xref: /openbmc/linux/block/bio.c (revision 26ba4e57)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 
21 #include <trace/events/block.h>
22 #include "blk.h"
23 #include "blk-rq-qos.h"
24 
25 /*
26  * Test patch to inline a certain number of bi_io_vec's inside the bio
27  * itself, to shrink a bio data allocation from two mempool calls to one
28  */
29 #define BIO_INLINE_VECS		4
30 
31 /*
32  * if you change this list, also change bvec_alloc or things will
33  * break badly! cannot be bigger than what you can fit into an
34  * unsigned short
35  */
36 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
37 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
38 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
39 };
40 #undef BV
41 
42 /*
43  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
44  * IO code that does not need private memory pools.
45  */
46 struct bio_set fs_bio_set;
47 EXPORT_SYMBOL(fs_bio_set);
48 
49 /*
50  * Our slab pool management
51  */
52 struct bio_slab {
53 	struct kmem_cache *slab;
54 	unsigned int slab_ref;
55 	unsigned int slab_size;
56 	char name[8];
57 };
58 static DEFINE_MUTEX(bio_slab_lock);
59 static struct bio_slab *bio_slabs;
60 static unsigned int bio_slab_nr, bio_slab_max;
61 
62 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
63 {
64 	unsigned int sz = sizeof(struct bio) + extra_size;
65 	struct kmem_cache *slab = NULL;
66 	struct bio_slab *bslab, *new_bio_slabs;
67 	unsigned int new_bio_slab_max;
68 	unsigned int i, entry = -1;
69 
70 	mutex_lock(&bio_slab_lock);
71 
72 	i = 0;
73 	while (i < bio_slab_nr) {
74 		bslab = &bio_slabs[i];
75 
76 		if (!bslab->slab && entry == -1)
77 			entry = i;
78 		else if (bslab->slab_size == sz) {
79 			slab = bslab->slab;
80 			bslab->slab_ref++;
81 			break;
82 		}
83 		i++;
84 	}
85 
86 	if (slab)
87 		goto out_unlock;
88 
89 	if (bio_slab_nr == bio_slab_max && entry == -1) {
90 		new_bio_slab_max = bio_slab_max << 1;
91 		new_bio_slabs = krealloc(bio_slabs,
92 					 new_bio_slab_max * sizeof(struct bio_slab),
93 					 GFP_KERNEL);
94 		if (!new_bio_slabs)
95 			goto out_unlock;
96 		bio_slab_max = new_bio_slab_max;
97 		bio_slabs = new_bio_slabs;
98 	}
99 	if (entry == -1)
100 		entry = bio_slab_nr++;
101 
102 	bslab = &bio_slabs[entry];
103 
104 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
105 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
106 				 SLAB_HWCACHE_ALIGN, NULL);
107 	if (!slab)
108 		goto out_unlock;
109 
110 	bslab->slab = slab;
111 	bslab->slab_ref = 1;
112 	bslab->slab_size = sz;
113 out_unlock:
114 	mutex_unlock(&bio_slab_lock);
115 	return slab;
116 }
117 
118 static void bio_put_slab(struct bio_set *bs)
119 {
120 	struct bio_slab *bslab = NULL;
121 	unsigned int i;
122 
123 	mutex_lock(&bio_slab_lock);
124 
125 	for (i = 0; i < bio_slab_nr; i++) {
126 		if (bs->bio_slab == bio_slabs[i].slab) {
127 			bslab = &bio_slabs[i];
128 			break;
129 		}
130 	}
131 
132 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
133 		goto out;
134 
135 	WARN_ON(!bslab->slab_ref);
136 
137 	if (--bslab->slab_ref)
138 		goto out;
139 
140 	kmem_cache_destroy(bslab->slab);
141 	bslab->slab = NULL;
142 
143 out:
144 	mutex_unlock(&bio_slab_lock);
145 }
146 
147 unsigned int bvec_nr_vecs(unsigned short idx)
148 {
149 	return bvec_slabs[--idx].nr_vecs;
150 }
151 
152 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
153 {
154 	if (!idx)
155 		return;
156 	idx--;
157 
158 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
159 
160 	if (idx == BVEC_POOL_MAX) {
161 		mempool_free(bv, pool);
162 	} else {
163 		struct biovec_slab *bvs = bvec_slabs + idx;
164 
165 		kmem_cache_free(bvs->slab, bv);
166 	}
167 }
168 
169 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
170 			   mempool_t *pool)
171 {
172 	struct bio_vec *bvl;
173 
174 	/*
175 	 * see comment near bvec_array define!
176 	 */
177 	switch (nr) {
178 	case 1:
179 		*idx = 0;
180 		break;
181 	case 2 ... 4:
182 		*idx = 1;
183 		break;
184 	case 5 ... 16:
185 		*idx = 2;
186 		break;
187 	case 17 ... 64:
188 		*idx = 3;
189 		break;
190 	case 65 ... 128:
191 		*idx = 4;
192 		break;
193 	case 129 ... BIO_MAX_PAGES:
194 		*idx = 5;
195 		break;
196 	default:
197 		return NULL;
198 	}
199 
200 	/*
201 	 * idx now points to the pool we want to allocate from. only the
202 	 * 1-vec entry pool is mempool backed.
203 	 */
204 	if (*idx == BVEC_POOL_MAX) {
205 fallback:
206 		bvl = mempool_alloc(pool, gfp_mask);
207 	} else {
208 		struct biovec_slab *bvs = bvec_slabs + *idx;
209 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
210 
211 		/*
212 		 * Make this allocation restricted and don't dump info on
213 		 * allocation failures, since we'll fallback to the mempool
214 		 * in case of failure.
215 		 */
216 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
217 
218 		/*
219 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
220 		 * is set, retry with the 1-entry mempool
221 		 */
222 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
223 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
224 			*idx = BVEC_POOL_MAX;
225 			goto fallback;
226 		}
227 	}
228 
229 	(*idx)++;
230 	return bvl;
231 }
232 
233 void bio_uninit(struct bio *bio)
234 {
235 	bio_disassociate_blkg(bio);
236 }
237 EXPORT_SYMBOL(bio_uninit);
238 
239 static void bio_free(struct bio *bio)
240 {
241 	struct bio_set *bs = bio->bi_pool;
242 	void *p;
243 
244 	bio_uninit(bio);
245 
246 	if (bs) {
247 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
248 
249 		/*
250 		 * If we have front padding, adjust the bio pointer before freeing
251 		 */
252 		p = bio;
253 		p -= bs->front_pad;
254 
255 		mempool_free(p, &bs->bio_pool);
256 	} else {
257 		/* Bio was allocated by bio_kmalloc() */
258 		kfree(bio);
259 	}
260 }
261 
262 /*
263  * Users of this function have their own bio allocation. Subsequently,
264  * they must remember to pair any call to bio_init() with bio_uninit()
265  * when IO has completed, or when the bio is released.
266  */
267 void bio_init(struct bio *bio, struct bio_vec *table,
268 	      unsigned short max_vecs)
269 {
270 	memset(bio, 0, sizeof(*bio));
271 	atomic_set(&bio->__bi_remaining, 1);
272 	atomic_set(&bio->__bi_cnt, 1);
273 
274 	bio->bi_io_vec = table;
275 	bio->bi_max_vecs = max_vecs;
276 }
277 EXPORT_SYMBOL(bio_init);
278 
279 /**
280  * bio_reset - reinitialize a bio
281  * @bio:	bio to reset
282  *
283  * Description:
284  *   After calling bio_reset(), @bio will be in the same state as a freshly
285  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
286  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
287  *   comment in struct bio.
288  */
289 void bio_reset(struct bio *bio)
290 {
291 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
292 
293 	bio_uninit(bio);
294 
295 	memset(bio, 0, BIO_RESET_BYTES);
296 	bio->bi_flags = flags;
297 	atomic_set(&bio->__bi_remaining, 1);
298 }
299 EXPORT_SYMBOL(bio_reset);
300 
301 static struct bio *__bio_chain_endio(struct bio *bio)
302 {
303 	struct bio *parent = bio->bi_private;
304 
305 	if (!parent->bi_status)
306 		parent->bi_status = bio->bi_status;
307 	bio_put(bio);
308 	return parent;
309 }
310 
311 static void bio_chain_endio(struct bio *bio)
312 {
313 	bio_endio(__bio_chain_endio(bio));
314 }
315 
316 /**
317  * bio_chain - chain bio completions
318  * @bio: the target bio
319  * @parent: the @bio's parent bio
320  *
321  * The caller won't have a bi_end_io called when @bio completes - instead,
322  * @parent's bi_end_io won't be called until both @parent and @bio have
323  * completed; the chained bio will also be freed when it completes.
324  *
325  * The caller must not set bi_private or bi_end_io in @bio.
326  */
327 void bio_chain(struct bio *bio, struct bio *parent)
328 {
329 	BUG_ON(bio->bi_private || bio->bi_end_io);
330 
331 	bio->bi_private = parent;
332 	bio->bi_end_io	= bio_chain_endio;
333 	bio_inc_remaining(parent);
334 }
335 EXPORT_SYMBOL(bio_chain);
336 
337 static void bio_alloc_rescue(struct work_struct *work)
338 {
339 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
340 	struct bio *bio;
341 
342 	while (1) {
343 		spin_lock(&bs->rescue_lock);
344 		bio = bio_list_pop(&bs->rescue_list);
345 		spin_unlock(&bs->rescue_lock);
346 
347 		if (!bio)
348 			break;
349 
350 		generic_make_request(bio);
351 	}
352 }
353 
354 static void punt_bios_to_rescuer(struct bio_set *bs)
355 {
356 	struct bio_list punt, nopunt;
357 	struct bio *bio;
358 
359 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
360 		return;
361 	/*
362 	 * In order to guarantee forward progress we must punt only bios that
363 	 * were allocated from this bio_set; otherwise, if there was a bio on
364 	 * there for a stacking driver higher up in the stack, processing it
365 	 * could require allocating bios from this bio_set, and doing that from
366 	 * our own rescuer would be bad.
367 	 *
368 	 * Since bio lists are singly linked, pop them all instead of trying to
369 	 * remove from the middle of the list:
370 	 */
371 
372 	bio_list_init(&punt);
373 	bio_list_init(&nopunt);
374 
375 	while ((bio = bio_list_pop(&current->bio_list[0])))
376 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
377 	current->bio_list[0] = nopunt;
378 
379 	bio_list_init(&nopunt);
380 	while ((bio = bio_list_pop(&current->bio_list[1])))
381 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
382 	current->bio_list[1] = nopunt;
383 
384 	spin_lock(&bs->rescue_lock);
385 	bio_list_merge(&bs->rescue_list, &punt);
386 	spin_unlock(&bs->rescue_lock);
387 
388 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
389 }
390 
391 /**
392  * bio_alloc_bioset - allocate a bio for I/O
393  * @gfp_mask:   the GFP_* mask given to the slab allocator
394  * @nr_iovecs:	number of iovecs to pre-allocate
395  * @bs:		the bio_set to allocate from.
396  *
397  * Description:
398  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
399  *   backed by the @bs's mempool.
400  *
401  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
402  *   always be able to allocate a bio. This is due to the mempool guarantees.
403  *   To make this work, callers must never allocate more than 1 bio at a time
404  *   from this pool. Callers that need to allocate more than 1 bio must always
405  *   submit the previously allocated bio for IO before attempting to allocate
406  *   a new one. Failure to do so can cause deadlocks under memory pressure.
407  *
408  *   Note that when running under generic_make_request() (i.e. any block
409  *   driver), bios are not submitted until after you return - see the code in
410  *   generic_make_request() that converts recursion into iteration, to prevent
411  *   stack overflows.
412  *
413  *   This would normally mean allocating multiple bios under
414  *   generic_make_request() would be susceptible to deadlocks, but we have
415  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
416  *   thread.
417  *
418  *   However, we do not guarantee forward progress for allocations from other
419  *   mempools. Doing multiple allocations from the same mempool under
420  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
421  *   for per bio allocations.
422  *
423  *   RETURNS:
424  *   Pointer to new bio on success, NULL on failure.
425  */
426 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
427 			     struct bio_set *bs)
428 {
429 	gfp_t saved_gfp = gfp_mask;
430 	unsigned front_pad;
431 	unsigned inline_vecs;
432 	struct bio_vec *bvl = NULL;
433 	struct bio *bio;
434 	void *p;
435 
436 	if (!bs) {
437 		if (nr_iovecs > UIO_MAXIOV)
438 			return NULL;
439 
440 		p = kmalloc(sizeof(struct bio) +
441 			    nr_iovecs * sizeof(struct bio_vec),
442 			    gfp_mask);
443 		front_pad = 0;
444 		inline_vecs = nr_iovecs;
445 	} else {
446 		/* should not use nobvec bioset for nr_iovecs > 0 */
447 		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
448 				 nr_iovecs > 0))
449 			return NULL;
450 		/*
451 		 * generic_make_request() converts recursion to iteration; this
452 		 * means if we're running beneath it, any bios we allocate and
453 		 * submit will not be submitted (and thus freed) until after we
454 		 * return.
455 		 *
456 		 * This exposes us to a potential deadlock if we allocate
457 		 * multiple bios from the same bio_set() while running
458 		 * underneath generic_make_request(). If we were to allocate
459 		 * multiple bios (say a stacking block driver that was splitting
460 		 * bios), we would deadlock if we exhausted the mempool's
461 		 * reserve.
462 		 *
463 		 * We solve this, and guarantee forward progress, with a rescuer
464 		 * workqueue per bio_set. If we go to allocate and there are
465 		 * bios on current->bio_list, we first try the allocation
466 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
467 		 * bios we would be blocking to the rescuer workqueue before
468 		 * we retry with the original gfp_flags.
469 		 */
470 
471 		if (current->bio_list &&
472 		    (!bio_list_empty(&current->bio_list[0]) ||
473 		     !bio_list_empty(&current->bio_list[1])) &&
474 		    bs->rescue_workqueue)
475 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
476 
477 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
478 		if (!p && gfp_mask != saved_gfp) {
479 			punt_bios_to_rescuer(bs);
480 			gfp_mask = saved_gfp;
481 			p = mempool_alloc(&bs->bio_pool, gfp_mask);
482 		}
483 
484 		front_pad = bs->front_pad;
485 		inline_vecs = BIO_INLINE_VECS;
486 	}
487 
488 	if (unlikely(!p))
489 		return NULL;
490 
491 	bio = p + front_pad;
492 	bio_init(bio, NULL, 0);
493 
494 	if (nr_iovecs > inline_vecs) {
495 		unsigned long idx = 0;
496 
497 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
498 		if (!bvl && gfp_mask != saved_gfp) {
499 			punt_bios_to_rescuer(bs);
500 			gfp_mask = saved_gfp;
501 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
502 		}
503 
504 		if (unlikely(!bvl))
505 			goto err_free;
506 
507 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
508 	} else if (nr_iovecs) {
509 		bvl = bio->bi_inline_vecs;
510 	}
511 
512 	bio->bi_pool = bs;
513 	bio->bi_max_vecs = nr_iovecs;
514 	bio->bi_io_vec = bvl;
515 	return bio;
516 
517 err_free:
518 	mempool_free(p, &bs->bio_pool);
519 	return NULL;
520 }
521 EXPORT_SYMBOL(bio_alloc_bioset);
522 
523 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
524 {
525 	unsigned long flags;
526 	struct bio_vec bv;
527 	struct bvec_iter iter;
528 
529 	__bio_for_each_segment(bv, bio, iter, start) {
530 		char *data = bvec_kmap_irq(&bv, &flags);
531 		memset(data, 0, bv.bv_len);
532 		flush_dcache_page(bv.bv_page);
533 		bvec_kunmap_irq(data, &flags);
534 	}
535 }
536 EXPORT_SYMBOL(zero_fill_bio_iter);
537 
538 /**
539  * bio_put - release a reference to a bio
540  * @bio:   bio to release reference to
541  *
542  * Description:
543  *   Put a reference to a &struct bio, either one you have gotten with
544  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
545  **/
546 void bio_put(struct bio *bio)
547 {
548 	if (!bio_flagged(bio, BIO_REFFED))
549 		bio_free(bio);
550 	else {
551 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
552 
553 		/*
554 		 * last put frees it
555 		 */
556 		if (atomic_dec_and_test(&bio->__bi_cnt))
557 			bio_free(bio);
558 	}
559 }
560 EXPORT_SYMBOL(bio_put);
561 
562 /**
563  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
564  * 	@bio: destination bio
565  * 	@bio_src: bio to clone
566  *
567  *	Clone a &bio. Caller will own the returned bio, but not
568  *	the actual data it points to. Reference count of returned
569  * 	bio will be one.
570  *
571  * 	Caller must ensure that @bio_src is not freed before @bio.
572  */
573 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
574 {
575 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
576 
577 	/*
578 	 * most users will be overriding ->bi_disk with a new target,
579 	 * so we don't set nor calculate new physical/hw segment counts here
580 	 */
581 	bio->bi_disk = bio_src->bi_disk;
582 	bio->bi_partno = bio_src->bi_partno;
583 	bio_set_flag(bio, BIO_CLONED);
584 	if (bio_flagged(bio_src, BIO_THROTTLED))
585 		bio_set_flag(bio, BIO_THROTTLED);
586 	bio->bi_opf = bio_src->bi_opf;
587 	bio->bi_ioprio = bio_src->bi_ioprio;
588 	bio->bi_write_hint = bio_src->bi_write_hint;
589 	bio->bi_iter = bio_src->bi_iter;
590 	bio->bi_io_vec = bio_src->bi_io_vec;
591 
592 	bio_clone_blkg_association(bio, bio_src);
593 	blkcg_bio_issue_init(bio);
594 }
595 EXPORT_SYMBOL(__bio_clone_fast);
596 
597 /**
598  *	bio_clone_fast - clone a bio that shares the original bio's biovec
599  *	@bio: bio to clone
600  *	@gfp_mask: allocation priority
601  *	@bs: bio_set to allocate from
602  *
603  * 	Like __bio_clone_fast, only also allocates the returned bio
604  */
605 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
606 {
607 	struct bio *b;
608 
609 	b = bio_alloc_bioset(gfp_mask, 0, bs);
610 	if (!b)
611 		return NULL;
612 
613 	__bio_clone_fast(b, bio);
614 
615 	if (bio_integrity(bio)) {
616 		int ret;
617 
618 		ret = bio_integrity_clone(b, bio, gfp_mask);
619 
620 		if (ret < 0) {
621 			bio_put(b);
622 			return NULL;
623 		}
624 	}
625 
626 	return b;
627 }
628 EXPORT_SYMBOL(bio_clone_fast);
629 
630 static inline bool page_is_mergeable(const struct bio_vec *bv,
631 		struct page *page, unsigned int len, unsigned int off,
632 		bool *same_page)
633 {
634 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
635 		bv->bv_offset + bv->bv_len - 1;
636 	phys_addr_t page_addr = page_to_phys(page);
637 
638 	if (vec_end_addr + 1 != page_addr + off)
639 		return false;
640 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
641 		return false;
642 
643 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
644 	if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
645 		return false;
646 	return true;
647 }
648 
649 static bool bio_try_merge_pc_page(struct request_queue *q, struct bio *bio,
650 		struct page *page, unsigned len, unsigned offset,
651 		bool *same_page)
652 {
653 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
654 	unsigned long mask = queue_segment_boundary(q);
655 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
656 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
657 
658 	if ((addr1 | mask) != (addr2 | mask))
659 		return false;
660 	if (bv->bv_len + len > queue_max_segment_size(q))
661 		return false;
662 	return __bio_try_merge_page(bio, page, len, offset, same_page);
663 }
664 
665 /**
666  *	__bio_add_pc_page	- attempt to add page to passthrough bio
667  *	@q: the target queue
668  *	@bio: destination bio
669  *	@page: page to add
670  *	@len: vec entry length
671  *	@offset: vec entry offset
672  *	@same_page: return if the merge happen inside the same page
673  *
674  *	Attempt to add a page to the bio_vec maplist. This can fail for a
675  *	number of reasons, such as the bio being full or target block device
676  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
677  *	so it is always possible to add a single page to an empty bio.
678  *
679  *	This should only be used by passthrough bios.
680  */
681 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
682 		struct page *page, unsigned int len, unsigned int offset,
683 		bool *same_page)
684 {
685 	struct bio_vec *bvec;
686 
687 	/*
688 	 * cloned bio must not modify vec list
689 	 */
690 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
691 		return 0;
692 
693 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
694 		return 0;
695 
696 	if (bio->bi_vcnt > 0) {
697 		if (bio_try_merge_pc_page(q, bio, page, len, offset, same_page))
698 			return len;
699 
700 		/*
701 		 * If the queue doesn't support SG gaps and adding this segment
702 		 * would create a gap, disallow it.
703 		 */
704 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
705 		if (bvec_gap_to_prev(q, bvec, offset))
706 			return 0;
707 	}
708 
709 	if (bio_full(bio, len))
710 		return 0;
711 
712 	if (bio->bi_vcnt >= queue_max_segments(q))
713 		return 0;
714 
715 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
716 	bvec->bv_page = page;
717 	bvec->bv_len = len;
718 	bvec->bv_offset = offset;
719 	bio->bi_vcnt++;
720 	bio->bi_iter.bi_size += len;
721 	return len;
722 }
723 
724 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
725 		struct page *page, unsigned int len, unsigned int offset)
726 {
727 	bool same_page = false;
728 	return __bio_add_pc_page(q, bio, page, len, offset, &same_page);
729 }
730 EXPORT_SYMBOL(bio_add_pc_page);
731 
732 /**
733  * __bio_try_merge_page - try appending data to an existing bvec.
734  * @bio: destination bio
735  * @page: start page to add
736  * @len: length of the data to add
737  * @off: offset of the data relative to @page
738  * @same_page: return if the segment has been merged inside the same page
739  *
740  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
741  * a useful optimisation for file systems with a block size smaller than the
742  * page size.
743  *
744  * Warn if (@len, @off) crosses pages in case that @same_page is true.
745  *
746  * Return %true on success or %false on failure.
747  */
748 bool __bio_try_merge_page(struct bio *bio, struct page *page,
749 		unsigned int len, unsigned int off, bool *same_page)
750 {
751 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
752 		return false;
753 
754 	if (bio->bi_vcnt > 0) {
755 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
756 
757 		if (page_is_mergeable(bv, page, len, off, same_page)) {
758 			bv->bv_len += len;
759 			bio->bi_iter.bi_size += len;
760 			return true;
761 		}
762 	}
763 	return false;
764 }
765 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
766 
767 /**
768  * __bio_add_page - add page(s) to a bio in a new segment
769  * @bio: destination bio
770  * @page: start page to add
771  * @len: length of the data to add, may cross pages
772  * @off: offset of the data relative to @page, may cross pages
773  *
774  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
775  * that @bio has space for another bvec.
776  */
777 void __bio_add_page(struct bio *bio, struct page *page,
778 		unsigned int len, unsigned int off)
779 {
780 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
781 
782 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
783 	WARN_ON_ONCE(bio_full(bio, len));
784 
785 	bv->bv_page = page;
786 	bv->bv_offset = off;
787 	bv->bv_len = len;
788 
789 	bio->bi_iter.bi_size += len;
790 	bio->bi_vcnt++;
791 
792 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
793 		bio_set_flag(bio, BIO_WORKINGSET);
794 }
795 EXPORT_SYMBOL_GPL(__bio_add_page);
796 
797 /**
798  *	bio_add_page	-	attempt to add page(s) to bio
799  *	@bio: destination bio
800  *	@page: start page to add
801  *	@len: vec entry length, may cross pages
802  *	@offset: vec entry offset relative to @page, may cross pages
803  *
804  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
805  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
806  */
807 int bio_add_page(struct bio *bio, struct page *page,
808 		 unsigned int len, unsigned int offset)
809 {
810 	bool same_page = false;
811 
812 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
813 		if (bio_full(bio, len))
814 			return 0;
815 		__bio_add_page(bio, page, len, offset);
816 	}
817 	return len;
818 }
819 EXPORT_SYMBOL(bio_add_page);
820 
821 void bio_release_pages(struct bio *bio, bool mark_dirty)
822 {
823 	struct bvec_iter_all iter_all;
824 	struct bio_vec *bvec;
825 
826 	if (bio_flagged(bio, BIO_NO_PAGE_REF))
827 		return;
828 
829 	bio_for_each_segment_all(bvec, bio, iter_all) {
830 		if (mark_dirty && !PageCompound(bvec->bv_page))
831 			set_page_dirty_lock(bvec->bv_page);
832 		put_page(bvec->bv_page);
833 	}
834 }
835 
836 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
837 {
838 	const struct bio_vec *bv = iter->bvec;
839 	unsigned int len;
840 	size_t size;
841 
842 	if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
843 		return -EINVAL;
844 
845 	len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
846 	size = bio_add_page(bio, bv->bv_page, len,
847 				bv->bv_offset + iter->iov_offset);
848 	if (unlikely(size != len))
849 		return -EINVAL;
850 	iov_iter_advance(iter, size);
851 	return 0;
852 }
853 
854 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
855 
856 /**
857  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
858  * @bio: bio to add pages to
859  * @iter: iov iterator describing the region to be mapped
860  *
861  * Pins pages from *iter and appends them to @bio's bvec array. The
862  * pages will have to be released using put_page() when done.
863  * For multi-segment *iter, this function only adds pages from the
864  * the next non-empty segment of the iov iterator.
865  */
866 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
867 {
868 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
869 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
870 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
871 	struct page **pages = (struct page **)bv;
872 	bool same_page = false;
873 	ssize_t size, left;
874 	unsigned len, i;
875 	size_t offset;
876 
877 	/*
878 	 * Move page array up in the allocated memory for the bio vecs as far as
879 	 * possible so that we can start filling biovecs from the beginning
880 	 * without overwriting the temporary page array.
881 	*/
882 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
883 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
884 
885 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
886 	if (unlikely(size <= 0))
887 		return size ? size : -EFAULT;
888 
889 	for (left = size, i = 0; left > 0; left -= len, i++) {
890 		struct page *page = pages[i];
891 
892 		len = min_t(size_t, PAGE_SIZE - offset, left);
893 
894 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
895 			if (same_page)
896 				put_page(page);
897 		} else {
898 			if (WARN_ON_ONCE(bio_full(bio, len)))
899                                 return -EINVAL;
900 			__bio_add_page(bio, page, len, offset);
901 		}
902 		offset = 0;
903 	}
904 
905 	iov_iter_advance(iter, size);
906 	return 0;
907 }
908 
909 /**
910  * bio_iov_iter_get_pages - add user or kernel pages to a bio
911  * @bio: bio to add pages to
912  * @iter: iov iterator describing the region to be added
913  *
914  * This takes either an iterator pointing to user memory, or one pointing to
915  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
916  * map them into the kernel. On IO completion, the caller should put those
917  * pages. If we're adding kernel pages, and the caller told us it's safe to
918  * do so, we just have to add the pages to the bio directly. We don't grab an
919  * extra reference to those pages (the user should already have that), and we
920  * don't put the page on IO completion. The caller needs to check if the bio is
921  * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
922  * released.
923  *
924  * The function tries, but does not guarantee, to pin as many pages as
925  * fit into the bio, or are requested in *iter, whatever is smaller. If
926  * MM encounters an error pinning the requested pages, it stops. Error
927  * is returned only if 0 pages could be pinned.
928  */
929 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
930 {
931 	const bool is_bvec = iov_iter_is_bvec(iter);
932 	int ret;
933 
934 	if (WARN_ON_ONCE(bio->bi_vcnt))
935 		return -EINVAL;
936 
937 	do {
938 		if (is_bvec)
939 			ret = __bio_iov_bvec_add_pages(bio, iter);
940 		else
941 			ret = __bio_iov_iter_get_pages(bio, iter);
942 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
943 
944 	if (is_bvec)
945 		bio_set_flag(bio, BIO_NO_PAGE_REF);
946 	return bio->bi_vcnt ? 0 : ret;
947 }
948 
949 static void submit_bio_wait_endio(struct bio *bio)
950 {
951 	complete(bio->bi_private);
952 }
953 
954 /**
955  * submit_bio_wait - submit a bio, and wait until it completes
956  * @bio: The &struct bio which describes the I/O
957  *
958  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
959  * bio_endio() on failure.
960  *
961  * WARNING: Unlike to how submit_bio() is usually used, this function does not
962  * result in bio reference to be consumed. The caller must drop the reference
963  * on his own.
964  */
965 int submit_bio_wait(struct bio *bio)
966 {
967 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
968 
969 	bio->bi_private = &done;
970 	bio->bi_end_io = submit_bio_wait_endio;
971 	bio->bi_opf |= REQ_SYNC;
972 	submit_bio(bio);
973 	wait_for_completion_io(&done);
974 
975 	return blk_status_to_errno(bio->bi_status);
976 }
977 EXPORT_SYMBOL(submit_bio_wait);
978 
979 /**
980  * bio_advance - increment/complete a bio by some number of bytes
981  * @bio:	bio to advance
982  * @bytes:	number of bytes to complete
983  *
984  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
985  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
986  * be updated on the last bvec as well.
987  *
988  * @bio will then represent the remaining, uncompleted portion of the io.
989  */
990 void bio_advance(struct bio *bio, unsigned bytes)
991 {
992 	if (bio_integrity(bio))
993 		bio_integrity_advance(bio, bytes);
994 
995 	bio_advance_iter(bio, &bio->bi_iter, bytes);
996 }
997 EXPORT_SYMBOL(bio_advance);
998 
999 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1000 			struct bio *src, struct bvec_iter *src_iter)
1001 {
1002 	struct bio_vec src_bv, dst_bv;
1003 	void *src_p, *dst_p;
1004 	unsigned bytes;
1005 
1006 	while (src_iter->bi_size && dst_iter->bi_size) {
1007 		src_bv = bio_iter_iovec(src, *src_iter);
1008 		dst_bv = bio_iter_iovec(dst, *dst_iter);
1009 
1010 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1011 
1012 		src_p = kmap_atomic(src_bv.bv_page);
1013 		dst_p = kmap_atomic(dst_bv.bv_page);
1014 
1015 		memcpy(dst_p + dst_bv.bv_offset,
1016 		       src_p + src_bv.bv_offset,
1017 		       bytes);
1018 
1019 		kunmap_atomic(dst_p);
1020 		kunmap_atomic(src_p);
1021 
1022 		flush_dcache_page(dst_bv.bv_page);
1023 
1024 		bio_advance_iter(src, src_iter, bytes);
1025 		bio_advance_iter(dst, dst_iter, bytes);
1026 	}
1027 }
1028 EXPORT_SYMBOL(bio_copy_data_iter);
1029 
1030 /**
1031  * bio_copy_data - copy contents of data buffers from one bio to another
1032  * @src: source bio
1033  * @dst: destination bio
1034  *
1035  * Stops when it reaches the end of either @src or @dst - that is, copies
1036  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1037  */
1038 void bio_copy_data(struct bio *dst, struct bio *src)
1039 {
1040 	struct bvec_iter src_iter = src->bi_iter;
1041 	struct bvec_iter dst_iter = dst->bi_iter;
1042 
1043 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1044 }
1045 EXPORT_SYMBOL(bio_copy_data);
1046 
1047 /**
1048  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1049  * another
1050  * @src: source bio list
1051  * @dst: destination bio list
1052  *
1053  * Stops when it reaches the end of either the @src list or @dst list - that is,
1054  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1055  * bios).
1056  */
1057 void bio_list_copy_data(struct bio *dst, struct bio *src)
1058 {
1059 	struct bvec_iter src_iter = src->bi_iter;
1060 	struct bvec_iter dst_iter = dst->bi_iter;
1061 
1062 	while (1) {
1063 		if (!src_iter.bi_size) {
1064 			src = src->bi_next;
1065 			if (!src)
1066 				break;
1067 
1068 			src_iter = src->bi_iter;
1069 		}
1070 
1071 		if (!dst_iter.bi_size) {
1072 			dst = dst->bi_next;
1073 			if (!dst)
1074 				break;
1075 
1076 			dst_iter = dst->bi_iter;
1077 		}
1078 
1079 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1080 	}
1081 }
1082 EXPORT_SYMBOL(bio_list_copy_data);
1083 
1084 struct bio_map_data {
1085 	int is_our_pages;
1086 	struct iov_iter iter;
1087 	struct iovec iov[];
1088 };
1089 
1090 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1091 					       gfp_t gfp_mask)
1092 {
1093 	struct bio_map_data *bmd;
1094 	if (data->nr_segs > UIO_MAXIOV)
1095 		return NULL;
1096 
1097 	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
1098 	if (!bmd)
1099 		return NULL;
1100 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1101 	bmd->iter = *data;
1102 	bmd->iter.iov = bmd->iov;
1103 	return bmd;
1104 }
1105 
1106 /**
1107  * bio_copy_from_iter - copy all pages from iov_iter to bio
1108  * @bio: The &struct bio which describes the I/O as destination
1109  * @iter: iov_iter as source
1110  *
1111  * Copy all pages from iov_iter to bio.
1112  * Returns 0 on success, or error on failure.
1113  */
1114 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1115 {
1116 	struct bio_vec *bvec;
1117 	struct bvec_iter_all iter_all;
1118 
1119 	bio_for_each_segment_all(bvec, bio, iter_all) {
1120 		ssize_t ret;
1121 
1122 		ret = copy_page_from_iter(bvec->bv_page,
1123 					  bvec->bv_offset,
1124 					  bvec->bv_len,
1125 					  iter);
1126 
1127 		if (!iov_iter_count(iter))
1128 			break;
1129 
1130 		if (ret < bvec->bv_len)
1131 			return -EFAULT;
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 /**
1138  * bio_copy_to_iter - copy all pages from bio to iov_iter
1139  * @bio: The &struct bio which describes the I/O as source
1140  * @iter: iov_iter as destination
1141  *
1142  * Copy all pages from bio to iov_iter.
1143  * Returns 0 on success, or error on failure.
1144  */
1145 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1146 {
1147 	struct bio_vec *bvec;
1148 	struct bvec_iter_all iter_all;
1149 
1150 	bio_for_each_segment_all(bvec, bio, iter_all) {
1151 		ssize_t ret;
1152 
1153 		ret = copy_page_to_iter(bvec->bv_page,
1154 					bvec->bv_offset,
1155 					bvec->bv_len,
1156 					&iter);
1157 
1158 		if (!iov_iter_count(&iter))
1159 			break;
1160 
1161 		if (ret < bvec->bv_len)
1162 			return -EFAULT;
1163 	}
1164 
1165 	return 0;
1166 }
1167 
1168 void bio_free_pages(struct bio *bio)
1169 {
1170 	struct bio_vec *bvec;
1171 	struct bvec_iter_all iter_all;
1172 
1173 	bio_for_each_segment_all(bvec, bio, iter_all)
1174 		__free_page(bvec->bv_page);
1175 }
1176 EXPORT_SYMBOL(bio_free_pages);
1177 
1178 /**
1179  *	bio_uncopy_user	-	finish previously mapped bio
1180  *	@bio: bio being terminated
1181  *
1182  *	Free pages allocated from bio_copy_user_iov() and write back data
1183  *	to user space in case of a read.
1184  */
1185 int bio_uncopy_user(struct bio *bio)
1186 {
1187 	struct bio_map_data *bmd = bio->bi_private;
1188 	int ret = 0;
1189 
1190 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1191 		/*
1192 		 * if we're in a workqueue, the request is orphaned, so
1193 		 * don't copy into a random user address space, just free
1194 		 * and return -EINTR so user space doesn't expect any data.
1195 		 */
1196 		if (!current->mm)
1197 			ret = -EINTR;
1198 		else if (bio_data_dir(bio) == READ)
1199 			ret = bio_copy_to_iter(bio, bmd->iter);
1200 		if (bmd->is_our_pages)
1201 			bio_free_pages(bio);
1202 	}
1203 	kfree(bmd);
1204 	bio_put(bio);
1205 	return ret;
1206 }
1207 
1208 /**
1209  *	bio_copy_user_iov	-	copy user data to bio
1210  *	@q:		destination block queue
1211  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1212  *	@iter:		iovec iterator
1213  *	@gfp_mask:	memory allocation flags
1214  *
1215  *	Prepares and returns a bio for indirect user io, bouncing data
1216  *	to/from kernel pages as necessary. Must be paired with
1217  *	call bio_uncopy_user() on io completion.
1218  */
1219 struct bio *bio_copy_user_iov(struct request_queue *q,
1220 			      struct rq_map_data *map_data,
1221 			      struct iov_iter *iter,
1222 			      gfp_t gfp_mask)
1223 {
1224 	struct bio_map_data *bmd;
1225 	struct page *page;
1226 	struct bio *bio;
1227 	int i = 0, ret;
1228 	int nr_pages;
1229 	unsigned int len = iter->count;
1230 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1231 
1232 	bmd = bio_alloc_map_data(iter, gfp_mask);
1233 	if (!bmd)
1234 		return ERR_PTR(-ENOMEM);
1235 
1236 	/*
1237 	 * We need to do a deep copy of the iov_iter including the iovecs.
1238 	 * The caller provided iov might point to an on-stack or otherwise
1239 	 * shortlived one.
1240 	 */
1241 	bmd->is_our_pages = map_data ? 0 : 1;
1242 
1243 	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1244 	if (nr_pages > BIO_MAX_PAGES)
1245 		nr_pages = BIO_MAX_PAGES;
1246 
1247 	ret = -ENOMEM;
1248 	bio = bio_kmalloc(gfp_mask, nr_pages);
1249 	if (!bio)
1250 		goto out_bmd;
1251 
1252 	ret = 0;
1253 
1254 	if (map_data) {
1255 		nr_pages = 1 << map_data->page_order;
1256 		i = map_data->offset / PAGE_SIZE;
1257 	}
1258 	while (len) {
1259 		unsigned int bytes = PAGE_SIZE;
1260 
1261 		bytes -= offset;
1262 
1263 		if (bytes > len)
1264 			bytes = len;
1265 
1266 		if (map_data) {
1267 			if (i == map_data->nr_entries * nr_pages) {
1268 				ret = -ENOMEM;
1269 				break;
1270 			}
1271 
1272 			page = map_data->pages[i / nr_pages];
1273 			page += (i % nr_pages);
1274 
1275 			i++;
1276 		} else {
1277 			page = alloc_page(q->bounce_gfp | gfp_mask);
1278 			if (!page) {
1279 				ret = -ENOMEM;
1280 				break;
1281 			}
1282 		}
1283 
1284 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1285 			if (!map_data)
1286 				__free_page(page);
1287 			break;
1288 		}
1289 
1290 		len -= bytes;
1291 		offset = 0;
1292 	}
1293 
1294 	if (ret)
1295 		goto cleanup;
1296 
1297 	if (map_data)
1298 		map_data->offset += bio->bi_iter.bi_size;
1299 
1300 	/*
1301 	 * success
1302 	 */
1303 	if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1304 	    (map_data && map_data->from_user)) {
1305 		ret = bio_copy_from_iter(bio, iter);
1306 		if (ret)
1307 			goto cleanup;
1308 	} else {
1309 		if (bmd->is_our_pages)
1310 			zero_fill_bio(bio);
1311 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1312 	}
1313 
1314 	bio->bi_private = bmd;
1315 	if (map_data && map_data->null_mapped)
1316 		bio_set_flag(bio, BIO_NULL_MAPPED);
1317 	return bio;
1318 cleanup:
1319 	if (!map_data)
1320 		bio_free_pages(bio);
1321 	bio_put(bio);
1322 out_bmd:
1323 	kfree(bmd);
1324 	return ERR_PTR(ret);
1325 }
1326 
1327 /**
1328  *	bio_map_user_iov - map user iovec into bio
1329  *	@q:		the struct request_queue for the bio
1330  *	@iter:		iovec iterator
1331  *	@gfp_mask:	memory allocation flags
1332  *
1333  *	Map the user space address into a bio suitable for io to a block
1334  *	device. Returns an error pointer in case of error.
1335  */
1336 struct bio *bio_map_user_iov(struct request_queue *q,
1337 			     struct iov_iter *iter,
1338 			     gfp_t gfp_mask)
1339 {
1340 	int j;
1341 	struct bio *bio;
1342 	int ret;
1343 
1344 	if (!iov_iter_count(iter))
1345 		return ERR_PTR(-EINVAL);
1346 
1347 	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1348 	if (!bio)
1349 		return ERR_PTR(-ENOMEM);
1350 
1351 	while (iov_iter_count(iter)) {
1352 		struct page **pages;
1353 		ssize_t bytes;
1354 		size_t offs, added = 0;
1355 		int npages;
1356 
1357 		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1358 		if (unlikely(bytes <= 0)) {
1359 			ret = bytes ? bytes : -EFAULT;
1360 			goto out_unmap;
1361 		}
1362 
1363 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1364 
1365 		if (unlikely(offs & queue_dma_alignment(q))) {
1366 			ret = -EINVAL;
1367 			j = 0;
1368 		} else {
1369 			for (j = 0; j < npages; j++) {
1370 				struct page *page = pages[j];
1371 				unsigned int n = PAGE_SIZE - offs;
1372 				bool same_page = false;
1373 
1374 				if (n > bytes)
1375 					n = bytes;
1376 
1377 				if (!__bio_add_pc_page(q, bio, page, n, offs,
1378 						&same_page)) {
1379 					if (same_page)
1380 						put_page(page);
1381 					break;
1382 				}
1383 
1384 				added += n;
1385 				bytes -= n;
1386 				offs = 0;
1387 			}
1388 			iov_iter_advance(iter, added);
1389 		}
1390 		/*
1391 		 * release the pages we didn't map into the bio, if any
1392 		 */
1393 		while (j < npages)
1394 			put_page(pages[j++]);
1395 		kvfree(pages);
1396 		/* couldn't stuff something into bio? */
1397 		if (bytes)
1398 			break;
1399 	}
1400 
1401 	bio_set_flag(bio, BIO_USER_MAPPED);
1402 
1403 	/*
1404 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1405 	 * it would normally disappear when its bi_end_io is run.
1406 	 * however, we need it for the unmap, so grab an extra
1407 	 * reference to it
1408 	 */
1409 	bio_get(bio);
1410 	return bio;
1411 
1412  out_unmap:
1413 	bio_release_pages(bio, false);
1414 	bio_put(bio);
1415 	return ERR_PTR(ret);
1416 }
1417 
1418 /**
1419  *	bio_unmap_user	-	unmap a bio
1420  *	@bio:		the bio being unmapped
1421  *
1422  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1423  *	process context.
1424  *
1425  *	bio_unmap_user() may sleep.
1426  */
1427 void bio_unmap_user(struct bio *bio)
1428 {
1429 	bio_release_pages(bio, bio_data_dir(bio) == READ);
1430 	bio_put(bio);
1431 	bio_put(bio);
1432 }
1433 
1434 static void bio_invalidate_vmalloc_pages(struct bio *bio)
1435 {
1436 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
1437 	if (bio->bi_private && !op_is_write(bio_op(bio))) {
1438 		unsigned long i, len = 0;
1439 
1440 		for (i = 0; i < bio->bi_vcnt; i++)
1441 			len += bio->bi_io_vec[i].bv_len;
1442 		invalidate_kernel_vmap_range(bio->bi_private, len);
1443 	}
1444 #endif
1445 }
1446 
1447 static void bio_map_kern_endio(struct bio *bio)
1448 {
1449 	bio_invalidate_vmalloc_pages(bio);
1450 	bio_put(bio);
1451 }
1452 
1453 /**
1454  *	bio_map_kern	-	map kernel address into bio
1455  *	@q: the struct request_queue for the bio
1456  *	@data: pointer to buffer to map
1457  *	@len: length in bytes
1458  *	@gfp_mask: allocation flags for bio allocation
1459  *
1460  *	Map the kernel address into a bio suitable for io to a block
1461  *	device. Returns an error pointer in case of error.
1462  */
1463 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1464 			 gfp_t gfp_mask)
1465 {
1466 	unsigned long kaddr = (unsigned long)data;
1467 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1468 	unsigned long start = kaddr >> PAGE_SHIFT;
1469 	const int nr_pages = end - start;
1470 	bool is_vmalloc = is_vmalloc_addr(data);
1471 	struct page *page;
1472 	int offset, i;
1473 	struct bio *bio;
1474 
1475 	bio = bio_kmalloc(gfp_mask, nr_pages);
1476 	if (!bio)
1477 		return ERR_PTR(-ENOMEM);
1478 
1479 	if (is_vmalloc) {
1480 		flush_kernel_vmap_range(data, len);
1481 		bio->bi_private = data;
1482 	}
1483 
1484 	offset = offset_in_page(kaddr);
1485 	for (i = 0; i < nr_pages; i++) {
1486 		unsigned int bytes = PAGE_SIZE - offset;
1487 
1488 		if (len <= 0)
1489 			break;
1490 
1491 		if (bytes > len)
1492 			bytes = len;
1493 
1494 		if (!is_vmalloc)
1495 			page = virt_to_page(data);
1496 		else
1497 			page = vmalloc_to_page(data);
1498 		if (bio_add_pc_page(q, bio, page, bytes,
1499 				    offset) < bytes) {
1500 			/* we don't support partial mappings */
1501 			bio_put(bio);
1502 			return ERR_PTR(-EINVAL);
1503 		}
1504 
1505 		data += bytes;
1506 		len -= bytes;
1507 		offset = 0;
1508 	}
1509 
1510 	bio->bi_end_io = bio_map_kern_endio;
1511 	return bio;
1512 }
1513 
1514 static void bio_copy_kern_endio(struct bio *bio)
1515 {
1516 	bio_free_pages(bio);
1517 	bio_put(bio);
1518 }
1519 
1520 static void bio_copy_kern_endio_read(struct bio *bio)
1521 {
1522 	char *p = bio->bi_private;
1523 	struct bio_vec *bvec;
1524 	struct bvec_iter_all iter_all;
1525 
1526 	bio_for_each_segment_all(bvec, bio, iter_all) {
1527 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1528 		p += bvec->bv_len;
1529 	}
1530 
1531 	bio_copy_kern_endio(bio);
1532 }
1533 
1534 /**
1535  *	bio_copy_kern	-	copy kernel address into bio
1536  *	@q: the struct request_queue for the bio
1537  *	@data: pointer to buffer to copy
1538  *	@len: length in bytes
1539  *	@gfp_mask: allocation flags for bio and page allocation
1540  *	@reading: data direction is READ
1541  *
1542  *	copy the kernel address into a bio suitable for io to a block
1543  *	device. Returns an error pointer in case of error.
1544  */
1545 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1546 			  gfp_t gfp_mask, int reading)
1547 {
1548 	unsigned long kaddr = (unsigned long)data;
1549 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1550 	unsigned long start = kaddr >> PAGE_SHIFT;
1551 	struct bio *bio;
1552 	void *p = data;
1553 	int nr_pages = 0;
1554 
1555 	/*
1556 	 * Overflow, abort
1557 	 */
1558 	if (end < start)
1559 		return ERR_PTR(-EINVAL);
1560 
1561 	nr_pages = end - start;
1562 	bio = bio_kmalloc(gfp_mask, nr_pages);
1563 	if (!bio)
1564 		return ERR_PTR(-ENOMEM);
1565 
1566 	while (len) {
1567 		struct page *page;
1568 		unsigned int bytes = PAGE_SIZE;
1569 
1570 		if (bytes > len)
1571 			bytes = len;
1572 
1573 		page = alloc_page(q->bounce_gfp | gfp_mask);
1574 		if (!page)
1575 			goto cleanup;
1576 
1577 		if (!reading)
1578 			memcpy(page_address(page), p, bytes);
1579 
1580 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1581 			break;
1582 
1583 		len -= bytes;
1584 		p += bytes;
1585 	}
1586 
1587 	if (reading) {
1588 		bio->bi_end_io = bio_copy_kern_endio_read;
1589 		bio->bi_private = data;
1590 	} else {
1591 		bio->bi_end_io = bio_copy_kern_endio;
1592 	}
1593 
1594 	return bio;
1595 
1596 cleanup:
1597 	bio_free_pages(bio);
1598 	bio_put(bio);
1599 	return ERR_PTR(-ENOMEM);
1600 }
1601 
1602 /*
1603  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1604  * for performing direct-IO in BIOs.
1605  *
1606  * The problem is that we cannot run set_page_dirty() from interrupt context
1607  * because the required locks are not interrupt-safe.  So what we can do is to
1608  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1609  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1610  * in process context.
1611  *
1612  * We special-case compound pages here: normally this means reads into hugetlb
1613  * pages.  The logic in here doesn't really work right for compound pages
1614  * because the VM does not uniformly chase down the head page in all cases.
1615  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1616  * handle them at all.  So we skip compound pages here at an early stage.
1617  *
1618  * Note that this code is very hard to test under normal circumstances because
1619  * direct-io pins the pages with get_user_pages().  This makes
1620  * is_page_cache_freeable return false, and the VM will not clean the pages.
1621  * But other code (eg, flusher threads) could clean the pages if they are mapped
1622  * pagecache.
1623  *
1624  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1625  * deferred bio dirtying paths.
1626  */
1627 
1628 /*
1629  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1630  */
1631 void bio_set_pages_dirty(struct bio *bio)
1632 {
1633 	struct bio_vec *bvec;
1634 	struct bvec_iter_all iter_all;
1635 
1636 	bio_for_each_segment_all(bvec, bio, iter_all) {
1637 		if (!PageCompound(bvec->bv_page))
1638 			set_page_dirty_lock(bvec->bv_page);
1639 	}
1640 }
1641 
1642 /*
1643  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1644  * If they are, then fine.  If, however, some pages are clean then they must
1645  * have been written out during the direct-IO read.  So we take another ref on
1646  * the BIO and re-dirty the pages in process context.
1647  *
1648  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1649  * here on.  It will run one put_page() against each page and will run one
1650  * bio_put() against the BIO.
1651  */
1652 
1653 static void bio_dirty_fn(struct work_struct *work);
1654 
1655 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1656 static DEFINE_SPINLOCK(bio_dirty_lock);
1657 static struct bio *bio_dirty_list;
1658 
1659 /*
1660  * This runs in process context
1661  */
1662 static void bio_dirty_fn(struct work_struct *work)
1663 {
1664 	struct bio *bio, *next;
1665 
1666 	spin_lock_irq(&bio_dirty_lock);
1667 	next = bio_dirty_list;
1668 	bio_dirty_list = NULL;
1669 	spin_unlock_irq(&bio_dirty_lock);
1670 
1671 	while ((bio = next) != NULL) {
1672 		next = bio->bi_private;
1673 
1674 		bio_release_pages(bio, true);
1675 		bio_put(bio);
1676 	}
1677 }
1678 
1679 void bio_check_pages_dirty(struct bio *bio)
1680 {
1681 	struct bio_vec *bvec;
1682 	unsigned long flags;
1683 	struct bvec_iter_all iter_all;
1684 
1685 	bio_for_each_segment_all(bvec, bio, iter_all) {
1686 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1687 			goto defer;
1688 	}
1689 
1690 	bio_release_pages(bio, false);
1691 	bio_put(bio);
1692 	return;
1693 defer:
1694 	spin_lock_irqsave(&bio_dirty_lock, flags);
1695 	bio->bi_private = bio_dirty_list;
1696 	bio_dirty_list = bio;
1697 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1698 	schedule_work(&bio_dirty_work);
1699 }
1700 
1701 void update_io_ticks(struct hd_struct *part, unsigned long now)
1702 {
1703 	unsigned long stamp;
1704 again:
1705 	stamp = READ_ONCE(part->stamp);
1706 	if (unlikely(stamp != now)) {
1707 		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1708 			__part_stat_add(part, io_ticks, 1);
1709 		}
1710 	}
1711 	if (part->partno) {
1712 		part = &part_to_disk(part)->part0;
1713 		goto again;
1714 	}
1715 }
1716 
1717 void generic_start_io_acct(struct request_queue *q, int op,
1718 			   unsigned long sectors, struct hd_struct *part)
1719 {
1720 	const int sgrp = op_stat_group(op);
1721 
1722 	part_stat_lock();
1723 
1724 	update_io_ticks(part, jiffies);
1725 	part_stat_inc(part, ios[sgrp]);
1726 	part_stat_add(part, sectors[sgrp], sectors);
1727 	part_inc_in_flight(q, part, op_is_write(op));
1728 
1729 	part_stat_unlock();
1730 }
1731 EXPORT_SYMBOL(generic_start_io_acct);
1732 
1733 void generic_end_io_acct(struct request_queue *q, int req_op,
1734 			 struct hd_struct *part, unsigned long start_time)
1735 {
1736 	unsigned long now = jiffies;
1737 	unsigned long duration = now - start_time;
1738 	const int sgrp = op_stat_group(req_op);
1739 
1740 	part_stat_lock();
1741 
1742 	update_io_ticks(part, now);
1743 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1744 	part_stat_add(part, time_in_queue, duration);
1745 	part_dec_in_flight(q, part, op_is_write(req_op));
1746 
1747 	part_stat_unlock();
1748 }
1749 EXPORT_SYMBOL(generic_end_io_acct);
1750 
1751 static inline bool bio_remaining_done(struct bio *bio)
1752 {
1753 	/*
1754 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1755 	 * we always end io on the first invocation.
1756 	 */
1757 	if (!bio_flagged(bio, BIO_CHAIN))
1758 		return true;
1759 
1760 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1761 
1762 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1763 		bio_clear_flag(bio, BIO_CHAIN);
1764 		return true;
1765 	}
1766 
1767 	return false;
1768 }
1769 
1770 /**
1771  * bio_endio - end I/O on a bio
1772  * @bio:	bio
1773  *
1774  * Description:
1775  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1776  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1777  *   bio unless they own it and thus know that it has an end_io function.
1778  *
1779  *   bio_endio() can be called several times on a bio that has been chained
1780  *   using bio_chain().  The ->bi_end_io() function will only be called the
1781  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1782  *   generated if BIO_TRACE_COMPLETION is set.
1783  **/
1784 void bio_endio(struct bio *bio)
1785 {
1786 again:
1787 	if (!bio_remaining_done(bio))
1788 		return;
1789 	if (!bio_integrity_endio(bio))
1790 		return;
1791 
1792 	if (bio->bi_disk)
1793 		rq_qos_done_bio(bio->bi_disk->queue, bio);
1794 
1795 	/*
1796 	 * Need to have a real endio function for chained bios, otherwise
1797 	 * various corner cases will break (like stacking block devices that
1798 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1799 	 * recursion and blowing the stack. Tail call optimization would
1800 	 * handle this, but compiling with frame pointers also disables
1801 	 * gcc's sibling call optimization.
1802 	 */
1803 	if (bio->bi_end_io == bio_chain_endio) {
1804 		bio = __bio_chain_endio(bio);
1805 		goto again;
1806 	}
1807 
1808 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1809 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1810 					 blk_status_to_errno(bio->bi_status));
1811 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1812 	}
1813 
1814 	blk_throtl_bio_endio(bio);
1815 	/* release cgroup info */
1816 	bio_uninit(bio);
1817 	if (bio->bi_end_io)
1818 		bio->bi_end_io(bio);
1819 }
1820 EXPORT_SYMBOL(bio_endio);
1821 
1822 /**
1823  * bio_split - split a bio
1824  * @bio:	bio to split
1825  * @sectors:	number of sectors to split from the front of @bio
1826  * @gfp:	gfp mask
1827  * @bs:		bio set to allocate from
1828  *
1829  * Allocates and returns a new bio which represents @sectors from the start of
1830  * @bio, and updates @bio to represent the remaining sectors.
1831  *
1832  * Unless this is a discard request the newly allocated bio will point
1833  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1834  * neither @bio nor @bs are freed before the split bio.
1835  */
1836 struct bio *bio_split(struct bio *bio, int sectors,
1837 		      gfp_t gfp, struct bio_set *bs)
1838 {
1839 	struct bio *split;
1840 
1841 	BUG_ON(sectors <= 0);
1842 	BUG_ON(sectors >= bio_sectors(bio));
1843 
1844 	split = bio_clone_fast(bio, gfp, bs);
1845 	if (!split)
1846 		return NULL;
1847 
1848 	split->bi_iter.bi_size = sectors << 9;
1849 
1850 	if (bio_integrity(split))
1851 		bio_integrity_trim(split);
1852 
1853 	bio_advance(bio, split->bi_iter.bi_size);
1854 
1855 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1856 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1857 
1858 	return split;
1859 }
1860 EXPORT_SYMBOL(bio_split);
1861 
1862 /**
1863  * bio_trim - trim a bio
1864  * @bio:	bio to trim
1865  * @offset:	number of sectors to trim from the front of @bio
1866  * @size:	size we want to trim @bio to, in sectors
1867  */
1868 void bio_trim(struct bio *bio, int offset, int size)
1869 {
1870 	/* 'bio' is a cloned bio which we need to trim to match
1871 	 * the given offset and size.
1872 	 */
1873 
1874 	size <<= 9;
1875 	if (offset == 0 && size == bio->bi_iter.bi_size)
1876 		return;
1877 
1878 	bio_advance(bio, offset << 9);
1879 	bio->bi_iter.bi_size = size;
1880 
1881 	if (bio_integrity(bio))
1882 		bio_integrity_trim(bio);
1883 
1884 }
1885 EXPORT_SYMBOL_GPL(bio_trim);
1886 
1887 /*
1888  * create memory pools for biovec's in a bio_set.
1889  * use the global biovec slabs created for general use.
1890  */
1891 int biovec_init_pool(mempool_t *pool, int pool_entries)
1892 {
1893 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1894 
1895 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1896 }
1897 
1898 /*
1899  * bioset_exit - exit a bioset initialized with bioset_init()
1900  *
1901  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1902  * kzalloc()).
1903  */
1904 void bioset_exit(struct bio_set *bs)
1905 {
1906 	if (bs->rescue_workqueue)
1907 		destroy_workqueue(bs->rescue_workqueue);
1908 	bs->rescue_workqueue = NULL;
1909 
1910 	mempool_exit(&bs->bio_pool);
1911 	mempool_exit(&bs->bvec_pool);
1912 
1913 	bioset_integrity_free(bs);
1914 	if (bs->bio_slab)
1915 		bio_put_slab(bs);
1916 	bs->bio_slab = NULL;
1917 }
1918 EXPORT_SYMBOL(bioset_exit);
1919 
1920 /**
1921  * bioset_init - Initialize a bio_set
1922  * @bs:		pool to initialize
1923  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1924  * @front_pad:	Number of bytes to allocate in front of the returned bio
1925  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1926  *              and %BIOSET_NEED_RESCUER
1927  *
1928  * Description:
1929  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1930  *    to ask for a number of bytes to be allocated in front of the bio.
1931  *    Front pad allocation is useful for embedding the bio inside
1932  *    another structure, to avoid allocating extra data to go with the bio.
1933  *    Note that the bio must be embedded at the END of that structure always,
1934  *    or things will break badly.
1935  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1936  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1937  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1938  *    dispatch queued requests when the mempool runs out of space.
1939  *
1940  */
1941 int bioset_init(struct bio_set *bs,
1942 		unsigned int pool_size,
1943 		unsigned int front_pad,
1944 		int flags)
1945 {
1946 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1947 
1948 	bs->front_pad = front_pad;
1949 
1950 	spin_lock_init(&bs->rescue_lock);
1951 	bio_list_init(&bs->rescue_list);
1952 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1953 
1954 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1955 	if (!bs->bio_slab)
1956 		return -ENOMEM;
1957 
1958 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1959 		goto bad;
1960 
1961 	if ((flags & BIOSET_NEED_BVECS) &&
1962 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1963 		goto bad;
1964 
1965 	if (!(flags & BIOSET_NEED_RESCUER))
1966 		return 0;
1967 
1968 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1969 	if (!bs->rescue_workqueue)
1970 		goto bad;
1971 
1972 	return 0;
1973 bad:
1974 	bioset_exit(bs);
1975 	return -ENOMEM;
1976 }
1977 EXPORT_SYMBOL(bioset_init);
1978 
1979 /*
1980  * Initialize and setup a new bio_set, based on the settings from
1981  * another bio_set.
1982  */
1983 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1984 {
1985 	int flags;
1986 
1987 	flags = 0;
1988 	if (src->bvec_pool.min_nr)
1989 		flags |= BIOSET_NEED_BVECS;
1990 	if (src->rescue_workqueue)
1991 		flags |= BIOSET_NEED_RESCUER;
1992 
1993 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1994 }
1995 EXPORT_SYMBOL(bioset_init_from_src);
1996 
1997 #ifdef CONFIG_BLK_CGROUP
1998 
1999 /**
2000  * bio_disassociate_blkg - puts back the blkg reference if associated
2001  * @bio: target bio
2002  *
2003  * Helper to disassociate the blkg from @bio if a blkg is associated.
2004  */
2005 void bio_disassociate_blkg(struct bio *bio)
2006 {
2007 	if (bio->bi_blkg) {
2008 		blkg_put(bio->bi_blkg);
2009 		bio->bi_blkg = NULL;
2010 	}
2011 }
2012 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2013 
2014 /**
2015  * __bio_associate_blkg - associate a bio with the a blkg
2016  * @bio: target bio
2017  * @blkg: the blkg to associate
2018  *
2019  * This tries to associate @bio with the specified @blkg.  Association failure
2020  * is handled by walking up the blkg tree.  Therefore, the blkg associated can
2021  * be anything between @blkg and the root_blkg.  This situation only happens
2022  * when a cgroup is dying and then the remaining bios will spill to the closest
2023  * alive blkg.
2024  *
2025  * A reference will be taken on the @blkg and will be released when @bio is
2026  * freed.
2027  */
2028 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2029 {
2030 	bio_disassociate_blkg(bio);
2031 
2032 	bio->bi_blkg = blkg_tryget_closest(blkg);
2033 }
2034 
2035 /**
2036  * bio_associate_blkg_from_css - associate a bio with a specified css
2037  * @bio: target bio
2038  * @css: target css
2039  *
2040  * Associate @bio with the blkg found by combining the css's blkg and the
2041  * request_queue of the @bio.  This falls back to the queue's root_blkg if
2042  * the association fails with the css.
2043  */
2044 void bio_associate_blkg_from_css(struct bio *bio,
2045 				 struct cgroup_subsys_state *css)
2046 {
2047 	struct request_queue *q = bio->bi_disk->queue;
2048 	struct blkcg_gq *blkg;
2049 
2050 	rcu_read_lock();
2051 
2052 	if (!css || !css->parent)
2053 		blkg = q->root_blkg;
2054 	else
2055 		blkg = blkg_lookup_create(css_to_blkcg(css), q);
2056 
2057 	__bio_associate_blkg(bio, blkg);
2058 
2059 	rcu_read_unlock();
2060 }
2061 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2062 
2063 #ifdef CONFIG_MEMCG
2064 /**
2065  * bio_associate_blkg_from_page - associate a bio with the page's blkg
2066  * @bio: target bio
2067  * @page: the page to lookup the blkcg from
2068  *
2069  * Associate @bio with the blkg from @page's owning memcg and the respective
2070  * request_queue.  If cgroup_e_css returns %NULL, fall back to the queue's
2071  * root_blkg.
2072  */
2073 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2074 {
2075 	struct cgroup_subsys_state *css;
2076 
2077 	if (!page->mem_cgroup)
2078 		return;
2079 
2080 	rcu_read_lock();
2081 
2082 	css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2083 	bio_associate_blkg_from_css(bio, css);
2084 
2085 	rcu_read_unlock();
2086 }
2087 #endif /* CONFIG_MEMCG */
2088 
2089 /**
2090  * bio_associate_blkg - associate a bio with a blkg
2091  * @bio: target bio
2092  *
2093  * Associate @bio with the blkg found from the bio's css and request_queue.
2094  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2095  * already associated, the css is reused and association redone as the
2096  * request_queue may have changed.
2097  */
2098 void bio_associate_blkg(struct bio *bio)
2099 {
2100 	struct cgroup_subsys_state *css;
2101 
2102 	rcu_read_lock();
2103 
2104 	if (bio->bi_blkg)
2105 		css = &bio_blkcg(bio)->css;
2106 	else
2107 		css = blkcg_css();
2108 
2109 	bio_associate_blkg_from_css(bio, css);
2110 
2111 	rcu_read_unlock();
2112 }
2113 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2114 
2115 /**
2116  * bio_clone_blkg_association - clone blkg association from src to dst bio
2117  * @dst: destination bio
2118  * @src: source bio
2119  */
2120 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2121 {
2122 	rcu_read_lock();
2123 
2124 	if (src->bi_blkg)
2125 		__bio_associate_blkg(dst, src->bi_blkg);
2126 
2127 	rcu_read_unlock();
2128 }
2129 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2130 #endif /* CONFIG_BLK_CGROUP */
2131 
2132 static void __init biovec_init_slabs(void)
2133 {
2134 	int i;
2135 
2136 	for (i = 0; i < BVEC_POOL_NR; i++) {
2137 		int size;
2138 		struct biovec_slab *bvs = bvec_slabs + i;
2139 
2140 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2141 			bvs->slab = NULL;
2142 			continue;
2143 		}
2144 
2145 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2146 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2147                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2148 	}
2149 }
2150 
2151 static int __init init_bio(void)
2152 {
2153 	bio_slab_max = 2;
2154 	bio_slab_nr = 0;
2155 	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2156 			    GFP_KERNEL);
2157 
2158 	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2159 
2160 	if (!bio_slabs)
2161 		panic("bio: can't allocate bios\n");
2162 
2163 	bio_integrity_init();
2164 	biovec_init_slabs();
2165 
2166 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2167 		panic("bio: can't allocate bios\n");
2168 
2169 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2170 		panic("bio: can't create integrity pool\n");
2171 
2172 	return 0;
2173 }
2174 subsys_initcall(init_bio);
2175