130 dst_iter = dst->bi_iter; 1131 } 1132 1133 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1134 } 1135 } 1136 EXPORT_SYMBOL(bio_list_copy_data); 1137 1138 struct bio_map_data { 1139 int is_our_pages; 1140 struct iov_iter iter; 1141 struct iovec iov[]; 1142 }; 1143 1144 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data, 1145 gfp_t gfp_mask) 1146 { 1147 struct bio_map_data *bmd; 1148 if (data->nr_segs > UIO_MAXIOV) 1149 return NULL; 1150 1151 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask); 1152 if (!bmd) 1153 return NULL; 1154 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs); 1155 bmd->iter = *data; 1156 bmd->iter.iov = bmd->iov; 1157 return bmd; 1158 } 1159 1160 /** 1161 * bio_copy_from_iter - copy all pages from iov_iter to bio 1162 * @bio: The &struct bio which describes the I/O as destination 1163 * @iter: iov_iter as source 1164 * 1165 * Copy all pages from iov_iter to bio. 1166 * Returns 0 on success, or error on failure. 1167 */ 1168 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter) 1169 { 1170 struct bio_vec *bvec; 1171 struct bvec_iter_all iter_all; 1172 1173 bio_for_each_segment_all(bvec, bio, iter_all) { 1174 ssize_t ret; 1175 1176 ret = copy_page_from_iter(bvec->bv_page, 1177 bvec->bv_offset, 1178 bvec->bv_len, 1179 iter); 1180 1181 if (!iov_iter_count(iter)) 1182 break; 1183 1184 if (ret < bvec->bv_len) 1185 return -EFAULT; 1186 } 1187 1188 return 0; 1189 } 1190 1191 /** 1192 * bio_copy_to_iter - copy all pages from bio to iov_iter 1193 * @bio: The &struct bio which describes the I/O as source 1194 * @iter: iov_iter as destination 1195 * 1196 * Copy all pages from bio to iov_iter. 1197 * Returns 0 on success, or error on failure. 1198 */ 1199 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 1200 { 1201 struct bio_vec *bvec; 1202 struct bvec_iter_all iter_all; 1203 1204 bio_for_each_segment_all(bvec, bio, iter_all) { 1205 ssize_t ret; 1206 1207 ret = copy_page_to_iter(bvec->bv_page, 1208 bvec->bv_offset, 1209 bvec->bv_len, 1210 &iter); 1211 1212 if (!iov_iter_count(&iter)) 1213 break; 1214 1215 if (ret < bvec->bv_len) 1216 return -EFAULT; 1217 } 1218 1219 return 0; 1220 } 1221 1222 void bio_free_pages(struct bio *bio) 1223 { 1224 struct bio_vec *bvec; 1225 struct bvec_iter_all iter_all; 1226 1227 bio_for_each_segment_all(bvec, bio, iter_all) 1228 __free_page(bvec->bv_page); 1229 } 1230 EXPORT_SYMBOL(bio_free_pages); 1231 1232 /** 1233 * bio_uncopy_user - finish previously mapped bio 1234 * @bio: bio being terminated 1235 * 1236 * Free pages allocated from bio_copy_user_iov() and write back data 1237 * to user space in case of a read. 1238 */ 1239 int bio_uncopy_user(struct bio *bio) 1240 { 1241 struct bio_map_data *bmd = bio->bi_private; 1242 int ret = 0; 1243 1244 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1245 /* 1246 * if we're in a workqueue, the request is orphaned, so 1247 * don't copy into a random user address space, just free 1248 * and return -EINTR so user space doesn't expect any data. 1249 */ 1250 if (!current->mm) 1251 ret = -EINTR; 1252 else if (bio_data_dir(bio) == READ) 1253 ret = bio_copy_to_iter(bio, bmd->iter); 1254 if (bmd->is_our_pages) 1255 bio_free_pages(bio); 1256 } 1257 kfree(bmd); 1258 bio_put(bio); 1259 return ret; 1260 } 1261 1262 /** 1263 * bio_copy_user_iov - copy user data to bio 1264 * @q: destination block queue 1265 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1266 * @iter: iovec iterator 1267 * @gfp_mask: memory allocation flags 1268 * 1269 * Prepares and returns a bio for indirect user io, bouncing data 1270 * to/from kernel pages as necessary. Must be paired with 1271 * call bio_uncopy_user() on io completion. 1272 */ 1273 struct bio *bio_copy_user_iov(struct request_queue *q, 1274 struct rq_map_data *map_data, 1275 struct iov_iter *iter, 1276 gfp_t gfp_mask) 1277 { 1278 struct bio_map_data *bmd; 1279 struct page *page; 1280 struct bio *bio; 1281 int i = 0, ret; 1282 int nr_pages; 1283 unsigned int len = iter->count; 1284 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 1285 1286 bmd = bio_alloc_map_data(iter, gfp_mask); 1287 if (!bmd) 1288 return ERR_PTR(-ENOMEM); 1289 1290 /* 1291 * We need to do a deep copy of the iov_iter including the iovecs. 1292 * The caller provided iov might point to an on-stack or otherwise 1293 * shortlived one. 1294 */ 1295 bmd->is_our_pages = map_data ? 0 : 1; 1296 1297 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE); 1298 if (nr_pages > BIO_MAX_PAGES) 1299 nr_pages = BIO_MAX_PAGES; 1300 1301 ret = -ENOMEM; 1302 bio = bio_kmalloc(gfp_mask, nr_pages); 1303 if (!bio) 1304 goto out_bmd; 1305 1306 ret = 0; 1307 1308 if (map_data) { 1309 nr_pages = 1 << map_data->page_order; 1310 i = map_data->offset / PAGE_SIZE; 1311 } 1312 while (len) { 1313 unsigned int bytes = PAGE_SIZE; 1314 1315 bytes -= offset; 1316 1317 if (bytes > len) 1318 bytes = len; 1319 1320 if (map_data) { 1321 if (i == map_data->nr_entries * nr_pages) { 1322 ret = -ENOMEM; 1323 break; 1324 } 1325 1326 page = map_data->pages[i / nr_pages]; 1327 page += (i % nr_pages); 1328 1329 i++; 1330 } else { 1331 page = alloc_page(q->bounce_gfp | gfp_mask); 1332 if (!page) { 1333 ret = -ENOMEM; 1334 break; 1335 } 1336 } 1337 1338 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) { 1339 if (!map_data) 1340 __free_page(page); 1341 break; 1342 } 1343 1344 len -= bytes; 1345 offset = 0; 1346 } 1347 1348 if (ret) 1349 goto cleanup; 1350 1351 if (map_data) 1352 map_data->offset += bio->bi_iter.bi_size; 1353 1354 /* 1355 * success 1356 */ 1357 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) || 1358 (map_data && map_data->from_user)) { 1359 ret = bio_copy_from_iter(bio, iter); 1360 if (ret) 1361 goto cleanup; 1362 } else { 1363 if (bmd->is_our_pages) 1364 zero_fill_bio(bio); 1365 iov_iter_advance(iter, bio->bi_iter.bi_size); 1366 } 1367 1368 bio->bi_private = bmd; 1369 if (map_data && map_data->null_mapped) 1370 bio_set_flag(bio, BIO_NULL_MAPPED); 1371 return bio; 1372 cleanup: 1373 if (!map_data) 1374 bio_free_pages(bio); 1375 bio_put(bio); 1376 out_bmd: 1377 kfree(bmd); 1378 return ERR_PTR(ret); 1379 } 1380 1381 /** 1382 * bio_map_user_iov - map user iovec into bio 1383 * @q: the struct request_queue for the bio 1384 * @iter: iovec iterator 1385 * @gfp_mask: memory allocation flags 1386 * 1387 * Map the user space address into a bio suitable for io to a block 1388 * device. Returns an error pointer in case of error. 1389 */ 1390 struct bio *bio_map_user_iov(struct request_queue *q, 1391 struct iov_iter *iter, 1392 gfp_t gfp_mask) 1393 { 1394 int j; 1395 struct bio *bio; 1396 int ret; 1397 1398 if (!iov_iter_count(iter)) 1399 return ERR_PTR(-EINVAL); 1400 1401 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES)); 1402 if (!bio) 1403 return ERR_PTR(-ENOMEM); 1404 1405 while (iov_iter_count(iter)) { 1406 struct page **pages; 1407 ssize_t bytes; 1408 size_t offs, added = 0; 1409 int npages; 1410 1411 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs); 1412 if (unlikely(bytes <= 0)) { 1413 ret = bytes ? bytes : -EFAULT; 1414 goto out_unmap; 1415 } 1416 1417 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE); 1418 1419 if (unlikely(offs & queue_dma_alignment(q))) { 1420 ret = -EINVAL; 1421 j = 0; 1422 } else { 1423 for (j = 0; j < npages; j++) { 1424 struct page *page = pages[j]; 1425 unsigned int n = PAGE_SIZE - offs; 1426 bool same_page = false; 1427 1428 if (n > bytes) 1429 n = bytes; 1430 1431 if (!__bio_add_pc_page(q, bio, page, n, offs, 1432 &same_page)) { 1433 if (same_page) 1434 put_page(page); 1435 break; 1436 } 1437 1438 added += n; 1439 bytes -= n; 1440 offs = 0; 1441 } 1442 iov_iter_advance(iter, added); 1443 } 1444 /* 1445 * release the pages we didn't map into the bio, if any 1446 */ 1447 while (j < npages) 1448 put_page(pages[j++]); 1449 kvfree(pages); 1450 /* couldn't stuff something into bio? */ 1451 if (bytes) 1452 break; 1453 } 1454 1455 bio_set_flag(bio, BIO_USER_MAPPED); 1456 1457 /* 1458 * subtle -- if bio_map_user_iov() ended up bouncing a bio, 1459 * it would normally disappear when its bi_end_io is run. 1460 * however, we need it for the unmap, so grab an extra 1461 * reference to it 1462 */ 1463 bio_get(bio); 1464 return bio; 1465 1466 out_unmap: 1467 bio_release_pages(bio, false); 1468 bio_put(bio); 1469 return ERR_PTR(ret); 1470 } 1471 1472 /** 1473 * bio_unmap_user - unmap a bio 1474 * @bio: the bio being unmapped 1475 * 1476 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from 1477 * process context. 1478 * 1479 * bio_unmap_user() may sleep. 1480 */ 1481 void bio_unmap_user(struct bio *bio) 1482 { 1483 bio_release_pages(bio, bio_data_dir(bio) == READ); 1484 bio_put(bio); 1485 bio_put(bio); 1486 } 1487 1488 static void bio_invalidate_vmalloc_pages(struct bio *bio) 1489 { 1490 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE 1491 if (bio->bi_private && !op_is_write(bio_op(bio))) { 1492 unsigned long i, len = 0; 1493 1494 for (i = 0; i < bio->bi_vcnt; i++) 1495 len += bio->bi_io_vec[i].bv_len; 1496 invalidate_kernel_vmap_range(bio->bi_private, len); 1497 } 1498 #endif 1499 } 1500 1501 static void bio_map_kern_endio(struct bio *bio) 1502 { 1503 bio_invalidate_vmalloc_pages(bio); 1504 bio_put(bio); 1505 } 1506 1507 /** 1508 * bio_map_kern - map kernel address into bio 1509 * @q: the struct request_queue for the bio 1510 * @data: pointer to buffer to map 1511 * @len: length in bytes 1512 * @gfp_mask: allocation flags for bio allocation 1513 * 1514 * Map the kernel address into a bio suitable for io to a block 1515 * device. Returns an error pointer in case of error. 1516 */ 1517 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1518 gfp_t gfp_mask) 1519 { 1520 unsigned long kaddr = (unsigned long)data; 1521 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1522 unsigned long start = kaddr >> PAGE_SHIFT; 1523 const int nr_pages = end - start; 1524 bool is_vmalloc = is_vmalloc_addr(data); 1525 struct page *page; 1526 int offset, i; 1527 struct bio *bio; 1528 1529 bio = bio_kmalloc(gfp_mask, nr_pages); 1530 if (!bio) 1531 return ERR_PTR(-ENOMEM); 1532 1533 if (is_vmalloc) { 1534 flush_kernel_vmap_range(data, len); 1535 bio->bi_private = data; 1536 } 1537 1538 offset = offset_in_page(kaddr); 1539 for (i = 0; i < nr_pages; i++) { 1540 unsigned int bytes = PAGE_SIZE - offset; 1541 1542 if (len <= 0) 1543 break; 1544 1545 if (bytes > len) 1546 bytes = len; 1547 1548 if (!is_vmalloc) 1549 page = virt_to_page(data); 1550 else 1551 page = vmalloc_to_page(data); 1552 if (bio_add_pc_page(q, bio, page, bytes, 1553 offset) < bytes) { 1554 /* we don't support partial mappings */ 1555 bio_put(bio); 1556 return ERR_PTR(-EINVAL); 1557 } 1558 1559 data += bytes; 1560 len -= bytes; 1561 offset = 0; 1562 } 1563 1564 bio->bi_end_io = bio_map_kern_endio; 1565 return bio; 1566 } 1567 1568 static void bio_copy_kern_endio(struct bio *bio) 1569 { 1570 bio_free_pages(bio); 1571 bio_put(bio); 1572 } 1573 1574 static void bio_copy_kern_endio_read(struct bio *bio) 1575 { 1576 char *p = bio->bi_private; 1577 struct bio_vec *bvec; 1578 struct bvec_iter_all iter_all; 1579 1580 bio_for_each_segment_all(bvec, bio, iter_all) { 1581 memcpy(p, page_address(bvec->bv_page), bvec->bv_len); 1582 p += bvec->bv_len; 1583 } 1584 1585 bio_copy_kern_endio(bio); 1586 } 1587 1588 /** 1589 * bio_copy_kern - copy kernel address into bio 1590 * @q: the struct request_queue for the bio 1591 * @data: pointer to buffer to copy 1592 * @len: length in bytes 1593 * @gfp_mask: allocation flags for bio and page allocation 1594 * @reading: data direction is READ 1595 * 1596 * copy the kernel address into a bio suitable for io to a block 1597 * device. Returns an error pointer in case of error. 1598 */ 1599 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1600 gfp_t gfp_mask, int reading) 1601 { 1602 unsigned long kaddr = (unsigned long)data; 1603 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1604 unsigned long start = kaddr >> PAGE_SHIFT; 1605 struct bio *bio; 1606 void *p = data; 1607 int nr_pages = 0; 1608 1609 /* 1610 * Overflow, abort 1611 */ 1612 if (end < start) 1613 return ERR_PTR(-EINVAL); 1614 1615 nr_pages = end - start; 1616 bio = bio_kmalloc(gfp_mask, nr_pages); 1617 if (!bio) 1618 return ERR_PTR(-ENOMEM); 1619 1620 while (len) { 1621 struct page *page; 1622 unsigned int bytes = PAGE_SIZE; 1623 1624 if (bytes > len) 1625 bytes = len; 1626 1627 page = alloc_page(q->bounce_gfp | gfp_mask); 1628 if (!page) 1629 goto cleanup; 1630 1631 if (!reading) 1632 memcpy(page_address(page), p, bytes); 1633 1634 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 1635 break; 1636 1637 len -= bytes; 1638 p += bytes; 1639 } 1640 1641 if (reading) { 1642 bio->bi_end_io = bio_copy_kern_endio_read; 1643 bio->bi_private = data; 1644 } else { 1645 bio->bi_end_io = bio_copy_kern_endio; 1646 } 1647 1648 return bio; 1649 1650 cleanup: 1651 bio_free_pages(bio); 1652 bio_put(bio); 1653 return ERR_PTR(-ENOMEM); 1654 } 1655 1656 /* 1657 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1658 * for performing direct-IO in BIOs. 1659 * 1660 * The problem is that we cannot run set_page_dirty() from interrupt context 1661 * because the required locks are not interrupt-safe. So what we can do is to 1662 * mark the pages dirty _before_ performing IO. And in interrupt context, 1663 * check that the pages are still dirty. If so, fine. If not, redirty them 1664 * in process context. 1665 * 1666 * We special-case compound pages here: normally this means reads into hugetlb 1667 * pages. The logic in here doesn't really work right for compound pages 1668 * because the VM does not uniformly chase down the head page in all cases. 1669 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1670 * handle them at all. So we skip compound pages here at an early stage. 1671 * 1672 * Note that this code is very hard to test under normal circumstances because 1673 * direct-io pins the pages with get_user_pages(). This makes 1674 * is_page_cache_freeable return false, and the VM will not clean the pages. 1675 * But other code (eg, flusher threads) could clean the pages if they are mapped 1676 * pagecache. 1677 * 1678 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1679 * deferred bio dirtying paths. 1680 */ 1681 1682 /* 1683 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1684 */ 1685 void bio_set_pages_dirty(struct bio *bio) 1686 { 1687 struct bio_vec *bvec; 1688 struct bvec_iter_all iter_all; 1689 1690 bio_for_each_segment_all(bvec, bio, iter_all) { 1691 if (!PageCompound(bvec->bv_page)) 1692 set_page_dirty_lock(bvec->bv_page); 1693 } 1694 } 1695 1696 /* 1697 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1698 * If they are, then fine. If, however, some pages are clean then they must 1699 * have been written out during the direct-IO read. So we take another ref on 1700 * the BIO and re-dirty the pages in process context. 1701 * 1702 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1703 * here on. It will run one put_page() against each page and will run one 1704 * bio_put() against the BIO. 1705 */ 1706 1707 static void bio_dirty_fn(struct work_struct *work); 1708 1709 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1710 static DEFINE_SPINLOCK(bio_dirty_lock); 1711 static struct bio *bio_dirty_list; 1712 1713 /* 1714 * This runs in process context 1715 */ 1716 static void bio_dirty_fn(struct work_struct *work) 1717 { 1718 struct bio *bio, *next; 1719 1720 spin_lock_irq(&bio_dirty_lock); 1721 next = bio_dirty_list; 1722 bio_dirty_list = NULL; 1723 spin_unlock_irq(&bio_dirty_lock); 1724 1725 while ((bio = next) != NULL) { 1726 next = bio->bi_private; 1727 1728 bio_release_pages(bio, true); 1729 bio_put(bio); 1730 } 1731 } 1732 1733 void bio_check_pages_dirty(struct bio *bio) 1734 { 1735 struct bio_vec *bvec; 1736 unsigned long flags; 1737 struct bvec_iter_all iter_all; 1738 1739 bio_for_each_segment_all(bvec, bio, iter_all) { 1740 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page)) 1741 goto defer; 1742 } 1743 1744 bio_release_pages(bio, false); 1745 bio_put(bio); 1746 return; 1747 defer: 1748 spin_lock_irqsave(&bio_dirty_lock, flags); 1749 bio->bi_private = bio_dirty_list; 1750 bio_dirty_list = bio; 1751 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1752 schedule_work(&bio_dirty_work); 1753 } 1754 1755 void update_io_ticks(struct hd_struct *part, unsigned long now) 1756 { 1757 unsigned long stamp; 1758 again: 1759 stamp = READ_ONCE(part->stamp); 1760 if (unlikely(stamp != now)) { 1761 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) { 1762 __part_stat_add(part, io_ticks, 1); 1763 } 1764 } 1765 if (part->partno) { 1766 part = &part_to_disk(part)->part0; 1767 goto again; 1768 } 1769 } 1770 1771 void generic_start_io_acct(struct request_queue *q, int op, 1772 unsigned long sectors, struct hd_struct *part) 1773 { 1774 const int sgrp = op_stat_group(op); 1775 1776 part_stat_lock(); 1777 1778 update_io_ticks(part, jiffies); 1779 part_stat_inc(part, ios[sgrp]); 1780 part_stat_add(part, sectors[sgrp], sectors); 1781 part_inc_in_flight(q, part, op_is_write(op)); 1782 1783 part_stat_unlock(); 1784 } 1785 EXPORT_SYMBOL(generic_start_io_acct); 1786 1787 void generic_end_io_acct(struct request_queue *q, int req_op, 1788 struct hd_struct *part, unsigned long start_time) 1789 { 1790 unsigned long now = jiffies; 1791 unsigned long duration = now - start_time; 1792 const int sgrp = op_stat_group(req_op); 1793 1794 part_stat_lock(); 1795 1796 update_io_ticks(part, now); 1797 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration)); 1798 part_stat_add(part, time_in_queue, duration); 1799 part_dec_in_flight(q, part, op_is_write(req_op)); 1800 1801 part_stat_unlock(); 1802 } 1803 EXPORT_SYMBOL(generic_end_io_acct); 1804 1805 static inline bool bio_remaining_done(struct bio *bio) 1806 { 1807 /* 1808 * If we're not chaining, then ->__bi_remaining is always 1 and 1809 * we always end io on the first invocation. 1810 */ 1811 if (!bio_flagged(bio, BIO_CHAIN)) 1812 return true; 1813 1814 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1815 1816 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1817 bio_clear_flag(bio, BIO_CHAIN); 1818 return true; 1819 } 1820 1821 return false; 1822 } 1823 1824 /** 1825 * bio_endio - end I/O on a bio 1826 * @bio: bio 1827 * 1828 * Description: 1829 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1830 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1831 * bio unless they own it and thus know that it has an end_io function. 1832 * 1833 * bio_endio() can be called several times on a bio that has been chained 1834 * using bio_chain(). The ->bi_end_io() function will only be called the 1835 * last time. At this point the BLK_TA_COMPLETE tracing event will be 1836 * generated if BIO_TRACE_COMPLETION is set. 1837 **/ 1838 void bio_endio(struct bio *bio) 1839 { 1840 again: 1841 if (!bio_remaining_done(bio)) 1842 return; 1843 if (!bio_integrity_endio(bio)) 1844 return; 1845 1846 if (bio->bi_disk) 1847 rq_qos_done_bio(bio->bi_disk->queue, bio); 1848 1849 /* 1850 * Need to have a real endio function for chained bios, otherwise 1851 * various corner cases will break (like stacking block devices that 1852 * save/restore bi_end_io) - however, we want to avoid unbounded 1853 * recursion and blowing the stack. Tail call optimization would 1854 * handle this, but compiling with frame pointers also disables 1855 * gcc's sibling call optimization. 1856 */ 1857 if (bio->bi_end_io == bio_chain_endio) { 1858 bio = __bio_chain_endio(bio); 1859 goto again; 1860 } 1861 1862 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1863 trace_block_bio_complete(bio->bi_disk->queue, bio, 1864 blk_status_to_errno(bio->bi_status)); 1865 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1866 } 1867 1868 blk_throtl_bio_endio(bio); 1869 /* release cgroup info */ 1870 bio_uninit(bio); 1871 if (bio->bi_end_io) 1872 bio->bi_end_io(bio); 1873 } 1874 EXPORT_SYMBOL(bio_endio); 1875 1876 /** 1877 * bio_split - split a bio 1878 * @bio: bio to split 1879 * @sectors: number of sectors to split from the front of @bio 1880 * @gfp: gfp mask 1881 * @bs: bio set to allocate from 1882 * 1883 * Allocates and returns a new bio which represents @sectors from the start of 1884 * @bio, and updates @bio to represent the remaining sectors. 1885 * 1886 * Unless this is a discard request the newly allocated bio will point 1887 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that 1888 * neither @bio nor @bs are freed before the split bio. 1889 */ 1890 struct bio *bio_split(struct bio *bio, int sectors, 1891 gfp_t gfp, struct bio_set *bs) 1892 { 1893 struct bio *split; 1894 1895 BUG_ON(sectors <= 0); 1896 BUG_ON(sectors >= bio_sectors(bio)); 1897 1898 split = bio_clone_fast(bio, gfp, bs); 1899 if (!split) 1900 return NULL; 1901 1902 split->bi_iter.bi_size = sectors << 9; 1903 1904 if (bio_integrity(split)) 1905 bio_integrity_trim(split); 1906 1907 bio_advance(bio, split->bi_iter.bi_size); 1908 1909 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1910 bio_set_flag(split, BIO_TRACE_COMPLETION); 1911 1912 return split; 1913 } 1914 EXPORT_SYMBOL(bio_split); 1915 1916 /** 1917 * bio_trim - trim a bio 1918 * @bio: bio to trim 1919 * @offset: number of sectors to trim from the front of @bio 1920 * @size: size we want to trim @bio to, in sectors 1921 */ 1922 void bio_trim(struct bio *bio, int offset, int size) 1923 { 1924 /* 'bio' is a cloned bio which we need to trim to match 1925 * the given offset and size. 1926 */ 1927 1928 size <<= 9; 1929 if (offset == 0 && size == bio->bi_iter.bi_size) 1930 return; 1931 1932 bio_advance(bio, offset << 9); 1933 bio->bi_iter.bi_size = size; 1934 1935 if (bio_integrity(bio)) 1936 bio_integrity_trim(bio); 1937 1938 } 1939 EXPORT_SYMBOL_GPL(bio_trim); 1940 1941 /* 1942 * create memory pools for biovec's in a bio_set. 1943 * use the global biovec slabs created for general use. 1944 */ 1945 int biovec_init_pool(mempool_t *pool, int pool_entries) 1946 { 1947 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; 1948 1949 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1950 } 1951 1952 /* 1953 * bioset_exit - exit a bioset initialized with bioset_init() 1954 * 1955 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1956 * kzalloc()). 1957 */ 1958 void bioset_exit(struct bio_set *bs) 1959 { 1960 if (bs->rescue_workqueue) 1961 destroy_workqueue(bs->rescue_workqueue); 1962 bs->rescue_workqueue = NULL; 1963 1964 mempool_exit(&bs->bio_pool); 1965 mempool_exit(&bs->bvec_pool); 1966 1967 bioset_integrity_free(bs); 1968 if (bs->bio_slab) 1969 bio_put_slab(bs); 1970 bs->bio_slab = NULL; 1971 } 1972 EXPORT_SYMBOL(bioset_exit); 1973 1974 /** 1975 * bioset_init - Initialize a bio_set 1976 * @bs: pool to initialize 1977 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1978 * @front_pad: Number of bytes to allocate in front of the returned bio 1979 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1980 * and %BIOSET_NEED_RESCUER 1981 * 1982 * Description: 1983 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1984 * to ask for a number of bytes to be allocated in front of the bio. 1985 * Front pad allocation is useful for embedding the bio inside 1986 * another structure, to avoid allocating extra data to go with the bio. 1987 * Note that the bio must be embedded at the END of that structure always, 1988 * or things will break badly. 1989 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1990 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast(). 1991 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to 1992 * dispatch queued requests when the mempool runs out of space. 1993 * 1994 */ 1995 int bioset_init(struct bio_set *bs, 1996 unsigned int pool_size, 1997 unsigned int front_pad, 1998 int flags) 1999 { 2000 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 2001 2002 bs->front_pad = front_pad; 2003 2004 spin_lock_init(&bs->rescue_lock); 2005 bio_list_init(&bs->rescue_list); 2006 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 2007 2008 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 2009 if (!bs->bio_slab) 2010 return -ENOMEM; 2011 2012 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 2013 goto bad; 2014 2015 if ((flags & BIOSET_NEED_BVECS) && 2016 biovec_init_pool(&bs->bvec_pool, pool_size)) 2017 goto bad; 2018 2019 if (!(flags & BIOSET_NEED_RESCUER)) 2020 return 0; 2021 2022 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 2023 if (!bs->rescue_workqueue) 2024 goto bad; 2025 2026 return 0; 2027 bad: 2028 bioset_exit(bs); 2029 return -ENOMEM; 2030 } 2031 EXPORT_SYMBOL(bioset_init); 2032 2033 /* 2034 * Initialize and setup a new bio_set, based on the settings from 2035 * another bio_set. 2036 */ 2037 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src) 2038 { 2039 int flags; 2040 2041 flags = 0; 2042 if (src->bvec_pool.min_nr) 2043 flags |= BIOSET_NEED_BVECS; 2044 if (src->rescue_workqueue) 2045 flags |= BIOSET_NEED_RESCUER; 2046 2047 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags); 2048 } 2049 EXPORT_SYMBOL(bioset_init_from_src); 2050 2051 #ifdef CONFIG_BLK_CGROUP 2052 2053 /** 2054 * bio_disassociate_blkg - puts back the blkg reference if associated 2055 * @bio: target bio 2056 * 2057 * Helper to disassociate the blkg from @bio if a blkg is associated. 2058 */ 2059 void bio_disassociate_blkg(struct bio *bio) 2060 { 2061 if (bio->bi_blkg) { 2062 blkg_put(bio->bi_blkg); 2063 bio->bi_blkg = NULL; 2064 } 2065 } 2066 EXPORT_SYMBOL_GPL(bio_disassociate_blkg); 2067 2068 /** 2069 * __bio_associate_blkg - associate a bio with the a blkg 2070 * @bio: target bio 2071 * @blkg: the blkg to associate 2072 * 2073 * This tries to associate @bio with the specified @blkg. Association failure 2074 * is handled by walking up the blkg tree. Therefore, the blkg associated can 2075 * be anything between @blkg and the root_blkg. This situation only happens 2076 * when a cgroup is dying and then the remaining bios will spill to the closest 2077 * alive blkg. 2078 * 2079 * A reference will be taken on the @blkg and will be released when @bio is 2080 * freed. 2081 */ 2082 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg) 2083 { 2084 bio_disassociate_blkg(bio); 2085 2086 bio->bi_blkg = blkg_tryget_closest(blkg); 2087 } 2088 2089 /** 2090 * bio_associate_blkg_from_css - associate a bio with a specified css 2091 * @bio: target bio 2092 * @css: target css 2093 * 2094 * Associate @bio with the blkg found by combining the css's blkg and the 2095 * request_queue of the @bio. This falls back to the queue's root_blkg if 2096 * the association fails with the css. 2097 */ 2098 void bio_associate_blkg_from_css(struct bio *bio, 2099 struct cgroup_subsys_state *css) 2100 { 2101 struct request_queue *q = bio->bi_disk->queue; 2102 struct blkcg_gq *blkg; 2103 2104 rcu_read_lock(); 2105 2106 if (!css || !css->parent) 2107 blkg = q->root_blkg; 2108 else 2109 blkg = blkg_lookup_create(css_to_blkcg(css), q); 2110 2111 __bio_associate_blkg(bio, blkg); 2112 2113 rcu_read_unlock(); 2114 } 2115 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 2116 2117 #ifdef CONFIG_MEMCG 2118 /** 2119 * bio_associate_blkg_from_page - associate a bio with the page's blkg 2120 * @bio: target bio 2121 * @page: the page to lookup the blkcg from 2122 * 2123 * Associate @bio with the blkg from @page's owning memcg and the respective 2124 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's 2125 * root_blkg. 2126 */ 2127 void bio_associate_blkg_from_page(struct bio *bio, struct page *page) 2128 { 2129 struct cgroup_subsys_state *css; 2130 2131 if (!page->mem_cgroup) 2132 return; 2133 2134 rcu_read_lock(); 2135 2136 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys); 2137 bio_associate_blkg_from_css(bio, css); 2138 2139 rcu_read_unlock(); 2140 } 2141 #endif /* CONFIG_MEMCG */ 2142 2143 /** 2144 * bio_associate_blkg - associate a bio with a blkg 2145 * @bio: target bio 2146 * 2147 * Associate @bio with the blkg found from the bio's css and request_queue. 2148 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 2149 * already associated, the css is reused and association redone as the 2150 * request_queue may have changed. 2151 */ 2152 void bio_associate_blkg(struct bio *bio) 2153 { 2154 struct cgroup_subsys_state *css; 2155 2156 rcu_read_lock(); 2157 2158 if (bio->bi_blkg) 2159 css = &bio_blkcg(bio)->css; 2160 else 2161 css = blkcg_css(); 2162 2163 bio_associate_blkg_from_css(bio, css); 2164 2165 rcu_read_unlock(); 2166 } 2167 EXPORT_SYMBOL_GPL(bio_associate_blkg); 2168 2169 /** 2170 * bio_clone_blkg_association - clone blkg association from src to dst bio 2171 * @dst: destination bio 2172 * @src: source bio 2173 */ 2174 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 2175 { 2176 rcu_read_lock(); 2177 2178 if (src->bi_blkg) 2179 __bio_associate_blkg(dst, src->bi_blkg); 2180 2181 rcu_read_unlock(); 2182 } 2183 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 2184 #endif /* CONFIG_BLK_CGROUP */ 2185 2186 static void __init biovec_init_slabs(void) 2187 { 2188 int i; 2189 2190 for (i = 0; i < BVEC_POOL_NR; i++) { 2191 int size; 2192 struct biovec_slab *bvs = bvec_slabs + i; 2193 2194 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2195 bvs->slab = NULL; 2196 continue; 2197 } 2198 2199 size = bvs->nr_vecs * sizeof(struct bio_vec); 2200 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2201 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2202 } 2203 } 2204 2205 static int __init init_bio(void) 2206 { 2207 bio_slab_max = 2; 2208 bio_slab_nr = 0; 2209 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab), 2210 GFP_KERNEL); 2211 2212 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET); 2213 2214 if (!bio_slabs) 2215 panic("bio: can't allocate bios\n"); 2216 2217 bio_integrity_init(); 2218 biovec_init_slabs(); 2219 2220 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS)) 2221 panic("bio: can't allocate bios\n"); 2222 2223 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) 2224 panic("bio: can't create integrity pool\n"); 2225 2226 return 0; 2227 } 2228 subsys_initcall(init_bio); 2229