1 /* 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public Licens 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 16 * 17 */ 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/bio.h> 21 #include <linux/blkdev.h> 22 #include <linux/uio.h> 23 #include <linux/iocontext.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/kernel.h> 27 #include <linux/export.h> 28 #include <linux/mempool.h> 29 #include <linux/workqueue.h> 30 #include <linux/cgroup.h> 31 #include <scsi/sg.h> /* for struct sg_iovec */ 32 33 #include <trace/events/block.h> 34 35 /* 36 * Test patch to inline a certain number of bi_io_vec's inside the bio 37 * itself, to shrink a bio data allocation from two mempool calls to one 38 */ 39 #define BIO_INLINE_VECS 4 40 41 /* 42 * if you change this list, also change bvec_alloc or things will 43 * break badly! cannot be bigger than what you can fit into an 44 * unsigned short 45 */ 46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } 47 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = { 48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), 49 }; 50 #undef BV 51 52 /* 53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 54 * IO code that does not need private memory pools. 55 */ 56 struct bio_set *fs_bio_set; 57 EXPORT_SYMBOL(fs_bio_set); 58 59 /* 60 * Our slab pool management 61 */ 62 struct bio_slab { 63 struct kmem_cache *slab; 64 unsigned int slab_ref; 65 unsigned int slab_size; 66 char name[8]; 67 }; 68 static DEFINE_MUTEX(bio_slab_lock); 69 static struct bio_slab *bio_slabs; 70 static unsigned int bio_slab_nr, bio_slab_max; 71 72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 73 { 74 unsigned int sz = sizeof(struct bio) + extra_size; 75 struct kmem_cache *slab = NULL; 76 struct bio_slab *bslab, *new_bio_slabs; 77 unsigned int new_bio_slab_max; 78 unsigned int i, entry = -1; 79 80 mutex_lock(&bio_slab_lock); 81 82 i = 0; 83 while (i < bio_slab_nr) { 84 bslab = &bio_slabs[i]; 85 86 if (!bslab->slab && entry == -1) 87 entry = i; 88 else if (bslab->slab_size == sz) { 89 slab = bslab->slab; 90 bslab->slab_ref++; 91 break; 92 } 93 i++; 94 } 95 96 if (slab) 97 goto out_unlock; 98 99 if (bio_slab_nr == bio_slab_max && entry == -1) { 100 new_bio_slab_max = bio_slab_max << 1; 101 new_bio_slabs = krealloc(bio_slabs, 102 new_bio_slab_max * sizeof(struct bio_slab), 103 GFP_KERNEL); 104 if (!new_bio_slabs) 105 goto out_unlock; 106 bio_slab_max = new_bio_slab_max; 107 bio_slabs = new_bio_slabs; 108 } 109 if (entry == -1) 110 entry = bio_slab_nr++; 111 112 bslab = &bio_slabs[entry]; 113 114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, 116 SLAB_HWCACHE_ALIGN, NULL); 117 if (!slab) 118 goto out_unlock; 119 120 bslab->slab = slab; 121 bslab->slab_ref = 1; 122 bslab->slab_size = sz; 123 out_unlock: 124 mutex_unlock(&bio_slab_lock); 125 return slab; 126 } 127 128 static void bio_put_slab(struct bio_set *bs) 129 { 130 struct bio_slab *bslab = NULL; 131 unsigned int i; 132 133 mutex_lock(&bio_slab_lock); 134 135 for (i = 0; i < bio_slab_nr; i++) { 136 if (bs->bio_slab == bio_slabs[i].slab) { 137 bslab = &bio_slabs[i]; 138 break; 139 } 140 } 141 142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 143 goto out; 144 145 WARN_ON(!bslab->slab_ref); 146 147 if (--bslab->slab_ref) 148 goto out; 149 150 kmem_cache_destroy(bslab->slab); 151 bslab->slab = NULL; 152 153 out: 154 mutex_unlock(&bio_slab_lock); 155 } 156 157 unsigned int bvec_nr_vecs(unsigned short idx) 158 { 159 return bvec_slabs[idx].nr_vecs; 160 } 161 162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 163 { 164 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS); 165 166 if (idx == BIOVEC_MAX_IDX) 167 mempool_free(bv, pool); 168 else { 169 struct biovec_slab *bvs = bvec_slabs + idx; 170 171 kmem_cache_free(bvs->slab, bv); 172 } 173 } 174 175 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 176 mempool_t *pool) 177 { 178 struct bio_vec *bvl; 179 180 /* 181 * see comment near bvec_array define! 182 */ 183 switch (nr) { 184 case 1: 185 *idx = 0; 186 break; 187 case 2 ... 4: 188 *idx = 1; 189 break; 190 case 5 ... 16: 191 *idx = 2; 192 break; 193 case 17 ... 64: 194 *idx = 3; 195 break; 196 case 65 ... 128: 197 *idx = 4; 198 break; 199 case 129 ... BIO_MAX_PAGES: 200 *idx = 5; 201 break; 202 default: 203 return NULL; 204 } 205 206 /* 207 * idx now points to the pool we want to allocate from. only the 208 * 1-vec entry pool is mempool backed. 209 */ 210 if (*idx == BIOVEC_MAX_IDX) { 211 fallback: 212 bvl = mempool_alloc(pool, gfp_mask); 213 } else { 214 struct biovec_slab *bvs = bvec_slabs + *idx; 215 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO); 216 217 /* 218 * Make this allocation restricted and don't dump info on 219 * allocation failures, since we'll fallback to the mempool 220 * in case of failure. 221 */ 222 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 223 224 /* 225 * Try a slab allocation. If this fails and __GFP_WAIT 226 * is set, retry with the 1-entry mempool 227 */ 228 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 229 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) { 230 *idx = BIOVEC_MAX_IDX; 231 goto fallback; 232 } 233 } 234 235 return bvl; 236 } 237 238 static void __bio_free(struct bio *bio) 239 { 240 bio_disassociate_task(bio); 241 242 if (bio_integrity(bio)) 243 bio_integrity_free(bio); 244 } 245 246 static void bio_free(struct bio *bio) 247 { 248 struct bio_set *bs = bio->bi_pool; 249 void *p; 250 251 __bio_free(bio); 252 253 if (bs) { 254 if (bio_flagged(bio, BIO_OWNS_VEC)) 255 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio)); 256 257 /* 258 * If we have front padding, adjust the bio pointer before freeing 259 */ 260 p = bio; 261 p -= bs->front_pad; 262 263 mempool_free(p, bs->bio_pool); 264 } else { 265 /* Bio was allocated by bio_kmalloc() */ 266 kfree(bio); 267 } 268 } 269 270 void bio_init(struct bio *bio) 271 { 272 memset(bio, 0, sizeof(*bio)); 273 bio->bi_flags = 1 << BIO_UPTODATE; 274 atomic_set(&bio->bi_remaining, 1); 275 atomic_set(&bio->bi_cnt, 1); 276 } 277 EXPORT_SYMBOL(bio_init); 278 279 /** 280 * bio_reset - reinitialize a bio 281 * @bio: bio to reset 282 * 283 * Description: 284 * After calling bio_reset(), @bio will be in the same state as a freshly 285 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 286 * preserved are the ones that are initialized by bio_alloc_bioset(). See 287 * comment in struct bio. 288 */ 289 void bio_reset(struct bio *bio) 290 { 291 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 292 293 __bio_free(bio); 294 295 memset(bio, 0, BIO_RESET_BYTES); 296 bio->bi_flags = flags|(1 << BIO_UPTODATE); 297 atomic_set(&bio->bi_remaining, 1); 298 } 299 EXPORT_SYMBOL(bio_reset); 300 301 static void bio_chain_endio(struct bio *bio, int error) 302 { 303 bio_endio(bio->bi_private, error); 304 bio_put(bio); 305 } 306 307 /** 308 * bio_chain - chain bio completions 309 * @bio: the target bio 310 * @parent: the @bio's parent bio 311 * 312 * The caller won't have a bi_end_io called when @bio completes - instead, 313 * @parent's bi_end_io won't be called until both @parent and @bio have 314 * completed; the chained bio will also be freed when it completes. 315 * 316 * The caller must not set bi_private or bi_end_io in @bio. 317 */ 318 void bio_chain(struct bio *bio, struct bio *parent) 319 { 320 BUG_ON(bio->bi_private || bio->bi_end_io); 321 322 bio->bi_private = parent; 323 bio->bi_end_io = bio_chain_endio; 324 atomic_inc(&parent->bi_remaining); 325 } 326 EXPORT_SYMBOL(bio_chain); 327 328 static void bio_alloc_rescue(struct work_struct *work) 329 { 330 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 331 struct bio *bio; 332 333 while (1) { 334 spin_lock(&bs->rescue_lock); 335 bio = bio_list_pop(&bs->rescue_list); 336 spin_unlock(&bs->rescue_lock); 337 338 if (!bio) 339 break; 340 341 generic_make_request(bio); 342 } 343 } 344 345 static void punt_bios_to_rescuer(struct bio_set *bs) 346 { 347 struct bio_list punt, nopunt; 348 struct bio *bio; 349 350 /* 351 * In order to guarantee forward progress we must punt only bios that 352 * were allocated from this bio_set; otherwise, if there was a bio on 353 * there for a stacking driver higher up in the stack, processing it 354 * could require allocating bios from this bio_set, and doing that from 355 * our own rescuer would be bad. 356 * 357 * Since bio lists are singly linked, pop them all instead of trying to 358 * remove from the middle of the list: 359 */ 360 361 bio_list_init(&punt); 362 bio_list_init(&nopunt); 363 364 while ((bio = bio_list_pop(current->bio_list))) 365 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 366 367 *current->bio_list = nopunt; 368 369 spin_lock(&bs->rescue_lock); 370 bio_list_merge(&bs->rescue_list, &punt); 371 spin_unlock(&bs->rescue_lock); 372 373 queue_work(bs->rescue_workqueue, &bs->rescue_work); 374 } 375 376 /** 377 * bio_alloc_bioset - allocate a bio for I/O 378 * @gfp_mask: the GFP_ mask given to the slab allocator 379 * @nr_iovecs: number of iovecs to pre-allocate 380 * @bs: the bio_set to allocate from. 381 * 382 * Description: 383 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 384 * backed by the @bs's mempool. 385 * 386 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be 387 * able to allocate a bio. This is due to the mempool guarantees. To make this 388 * work, callers must never allocate more than 1 bio at a time from this pool. 389 * Callers that need to allocate more than 1 bio must always submit the 390 * previously allocated bio for IO before attempting to allocate a new one. 391 * Failure to do so can cause deadlocks under memory pressure. 392 * 393 * Note that when running under generic_make_request() (i.e. any block 394 * driver), bios are not submitted until after you return - see the code in 395 * generic_make_request() that converts recursion into iteration, to prevent 396 * stack overflows. 397 * 398 * This would normally mean allocating multiple bios under 399 * generic_make_request() would be susceptible to deadlocks, but we have 400 * deadlock avoidance code that resubmits any blocked bios from a rescuer 401 * thread. 402 * 403 * However, we do not guarantee forward progress for allocations from other 404 * mempools. Doing multiple allocations from the same mempool under 405 * generic_make_request() should be avoided - instead, use bio_set's front_pad 406 * for per bio allocations. 407 * 408 * RETURNS: 409 * Pointer to new bio on success, NULL on failure. 410 */ 411 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) 412 { 413 gfp_t saved_gfp = gfp_mask; 414 unsigned front_pad; 415 unsigned inline_vecs; 416 unsigned long idx = BIO_POOL_NONE; 417 struct bio_vec *bvl = NULL; 418 struct bio *bio; 419 void *p; 420 421 if (!bs) { 422 if (nr_iovecs > UIO_MAXIOV) 423 return NULL; 424 425 p = kmalloc(sizeof(struct bio) + 426 nr_iovecs * sizeof(struct bio_vec), 427 gfp_mask); 428 front_pad = 0; 429 inline_vecs = nr_iovecs; 430 } else { 431 /* 432 * generic_make_request() converts recursion to iteration; this 433 * means if we're running beneath it, any bios we allocate and 434 * submit will not be submitted (and thus freed) until after we 435 * return. 436 * 437 * This exposes us to a potential deadlock if we allocate 438 * multiple bios from the same bio_set() while running 439 * underneath generic_make_request(). If we were to allocate 440 * multiple bios (say a stacking block driver that was splitting 441 * bios), we would deadlock if we exhausted the mempool's 442 * reserve. 443 * 444 * We solve this, and guarantee forward progress, with a rescuer 445 * workqueue per bio_set. If we go to allocate and there are 446 * bios on current->bio_list, we first try the allocation 447 * without __GFP_WAIT; if that fails, we punt those bios we 448 * would be blocking to the rescuer workqueue before we retry 449 * with the original gfp_flags. 450 */ 451 452 if (current->bio_list && !bio_list_empty(current->bio_list)) 453 gfp_mask &= ~__GFP_WAIT; 454 455 p = mempool_alloc(bs->bio_pool, gfp_mask); 456 if (!p && gfp_mask != saved_gfp) { 457 punt_bios_to_rescuer(bs); 458 gfp_mask = saved_gfp; 459 p = mempool_alloc(bs->bio_pool, gfp_mask); 460 } 461 462 front_pad = bs->front_pad; 463 inline_vecs = BIO_INLINE_VECS; 464 } 465 466 if (unlikely(!p)) 467 return NULL; 468 469 bio = p + front_pad; 470 bio_init(bio); 471 472 if (nr_iovecs > inline_vecs) { 473 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 474 if (!bvl && gfp_mask != saved_gfp) { 475 punt_bios_to_rescuer(bs); 476 gfp_mask = saved_gfp; 477 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 478 } 479 480 if (unlikely(!bvl)) 481 goto err_free; 482 483 bio->bi_flags |= 1 << BIO_OWNS_VEC; 484 } else if (nr_iovecs) { 485 bvl = bio->bi_inline_vecs; 486 } 487 488 bio->bi_pool = bs; 489 bio->bi_flags |= idx << BIO_POOL_OFFSET; 490 bio->bi_max_vecs = nr_iovecs; 491 bio->bi_io_vec = bvl; 492 return bio; 493 494 err_free: 495 mempool_free(p, bs->bio_pool); 496 return NULL; 497 } 498 EXPORT_SYMBOL(bio_alloc_bioset); 499 500 void zero_fill_bio(struct bio *bio) 501 { 502 unsigned long flags; 503 struct bio_vec bv; 504 struct bvec_iter iter; 505 506 bio_for_each_segment(bv, bio, iter) { 507 char *data = bvec_kmap_irq(&bv, &flags); 508 memset(data, 0, bv.bv_len); 509 flush_dcache_page(bv.bv_page); 510 bvec_kunmap_irq(data, &flags); 511 } 512 } 513 EXPORT_SYMBOL(zero_fill_bio); 514 515 /** 516 * bio_put - release a reference to a bio 517 * @bio: bio to release reference to 518 * 519 * Description: 520 * Put a reference to a &struct bio, either one you have gotten with 521 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it. 522 **/ 523 void bio_put(struct bio *bio) 524 { 525 BIO_BUG_ON(!atomic_read(&bio->bi_cnt)); 526 527 /* 528 * last put frees it 529 */ 530 if (atomic_dec_and_test(&bio->bi_cnt)) 531 bio_free(bio); 532 } 533 EXPORT_SYMBOL(bio_put); 534 535 inline int bio_phys_segments(struct request_queue *q, struct bio *bio) 536 { 537 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) 538 blk_recount_segments(q, bio); 539 540 return bio->bi_phys_segments; 541 } 542 EXPORT_SYMBOL(bio_phys_segments); 543 544 /** 545 * __bio_clone_fast - clone a bio that shares the original bio's biovec 546 * @bio: destination bio 547 * @bio_src: bio to clone 548 * 549 * Clone a &bio. Caller will own the returned bio, but not 550 * the actual data it points to. Reference count of returned 551 * bio will be one. 552 * 553 * Caller must ensure that @bio_src is not freed before @bio. 554 */ 555 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 556 { 557 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE); 558 559 /* 560 * most users will be overriding ->bi_bdev with a new target, 561 * so we don't set nor calculate new physical/hw segment counts here 562 */ 563 bio->bi_bdev = bio_src->bi_bdev; 564 bio->bi_flags |= 1 << BIO_CLONED; 565 bio->bi_rw = bio_src->bi_rw; 566 bio->bi_iter = bio_src->bi_iter; 567 bio->bi_io_vec = bio_src->bi_io_vec; 568 } 569 EXPORT_SYMBOL(__bio_clone_fast); 570 571 /** 572 * bio_clone_fast - clone a bio that shares the original bio's biovec 573 * @bio: bio to clone 574 * @gfp_mask: allocation priority 575 * @bs: bio_set to allocate from 576 * 577 * Like __bio_clone_fast, only also allocates the returned bio 578 */ 579 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 580 { 581 struct bio *b; 582 583 b = bio_alloc_bioset(gfp_mask, 0, bs); 584 if (!b) 585 return NULL; 586 587 __bio_clone_fast(b, bio); 588 589 if (bio_integrity(bio)) { 590 int ret; 591 592 ret = bio_integrity_clone(b, bio, gfp_mask); 593 594 if (ret < 0) { 595 bio_put(b); 596 return NULL; 597 } 598 } 599 600 return b; 601 } 602 EXPORT_SYMBOL(bio_clone_fast); 603 604 /** 605 * bio_clone_bioset - clone a bio 606 * @bio_src: bio to clone 607 * @gfp_mask: allocation priority 608 * @bs: bio_set to allocate from 609 * 610 * Clone bio. Caller will own the returned bio, but not the actual data it 611 * points to. Reference count of returned bio will be one. 612 */ 613 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, 614 struct bio_set *bs) 615 { 616 struct bvec_iter iter; 617 struct bio_vec bv; 618 struct bio *bio; 619 620 /* 621 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from 622 * bio_src->bi_io_vec to bio->bi_io_vec. 623 * 624 * We can't do that anymore, because: 625 * 626 * - The point of cloning the biovec is to produce a bio with a biovec 627 * the caller can modify: bi_idx and bi_bvec_done should be 0. 628 * 629 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if 630 * we tried to clone the whole thing bio_alloc_bioset() would fail. 631 * But the clone should succeed as long as the number of biovecs we 632 * actually need to allocate is fewer than BIO_MAX_PAGES. 633 * 634 * - Lastly, bi_vcnt should not be looked at or relied upon by code 635 * that does not own the bio - reason being drivers don't use it for 636 * iterating over the biovec anymore, so expecting it to be kept up 637 * to date (i.e. for clones that share the parent biovec) is just 638 * asking for trouble and would force extra work on 639 * __bio_clone_fast() anyways. 640 */ 641 642 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs); 643 if (!bio) 644 return NULL; 645 646 bio->bi_bdev = bio_src->bi_bdev; 647 bio->bi_rw = bio_src->bi_rw; 648 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; 649 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; 650 651 if (bio->bi_rw & REQ_DISCARD) 652 goto integrity_clone; 653 654 if (bio->bi_rw & REQ_WRITE_SAME) { 655 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0]; 656 goto integrity_clone; 657 } 658 659 bio_for_each_segment(bv, bio_src, iter) 660 bio->bi_io_vec[bio->bi_vcnt++] = bv; 661 662 integrity_clone: 663 if (bio_integrity(bio_src)) { 664 int ret; 665 666 ret = bio_integrity_clone(bio, bio_src, gfp_mask); 667 if (ret < 0) { 668 bio_put(bio); 669 return NULL; 670 } 671 } 672 673 return bio; 674 } 675 EXPORT_SYMBOL(bio_clone_bioset); 676 677 /** 678 * bio_get_nr_vecs - return approx number of vecs 679 * @bdev: I/O target 680 * 681 * Return the approximate number of pages we can send to this target. 682 * There's no guarantee that you will be able to fit this number of pages 683 * into a bio, it does not account for dynamic restrictions that vary 684 * on offset. 685 */ 686 int bio_get_nr_vecs(struct block_device *bdev) 687 { 688 struct request_queue *q = bdev_get_queue(bdev); 689 int nr_pages; 690 691 nr_pages = min_t(unsigned, 692 queue_max_segments(q), 693 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1); 694 695 return min_t(unsigned, nr_pages, BIO_MAX_PAGES); 696 697 } 698 EXPORT_SYMBOL(bio_get_nr_vecs); 699 700 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page 701 *page, unsigned int len, unsigned int offset, 702 unsigned int max_sectors) 703 { 704 int retried_segments = 0; 705 struct bio_vec *bvec; 706 707 /* 708 * cloned bio must not modify vec list 709 */ 710 if (unlikely(bio_flagged(bio, BIO_CLONED))) 711 return 0; 712 713 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors) 714 return 0; 715 716 /* 717 * For filesystems with a blocksize smaller than the pagesize 718 * we will often be called with the same page as last time and 719 * a consecutive offset. Optimize this special case. 720 */ 721 if (bio->bi_vcnt > 0) { 722 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 723 724 if (page == prev->bv_page && 725 offset == prev->bv_offset + prev->bv_len) { 726 unsigned int prev_bv_len = prev->bv_len; 727 prev->bv_len += len; 728 729 if (q->merge_bvec_fn) { 730 struct bvec_merge_data bvm = { 731 /* prev_bvec is already charged in 732 bi_size, discharge it in order to 733 simulate merging updated prev_bvec 734 as new bvec. */ 735 .bi_bdev = bio->bi_bdev, 736 .bi_sector = bio->bi_iter.bi_sector, 737 .bi_size = bio->bi_iter.bi_size - 738 prev_bv_len, 739 .bi_rw = bio->bi_rw, 740 }; 741 742 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) { 743 prev->bv_len -= len; 744 return 0; 745 } 746 } 747 748 goto done; 749 } 750 751 /* 752 * If the queue doesn't support SG gaps and adding this 753 * offset would create a gap, disallow it. 754 */ 755 if (q->queue_flags & (1 << QUEUE_FLAG_SG_GAPS) && 756 bvec_gap_to_prev(prev, offset)) 757 return 0; 758 } 759 760 if (bio->bi_vcnt >= bio->bi_max_vecs) 761 return 0; 762 763 /* 764 * we might lose a segment or two here, but rather that than 765 * make this too complex. 766 */ 767 768 while (bio->bi_phys_segments >= queue_max_segments(q)) { 769 770 if (retried_segments) 771 return 0; 772 773 retried_segments = 1; 774 blk_recount_segments(q, bio); 775 } 776 777 /* 778 * setup the new entry, we might clear it again later if we 779 * cannot add the page 780 */ 781 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 782 bvec->bv_page = page; 783 bvec->bv_len = len; 784 bvec->bv_offset = offset; 785 786 /* 787 * if queue has other restrictions (eg varying max sector size 788 * depending on offset), it can specify a merge_bvec_fn in the 789 * queue to get further control 790 */ 791 if (q->merge_bvec_fn) { 792 struct bvec_merge_data bvm = { 793 .bi_bdev = bio->bi_bdev, 794 .bi_sector = bio->bi_iter.bi_sector, 795 .bi_size = bio->bi_iter.bi_size, 796 .bi_rw = bio->bi_rw, 797 }; 798 799 /* 800 * merge_bvec_fn() returns number of bytes it can accept 801 * at this offset 802 */ 803 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) { 804 bvec->bv_page = NULL; 805 bvec->bv_len = 0; 806 bvec->bv_offset = 0; 807 return 0; 808 } 809 } 810 811 /* If we may be able to merge these biovecs, force a recount */ 812 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) 813 bio->bi_flags &= ~(1 << BIO_SEG_VALID); 814 815 bio->bi_vcnt++; 816 bio->bi_phys_segments++; 817 done: 818 bio->bi_iter.bi_size += len; 819 return len; 820 } 821 822 /** 823 * bio_add_pc_page - attempt to add page to bio 824 * @q: the target queue 825 * @bio: destination bio 826 * @page: page to add 827 * @len: vec entry length 828 * @offset: vec entry offset 829 * 830 * Attempt to add a page to the bio_vec maplist. This can fail for a 831 * number of reasons, such as the bio being full or target block device 832 * limitations. The target block device must allow bio's up to PAGE_SIZE, 833 * so it is always possible to add a single page to an empty bio. 834 * 835 * This should only be used by REQ_PC bios. 836 */ 837 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page, 838 unsigned int len, unsigned int offset) 839 { 840 return __bio_add_page(q, bio, page, len, offset, 841 queue_max_hw_sectors(q)); 842 } 843 EXPORT_SYMBOL(bio_add_pc_page); 844 845 /** 846 * bio_add_page - attempt to add page to bio 847 * @bio: destination bio 848 * @page: page to add 849 * @len: vec entry length 850 * @offset: vec entry offset 851 * 852 * Attempt to add a page to the bio_vec maplist. This can fail for a 853 * number of reasons, such as the bio being full or target block device 854 * limitations. The target block device must allow bio's up to PAGE_SIZE, 855 * so it is always possible to add a single page to an empty bio. 856 */ 857 int bio_add_page(struct bio *bio, struct page *page, unsigned int len, 858 unsigned int offset) 859 { 860 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 861 unsigned int max_sectors; 862 863 max_sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector); 864 if ((max_sectors < (len >> 9)) && !bio->bi_iter.bi_size) 865 max_sectors = len >> 9; 866 867 return __bio_add_page(q, bio, page, len, offset, max_sectors); 868 } 869 EXPORT_SYMBOL(bio_add_page); 870 871 struct submit_bio_ret { 872 struct completion event; 873 int error; 874 }; 875 876 static void submit_bio_wait_endio(struct bio *bio, int error) 877 { 878 struct submit_bio_ret *ret = bio->bi_private; 879 880 ret->error = error; 881 complete(&ret->event); 882 } 883 884 /** 885 * submit_bio_wait - submit a bio, and wait until it completes 886 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 887 * @bio: The &struct bio which describes the I/O 888 * 889 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 890 * bio_endio() on failure. 891 */ 892 int submit_bio_wait(int rw, struct bio *bio) 893 { 894 struct submit_bio_ret ret; 895 896 rw |= REQ_SYNC; 897 init_completion(&ret.event); 898 bio->bi_private = &ret; 899 bio->bi_end_io = submit_bio_wait_endio; 900 submit_bio(rw, bio); 901 wait_for_completion(&ret.event); 902 903 return ret.error; 904 } 905 EXPORT_SYMBOL(submit_bio_wait); 906 907 /** 908 * bio_advance - increment/complete a bio by some number of bytes 909 * @bio: bio to advance 910 * @bytes: number of bytes to complete 911 * 912 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 913 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 914 * be updated on the last bvec as well. 915 * 916 * @bio will then represent the remaining, uncompleted portion of the io. 917 */ 918 void bio_advance(struct bio *bio, unsigned bytes) 919 { 920 if (bio_integrity(bio)) 921 bio_integrity_advance(bio, bytes); 922 923 bio_advance_iter(bio, &bio->bi_iter, bytes); 924 } 925 EXPORT_SYMBOL(bio_advance); 926 927 /** 928 * bio_alloc_pages - allocates a single page for each bvec in a bio 929 * @bio: bio to allocate pages for 930 * @gfp_mask: flags for allocation 931 * 932 * Allocates pages up to @bio->bi_vcnt. 933 * 934 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are 935 * freed. 936 */ 937 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask) 938 { 939 int i; 940 struct bio_vec *bv; 941 942 bio_for_each_segment_all(bv, bio, i) { 943 bv->bv_page = alloc_page(gfp_mask); 944 if (!bv->bv_page) { 945 while (--bv >= bio->bi_io_vec) 946 __free_page(bv->bv_page); 947 return -ENOMEM; 948 } 949 } 950 951 return 0; 952 } 953 EXPORT_SYMBOL(bio_alloc_pages); 954 955 /** 956 * bio_copy_data - copy contents of data buffers from one chain of bios to 957 * another 958 * @src: source bio list 959 * @dst: destination bio list 960 * 961 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats 962 * @src and @dst as linked lists of bios. 963 * 964 * Stops when it reaches the end of either @src or @dst - that is, copies 965 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 966 */ 967 void bio_copy_data(struct bio *dst, struct bio *src) 968 { 969 struct bvec_iter src_iter, dst_iter; 970 struct bio_vec src_bv, dst_bv; 971 void *src_p, *dst_p; 972 unsigned bytes; 973 974 src_iter = src->bi_iter; 975 dst_iter = dst->bi_iter; 976 977 while (1) { 978 if (!src_iter.bi_size) { 979 src = src->bi_next; 980 if (!src) 981 break; 982 983 src_iter = src->bi_iter; 984 } 985 986 if (!dst_iter.bi_size) { 987 dst = dst->bi_next; 988 if (!dst) 989 break; 990 991 dst_iter = dst->bi_iter; 992 } 993 994 src_bv = bio_iter_iovec(src, src_iter); 995 dst_bv = bio_iter_iovec(dst, dst_iter); 996 997 bytes = min(src_bv.bv_len, dst_bv.bv_len); 998 999 src_p = kmap_atomic(src_bv.bv_page); 1000 dst_p = kmap_atomic(dst_bv.bv_page); 1001 1002 memcpy(dst_p + dst_bv.bv_offset, 1003 src_p + src_bv.bv_offset, 1004 bytes); 1005 1006 kunmap_atomic(dst_p); 1007 kunmap_atomic(src_p); 1008 1009 bio_advance_iter(src, &src_iter, bytes); 1010 bio_advance_iter(dst, &dst_iter, bytes); 1011 } 1012 } 1013 EXPORT_SYMBOL(bio_copy_data); 1014 1015 struct bio_map_data { 1016 int nr_sgvecs; 1017 int is_our_pages; 1018 struct sg_iovec sgvecs[]; 1019 }; 1020 1021 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio, 1022 const struct sg_iovec *iov, int iov_count, 1023 int is_our_pages) 1024 { 1025 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count); 1026 bmd->nr_sgvecs = iov_count; 1027 bmd->is_our_pages = is_our_pages; 1028 bio->bi_private = bmd; 1029 } 1030 1031 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count, 1032 gfp_t gfp_mask) 1033 { 1034 if (iov_count > UIO_MAXIOV) 1035 return NULL; 1036 1037 return kmalloc(sizeof(struct bio_map_data) + 1038 sizeof(struct sg_iovec) * iov_count, gfp_mask); 1039 } 1040 1041 static int __bio_copy_iov(struct bio *bio, const struct sg_iovec *iov, int iov_count, 1042 int to_user, int from_user, int do_free_page) 1043 { 1044 int ret = 0, i; 1045 struct bio_vec *bvec; 1046 int iov_idx = 0; 1047 unsigned int iov_off = 0; 1048 1049 bio_for_each_segment_all(bvec, bio, i) { 1050 char *bv_addr = page_address(bvec->bv_page); 1051 unsigned int bv_len = bvec->bv_len; 1052 1053 while (bv_len && iov_idx < iov_count) { 1054 unsigned int bytes; 1055 char __user *iov_addr; 1056 1057 bytes = min_t(unsigned int, 1058 iov[iov_idx].iov_len - iov_off, bv_len); 1059 iov_addr = iov[iov_idx].iov_base + iov_off; 1060 1061 if (!ret) { 1062 if (to_user) 1063 ret = copy_to_user(iov_addr, bv_addr, 1064 bytes); 1065 1066 if (from_user) 1067 ret = copy_from_user(bv_addr, iov_addr, 1068 bytes); 1069 1070 if (ret) 1071 ret = -EFAULT; 1072 } 1073 1074 bv_len -= bytes; 1075 bv_addr += bytes; 1076 iov_addr += bytes; 1077 iov_off += bytes; 1078 1079 if (iov[iov_idx].iov_len == iov_off) { 1080 iov_idx++; 1081 iov_off = 0; 1082 } 1083 } 1084 1085 if (do_free_page) 1086 __free_page(bvec->bv_page); 1087 } 1088 1089 return ret; 1090 } 1091 1092 /** 1093 * bio_uncopy_user - finish previously mapped bio 1094 * @bio: bio being terminated 1095 * 1096 * Free pages allocated from bio_copy_user() and write back data 1097 * to user space in case of a read. 1098 */ 1099 int bio_uncopy_user(struct bio *bio) 1100 { 1101 struct bio_map_data *bmd = bio->bi_private; 1102 struct bio_vec *bvec; 1103 int ret = 0, i; 1104 1105 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1106 /* 1107 * if we're in a workqueue, the request is orphaned, so 1108 * don't copy into a random user address space, just free. 1109 */ 1110 if (current->mm) 1111 ret = __bio_copy_iov(bio, bmd->sgvecs, bmd->nr_sgvecs, 1112 bio_data_dir(bio) == READ, 1113 0, bmd->is_our_pages); 1114 else if (bmd->is_our_pages) 1115 bio_for_each_segment_all(bvec, bio, i) 1116 __free_page(bvec->bv_page); 1117 } 1118 kfree(bmd); 1119 bio_put(bio); 1120 return ret; 1121 } 1122 EXPORT_SYMBOL(bio_uncopy_user); 1123 1124 /** 1125 * bio_copy_user_iov - copy user data to bio 1126 * @q: destination block queue 1127 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1128 * @iov: the iovec. 1129 * @iov_count: number of elements in the iovec 1130 * @write_to_vm: bool indicating writing to pages or not 1131 * @gfp_mask: memory allocation flags 1132 * 1133 * Prepares and returns a bio for indirect user io, bouncing data 1134 * to/from kernel pages as necessary. Must be paired with 1135 * call bio_uncopy_user() on io completion. 1136 */ 1137 struct bio *bio_copy_user_iov(struct request_queue *q, 1138 struct rq_map_data *map_data, 1139 const struct sg_iovec *iov, int iov_count, 1140 int write_to_vm, gfp_t gfp_mask) 1141 { 1142 struct bio_map_data *bmd; 1143 struct bio_vec *bvec; 1144 struct page *page; 1145 struct bio *bio; 1146 int i, ret; 1147 int nr_pages = 0; 1148 unsigned int len = 0; 1149 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0; 1150 1151 for (i = 0; i < iov_count; i++) { 1152 unsigned long uaddr; 1153 unsigned long end; 1154 unsigned long start; 1155 1156 uaddr = (unsigned long)iov[i].iov_base; 1157 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1158 start = uaddr >> PAGE_SHIFT; 1159 1160 /* 1161 * Overflow, abort 1162 */ 1163 if (end < start) 1164 return ERR_PTR(-EINVAL); 1165 1166 nr_pages += end - start; 1167 len += iov[i].iov_len; 1168 } 1169 1170 if (offset) 1171 nr_pages++; 1172 1173 bmd = bio_alloc_map_data(iov_count, gfp_mask); 1174 if (!bmd) 1175 return ERR_PTR(-ENOMEM); 1176 1177 ret = -ENOMEM; 1178 bio = bio_kmalloc(gfp_mask, nr_pages); 1179 if (!bio) 1180 goto out_bmd; 1181 1182 if (!write_to_vm) 1183 bio->bi_rw |= REQ_WRITE; 1184 1185 ret = 0; 1186 1187 if (map_data) { 1188 nr_pages = 1 << map_data->page_order; 1189 i = map_data->offset / PAGE_SIZE; 1190 } 1191 while (len) { 1192 unsigned int bytes = PAGE_SIZE; 1193 1194 bytes -= offset; 1195 1196 if (bytes > len) 1197 bytes = len; 1198 1199 if (map_data) { 1200 if (i == map_data->nr_entries * nr_pages) { 1201 ret = -ENOMEM; 1202 break; 1203 } 1204 1205 page = map_data->pages[i / nr_pages]; 1206 page += (i % nr_pages); 1207 1208 i++; 1209 } else { 1210 page = alloc_page(q->bounce_gfp | gfp_mask); 1211 if (!page) { 1212 ret = -ENOMEM; 1213 break; 1214 } 1215 } 1216 1217 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) 1218 break; 1219 1220 len -= bytes; 1221 offset = 0; 1222 } 1223 1224 if (ret) 1225 goto cleanup; 1226 1227 /* 1228 * success 1229 */ 1230 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) || 1231 (map_data && map_data->from_user)) { 1232 ret = __bio_copy_iov(bio, iov, iov_count, 0, 1, 0); 1233 if (ret) 1234 goto cleanup; 1235 } 1236 1237 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1); 1238 return bio; 1239 cleanup: 1240 if (!map_data) 1241 bio_for_each_segment_all(bvec, bio, i) 1242 __free_page(bvec->bv_page); 1243 1244 bio_put(bio); 1245 out_bmd: 1246 kfree(bmd); 1247 return ERR_PTR(ret); 1248 } 1249 1250 /** 1251 * bio_copy_user - copy user data to bio 1252 * @q: destination block queue 1253 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1254 * @uaddr: start of user address 1255 * @len: length in bytes 1256 * @write_to_vm: bool indicating writing to pages or not 1257 * @gfp_mask: memory allocation flags 1258 * 1259 * Prepares and returns a bio for indirect user io, bouncing data 1260 * to/from kernel pages as necessary. Must be paired with 1261 * call bio_uncopy_user() on io completion. 1262 */ 1263 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data, 1264 unsigned long uaddr, unsigned int len, 1265 int write_to_vm, gfp_t gfp_mask) 1266 { 1267 struct sg_iovec iov; 1268 1269 iov.iov_base = (void __user *)uaddr; 1270 iov.iov_len = len; 1271 1272 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask); 1273 } 1274 EXPORT_SYMBOL(bio_copy_user); 1275 1276 static struct bio *__bio_map_user_iov(struct request_queue *q, 1277 struct block_device *bdev, 1278 const struct sg_iovec *iov, int iov_count, 1279 int write_to_vm, gfp_t gfp_mask) 1280 { 1281 int i, j; 1282 int nr_pages = 0; 1283 struct page **pages; 1284 struct bio *bio; 1285 int cur_page = 0; 1286 int ret, offset; 1287 1288 for (i = 0; i < iov_count; i++) { 1289 unsigned long uaddr = (unsigned long)iov[i].iov_base; 1290 unsigned long len = iov[i].iov_len; 1291 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1292 unsigned long start = uaddr >> PAGE_SHIFT; 1293 1294 /* 1295 * Overflow, abort 1296 */ 1297 if (end < start) 1298 return ERR_PTR(-EINVAL); 1299 1300 nr_pages += end - start; 1301 /* 1302 * buffer must be aligned to at least hardsector size for now 1303 */ 1304 if (uaddr & queue_dma_alignment(q)) 1305 return ERR_PTR(-EINVAL); 1306 } 1307 1308 if (!nr_pages) 1309 return ERR_PTR(-EINVAL); 1310 1311 bio = bio_kmalloc(gfp_mask, nr_pages); 1312 if (!bio) 1313 return ERR_PTR(-ENOMEM); 1314 1315 ret = -ENOMEM; 1316 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); 1317 if (!pages) 1318 goto out; 1319 1320 for (i = 0; i < iov_count; i++) { 1321 unsigned long uaddr = (unsigned long)iov[i].iov_base; 1322 unsigned long len = iov[i].iov_len; 1323 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1324 unsigned long start = uaddr >> PAGE_SHIFT; 1325 const int local_nr_pages = end - start; 1326 const int page_limit = cur_page + local_nr_pages; 1327 1328 ret = get_user_pages_fast(uaddr, local_nr_pages, 1329 write_to_vm, &pages[cur_page]); 1330 if (ret < local_nr_pages) { 1331 ret = -EFAULT; 1332 goto out_unmap; 1333 } 1334 1335 offset = uaddr & ~PAGE_MASK; 1336 for (j = cur_page; j < page_limit; j++) { 1337 unsigned int bytes = PAGE_SIZE - offset; 1338 1339 if (len <= 0) 1340 break; 1341 1342 if (bytes > len) 1343 bytes = len; 1344 1345 /* 1346 * sorry... 1347 */ 1348 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < 1349 bytes) 1350 break; 1351 1352 len -= bytes; 1353 offset = 0; 1354 } 1355 1356 cur_page = j; 1357 /* 1358 * release the pages we didn't map into the bio, if any 1359 */ 1360 while (j < page_limit) 1361 page_cache_release(pages[j++]); 1362 } 1363 1364 kfree(pages); 1365 1366 /* 1367 * set data direction, and check if mapped pages need bouncing 1368 */ 1369 if (!write_to_vm) 1370 bio->bi_rw |= REQ_WRITE; 1371 1372 bio->bi_bdev = bdev; 1373 bio->bi_flags |= (1 << BIO_USER_MAPPED); 1374 return bio; 1375 1376 out_unmap: 1377 for (i = 0; i < nr_pages; i++) { 1378 if(!pages[i]) 1379 break; 1380 page_cache_release(pages[i]); 1381 } 1382 out: 1383 kfree(pages); 1384 bio_put(bio); 1385 return ERR_PTR(ret); 1386 } 1387 1388 /** 1389 * bio_map_user - map user address into bio 1390 * @q: the struct request_queue for the bio 1391 * @bdev: destination block device 1392 * @uaddr: start of user address 1393 * @len: length in bytes 1394 * @write_to_vm: bool indicating writing to pages or not 1395 * @gfp_mask: memory allocation flags 1396 * 1397 * Map the user space address into a bio suitable for io to a block 1398 * device. Returns an error pointer in case of error. 1399 */ 1400 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev, 1401 unsigned long uaddr, unsigned int len, int write_to_vm, 1402 gfp_t gfp_mask) 1403 { 1404 struct sg_iovec iov; 1405 1406 iov.iov_base = (void __user *)uaddr; 1407 iov.iov_len = len; 1408 1409 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask); 1410 } 1411 EXPORT_SYMBOL(bio_map_user); 1412 1413 /** 1414 * bio_map_user_iov - map user sg_iovec table into bio 1415 * @q: the struct request_queue for the bio 1416 * @bdev: destination block device 1417 * @iov: the iovec. 1418 * @iov_count: number of elements in the iovec 1419 * @write_to_vm: bool indicating writing to pages or not 1420 * @gfp_mask: memory allocation flags 1421 * 1422 * Map the user space address into a bio suitable for io to a block 1423 * device. Returns an error pointer in case of error. 1424 */ 1425 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev, 1426 const struct sg_iovec *iov, int iov_count, 1427 int write_to_vm, gfp_t gfp_mask) 1428 { 1429 struct bio *bio; 1430 1431 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm, 1432 gfp_mask); 1433 if (IS_ERR(bio)) 1434 return bio; 1435 1436 /* 1437 * subtle -- if __bio_map_user() ended up bouncing a bio, 1438 * it would normally disappear when its bi_end_io is run. 1439 * however, we need it for the unmap, so grab an extra 1440 * reference to it 1441 */ 1442 bio_get(bio); 1443 1444 return bio; 1445 } 1446 1447 static void __bio_unmap_user(struct bio *bio) 1448 { 1449 struct bio_vec *bvec; 1450 int i; 1451 1452 /* 1453 * make sure we dirty pages we wrote to 1454 */ 1455 bio_for_each_segment_all(bvec, bio, i) { 1456 if (bio_data_dir(bio) == READ) 1457 set_page_dirty_lock(bvec->bv_page); 1458 1459 page_cache_release(bvec->bv_page); 1460 } 1461 1462 bio_put(bio); 1463 } 1464 1465 /** 1466 * bio_unmap_user - unmap a bio 1467 * @bio: the bio being unmapped 1468 * 1469 * Unmap a bio previously mapped by bio_map_user(). Must be called with 1470 * a process context. 1471 * 1472 * bio_unmap_user() may sleep. 1473 */ 1474 void bio_unmap_user(struct bio *bio) 1475 { 1476 __bio_unmap_user(bio); 1477 bio_put(bio); 1478 } 1479 EXPORT_SYMBOL(bio_unmap_user); 1480 1481 static void bio_map_kern_endio(struct bio *bio, int err) 1482 { 1483 bio_put(bio); 1484 } 1485 1486 static struct bio *__bio_map_kern(struct request_queue *q, void *data, 1487 unsigned int len, gfp_t gfp_mask) 1488 { 1489 unsigned long kaddr = (unsigned long)data; 1490 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1491 unsigned long start = kaddr >> PAGE_SHIFT; 1492 const int nr_pages = end - start; 1493 int offset, i; 1494 struct bio *bio; 1495 1496 bio = bio_kmalloc(gfp_mask, nr_pages); 1497 if (!bio) 1498 return ERR_PTR(-ENOMEM); 1499 1500 offset = offset_in_page(kaddr); 1501 for (i = 0; i < nr_pages; i++) { 1502 unsigned int bytes = PAGE_SIZE - offset; 1503 1504 if (len <= 0) 1505 break; 1506 1507 if (bytes > len) 1508 bytes = len; 1509 1510 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, 1511 offset) < bytes) 1512 break; 1513 1514 data += bytes; 1515 len -= bytes; 1516 offset = 0; 1517 } 1518 1519 bio->bi_end_io = bio_map_kern_endio; 1520 return bio; 1521 } 1522 1523 /** 1524 * bio_map_kern - map kernel address into bio 1525 * @q: the struct request_queue for the bio 1526 * @data: pointer to buffer to map 1527 * @len: length in bytes 1528 * @gfp_mask: allocation flags for bio allocation 1529 * 1530 * Map the kernel address into a bio suitable for io to a block 1531 * device. Returns an error pointer in case of error. 1532 */ 1533 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1534 gfp_t gfp_mask) 1535 { 1536 struct bio *bio; 1537 1538 bio = __bio_map_kern(q, data, len, gfp_mask); 1539 if (IS_ERR(bio)) 1540 return bio; 1541 1542 if (bio->bi_iter.bi_size == len) 1543 return bio; 1544 1545 /* 1546 * Don't support partial mappings. 1547 */ 1548 bio_put(bio); 1549 return ERR_PTR(-EINVAL); 1550 } 1551 EXPORT_SYMBOL(bio_map_kern); 1552 1553 static void bio_copy_kern_endio(struct bio *bio, int err) 1554 { 1555 struct bio_vec *bvec; 1556 const int read = bio_data_dir(bio) == READ; 1557 struct bio_map_data *bmd = bio->bi_private; 1558 int i; 1559 char *p = bmd->sgvecs[0].iov_base; 1560 1561 bio_for_each_segment_all(bvec, bio, i) { 1562 char *addr = page_address(bvec->bv_page); 1563 1564 if (read) 1565 memcpy(p, addr, bvec->bv_len); 1566 1567 __free_page(bvec->bv_page); 1568 p += bvec->bv_len; 1569 } 1570 1571 kfree(bmd); 1572 bio_put(bio); 1573 } 1574 1575 /** 1576 * bio_copy_kern - copy kernel address into bio 1577 * @q: the struct request_queue for the bio 1578 * @data: pointer to buffer to copy 1579 * @len: length in bytes 1580 * @gfp_mask: allocation flags for bio and page allocation 1581 * @reading: data direction is READ 1582 * 1583 * copy the kernel address into a bio suitable for io to a block 1584 * device. Returns an error pointer in case of error. 1585 */ 1586 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1587 gfp_t gfp_mask, int reading) 1588 { 1589 struct bio *bio; 1590 struct bio_vec *bvec; 1591 int i; 1592 1593 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask); 1594 if (IS_ERR(bio)) 1595 return bio; 1596 1597 if (!reading) { 1598 void *p = data; 1599 1600 bio_for_each_segment_all(bvec, bio, i) { 1601 char *addr = page_address(bvec->bv_page); 1602 1603 memcpy(addr, p, bvec->bv_len); 1604 p += bvec->bv_len; 1605 } 1606 } 1607 1608 bio->bi_end_io = bio_copy_kern_endio; 1609 1610 return bio; 1611 } 1612 EXPORT_SYMBOL(bio_copy_kern); 1613 1614 /* 1615 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1616 * for performing direct-IO in BIOs. 1617 * 1618 * The problem is that we cannot run set_page_dirty() from interrupt context 1619 * because the required locks are not interrupt-safe. So what we can do is to 1620 * mark the pages dirty _before_ performing IO. And in interrupt context, 1621 * check that the pages are still dirty. If so, fine. If not, redirty them 1622 * in process context. 1623 * 1624 * We special-case compound pages here: normally this means reads into hugetlb 1625 * pages. The logic in here doesn't really work right for compound pages 1626 * because the VM does not uniformly chase down the head page in all cases. 1627 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1628 * handle them at all. So we skip compound pages here at an early stage. 1629 * 1630 * Note that this code is very hard to test under normal circumstances because 1631 * direct-io pins the pages with get_user_pages(). This makes 1632 * is_page_cache_freeable return false, and the VM will not clean the pages. 1633 * But other code (eg, flusher threads) could clean the pages if they are mapped 1634 * pagecache. 1635 * 1636 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1637 * deferred bio dirtying paths. 1638 */ 1639 1640 /* 1641 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1642 */ 1643 void bio_set_pages_dirty(struct bio *bio) 1644 { 1645 struct bio_vec *bvec; 1646 int i; 1647 1648 bio_for_each_segment_all(bvec, bio, i) { 1649 struct page *page = bvec->bv_page; 1650 1651 if (page && !PageCompound(page)) 1652 set_page_dirty_lock(page); 1653 } 1654 } 1655 1656 static void bio_release_pages(struct bio *bio) 1657 { 1658 struct bio_vec *bvec; 1659 int i; 1660 1661 bio_for_each_segment_all(bvec, bio, i) { 1662 struct page *page = bvec->bv_page; 1663 1664 if (page) 1665 put_page(page); 1666 } 1667 } 1668 1669 /* 1670 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1671 * If they are, then fine. If, however, some pages are clean then they must 1672 * have been written out during the direct-IO read. So we take another ref on 1673 * the BIO and the offending pages and re-dirty the pages in process context. 1674 * 1675 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1676 * here on. It will run one page_cache_release() against each page and will 1677 * run one bio_put() against the BIO. 1678 */ 1679 1680 static void bio_dirty_fn(struct work_struct *work); 1681 1682 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1683 static DEFINE_SPINLOCK(bio_dirty_lock); 1684 static struct bio *bio_dirty_list; 1685 1686 /* 1687 * This runs in process context 1688 */ 1689 static void bio_dirty_fn(struct work_struct *work) 1690 { 1691 unsigned long flags; 1692 struct bio *bio; 1693 1694 spin_lock_irqsave(&bio_dirty_lock, flags); 1695 bio = bio_dirty_list; 1696 bio_dirty_list = NULL; 1697 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1698 1699 while (bio) { 1700 struct bio *next = bio->bi_private; 1701 1702 bio_set_pages_dirty(bio); 1703 bio_release_pages(bio); 1704 bio_put(bio); 1705 bio = next; 1706 } 1707 } 1708 1709 void bio_check_pages_dirty(struct bio *bio) 1710 { 1711 struct bio_vec *bvec; 1712 int nr_clean_pages = 0; 1713 int i; 1714 1715 bio_for_each_segment_all(bvec, bio, i) { 1716 struct page *page = bvec->bv_page; 1717 1718 if (PageDirty(page) || PageCompound(page)) { 1719 page_cache_release(page); 1720 bvec->bv_page = NULL; 1721 } else { 1722 nr_clean_pages++; 1723 } 1724 } 1725 1726 if (nr_clean_pages) { 1727 unsigned long flags; 1728 1729 spin_lock_irqsave(&bio_dirty_lock, flags); 1730 bio->bi_private = bio_dirty_list; 1731 bio_dirty_list = bio; 1732 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1733 schedule_work(&bio_dirty_work); 1734 } else { 1735 bio_put(bio); 1736 } 1737 } 1738 1739 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1740 void bio_flush_dcache_pages(struct bio *bi) 1741 { 1742 struct bio_vec bvec; 1743 struct bvec_iter iter; 1744 1745 bio_for_each_segment(bvec, bi, iter) 1746 flush_dcache_page(bvec.bv_page); 1747 } 1748 EXPORT_SYMBOL(bio_flush_dcache_pages); 1749 #endif 1750 1751 /** 1752 * bio_endio - end I/O on a bio 1753 * @bio: bio 1754 * @error: error, if any 1755 * 1756 * Description: 1757 * bio_endio() will end I/O on the whole bio. bio_endio() is the 1758 * preferred way to end I/O on a bio, it takes care of clearing 1759 * BIO_UPTODATE on error. @error is 0 on success, and and one of the 1760 * established -Exxxx (-EIO, for instance) error values in case 1761 * something went wrong. No one should call bi_end_io() directly on a 1762 * bio unless they own it and thus know that it has an end_io 1763 * function. 1764 **/ 1765 void bio_endio(struct bio *bio, int error) 1766 { 1767 while (bio) { 1768 BUG_ON(atomic_read(&bio->bi_remaining) <= 0); 1769 1770 if (error) 1771 clear_bit(BIO_UPTODATE, &bio->bi_flags); 1772 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 1773 error = -EIO; 1774 1775 if (!atomic_dec_and_test(&bio->bi_remaining)) 1776 return; 1777 1778 /* 1779 * Need to have a real endio function for chained bios, 1780 * otherwise various corner cases will break (like stacking 1781 * block devices that save/restore bi_end_io) - however, we want 1782 * to avoid unbounded recursion and blowing the stack. Tail call 1783 * optimization would handle this, but compiling with frame 1784 * pointers also disables gcc's sibling call optimization. 1785 */ 1786 if (bio->bi_end_io == bio_chain_endio) { 1787 struct bio *parent = bio->bi_private; 1788 bio_put(bio); 1789 bio = parent; 1790 } else { 1791 if (bio->bi_end_io) 1792 bio->bi_end_io(bio, error); 1793 bio = NULL; 1794 } 1795 } 1796 } 1797 EXPORT_SYMBOL(bio_endio); 1798 1799 /** 1800 * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining 1801 * @bio: bio 1802 * @error: error, if any 1803 * 1804 * For code that has saved and restored bi_end_io; thing hard before using this 1805 * function, probably you should've cloned the entire bio. 1806 **/ 1807 void bio_endio_nodec(struct bio *bio, int error) 1808 { 1809 atomic_inc(&bio->bi_remaining); 1810 bio_endio(bio, error); 1811 } 1812 EXPORT_SYMBOL(bio_endio_nodec); 1813 1814 /** 1815 * bio_split - split a bio 1816 * @bio: bio to split 1817 * @sectors: number of sectors to split from the front of @bio 1818 * @gfp: gfp mask 1819 * @bs: bio set to allocate from 1820 * 1821 * Allocates and returns a new bio which represents @sectors from the start of 1822 * @bio, and updates @bio to represent the remaining sectors. 1823 * 1824 * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's 1825 * responsibility to ensure that @bio is not freed before the split. 1826 */ 1827 struct bio *bio_split(struct bio *bio, int sectors, 1828 gfp_t gfp, struct bio_set *bs) 1829 { 1830 struct bio *split = NULL; 1831 1832 BUG_ON(sectors <= 0); 1833 BUG_ON(sectors >= bio_sectors(bio)); 1834 1835 split = bio_clone_fast(bio, gfp, bs); 1836 if (!split) 1837 return NULL; 1838 1839 split->bi_iter.bi_size = sectors << 9; 1840 1841 if (bio_integrity(split)) 1842 bio_integrity_trim(split, 0, sectors); 1843 1844 bio_advance(bio, split->bi_iter.bi_size); 1845 1846 return split; 1847 } 1848 EXPORT_SYMBOL(bio_split); 1849 1850 /** 1851 * bio_trim - trim a bio 1852 * @bio: bio to trim 1853 * @offset: number of sectors to trim from the front of @bio 1854 * @size: size we want to trim @bio to, in sectors 1855 */ 1856 void bio_trim(struct bio *bio, int offset, int size) 1857 { 1858 /* 'bio' is a cloned bio which we need to trim to match 1859 * the given offset and size. 1860 */ 1861 1862 size <<= 9; 1863 if (offset == 0 && size == bio->bi_iter.bi_size) 1864 return; 1865 1866 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1867 1868 bio_advance(bio, offset << 9); 1869 1870 bio->bi_iter.bi_size = size; 1871 } 1872 EXPORT_SYMBOL_GPL(bio_trim); 1873 1874 /* 1875 * create memory pools for biovec's in a bio_set. 1876 * use the global biovec slabs created for general use. 1877 */ 1878 mempool_t *biovec_create_pool(int pool_entries) 1879 { 1880 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX; 1881 1882 return mempool_create_slab_pool(pool_entries, bp->slab); 1883 } 1884 1885 void bioset_free(struct bio_set *bs) 1886 { 1887 if (bs->rescue_workqueue) 1888 destroy_workqueue(bs->rescue_workqueue); 1889 1890 if (bs->bio_pool) 1891 mempool_destroy(bs->bio_pool); 1892 1893 if (bs->bvec_pool) 1894 mempool_destroy(bs->bvec_pool); 1895 1896 bioset_integrity_free(bs); 1897 bio_put_slab(bs); 1898 1899 kfree(bs); 1900 } 1901 EXPORT_SYMBOL(bioset_free); 1902 1903 /** 1904 * bioset_create - Create a bio_set 1905 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1906 * @front_pad: Number of bytes to allocate in front of the returned bio 1907 * 1908 * Description: 1909 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1910 * to ask for a number of bytes to be allocated in front of the bio. 1911 * Front pad allocation is useful for embedding the bio inside 1912 * another structure, to avoid allocating extra data to go with the bio. 1913 * Note that the bio must be embedded at the END of that structure always, 1914 * or things will break badly. 1915 */ 1916 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) 1917 { 1918 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1919 struct bio_set *bs; 1920 1921 bs = kzalloc(sizeof(*bs), GFP_KERNEL); 1922 if (!bs) 1923 return NULL; 1924 1925 bs->front_pad = front_pad; 1926 1927 spin_lock_init(&bs->rescue_lock); 1928 bio_list_init(&bs->rescue_list); 1929 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1930 1931 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1932 if (!bs->bio_slab) { 1933 kfree(bs); 1934 return NULL; 1935 } 1936 1937 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); 1938 if (!bs->bio_pool) 1939 goto bad; 1940 1941 bs->bvec_pool = biovec_create_pool(pool_size); 1942 if (!bs->bvec_pool) 1943 goto bad; 1944 1945 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1946 if (!bs->rescue_workqueue) 1947 goto bad; 1948 1949 return bs; 1950 bad: 1951 bioset_free(bs); 1952 return NULL; 1953 } 1954 EXPORT_SYMBOL(bioset_create); 1955 1956 #ifdef CONFIG_BLK_CGROUP 1957 /** 1958 * bio_associate_current - associate a bio with %current 1959 * @bio: target bio 1960 * 1961 * Associate @bio with %current if it hasn't been associated yet. Block 1962 * layer will treat @bio as if it were issued by %current no matter which 1963 * task actually issues it. 1964 * 1965 * This function takes an extra reference of @task's io_context and blkcg 1966 * which will be put when @bio is released. The caller must own @bio, 1967 * ensure %current->io_context exists, and is responsible for synchronizing 1968 * calls to this function. 1969 */ 1970 int bio_associate_current(struct bio *bio) 1971 { 1972 struct io_context *ioc; 1973 struct cgroup_subsys_state *css; 1974 1975 if (bio->bi_ioc) 1976 return -EBUSY; 1977 1978 ioc = current->io_context; 1979 if (!ioc) 1980 return -ENOENT; 1981 1982 /* acquire active ref on @ioc and associate */ 1983 get_io_context_active(ioc); 1984 bio->bi_ioc = ioc; 1985 1986 /* associate blkcg if exists */ 1987 rcu_read_lock(); 1988 css = task_css(current, blkio_cgrp_id); 1989 if (css && css_tryget_online(css)) 1990 bio->bi_css = css; 1991 rcu_read_unlock(); 1992 1993 return 0; 1994 } 1995 1996 /** 1997 * bio_disassociate_task - undo bio_associate_current() 1998 * @bio: target bio 1999 */ 2000 void bio_disassociate_task(struct bio *bio) 2001 { 2002 if (bio->bi_ioc) { 2003 put_io_context(bio->bi_ioc); 2004 bio->bi_ioc = NULL; 2005 } 2006 if (bio->bi_css) { 2007 css_put(bio->bi_css); 2008 bio->bi_css = NULL; 2009 } 2010 } 2011 2012 #endif /* CONFIG_BLK_CGROUP */ 2013 2014 static void __init biovec_init_slabs(void) 2015 { 2016 int i; 2017 2018 for (i = 0; i < BIOVEC_NR_POOLS; i++) { 2019 int size; 2020 struct biovec_slab *bvs = bvec_slabs + i; 2021 2022 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2023 bvs->slab = NULL; 2024 continue; 2025 } 2026 2027 size = bvs->nr_vecs * sizeof(struct bio_vec); 2028 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2029 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2030 } 2031 } 2032 2033 static int __init init_bio(void) 2034 { 2035 bio_slab_max = 2; 2036 bio_slab_nr = 0; 2037 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); 2038 if (!bio_slabs) 2039 panic("bio: can't allocate bios\n"); 2040 2041 bio_integrity_init(); 2042 biovec_init_slabs(); 2043 2044 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); 2045 if (!fs_bio_set) 2046 panic("bio: can't allocate bios\n"); 2047 2048 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) 2049 panic("bio: can't create integrity pool\n"); 2050 2051 return 0; 2052 } 2053 subsys_initcall(init_bio); 2054