1 /* 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public Licens 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 16 * 17 */ 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/bio.h> 21 #include <linux/blkdev.h> 22 #include <linux/uio.h> 23 #include <linux/iocontext.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/kernel.h> 27 #include <linux/export.h> 28 #include <linux/mempool.h> 29 #include <linux/workqueue.h> 30 #include <linux/cgroup.h> 31 32 #include <trace/events/block.h> 33 34 /* 35 * Test patch to inline a certain number of bi_io_vec's inside the bio 36 * itself, to shrink a bio data allocation from two mempool calls to one 37 */ 38 #define BIO_INLINE_VECS 4 39 40 /* 41 * if you change this list, also change bvec_alloc or things will 42 * break badly! cannot be bigger than what you can fit into an 43 * unsigned short 44 */ 45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } 46 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = { 47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), 48 }; 49 #undef BV 50 51 /* 52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 53 * IO code that does not need private memory pools. 54 */ 55 struct bio_set *fs_bio_set; 56 EXPORT_SYMBOL(fs_bio_set); 57 58 /* 59 * Our slab pool management 60 */ 61 struct bio_slab { 62 struct kmem_cache *slab; 63 unsigned int slab_ref; 64 unsigned int slab_size; 65 char name[8]; 66 }; 67 static DEFINE_MUTEX(bio_slab_lock); 68 static struct bio_slab *bio_slabs; 69 static unsigned int bio_slab_nr, bio_slab_max; 70 71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 72 { 73 unsigned int sz = sizeof(struct bio) + extra_size; 74 struct kmem_cache *slab = NULL; 75 struct bio_slab *bslab, *new_bio_slabs; 76 unsigned int new_bio_slab_max; 77 unsigned int i, entry = -1; 78 79 mutex_lock(&bio_slab_lock); 80 81 i = 0; 82 while (i < bio_slab_nr) { 83 bslab = &bio_slabs[i]; 84 85 if (!bslab->slab && entry == -1) 86 entry = i; 87 else if (bslab->slab_size == sz) { 88 slab = bslab->slab; 89 bslab->slab_ref++; 90 break; 91 } 92 i++; 93 } 94 95 if (slab) 96 goto out_unlock; 97 98 if (bio_slab_nr == bio_slab_max && entry == -1) { 99 new_bio_slab_max = bio_slab_max << 1; 100 new_bio_slabs = krealloc(bio_slabs, 101 new_bio_slab_max * sizeof(struct bio_slab), 102 GFP_KERNEL); 103 if (!new_bio_slabs) 104 goto out_unlock; 105 bio_slab_max = new_bio_slab_max; 106 bio_slabs = new_bio_slabs; 107 } 108 if (entry == -1) 109 entry = bio_slab_nr++; 110 111 bslab = &bio_slabs[entry]; 112 113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, 115 SLAB_HWCACHE_ALIGN, NULL); 116 if (!slab) 117 goto out_unlock; 118 119 bslab->slab = slab; 120 bslab->slab_ref = 1; 121 bslab->slab_size = sz; 122 out_unlock: 123 mutex_unlock(&bio_slab_lock); 124 return slab; 125 } 126 127 static void bio_put_slab(struct bio_set *bs) 128 { 129 struct bio_slab *bslab = NULL; 130 unsigned int i; 131 132 mutex_lock(&bio_slab_lock); 133 134 for (i = 0; i < bio_slab_nr; i++) { 135 if (bs->bio_slab == bio_slabs[i].slab) { 136 bslab = &bio_slabs[i]; 137 break; 138 } 139 } 140 141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 142 goto out; 143 144 WARN_ON(!bslab->slab_ref); 145 146 if (--bslab->slab_ref) 147 goto out; 148 149 kmem_cache_destroy(bslab->slab); 150 bslab->slab = NULL; 151 152 out: 153 mutex_unlock(&bio_slab_lock); 154 } 155 156 unsigned int bvec_nr_vecs(unsigned short idx) 157 { 158 return bvec_slabs[idx].nr_vecs; 159 } 160 161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 162 { 163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS); 164 165 if (idx == BIOVEC_MAX_IDX) 166 mempool_free(bv, pool); 167 else { 168 struct biovec_slab *bvs = bvec_slabs + idx; 169 170 kmem_cache_free(bvs->slab, bv); 171 } 172 } 173 174 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 175 mempool_t *pool) 176 { 177 struct bio_vec *bvl; 178 179 /* 180 * see comment near bvec_array define! 181 */ 182 switch (nr) { 183 case 1: 184 *idx = 0; 185 break; 186 case 2 ... 4: 187 *idx = 1; 188 break; 189 case 5 ... 16: 190 *idx = 2; 191 break; 192 case 17 ... 64: 193 *idx = 3; 194 break; 195 case 65 ... 128: 196 *idx = 4; 197 break; 198 case 129 ... BIO_MAX_PAGES: 199 *idx = 5; 200 break; 201 default: 202 return NULL; 203 } 204 205 /* 206 * idx now points to the pool we want to allocate from. only the 207 * 1-vec entry pool is mempool backed. 208 */ 209 if (*idx == BIOVEC_MAX_IDX) { 210 fallback: 211 bvl = mempool_alloc(pool, gfp_mask); 212 } else { 213 struct biovec_slab *bvs = bvec_slabs + *idx; 214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); 215 216 /* 217 * Make this allocation restricted and don't dump info on 218 * allocation failures, since we'll fallback to the mempool 219 * in case of failure. 220 */ 221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 222 223 /* 224 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM 225 * is set, retry with the 1-entry mempool 226 */ 227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 228 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { 229 *idx = BIOVEC_MAX_IDX; 230 goto fallback; 231 } 232 } 233 234 return bvl; 235 } 236 237 static void __bio_free(struct bio *bio) 238 { 239 bio_disassociate_task(bio); 240 241 if (bio_integrity(bio)) 242 bio_integrity_free(bio); 243 } 244 245 static void bio_free(struct bio *bio) 246 { 247 struct bio_set *bs = bio->bi_pool; 248 void *p; 249 250 __bio_free(bio); 251 252 if (bs) { 253 if (bio_flagged(bio, BIO_OWNS_VEC)) 254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio)); 255 256 /* 257 * If we have front padding, adjust the bio pointer before freeing 258 */ 259 p = bio; 260 p -= bs->front_pad; 261 262 mempool_free(p, bs->bio_pool); 263 } else { 264 /* Bio was allocated by bio_kmalloc() */ 265 kfree(bio); 266 } 267 } 268 269 void bio_init(struct bio *bio) 270 { 271 memset(bio, 0, sizeof(*bio)); 272 atomic_set(&bio->__bi_remaining, 1); 273 atomic_set(&bio->__bi_cnt, 1); 274 } 275 EXPORT_SYMBOL(bio_init); 276 277 /** 278 * bio_reset - reinitialize a bio 279 * @bio: bio to reset 280 * 281 * Description: 282 * After calling bio_reset(), @bio will be in the same state as a freshly 283 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 284 * preserved are the ones that are initialized by bio_alloc_bioset(). See 285 * comment in struct bio. 286 */ 287 void bio_reset(struct bio *bio) 288 { 289 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 290 291 __bio_free(bio); 292 293 memset(bio, 0, BIO_RESET_BYTES); 294 bio->bi_flags = flags; 295 atomic_set(&bio->__bi_remaining, 1); 296 } 297 EXPORT_SYMBOL(bio_reset); 298 299 static void bio_chain_endio(struct bio *bio) 300 { 301 struct bio *parent = bio->bi_private; 302 303 parent->bi_error = bio->bi_error; 304 bio_endio(parent); 305 bio_put(bio); 306 } 307 308 /* 309 * Increment chain count for the bio. Make sure the CHAIN flag update 310 * is visible before the raised count. 311 */ 312 static inline void bio_inc_remaining(struct bio *bio) 313 { 314 bio_set_flag(bio, BIO_CHAIN); 315 smp_mb__before_atomic(); 316 atomic_inc(&bio->__bi_remaining); 317 } 318 319 /** 320 * bio_chain - chain bio completions 321 * @bio: the target bio 322 * @parent: the @bio's parent bio 323 * 324 * The caller won't have a bi_end_io called when @bio completes - instead, 325 * @parent's bi_end_io won't be called until both @parent and @bio have 326 * completed; the chained bio will also be freed when it completes. 327 * 328 * The caller must not set bi_private or bi_end_io in @bio. 329 */ 330 void bio_chain(struct bio *bio, struct bio *parent) 331 { 332 BUG_ON(bio->bi_private || bio->bi_end_io); 333 334 bio->bi_private = parent; 335 bio->bi_end_io = bio_chain_endio; 336 bio_inc_remaining(parent); 337 } 338 EXPORT_SYMBOL(bio_chain); 339 340 static void bio_alloc_rescue(struct work_struct *work) 341 { 342 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 343 struct bio *bio; 344 345 while (1) { 346 spin_lock(&bs->rescue_lock); 347 bio = bio_list_pop(&bs->rescue_list); 348 spin_unlock(&bs->rescue_lock); 349 350 if (!bio) 351 break; 352 353 generic_make_request(bio); 354 } 355 } 356 357 static void punt_bios_to_rescuer(struct bio_set *bs) 358 { 359 struct bio_list punt, nopunt; 360 struct bio *bio; 361 362 /* 363 * In order to guarantee forward progress we must punt only bios that 364 * were allocated from this bio_set; otherwise, if there was a bio on 365 * there for a stacking driver higher up in the stack, processing it 366 * could require allocating bios from this bio_set, and doing that from 367 * our own rescuer would be bad. 368 * 369 * Since bio lists are singly linked, pop them all instead of trying to 370 * remove from the middle of the list: 371 */ 372 373 bio_list_init(&punt); 374 bio_list_init(&nopunt); 375 376 while ((bio = bio_list_pop(current->bio_list))) 377 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 378 379 *current->bio_list = nopunt; 380 381 spin_lock(&bs->rescue_lock); 382 bio_list_merge(&bs->rescue_list, &punt); 383 spin_unlock(&bs->rescue_lock); 384 385 queue_work(bs->rescue_workqueue, &bs->rescue_work); 386 } 387 388 /** 389 * bio_alloc_bioset - allocate a bio for I/O 390 * @gfp_mask: the GFP_ mask given to the slab allocator 391 * @nr_iovecs: number of iovecs to pre-allocate 392 * @bs: the bio_set to allocate from. 393 * 394 * Description: 395 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 396 * backed by the @bs's mempool. 397 * 398 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will 399 * always be able to allocate a bio. This is due to the mempool guarantees. 400 * To make this work, callers must never allocate more than 1 bio at a time 401 * from this pool. Callers that need to allocate more than 1 bio must always 402 * submit the previously allocated bio for IO before attempting to allocate 403 * a new one. Failure to do so can cause deadlocks under memory pressure. 404 * 405 * Note that when running under generic_make_request() (i.e. any block 406 * driver), bios are not submitted until after you return - see the code in 407 * generic_make_request() that converts recursion into iteration, to prevent 408 * stack overflows. 409 * 410 * This would normally mean allocating multiple bios under 411 * generic_make_request() would be susceptible to deadlocks, but we have 412 * deadlock avoidance code that resubmits any blocked bios from a rescuer 413 * thread. 414 * 415 * However, we do not guarantee forward progress for allocations from other 416 * mempools. Doing multiple allocations from the same mempool under 417 * generic_make_request() should be avoided - instead, use bio_set's front_pad 418 * for per bio allocations. 419 * 420 * RETURNS: 421 * Pointer to new bio on success, NULL on failure. 422 */ 423 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) 424 { 425 gfp_t saved_gfp = gfp_mask; 426 unsigned front_pad; 427 unsigned inline_vecs; 428 unsigned long idx = BIO_POOL_NONE; 429 struct bio_vec *bvl = NULL; 430 struct bio *bio; 431 void *p; 432 433 if (!bs) { 434 if (nr_iovecs > UIO_MAXIOV) 435 return NULL; 436 437 p = kmalloc(sizeof(struct bio) + 438 nr_iovecs * sizeof(struct bio_vec), 439 gfp_mask); 440 front_pad = 0; 441 inline_vecs = nr_iovecs; 442 } else { 443 /* should not use nobvec bioset for nr_iovecs > 0 */ 444 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0)) 445 return NULL; 446 /* 447 * generic_make_request() converts recursion to iteration; this 448 * means if we're running beneath it, any bios we allocate and 449 * submit will not be submitted (and thus freed) until after we 450 * return. 451 * 452 * This exposes us to a potential deadlock if we allocate 453 * multiple bios from the same bio_set() while running 454 * underneath generic_make_request(). If we were to allocate 455 * multiple bios (say a stacking block driver that was splitting 456 * bios), we would deadlock if we exhausted the mempool's 457 * reserve. 458 * 459 * We solve this, and guarantee forward progress, with a rescuer 460 * workqueue per bio_set. If we go to allocate and there are 461 * bios on current->bio_list, we first try the allocation 462 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those 463 * bios we would be blocking to the rescuer workqueue before 464 * we retry with the original gfp_flags. 465 */ 466 467 if (current->bio_list && !bio_list_empty(current->bio_list)) 468 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 469 470 p = mempool_alloc(bs->bio_pool, gfp_mask); 471 if (!p && gfp_mask != saved_gfp) { 472 punt_bios_to_rescuer(bs); 473 gfp_mask = saved_gfp; 474 p = mempool_alloc(bs->bio_pool, gfp_mask); 475 } 476 477 front_pad = bs->front_pad; 478 inline_vecs = BIO_INLINE_VECS; 479 } 480 481 if (unlikely(!p)) 482 return NULL; 483 484 bio = p + front_pad; 485 bio_init(bio); 486 487 if (nr_iovecs > inline_vecs) { 488 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 489 if (!bvl && gfp_mask != saved_gfp) { 490 punt_bios_to_rescuer(bs); 491 gfp_mask = saved_gfp; 492 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 493 } 494 495 if (unlikely(!bvl)) 496 goto err_free; 497 498 bio_set_flag(bio, BIO_OWNS_VEC); 499 } else if (nr_iovecs) { 500 bvl = bio->bi_inline_vecs; 501 } 502 503 bio->bi_pool = bs; 504 bio->bi_flags |= idx << BIO_POOL_OFFSET; 505 bio->bi_max_vecs = nr_iovecs; 506 bio->bi_io_vec = bvl; 507 return bio; 508 509 err_free: 510 mempool_free(p, bs->bio_pool); 511 return NULL; 512 } 513 EXPORT_SYMBOL(bio_alloc_bioset); 514 515 void zero_fill_bio(struct bio *bio) 516 { 517 unsigned long flags; 518 struct bio_vec bv; 519 struct bvec_iter iter; 520 521 bio_for_each_segment(bv, bio, iter) { 522 char *data = bvec_kmap_irq(&bv, &flags); 523 memset(data, 0, bv.bv_len); 524 flush_dcache_page(bv.bv_page); 525 bvec_kunmap_irq(data, &flags); 526 } 527 } 528 EXPORT_SYMBOL(zero_fill_bio); 529 530 /** 531 * bio_put - release a reference to a bio 532 * @bio: bio to release reference to 533 * 534 * Description: 535 * Put a reference to a &struct bio, either one you have gotten with 536 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it. 537 **/ 538 void bio_put(struct bio *bio) 539 { 540 if (!bio_flagged(bio, BIO_REFFED)) 541 bio_free(bio); 542 else { 543 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 544 545 /* 546 * last put frees it 547 */ 548 if (atomic_dec_and_test(&bio->__bi_cnt)) 549 bio_free(bio); 550 } 551 } 552 EXPORT_SYMBOL(bio_put); 553 554 inline int bio_phys_segments(struct request_queue *q, struct bio *bio) 555 { 556 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) 557 blk_recount_segments(q, bio); 558 559 return bio->bi_phys_segments; 560 } 561 EXPORT_SYMBOL(bio_phys_segments); 562 563 /** 564 * __bio_clone_fast - clone a bio that shares the original bio's biovec 565 * @bio: destination bio 566 * @bio_src: bio to clone 567 * 568 * Clone a &bio. Caller will own the returned bio, but not 569 * the actual data it points to. Reference count of returned 570 * bio will be one. 571 * 572 * Caller must ensure that @bio_src is not freed before @bio. 573 */ 574 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 575 { 576 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE); 577 578 /* 579 * most users will be overriding ->bi_bdev with a new target, 580 * so we don't set nor calculate new physical/hw segment counts here 581 */ 582 bio->bi_bdev = bio_src->bi_bdev; 583 bio_set_flag(bio, BIO_CLONED); 584 bio->bi_rw = bio_src->bi_rw; 585 bio->bi_iter = bio_src->bi_iter; 586 bio->bi_io_vec = bio_src->bi_io_vec; 587 } 588 EXPORT_SYMBOL(__bio_clone_fast); 589 590 /** 591 * bio_clone_fast - clone a bio that shares the original bio's biovec 592 * @bio: bio to clone 593 * @gfp_mask: allocation priority 594 * @bs: bio_set to allocate from 595 * 596 * Like __bio_clone_fast, only also allocates the returned bio 597 */ 598 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 599 { 600 struct bio *b; 601 602 b = bio_alloc_bioset(gfp_mask, 0, bs); 603 if (!b) 604 return NULL; 605 606 __bio_clone_fast(b, bio); 607 608 if (bio_integrity(bio)) { 609 int ret; 610 611 ret = bio_integrity_clone(b, bio, gfp_mask); 612 613 if (ret < 0) { 614 bio_put(b); 615 return NULL; 616 } 617 } 618 619 return b; 620 } 621 EXPORT_SYMBOL(bio_clone_fast); 622 623 /** 624 * bio_clone_bioset - clone a bio 625 * @bio_src: bio to clone 626 * @gfp_mask: allocation priority 627 * @bs: bio_set to allocate from 628 * 629 * Clone bio. Caller will own the returned bio, but not the actual data it 630 * points to. Reference count of returned bio will be one. 631 */ 632 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, 633 struct bio_set *bs) 634 { 635 struct bvec_iter iter; 636 struct bio_vec bv; 637 struct bio *bio; 638 639 /* 640 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from 641 * bio_src->bi_io_vec to bio->bi_io_vec. 642 * 643 * We can't do that anymore, because: 644 * 645 * - The point of cloning the biovec is to produce a bio with a biovec 646 * the caller can modify: bi_idx and bi_bvec_done should be 0. 647 * 648 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if 649 * we tried to clone the whole thing bio_alloc_bioset() would fail. 650 * But the clone should succeed as long as the number of biovecs we 651 * actually need to allocate is fewer than BIO_MAX_PAGES. 652 * 653 * - Lastly, bi_vcnt should not be looked at or relied upon by code 654 * that does not own the bio - reason being drivers don't use it for 655 * iterating over the biovec anymore, so expecting it to be kept up 656 * to date (i.e. for clones that share the parent biovec) is just 657 * asking for trouble and would force extra work on 658 * __bio_clone_fast() anyways. 659 */ 660 661 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs); 662 if (!bio) 663 return NULL; 664 665 bio->bi_bdev = bio_src->bi_bdev; 666 bio->bi_rw = bio_src->bi_rw; 667 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; 668 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; 669 670 if (bio->bi_rw & REQ_DISCARD) 671 goto integrity_clone; 672 673 if (bio->bi_rw & REQ_WRITE_SAME) { 674 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0]; 675 goto integrity_clone; 676 } 677 678 bio_for_each_segment(bv, bio_src, iter) 679 bio->bi_io_vec[bio->bi_vcnt++] = bv; 680 681 integrity_clone: 682 if (bio_integrity(bio_src)) { 683 int ret; 684 685 ret = bio_integrity_clone(bio, bio_src, gfp_mask); 686 if (ret < 0) { 687 bio_put(bio); 688 return NULL; 689 } 690 } 691 692 return bio; 693 } 694 EXPORT_SYMBOL(bio_clone_bioset); 695 696 /** 697 * bio_add_pc_page - attempt to add page to bio 698 * @q: the target queue 699 * @bio: destination bio 700 * @page: page to add 701 * @len: vec entry length 702 * @offset: vec entry offset 703 * 704 * Attempt to add a page to the bio_vec maplist. This can fail for a 705 * number of reasons, such as the bio being full or target block device 706 * limitations. The target block device must allow bio's up to PAGE_SIZE, 707 * so it is always possible to add a single page to an empty bio. 708 * 709 * This should only be used by REQ_PC bios. 710 */ 711 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page 712 *page, unsigned int len, unsigned int offset) 713 { 714 int retried_segments = 0; 715 struct bio_vec *bvec; 716 717 /* 718 * cloned bio must not modify vec list 719 */ 720 if (unlikely(bio_flagged(bio, BIO_CLONED))) 721 return 0; 722 723 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q)) 724 return 0; 725 726 /* 727 * For filesystems with a blocksize smaller than the pagesize 728 * we will often be called with the same page as last time and 729 * a consecutive offset. Optimize this special case. 730 */ 731 if (bio->bi_vcnt > 0) { 732 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 733 734 if (page == prev->bv_page && 735 offset == prev->bv_offset + prev->bv_len) { 736 prev->bv_len += len; 737 bio->bi_iter.bi_size += len; 738 goto done; 739 } 740 741 /* 742 * If the queue doesn't support SG gaps and adding this 743 * offset would create a gap, disallow it. 744 */ 745 if (bvec_gap_to_prev(q, prev, offset)) 746 return 0; 747 } 748 749 if (bio->bi_vcnt >= bio->bi_max_vecs) 750 return 0; 751 752 /* 753 * setup the new entry, we might clear it again later if we 754 * cannot add the page 755 */ 756 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 757 bvec->bv_page = page; 758 bvec->bv_len = len; 759 bvec->bv_offset = offset; 760 bio->bi_vcnt++; 761 bio->bi_phys_segments++; 762 bio->bi_iter.bi_size += len; 763 764 /* 765 * Perform a recount if the number of segments is greater 766 * than queue_max_segments(q). 767 */ 768 769 while (bio->bi_phys_segments > queue_max_segments(q)) { 770 771 if (retried_segments) 772 goto failed; 773 774 retried_segments = 1; 775 blk_recount_segments(q, bio); 776 } 777 778 /* If we may be able to merge these biovecs, force a recount */ 779 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) 780 bio_clear_flag(bio, BIO_SEG_VALID); 781 782 done: 783 return len; 784 785 failed: 786 bvec->bv_page = NULL; 787 bvec->bv_len = 0; 788 bvec->bv_offset = 0; 789 bio->bi_vcnt--; 790 bio->bi_iter.bi_size -= len; 791 blk_recount_segments(q, bio); 792 return 0; 793 } 794 EXPORT_SYMBOL(bio_add_pc_page); 795 796 /** 797 * bio_add_page - attempt to add page to bio 798 * @bio: destination bio 799 * @page: page to add 800 * @len: vec entry length 801 * @offset: vec entry offset 802 * 803 * Attempt to add a page to the bio_vec maplist. This will only fail 804 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 805 */ 806 int bio_add_page(struct bio *bio, struct page *page, 807 unsigned int len, unsigned int offset) 808 { 809 struct bio_vec *bv; 810 811 /* 812 * cloned bio must not modify vec list 813 */ 814 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 815 return 0; 816 817 /* 818 * For filesystems with a blocksize smaller than the pagesize 819 * we will often be called with the same page as last time and 820 * a consecutive offset. Optimize this special case. 821 */ 822 if (bio->bi_vcnt > 0) { 823 bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 824 825 if (page == bv->bv_page && 826 offset == bv->bv_offset + bv->bv_len) { 827 bv->bv_len += len; 828 goto done; 829 } 830 } 831 832 if (bio->bi_vcnt >= bio->bi_max_vecs) 833 return 0; 834 835 bv = &bio->bi_io_vec[bio->bi_vcnt]; 836 bv->bv_page = page; 837 bv->bv_len = len; 838 bv->bv_offset = offset; 839 840 bio->bi_vcnt++; 841 done: 842 bio->bi_iter.bi_size += len; 843 return len; 844 } 845 EXPORT_SYMBOL(bio_add_page); 846 847 struct submit_bio_ret { 848 struct completion event; 849 int error; 850 }; 851 852 static void submit_bio_wait_endio(struct bio *bio) 853 { 854 struct submit_bio_ret *ret = bio->bi_private; 855 856 ret->error = bio->bi_error; 857 complete(&ret->event); 858 } 859 860 /** 861 * submit_bio_wait - submit a bio, and wait until it completes 862 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 863 * @bio: The &struct bio which describes the I/O 864 * 865 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 866 * bio_endio() on failure. 867 */ 868 int submit_bio_wait(int rw, struct bio *bio) 869 { 870 struct submit_bio_ret ret; 871 872 rw |= REQ_SYNC; 873 init_completion(&ret.event); 874 bio->bi_private = &ret; 875 bio->bi_end_io = submit_bio_wait_endio; 876 submit_bio(rw, bio); 877 wait_for_completion_io(&ret.event); 878 879 return ret.error; 880 } 881 EXPORT_SYMBOL(submit_bio_wait); 882 883 /** 884 * bio_advance - increment/complete a bio by some number of bytes 885 * @bio: bio to advance 886 * @bytes: number of bytes to complete 887 * 888 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 889 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 890 * be updated on the last bvec as well. 891 * 892 * @bio will then represent the remaining, uncompleted portion of the io. 893 */ 894 void bio_advance(struct bio *bio, unsigned bytes) 895 { 896 if (bio_integrity(bio)) 897 bio_integrity_advance(bio, bytes); 898 899 bio_advance_iter(bio, &bio->bi_iter, bytes); 900 } 901 EXPORT_SYMBOL(bio_advance); 902 903 /** 904 * bio_alloc_pages - allocates a single page for each bvec in a bio 905 * @bio: bio to allocate pages for 906 * @gfp_mask: flags for allocation 907 * 908 * Allocates pages up to @bio->bi_vcnt. 909 * 910 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are 911 * freed. 912 */ 913 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask) 914 { 915 int i; 916 struct bio_vec *bv; 917 918 bio_for_each_segment_all(bv, bio, i) { 919 bv->bv_page = alloc_page(gfp_mask); 920 if (!bv->bv_page) { 921 while (--bv >= bio->bi_io_vec) 922 __free_page(bv->bv_page); 923 return -ENOMEM; 924 } 925 } 926 927 return 0; 928 } 929 EXPORT_SYMBOL(bio_alloc_pages); 930 931 /** 932 * bio_copy_data - copy contents of data buffers from one chain of bios to 933 * another 934 * @src: source bio list 935 * @dst: destination bio list 936 * 937 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats 938 * @src and @dst as linked lists of bios. 939 * 940 * Stops when it reaches the end of either @src or @dst - that is, copies 941 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 942 */ 943 void bio_copy_data(struct bio *dst, struct bio *src) 944 { 945 struct bvec_iter src_iter, dst_iter; 946 struct bio_vec src_bv, dst_bv; 947 void *src_p, *dst_p; 948 unsigned bytes; 949 950 src_iter = src->bi_iter; 951 dst_iter = dst->bi_iter; 952 953 while (1) { 954 if (!src_iter.bi_size) { 955 src = src->bi_next; 956 if (!src) 957 break; 958 959 src_iter = src->bi_iter; 960 } 961 962 if (!dst_iter.bi_size) { 963 dst = dst->bi_next; 964 if (!dst) 965 break; 966 967 dst_iter = dst->bi_iter; 968 } 969 970 src_bv = bio_iter_iovec(src, src_iter); 971 dst_bv = bio_iter_iovec(dst, dst_iter); 972 973 bytes = min(src_bv.bv_len, dst_bv.bv_len); 974 975 src_p = kmap_atomic(src_bv.bv_page); 976 dst_p = kmap_atomic(dst_bv.bv_page); 977 978 memcpy(dst_p + dst_bv.bv_offset, 979 src_p + src_bv.bv_offset, 980 bytes); 981 982 kunmap_atomic(dst_p); 983 kunmap_atomic(src_p); 984 985 bio_advance_iter(src, &src_iter, bytes); 986 bio_advance_iter(dst, &dst_iter, bytes); 987 } 988 } 989 EXPORT_SYMBOL(bio_copy_data); 990 991 struct bio_map_data { 992 int is_our_pages; 993 struct iov_iter iter; 994 struct iovec iov[]; 995 }; 996 997 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count, 998 gfp_t gfp_mask) 999 { 1000 if (iov_count > UIO_MAXIOV) 1001 return NULL; 1002 1003 return kmalloc(sizeof(struct bio_map_data) + 1004 sizeof(struct iovec) * iov_count, gfp_mask); 1005 } 1006 1007 /** 1008 * bio_copy_from_iter - copy all pages from iov_iter to bio 1009 * @bio: The &struct bio which describes the I/O as destination 1010 * @iter: iov_iter as source 1011 * 1012 * Copy all pages from iov_iter to bio. 1013 * Returns 0 on success, or error on failure. 1014 */ 1015 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter) 1016 { 1017 int i; 1018 struct bio_vec *bvec; 1019 1020 bio_for_each_segment_all(bvec, bio, i) { 1021 ssize_t ret; 1022 1023 ret = copy_page_from_iter(bvec->bv_page, 1024 bvec->bv_offset, 1025 bvec->bv_len, 1026 &iter); 1027 1028 if (!iov_iter_count(&iter)) 1029 break; 1030 1031 if (ret < bvec->bv_len) 1032 return -EFAULT; 1033 } 1034 1035 return 0; 1036 } 1037 1038 /** 1039 * bio_copy_to_iter - copy all pages from bio to iov_iter 1040 * @bio: The &struct bio which describes the I/O as source 1041 * @iter: iov_iter as destination 1042 * 1043 * Copy all pages from bio to iov_iter. 1044 * Returns 0 on success, or error on failure. 1045 */ 1046 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 1047 { 1048 int i; 1049 struct bio_vec *bvec; 1050 1051 bio_for_each_segment_all(bvec, bio, i) { 1052 ssize_t ret; 1053 1054 ret = copy_page_to_iter(bvec->bv_page, 1055 bvec->bv_offset, 1056 bvec->bv_len, 1057 &iter); 1058 1059 if (!iov_iter_count(&iter)) 1060 break; 1061 1062 if (ret < bvec->bv_len) 1063 return -EFAULT; 1064 } 1065 1066 return 0; 1067 } 1068 1069 static void bio_free_pages(struct bio *bio) 1070 { 1071 struct bio_vec *bvec; 1072 int i; 1073 1074 bio_for_each_segment_all(bvec, bio, i) 1075 __free_page(bvec->bv_page); 1076 } 1077 1078 /** 1079 * bio_uncopy_user - finish previously mapped bio 1080 * @bio: bio being terminated 1081 * 1082 * Free pages allocated from bio_copy_user_iov() and write back data 1083 * to user space in case of a read. 1084 */ 1085 int bio_uncopy_user(struct bio *bio) 1086 { 1087 struct bio_map_data *bmd = bio->bi_private; 1088 int ret = 0; 1089 1090 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1091 /* 1092 * if we're in a workqueue, the request is orphaned, so 1093 * don't copy into a random user address space, just free 1094 * and return -EINTR so user space doesn't expect any data. 1095 */ 1096 if (!current->mm) 1097 ret = -EINTR; 1098 else if (bio_data_dir(bio) == READ) 1099 ret = bio_copy_to_iter(bio, bmd->iter); 1100 if (bmd->is_our_pages) 1101 bio_free_pages(bio); 1102 } 1103 kfree(bmd); 1104 bio_put(bio); 1105 return ret; 1106 } 1107 EXPORT_SYMBOL(bio_uncopy_user); 1108 1109 /** 1110 * bio_copy_user_iov - copy user data to bio 1111 * @q: destination block queue 1112 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1113 * @iter: iovec iterator 1114 * @gfp_mask: memory allocation flags 1115 * 1116 * Prepares and returns a bio for indirect user io, bouncing data 1117 * to/from kernel pages as necessary. Must be paired with 1118 * call bio_uncopy_user() on io completion. 1119 */ 1120 struct bio *bio_copy_user_iov(struct request_queue *q, 1121 struct rq_map_data *map_data, 1122 const struct iov_iter *iter, 1123 gfp_t gfp_mask) 1124 { 1125 struct bio_map_data *bmd; 1126 struct page *page; 1127 struct bio *bio; 1128 int i, ret; 1129 int nr_pages = 0; 1130 unsigned int len = iter->count; 1131 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 1132 1133 for (i = 0; i < iter->nr_segs; i++) { 1134 unsigned long uaddr; 1135 unsigned long end; 1136 unsigned long start; 1137 1138 uaddr = (unsigned long) iter->iov[i].iov_base; 1139 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1) 1140 >> PAGE_SHIFT; 1141 start = uaddr >> PAGE_SHIFT; 1142 1143 /* 1144 * Overflow, abort 1145 */ 1146 if (end < start) 1147 return ERR_PTR(-EINVAL); 1148 1149 nr_pages += end - start; 1150 } 1151 1152 if (offset) 1153 nr_pages++; 1154 1155 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask); 1156 if (!bmd) 1157 return ERR_PTR(-ENOMEM); 1158 1159 /* 1160 * We need to do a deep copy of the iov_iter including the iovecs. 1161 * The caller provided iov might point to an on-stack or otherwise 1162 * shortlived one. 1163 */ 1164 bmd->is_our_pages = map_data ? 0 : 1; 1165 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs); 1166 iov_iter_init(&bmd->iter, iter->type, bmd->iov, 1167 iter->nr_segs, iter->count); 1168 1169 ret = -ENOMEM; 1170 bio = bio_kmalloc(gfp_mask, nr_pages); 1171 if (!bio) 1172 goto out_bmd; 1173 1174 if (iter->type & WRITE) 1175 bio->bi_rw |= REQ_WRITE; 1176 1177 ret = 0; 1178 1179 if (map_data) { 1180 nr_pages = 1 << map_data->page_order; 1181 i = map_data->offset / PAGE_SIZE; 1182 } 1183 while (len) { 1184 unsigned int bytes = PAGE_SIZE; 1185 1186 bytes -= offset; 1187 1188 if (bytes > len) 1189 bytes = len; 1190 1191 if (map_data) { 1192 if (i == map_data->nr_entries * nr_pages) { 1193 ret = -ENOMEM; 1194 break; 1195 } 1196 1197 page = map_data->pages[i / nr_pages]; 1198 page += (i % nr_pages); 1199 1200 i++; 1201 } else { 1202 page = alloc_page(q->bounce_gfp | gfp_mask); 1203 if (!page) { 1204 ret = -ENOMEM; 1205 break; 1206 } 1207 } 1208 1209 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) 1210 break; 1211 1212 len -= bytes; 1213 offset = 0; 1214 } 1215 1216 if (ret) 1217 goto cleanup; 1218 1219 /* 1220 * success 1221 */ 1222 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) || 1223 (map_data && map_data->from_user)) { 1224 ret = bio_copy_from_iter(bio, *iter); 1225 if (ret) 1226 goto cleanup; 1227 } 1228 1229 bio->bi_private = bmd; 1230 return bio; 1231 cleanup: 1232 if (!map_data) 1233 bio_free_pages(bio); 1234 bio_put(bio); 1235 out_bmd: 1236 kfree(bmd); 1237 return ERR_PTR(ret); 1238 } 1239 1240 /** 1241 * bio_map_user_iov - map user iovec into bio 1242 * @q: the struct request_queue for the bio 1243 * @iter: iovec iterator 1244 * @gfp_mask: memory allocation flags 1245 * 1246 * Map the user space address into a bio suitable for io to a block 1247 * device. Returns an error pointer in case of error. 1248 */ 1249 struct bio *bio_map_user_iov(struct request_queue *q, 1250 const struct iov_iter *iter, 1251 gfp_t gfp_mask) 1252 { 1253 int j; 1254 int nr_pages = 0; 1255 struct page **pages; 1256 struct bio *bio; 1257 int cur_page = 0; 1258 int ret, offset; 1259 struct iov_iter i; 1260 struct iovec iov; 1261 1262 iov_for_each(iov, i, *iter) { 1263 unsigned long uaddr = (unsigned long) iov.iov_base; 1264 unsigned long len = iov.iov_len; 1265 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1266 unsigned long start = uaddr >> PAGE_SHIFT; 1267 1268 /* 1269 * Overflow, abort 1270 */ 1271 if (end < start) 1272 return ERR_PTR(-EINVAL); 1273 1274 nr_pages += end - start; 1275 /* 1276 * buffer must be aligned to at least hardsector size for now 1277 */ 1278 if (uaddr & queue_dma_alignment(q)) 1279 return ERR_PTR(-EINVAL); 1280 } 1281 1282 if (!nr_pages) 1283 return ERR_PTR(-EINVAL); 1284 1285 bio = bio_kmalloc(gfp_mask, nr_pages); 1286 if (!bio) 1287 return ERR_PTR(-ENOMEM); 1288 1289 ret = -ENOMEM; 1290 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); 1291 if (!pages) 1292 goto out; 1293 1294 iov_for_each(iov, i, *iter) { 1295 unsigned long uaddr = (unsigned long) iov.iov_base; 1296 unsigned long len = iov.iov_len; 1297 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1298 unsigned long start = uaddr >> PAGE_SHIFT; 1299 const int local_nr_pages = end - start; 1300 const int page_limit = cur_page + local_nr_pages; 1301 1302 ret = get_user_pages_fast(uaddr, local_nr_pages, 1303 (iter->type & WRITE) != WRITE, 1304 &pages[cur_page]); 1305 if (ret < local_nr_pages) { 1306 ret = -EFAULT; 1307 goto out_unmap; 1308 } 1309 1310 offset = offset_in_page(uaddr); 1311 for (j = cur_page; j < page_limit; j++) { 1312 unsigned int bytes = PAGE_SIZE - offset; 1313 1314 if (len <= 0) 1315 break; 1316 1317 if (bytes > len) 1318 bytes = len; 1319 1320 /* 1321 * sorry... 1322 */ 1323 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < 1324 bytes) 1325 break; 1326 1327 len -= bytes; 1328 offset = 0; 1329 } 1330 1331 cur_page = j; 1332 /* 1333 * release the pages we didn't map into the bio, if any 1334 */ 1335 while (j < page_limit) 1336 page_cache_release(pages[j++]); 1337 } 1338 1339 kfree(pages); 1340 1341 /* 1342 * set data direction, and check if mapped pages need bouncing 1343 */ 1344 if (iter->type & WRITE) 1345 bio->bi_rw |= REQ_WRITE; 1346 1347 bio_set_flag(bio, BIO_USER_MAPPED); 1348 1349 /* 1350 * subtle -- if __bio_map_user() ended up bouncing a bio, 1351 * it would normally disappear when its bi_end_io is run. 1352 * however, we need it for the unmap, so grab an extra 1353 * reference to it 1354 */ 1355 bio_get(bio); 1356 return bio; 1357 1358 out_unmap: 1359 for (j = 0; j < nr_pages; j++) { 1360 if (!pages[j]) 1361 break; 1362 page_cache_release(pages[j]); 1363 } 1364 out: 1365 kfree(pages); 1366 bio_put(bio); 1367 return ERR_PTR(ret); 1368 } 1369 1370 static void __bio_unmap_user(struct bio *bio) 1371 { 1372 struct bio_vec *bvec; 1373 int i; 1374 1375 /* 1376 * make sure we dirty pages we wrote to 1377 */ 1378 bio_for_each_segment_all(bvec, bio, i) { 1379 if (bio_data_dir(bio) == READ) 1380 set_page_dirty_lock(bvec->bv_page); 1381 1382 page_cache_release(bvec->bv_page); 1383 } 1384 1385 bio_put(bio); 1386 } 1387 1388 /** 1389 * bio_unmap_user - unmap a bio 1390 * @bio: the bio being unmapped 1391 * 1392 * Unmap a bio previously mapped by bio_map_user(). Must be called with 1393 * a process context. 1394 * 1395 * bio_unmap_user() may sleep. 1396 */ 1397 void bio_unmap_user(struct bio *bio) 1398 { 1399 __bio_unmap_user(bio); 1400 bio_put(bio); 1401 } 1402 EXPORT_SYMBOL(bio_unmap_user); 1403 1404 static void bio_map_kern_endio(struct bio *bio) 1405 { 1406 bio_put(bio); 1407 } 1408 1409 /** 1410 * bio_map_kern - map kernel address into bio 1411 * @q: the struct request_queue for the bio 1412 * @data: pointer to buffer to map 1413 * @len: length in bytes 1414 * @gfp_mask: allocation flags for bio allocation 1415 * 1416 * Map the kernel address into a bio suitable for io to a block 1417 * device. Returns an error pointer in case of error. 1418 */ 1419 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1420 gfp_t gfp_mask) 1421 { 1422 unsigned long kaddr = (unsigned long)data; 1423 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1424 unsigned long start = kaddr >> PAGE_SHIFT; 1425 const int nr_pages = end - start; 1426 int offset, i; 1427 struct bio *bio; 1428 1429 bio = bio_kmalloc(gfp_mask, nr_pages); 1430 if (!bio) 1431 return ERR_PTR(-ENOMEM); 1432 1433 offset = offset_in_page(kaddr); 1434 for (i = 0; i < nr_pages; i++) { 1435 unsigned int bytes = PAGE_SIZE - offset; 1436 1437 if (len <= 0) 1438 break; 1439 1440 if (bytes > len) 1441 bytes = len; 1442 1443 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, 1444 offset) < bytes) { 1445 /* we don't support partial mappings */ 1446 bio_put(bio); 1447 return ERR_PTR(-EINVAL); 1448 } 1449 1450 data += bytes; 1451 len -= bytes; 1452 offset = 0; 1453 } 1454 1455 bio->bi_end_io = bio_map_kern_endio; 1456 return bio; 1457 } 1458 EXPORT_SYMBOL(bio_map_kern); 1459 1460 static void bio_copy_kern_endio(struct bio *bio) 1461 { 1462 bio_free_pages(bio); 1463 bio_put(bio); 1464 } 1465 1466 static void bio_copy_kern_endio_read(struct bio *bio) 1467 { 1468 char *p = bio->bi_private; 1469 struct bio_vec *bvec; 1470 int i; 1471 1472 bio_for_each_segment_all(bvec, bio, i) { 1473 memcpy(p, page_address(bvec->bv_page), bvec->bv_len); 1474 p += bvec->bv_len; 1475 } 1476 1477 bio_copy_kern_endio(bio); 1478 } 1479 1480 /** 1481 * bio_copy_kern - copy kernel address into bio 1482 * @q: the struct request_queue for the bio 1483 * @data: pointer to buffer to copy 1484 * @len: length in bytes 1485 * @gfp_mask: allocation flags for bio and page allocation 1486 * @reading: data direction is READ 1487 * 1488 * copy the kernel address into a bio suitable for io to a block 1489 * device. Returns an error pointer in case of error. 1490 */ 1491 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1492 gfp_t gfp_mask, int reading) 1493 { 1494 unsigned long kaddr = (unsigned long)data; 1495 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1496 unsigned long start = kaddr >> PAGE_SHIFT; 1497 struct bio *bio; 1498 void *p = data; 1499 int nr_pages = 0; 1500 1501 /* 1502 * Overflow, abort 1503 */ 1504 if (end < start) 1505 return ERR_PTR(-EINVAL); 1506 1507 nr_pages = end - start; 1508 bio = bio_kmalloc(gfp_mask, nr_pages); 1509 if (!bio) 1510 return ERR_PTR(-ENOMEM); 1511 1512 while (len) { 1513 struct page *page; 1514 unsigned int bytes = PAGE_SIZE; 1515 1516 if (bytes > len) 1517 bytes = len; 1518 1519 page = alloc_page(q->bounce_gfp | gfp_mask); 1520 if (!page) 1521 goto cleanup; 1522 1523 if (!reading) 1524 memcpy(page_address(page), p, bytes); 1525 1526 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 1527 break; 1528 1529 len -= bytes; 1530 p += bytes; 1531 } 1532 1533 if (reading) { 1534 bio->bi_end_io = bio_copy_kern_endio_read; 1535 bio->bi_private = data; 1536 } else { 1537 bio->bi_end_io = bio_copy_kern_endio; 1538 bio->bi_rw |= REQ_WRITE; 1539 } 1540 1541 return bio; 1542 1543 cleanup: 1544 bio_free_pages(bio); 1545 bio_put(bio); 1546 return ERR_PTR(-ENOMEM); 1547 } 1548 EXPORT_SYMBOL(bio_copy_kern); 1549 1550 /* 1551 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1552 * for performing direct-IO in BIOs. 1553 * 1554 * The problem is that we cannot run set_page_dirty() from interrupt context 1555 * because the required locks are not interrupt-safe. So what we can do is to 1556 * mark the pages dirty _before_ performing IO. And in interrupt context, 1557 * check that the pages are still dirty. If so, fine. If not, redirty them 1558 * in process context. 1559 * 1560 * We special-case compound pages here: normally this means reads into hugetlb 1561 * pages. The logic in here doesn't really work right for compound pages 1562 * because the VM does not uniformly chase down the head page in all cases. 1563 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1564 * handle them at all. So we skip compound pages here at an early stage. 1565 * 1566 * Note that this code is very hard to test under normal circumstances because 1567 * direct-io pins the pages with get_user_pages(). This makes 1568 * is_page_cache_freeable return false, and the VM will not clean the pages. 1569 * But other code (eg, flusher threads) could clean the pages if they are mapped 1570 * pagecache. 1571 * 1572 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1573 * deferred bio dirtying paths. 1574 */ 1575 1576 /* 1577 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1578 */ 1579 void bio_set_pages_dirty(struct bio *bio) 1580 { 1581 struct bio_vec *bvec; 1582 int i; 1583 1584 bio_for_each_segment_all(bvec, bio, i) { 1585 struct page *page = bvec->bv_page; 1586 1587 if (page && !PageCompound(page)) 1588 set_page_dirty_lock(page); 1589 } 1590 } 1591 1592 static void bio_release_pages(struct bio *bio) 1593 { 1594 struct bio_vec *bvec; 1595 int i; 1596 1597 bio_for_each_segment_all(bvec, bio, i) { 1598 struct page *page = bvec->bv_page; 1599 1600 if (page) 1601 put_page(page); 1602 } 1603 } 1604 1605 /* 1606 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1607 * If they are, then fine. If, however, some pages are clean then they must 1608 * have been written out during the direct-IO read. So we take another ref on 1609 * the BIO and the offending pages and re-dirty the pages in process context. 1610 * 1611 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1612 * here on. It will run one page_cache_release() against each page and will 1613 * run one bio_put() against the BIO. 1614 */ 1615 1616 static void bio_dirty_fn(struct work_struct *work); 1617 1618 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1619 static DEFINE_SPINLOCK(bio_dirty_lock); 1620 static struct bio *bio_dirty_list; 1621 1622 /* 1623 * This runs in process context 1624 */ 1625 static void bio_dirty_fn(struct work_struct *work) 1626 { 1627 unsigned long flags; 1628 struct bio *bio; 1629 1630 spin_lock_irqsave(&bio_dirty_lock, flags); 1631 bio = bio_dirty_list; 1632 bio_dirty_list = NULL; 1633 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1634 1635 while (bio) { 1636 struct bio *next = bio->bi_private; 1637 1638 bio_set_pages_dirty(bio); 1639 bio_release_pages(bio); 1640 bio_put(bio); 1641 bio = next; 1642 } 1643 } 1644 1645 void bio_check_pages_dirty(struct bio *bio) 1646 { 1647 struct bio_vec *bvec; 1648 int nr_clean_pages = 0; 1649 int i; 1650 1651 bio_for_each_segment_all(bvec, bio, i) { 1652 struct page *page = bvec->bv_page; 1653 1654 if (PageDirty(page) || PageCompound(page)) { 1655 page_cache_release(page); 1656 bvec->bv_page = NULL; 1657 } else { 1658 nr_clean_pages++; 1659 } 1660 } 1661 1662 if (nr_clean_pages) { 1663 unsigned long flags; 1664 1665 spin_lock_irqsave(&bio_dirty_lock, flags); 1666 bio->bi_private = bio_dirty_list; 1667 bio_dirty_list = bio; 1668 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1669 schedule_work(&bio_dirty_work); 1670 } else { 1671 bio_put(bio); 1672 } 1673 } 1674 1675 void generic_start_io_acct(int rw, unsigned long sectors, 1676 struct hd_struct *part) 1677 { 1678 int cpu = part_stat_lock(); 1679 1680 part_round_stats(cpu, part); 1681 part_stat_inc(cpu, part, ios[rw]); 1682 part_stat_add(cpu, part, sectors[rw], sectors); 1683 part_inc_in_flight(part, rw); 1684 1685 part_stat_unlock(); 1686 } 1687 EXPORT_SYMBOL(generic_start_io_acct); 1688 1689 void generic_end_io_acct(int rw, struct hd_struct *part, 1690 unsigned long start_time) 1691 { 1692 unsigned long duration = jiffies - start_time; 1693 int cpu = part_stat_lock(); 1694 1695 part_stat_add(cpu, part, ticks[rw], duration); 1696 part_round_stats(cpu, part); 1697 part_dec_in_flight(part, rw); 1698 1699 part_stat_unlock(); 1700 } 1701 EXPORT_SYMBOL(generic_end_io_acct); 1702 1703 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1704 void bio_flush_dcache_pages(struct bio *bi) 1705 { 1706 struct bio_vec bvec; 1707 struct bvec_iter iter; 1708 1709 bio_for_each_segment(bvec, bi, iter) 1710 flush_dcache_page(bvec.bv_page); 1711 } 1712 EXPORT_SYMBOL(bio_flush_dcache_pages); 1713 #endif 1714 1715 static inline bool bio_remaining_done(struct bio *bio) 1716 { 1717 /* 1718 * If we're not chaining, then ->__bi_remaining is always 1 and 1719 * we always end io on the first invocation. 1720 */ 1721 if (!bio_flagged(bio, BIO_CHAIN)) 1722 return true; 1723 1724 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1725 1726 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1727 bio_clear_flag(bio, BIO_CHAIN); 1728 return true; 1729 } 1730 1731 return false; 1732 } 1733 1734 /** 1735 * bio_endio - end I/O on a bio 1736 * @bio: bio 1737 * 1738 * Description: 1739 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1740 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1741 * bio unless they own it and thus know that it has an end_io function. 1742 **/ 1743 void bio_endio(struct bio *bio) 1744 { 1745 while (bio) { 1746 if (unlikely(!bio_remaining_done(bio))) 1747 break; 1748 1749 /* 1750 * Need to have a real endio function for chained bios, 1751 * otherwise various corner cases will break (like stacking 1752 * block devices that save/restore bi_end_io) - however, we want 1753 * to avoid unbounded recursion and blowing the stack. Tail call 1754 * optimization would handle this, but compiling with frame 1755 * pointers also disables gcc's sibling call optimization. 1756 */ 1757 if (bio->bi_end_io == bio_chain_endio) { 1758 struct bio *parent = bio->bi_private; 1759 parent->bi_error = bio->bi_error; 1760 bio_put(bio); 1761 bio = parent; 1762 } else { 1763 if (bio->bi_end_io) 1764 bio->bi_end_io(bio); 1765 bio = NULL; 1766 } 1767 } 1768 } 1769 EXPORT_SYMBOL(bio_endio); 1770 1771 /** 1772 * bio_split - split a bio 1773 * @bio: bio to split 1774 * @sectors: number of sectors to split from the front of @bio 1775 * @gfp: gfp mask 1776 * @bs: bio set to allocate from 1777 * 1778 * Allocates and returns a new bio which represents @sectors from the start of 1779 * @bio, and updates @bio to represent the remaining sectors. 1780 * 1781 * Unless this is a discard request the newly allocated bio will point 1782 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that 1783 * @bio is not freed before the split. 1784 */ 1785 struct bio *bio_split(struct bio *bio, int sectors, 1786 gfp_t gfp, struct bio_set *bs) 1787 { 1788 struct bio *split = NULL; 1789 1790 BUG_ON(sectors <= 0); 1791 BUG_ON(sectors >= bio_sectors(bio)); 1792 1793 /* 1794 * Discards need a mutable bio_vec to accommodate the payload 1795 * required by the DSM TRIM and UNMAP commands. 1796 */ 1797 if (bio->bi_rw & REQ_DISCARD) 1798 split = bio_clone_bioset(bio, gfp, bs); 1799 else 1800 split = bio_clone_fast(bio, gfp, bs); 1801 1802 if (!split) 1803 return NULL; 1804 1805 split->bi_iter.bi_size = sectors << 9; 1806 1807 if (bio_integrity(split)) 1808 bio_integrity_trim(split, 0, sectors); 1809 1810 bio_advance(bio, split->bi_iter.bi_size); 1811 1812 return split; 1813 } 1814 EXPORT_SYMBOL(bio_split); 1815 1816 /** 1817 * bio_trim - trim a bio 1818 * @bio: bio to trim 1819 * @offset: number of sectors to trim from the front of @bio 1820 * @size: size we want to trim @bio to, in sectors 1821 */ 1822 void bio_trim(struct bio *bio, int offset, int size) 1823 { 1824 /* 'bio' is a cloned bio which we need to trim to match 1825 * the given offset and size. 1826 */ 1827 1828 size <<= 9; 1829 if (offset == 0 && size == bio->bi_iter.bi_size) 1830 return; 1831 1832 bio_clear_flag(bio, BIO_SEG_VALID); 1833 1834 bio_advance(bio, offset << 9); 1835 1836 bio->bi_iter.bi_size = size; 1837 } 1838 EXPORT_SYMBOL_GPL(bio_trim); 1839 1840 /* 1841 * create memory pools for biovec's in a bio_set. 1842 * use the global biovec slabs created for general use. 1843 */ 1844 mempool_t *biovec_create_pool(int pool_entries) 1845 { 1846 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX; 1847 1848 return mempool_create_slab_pool(pool_entries, bp->slab); 1849 } 1850 1851 void bioset_free(struct bio_set *bs) 1852 { 1853 if (bs->rescue_workqueue) 1854 destroy_workqueue(bs->rescue_workqueue); 1855 1856 if (bs->bio_pool) 1857 mempool_destroy(bs->bio_pool); 1858 1859 if (bs->bvec_pool) 1860 mempool_destroy(bs->bvec_pool); 1861 1862 bioset_integrity_free(bs); 1863 bio_put_slab(bs); 1864 1865 kfree(bs); 1866 } 1867 EXPORT_SYMBOL(bioset_free); 1868 1869 static struct bio_set *__bioset_create(unsigned int pool_size, 1870 unsigned int front_pad, 1871 bool create_bvec_pool) 1872 { 1873 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1874 struct bio_set *bs; 1875 1876 bs = kzalloc(sizeof(*bs), GFP_KERNEL); 1877 if (!bs) 1878 return NULL; 1879 1880 bs->front_pad = front_pad; 1881 1882 spin_lock_init(&bs->rescue_lock); 1883 bio_list_init(&bs->rescue_list); 1884 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1885 1886 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1887 if (!bs->bio_slab) { 1888 kfree(bs); 1889 return NULL; 1890 } 1891 1892 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); 1893 if (!bs->bio_pool) 1894 goto bad; 1895 1896 if (create_bvec_pool) { 1897 bs->bvec_pool = biovec_create_pool(pool_size); 1898 if (!bs->bvec_pool) 1899 goto bad; 1900 } 1901 1902 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1903 if (!bs->rescue_workqueue) 1904 goto bad; 1905 1906 return bs; 1907 bad: 1908 bioset_free(bs); 1909 return NULL; 1910 } 1911 1912 /** 1913 * bioset_create - Create a bio_set 1914 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1915 * @front_pad: Number of bytes to allocate in front of the returned bio 1916 * 1917 * Description: 1918 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1919 * to ask for a number of bytes to be allocated in front of the bio. 1920 * Front pad allocation is useful for embedding the bio inside 1921 * another structure, to avoid allocating extra data to go with the bio. 1922 * Note that the bio must be embedded at the END of that structure always, 1923 * or things will break badly. 1924 */ 1925 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) 1926 { 1927 return __bioset_create(pool_size, front_pad, true); 1928 } 1929 EXPORT_SYMBOL(bioset_create); 1930 1931 /** 1932 * bioset_create_nobvec - Create a bio_set without bio_vec mempool 1933 * @pool_size: Number of bio to cache in the mempool 1934 * @front_pad: Number of bytes to allocate in front of the returned bio 1935 * 1936 * Description: 1937 * Same functionality as bioset_create() except that mempool is not 1938 * created for bio_vecs. Saving some memory for bio_clone_fast() users. 1939 */ 1940 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad) 1941 { 1942 return __bioset_create(pool_size, front_pad, false); 1943 } 1944 EXPORT_SYMBOL(bioset_create_nobvec); 1945 1946 #ifdef CONFIG_BLK_CGROUP 1947 1948 /** 1949 * bio_associate_blkcg - associate a bio with the specified blkcg 1950 * @bio: target bio 1951 * @blkcg_css: css of the blkcg to associate 1952 * 1953 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will 1954 * treat @bio as if it were issued by a task which belongs to the blkcg. 1955 * 1956 * This function takes an extra reference of @blkcg_css which will be put 1957 * when @bio is released. The caller must own @bio and is responsible for 1958 * synchronizing calls to this function. 1959 */ 1960 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css) 1961 { 1962 if (unlikely(bio->bi_css)) 1963 return -EBUSY; 1964 css_get(blkcg_css); 1965 bio->bi_css = blkcg_css; 1966 return 0; 1967 } 1968 EXPORT_SYMBOL_GPL(bio_associate_blkcg); 1969 1970 /** 1971 * bio_associate_current - associate a bio with %current 1972 * @bio: target bio 1973 * 1974 * Associate @bio with %current if it hasn't been associated yet. Block 1975 * layer will treat @bio as if it were issued by %current no matter which 1976 * task actually issues it. 1977 * 1978 * This function takes an extra reference of @task's io_context and blkcg 1979 * which will be put when @bio is released. The caller must own @bio, 1980 * ensure %current->io_context exists, and is responsible for synchronizing 1981 * calls to this function. 1982 */ 1983 int bio_associate_current(struct bio *bio) 1984 { 1985 struct io_context *ioc; 1986 1987 if (bio->bi_css) 1988 return -EBUSY; 1989 1990 ioc = current->io_context; 1991 if (!ioc) 1992 return -ENOENT; 1993 1994 get_io_context_active(ioc); 1995 bio->bi_ioc = ioc; 1996 bio->bi_css = task_get_css(current, io_cgrp_id); 1997 return 0; 1998 } 1999 EXPORT_SYMBOL_GPL(bio_associate_current); 2000 2001 /** 2002 * bio_disassociate_task - undo bio_associate_current() 2003 * @bio: target bio 2004 */ 2005 void bio_disassociate_task(struct bio *bio) 2006 { 2007 if (bio->bi_ioc) { 2008 put_io_context(bio->bi_ioc); 2009 bio->bi_ioc = NULL; 2010 } 2011 if (bio->bi_css) { 2012 css_put(bio->bi_css); 2013 bio->bi_css = NULL; 2014 } 2015 } 2016 2017 #endif /* CONFIG_BLK_CGROUP */ 2018 2019 static void __init biovec_init_slabs(void) 2020 { 2021 int i; 2022 2023 for (i = 0; i < BIOVEC_NR_POOLS; i++) { 2024 int size; 2025 struct biovec_slab *bvs = bvec_slabs + i; 2026 2027 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2028 bvs->slab = NULL; 2029 continue; 2030 } 2031 2032 size = bvs->nr_vecs * sizeof(struct bio_vec); 2033 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2034 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2035 } 2036 } 2037 2038 static int __init init_bio(void) 2039 { 2040 bio_slab_max = 2; 2041 bio_slab_nr = 0; 2042 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); 2043 if (!bio_slabs) 2044 panic("bio: can't allocate bios\n"); 2045 2046 bio_integrity_init(); 2047 biovec_init_slabs(); 2048 2049 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); 2050 if (!fs_bio_set) 2051 panic("bio: can't allocate bios\n"); 2052 2053 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) 2054 panic("bio: can't create integrity pool\n"); 2055 2056 return 0; 2057 } 2058 subsys_initcall(init_bio); 2059