1 /* 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public Licens 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 16 * 17 */ 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/bio.h> 21 #include <linux/blkdev.h> 22 #include <linux/uio.h> 23 #include <linux/iocontext.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/kernel.h> 27 #include <linux/export.h> 28 #include <linux/mempool.h> 29 #include <linux/workqueue.h> 30 #include <linux/cgroup.h> 31 #include <linux/blk-cgroup.h> 32 33 #include <trace/events/block.h> 34 #include "blk.h" 35 #include "blk-rq-qos.h" 36 37 /* 38 * Test patch to inline a certain number of bi_io_vec's inside the bio 39 * itself, to shrink a bio data allocation from two mempool calls to one 40 */ 41 #define BIO_INLINE_VECS 4 42 43 /* 44 * if you change this list, also change bvec_alloc or things will 45 * break badly! cannot be bigger than what you can fit into an 46 * unsigned short 47 */ 48 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n } 49 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { 50 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max), 51 }; 52 #undef BV 53 54 /* 55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 56 * IO code that does not need private memory pools. 57 */ 58 struct bio_set fs_bio_set; 59 EXPORT_SYMBOL(fs_bio_set); 60 61 /* 62 * Our slab pool management 63 */ 64 struct bio_slab { 65 struct kmem_cache *slab; 66 unsigned int slab_ref; 67 unsigned int slab_size; 68 char name[8]; 69 }; 70 static DEFINE_MUTEX(bio_slab_lock); 71 static struct bio_slab *bio_slabs; 72 static unsigned int bio_slab_nr, bio_slab_max; 73 74 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 75 { 76 unsigned int sz = sizeof(struct bio) + extra_size; 77 struct kmem_cache *slab = NULL; 78 struct bio_slab *bslab, *new_bio_slabs; 79 unsigned int new_bio_slab_max; 80 unsigned int i, entry = -1; 81 82 mutex_lock(&bio_slab_lock); 83 84 i = 0; 85 while (i < bio_slab_nr) { 86 bslab = &bio_slabs[i]; 87 88 if (!bslab->slab && entry == -1) 89 entry = i; 90 else if (bslab->slab_size == sz) { 91 slab = bslab->slab; 92 bslab->slab_ref++; 93 break; 94 } 95 i++; 96 } 97 98 if (slab) 99 goto out_unlock; 100 101 if (bio_slab_nr == bio_slab_max && entry == -1) { 102 new_bio_slab_max = bio_slab_max << 1; 103 new_bio_slabs = krealloc(bio_slabs, 104 new_bio_slab_max * sizeof(struct bio_slab), 105 GFP_KERNEL); 106 if (!new_bio_slabs) 107 goto out_unlock; 108 bio_slab_max = new_bio_slab_max; 109 bio_slabs = new_bio_slabs; 110 } 111 if (entry == -1) 112 entry = bio_slab_nr++; 113 114 bslab = &bio_slabs[entry]; 115 116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 117 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, 118 SLAB_HWCACHE_ALIGN, NULL); 119 if (!slab) 120 goto out_unlock; 121 122 bslab->slab = slab; 123 bslab->slab_ref = 1; 124 bslab->slab_size = sz; 125 out_unlock: 126 mutex_unlock(&bio_slab_lock); 127 return slab; 128 } 129 130 static void bio_put_slab(struct bio_set *bs) 131 { 132 struct bio_slab *bslab = NULL; 133 unsigned int i; 134 135 mutex_lock(&bio_slab_lock); 136 137 for (i = 0; i < bio_slab_nr; i++) { 138 if (bs->bio_slab == bio_slabs[i].slab) { 139 bslab = &bio_slabs[i]; 140 break; 141 } 142 } 143 144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 145 goto out; 146 147 WARN_ON(!bslab->slab_ref); 148 149 if (--bslab->slab_ref) 150 goto out; 151 152 kmem_cache_destroy(bslab->slab); 153 bslab->slab = NULL; 154 155 out: 156 mutex_unlock(&bio_slab_lock); 157 } 158 159 unsigned int bvec_nr_vecs(unsigned short idx) 160 { 161 return bvec_slabs[--idx].nr_vecs; 162 } 163 164 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 165 { 166 if (!idx) 167 return; 168 idx--; 169 170 BIO_BUG_ON(idx >= BVEC_POOL_NR); 171 172 if (idx == BVEC_POOL_MAX) { 173 mempool_free(bv, pool); 174 } else { 175 struct biovec_slab *bvs = bvec_slabs + idx; 176 177 kmem_cache_free(bvs->slab, bv); 178 } 179 } 180 181 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 182 mempool_t *pool) 183 { 184 struct bio_vec *bvl; 185 186 /* 187 * see comment near bvec_array define! 188 */ 189 switch (nr) { 190 case 1: 191 *idx = 0; 192 break; 193 case 2 ... 4: 194 *idx = 1; 195 break; 196 case 5 ... 16: 197 *idx = 2; 198 break; 199 case 17 ... 64: 200 *idx = 3; 201 break; 202 case 65 ... 128: 203 *idx = 4; 204 break; 205 case 129 ... BIO_MAX_PAGES: 206 *idx = 5; 207 break; 208 default: 209 return NULL; 210 } 211 212 /* 213 * idx now points to the pool we want to allocate from. only the 214 * 1-vec entry pool is mempool backed. 215 */ 216 if (*idx == BVEC_POOL_MAX) { 217 fallback: 218 bvl = mempool_alloc(pool, gfp_mask); 219 } else { 220 struct biovec_slab *bvs = bvec_slabs + *idx; 221 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); 222 223 /* 224 * Make this allocation restricted and don't dump info on 225 * allocation failures, since we'll fallback to the mempool 226 * in case of failure. 227 */ 228 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 229 230 /* 231 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM 232 * is set, retry with the 1-entry mempool 233 */ 234 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 235 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { 236 *idx = BVEC_POOL_MAX; 237 goto fallback; 238 } 239 } 240 241 (*idx)++; 242 return bvl; 243 } 244 245 void bio_uninit(struct bio *bio) 246 { 247 bio_disassociate_task(bio); 248 } 249 EXPORT_SYMBOL(bio_uninit); 250 251 static void bio_free(struct bio *bio) 252 { 253 struct bio_set *bs = bio->bi_pool; 254 void *p; 255 256 bio_uninit(bio); 257 258 if (bs) { 259 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); 260 261 /* 262 * If we have front padding, adjust the bio pointer before freeing 263 */ 264 p = bio; 265 p -= bs->front_pad; 266 267 mempool_free(p, &bs->bio_pool); 268 } else { 269 /* Bio was allocated by bio_kmalloc() */ 270 kfree(bio); 271 } 272 } 273 274 /* 275 * Users of this function have their own bio allocation. Subsequently, 276 * they must remember to pair any call to bio_init() with bio_uninit() 277 * when IO has completed, or when the bio is released. 278 */ 279 void bio_init(struct bio *bio, struct bio_vec *table, 280 unsigned short max_vecs) 281 { 282 memset(bio, 0, sizeof(*bio)); 283 atomic_set(&bio->__bi_remaining, 1); 284 atomic_set(&bio->__bi_cnt, 1); 285 286 bio->bi_io_vec = table; 287 bio->bi_max_vecs = max_vecs; 288 } 289 EXPORT_SYMBOL(bio_init); 290 291 /** 292 * bio_reset - reinitialize a bio 293 * @bio: bio to reset 294 * 295 * Description: 296 * After calling bio_reset(), @bio will be in the same state as a freshly 297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 298 * preserved are the ones that are initialized by bio_alloc_bioset(). See 299 * comment in struct bio. 300 */ 301 void bio_reset(struct bio *bio) 302 { 303 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 304 305 bio_uninit(bio); 306 307 memset(bio, 0, BIO_RESET_BYTES); 308 bio->bi_flags = flags; 309 atomic_set(&bio->__bi_remaining, 1); 310 } 311 EXPORT_SYMBOL(bio_reset); 312 313 static struct bio *__bio_chain_endio(struct bio *bio) 314 { 315 struct bio *parent = bio->bi_private; 316 317 if (!parent->bi_status) 318 parent->bi_status = bio->bi_status; 319 bio_put(bio); 320 return parent; 321 } 322 323 static void bio_chain_endio(struct bio *bio) 324 { 325 bio_endio(__bio_chain_endio(bio)); 326 } 327 328 /** 329 * bio_chain - chain bio completions 330 * @bio: the target bio 331 * @parent: the @bio's parent bio 332 * 333 * The caller won't have a bi_end_io called when @bio completes - instead, 334 * @parent's bi_end_io won't be called until both @parent and @bio have 335 * completed; the chained bio will also be freed when it completes. 336 * 337 * The caller must not set bi_private or bi_end_io in @bio. 338 */ 339 void bio_chain(struct bio *bio, struct bio *parent) 340 { 341 BUG_ON(bio->bi_private || bio->bi_end_io); 342 343 bio->bi_private = parent; 344 bio->bi_end_io = bio_chain_endio; 345 bio_inc_remaining(parent); 346 } 347 EXPORT_SYMBOL(bio_chain); 348 349 static void bio_alloc_rescue(struct work_struct *work) 350 { 351 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 352 struct bio *bio; 353 354 while (1) { 355 spin_lock(&bs->rescue_lock); 356 bio = bio_list_pop(&bs->rescue_list); 357 spin_unlock(&bs->rescue_lock); 358 359 if (!bio) 360 break; 361 362 generic_make_request(bio); 363 } 364 } 365 366 static void punt_bios_to_rescuer(struct bio_set *bs) 367 { 368 struct bio_list punt, nopunt; 369 struct bio *bio; 370 371 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 372 return; 373 /* 374 * In order to guarantee forward progress we must punt only bios that 375 * were allocated from this bio_set; otherwise, if there was a bio on 376 * there for a stacking driver higher up in the stack, processing it 377 * could require allocating bios from this bio_set, and doing that from 378 * our own rescuer would be bad. 379 * 380 * Since bio lists are singly linked, pop them all instead of trying to 381 * remove from the middle of the list: 382 */ 383 384 bio_list_init(&punt); 385 bio_list_init(&nopunt); 386 387 while ((bio = bio_list_pop(¤t->bio_list[0]))) 388 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 389 current->bio_list[0] = nopunt; 390 391 bio_list_init(&nopunt); 392 while ((bio = bio_list_pop(¤t->bio_list[1]))) 393 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 394 current->bio_list[1] = nopunt; 395 396 spin_lock(&bs->rescue_lock); 397 bio_list_merge(&bs->rescue_list, &punt); 398 spin_unlock(&bs->rescue_lock); 399 400 queue_work(bs->rescue_workqueue, &bs->rescue_work); 401 } 402 403 /** 404 * bio_alloc_bioset - allocate a bio for I/O 405 * @gfp_mask: the GFP_* mask given to the slab allocator 406 * @nr_iovecs: number of iovecs to pre-allocate 407 * @bs: the bio_set to allocate from. 408 * 409 * Description: 410 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 411 * backed by the @bs's mempool. 412 * 413 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will 414 * always be able to allocate a bio. This is due to the mempool guarantees. 415 * To make this work, callers must never allocate more than 1 bio at a time 416 * from this pool. Callers that need to allocate more than 1 bio must always 417 * submit the previously allocated bio for IO before attempting to allocate 418 * a new one. Failure to do so can cause deadlocks under memory pressure. 419 * 420 * Note that when running under generic_make_request() (i.e. any block 421 * driver), bios are not submitted until after you return - see the code in 422 * generic_make_request() that converts recursion into iteration, to prevent 423 * stack overflows. 424 * 425 * This would normally mean allocating multiple bios under 426 * generic_make_request() would be susceptible to deadlocks, but we have 427 * deadlock avoidance code that resubmits any blocked bios from a rescuer 428 * thread. 429 * 430 * However, we do not guarantee forward progress for allocations from other 431 * mempools. Doing multiple allocations from the same mempool under 432 * generic_make_request() should be avoided - instead, use bio_set's front_pad 433 * for per bio allocations. 434 * 435 * RETURNS: 436 * Pointer to new bio on success, NULL on failure. 437 */ 438 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs, 439 struct bio_set *bs) 440 { 441 gfp_t saved_gfp = gfp_mask; 442 unsigned front_pad; 443 unsigned inline_vecs; 444 struct bio_vec *bvl = NULL; 445 struct bio *bio; 446 void *p; 447 448 if (!bs) { 449 if (nr_iovecs > UIO_MAXIOV) 450 return NULL; 451 452 p = kmalloc(sizeof(struct bio) + 453 nr_iovecs * sizeof(struct bio_vec), 454 gfp_mask); 455 front_pad = 0; 456 inline_vecs = nr_iovecs; 457 } else { 458 /* should not use nobvec bioset for nr_iovecs > 0 */ 459 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && 460 nr_iovecs > 0)) 461 return NULL; 462 /* 463 * generic_make_request() converts recursion to iteration; this 464 * means if we're running beneath it, any bios we allocate and 465 * submit will not be submitted (and thus freed) until after we 466 * return. 467 * 468 * This exposes us to a potential deadlock if we allocate 469 * multiple bios from the same bio_set() while running 470 * underneath generic_make_request(). If we were to allocate 471 * multiple bios (say a stacking block driver that was splitting 472 * bios), we would deadlock if we exhausted the mempool's 473 * reserve. 474 * 475 * We solve this, and guarantee forward progress, with a rescuer 476 * workqueue per bio_set. If we go to allocate and there are 477 * bios on current->bio_list, we first try the allocation 478 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those 479 * bios we would be blocking to the rescuer workqueue before 480 * we retry with the original gfp_flags. 481 */ 482 483 if (current->bio_list && 484 (!bio_list_empty(¤t->bio_list[0]) || 485 !bio_list_empty(¤t->bio_list[1])) && 486 bs->rescue_workqueue) 487 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 488 489 p = mempool_alloc(&bs->bio_pool, gfp_mask); 490 if (!p && gfp_mask != saved_gfp) { 491 punt_bios_to_rescuer(bs); 492 gfp_mask = saved_gfp; 493 p = mempool_alloc(&bs->bio_pool, gfp_mask); 494 } 495 496 front_pad = bs->front_pad; 497 inline_vecs = BIO_INLINE_VECS; 498 } 499 500 if (unlikely(!p)) 501 return NULL; 502 503 bio = p + front_pad; 504 bio_init(bio, NULL, 0); 505 506 if (nr_iovecs > inline_vecs) { 507 unsigned long idx = 0; 508 509 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); 510 if (!bvl && gfp_mask != saved_gfp) { 511 punt_bios_to_rescuer(bs); 512 gfp_mask = saved_gfp; 513 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); 514 } 515 516 if (unlikely(!bvl)) 517 goto err_free; 518 519 bio->bi_flags |= idx << BVEC_POOL_OFFSET; 520 } else if (nr_iovecs) { 521 bvl = bio->bi_inline_vecs; 522 } 523 524 bio->bi_pool = bs; 525 bio->bi_max_vecs = nr_iovecs; 526 bio->bi_io_vec = bvl; 527 return bio; 528 529 err_free: 530 mempool_free(p, &bs->bio_pool); 531 return NULL; 532 } 533 EXPORT_SYMBOL(bio_alloc_bioset); 534 535 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start) 536 { 537 unsigned long flags; 538 struct bio_vec bv; 539 struct bvec_iter iter; 540 541 __bio_for_each_segment(bv, bio, iter, start) { 542 char *data = bvec_kmap_irq(&bv, &flags); 543 memset(data, 0, bv.bv_len); 544 flush_dcache_page(bv.bv_page); 545 bvec_kunmap_irq(data, &flags); 546 } 547 } 548 EXPORT_SYMBOL(zero_fill_bio_iter); 549 550 /** 551 * bio_put - release a reference to a bio 552 * @bio: bio to release reference to 553 * 554 * Description: 555 * Put a reference to a &struct bio, either one you have gotten with 556 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 557 **/ 558 void bio_put(struct bio *bio) 559 { 560 if (!bio_flagged(bio, BIO_REFFED)) 561 bio_free(bio); 562 else { 563 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 564 565 /* 566 * last put frees it 567 */ 568 if (atomic_dec_and_test(&bio->__bi_cnt)) 569 bio_free(bio); 570 } 571 } 572 EXPORT_SYMBOL(bio_put); 573 574 inline int bio_phys_segments(struct request_queue *q, struct bio *bio) 575 { 576 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) 577 blk_recount_segments(q, bio); 578 579 return bio->bi_phys_segments; 580 } 581 EXPORT_SYMBOL(bio_phys_segments); 582 583 /** 584 * __bio_clone_fast - clone a bio that shares the original bio's biovec 585 * @bio: destination bio 586 * @bio_src: bio to clone 587 * 588 * Clone a &bio. Caller will own the returned bio, but not 589 * the actual data it points to. Reference count of returned 590 * bio will be one. 591 * 592 * Caller must ensure that @bio_src is not freed before @bio. 593 */ 594 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 595 { 596 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); 597 598 /* 599 * most users will be overriding ->bi_disk with a new target, 600 * so we don't set nor calculate new physical/hw segment counts here 601 */ 602 bio->bi_disk = bio_src->bi_disk; 603 bio->bi_partno = bio_src->bi_partno; 604 bio_set_flag(bio, BIO_CLONED); 605 if (bio_flagged(bio_src, BIO_THROTTLED)) 606 bio_set_flag(bio, BIO_THROTTLED); 607 bio->bi_opf = bio_src->bi_opf; 608 bio->bi_write_hint = bio_src->bi_write_hint; 609 bio->bi_iter = bio_src->bi_iter; 610 bio->bi_io_vec = bio_src->bi_io_vec; 611 612 bio_clone_blkg_association(bio, bio_src); 613 614 blkcg_bio_issue_init(bio); 615 } 616 EXPORT_SYMBOL(__bio_clone_fast); 617 618 /** 619 * bio_clone_fast - clone a bio that shares the original bio's biovec 620 * @bio: bio to clone 621 * @gfp_mask: allocation priority 622 * @bs: bio_set to allocate from 623 * 624 * Like __bio_clone_fast, only also allocates the returned bio 625 */ 626 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 627 { 628 struct bio *b; 629 630 b = bio_alloc_bioset(gfp_mask, 0, bs); 631 if (!b) 632 return NULL; 633 634 __bio_clone_fast(b, bio); 635 636 if (bio_integrity(bio)) { 637 int ret; 638 639 ret = bio_integrity_clone(b, bio, gfp_mask); 640 641 if (ret < 0) { 642 bio_put(b); 643 return NULL; 644 } 645 } 646 647 return b; 648 } 649 EXPORT_SYMBOL(bio_clone_fast); 650 651 /** 652 * bio_add_pc_page - attempt to add page to bio 653 * @q: the target queue 654 * @bio: destination bio 655 * @page: page to add 656 * @len: vec entry length 657 * @offset: vec entry offset 658 * 659 * Attempt to add a page to the bio_vec maplist. This can fail for a 660 * number of reasons, such as the bio being full or target block device 661 * limitations. The target block device must allow bio's up to PAGE_SIZE, 662 * so it is always possible to add a single page to an empty bio. 663 * 664 * This should only be used by REQ_PC bios. 665 */ 666 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page 667 *page, unsigned int len, unsigned int offset) 668 { 669 int retried_segments = 0; 670 struct bio_vec *bvec; 671 672 /* 673 * cloned bio must not modify vec list 674 */ 675 if (unlikely(bio_flagged(bio, BIO_CLONED))) 676 return 0; 677 678 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q)) 679 return 0; 680 681 /* 682 * For filesystems with a blocksize smaller than the pagesize 683 * we will often be called with the same page as last time and 684 * a consecutive offset. Optimize this special case. 685 */ 686 if (bio->bi_vcnt > 0) { 687 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 688 689 if (page == prev->bv_page && 690 offset == prev->bv_offset + prev->bv_len) { 691 prev->bv_len += len; 692 bio->bi_iter.bi_size += len; 693 goto done; 694 } 695 696 /* 697 * If the queue doesn't support SG gaps and adding this 698 * offset would create a gap, disallow it. 699 */ 700 if (bvec_gap_to_prev(q, prev, offset)) 701 return 0; 702 } 703 704 if (bio_full(bio)) 705 return 0; 706 707 /* 708 * setup the new entry, we might clear it again later if we 709 * cannot add the page 710 */ 711 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 712 bvec->bv_page = page; 713 bvec->bv_len = len; 714 bvec->bv_offset = offset; 715 bio->bi_vcnt++; 716 bio->bi_phys_segments++; 717 bio->bi_iter.bi_size += len; 718 719 /* 720 * Perform a recount if the number of segments is greater 721 * than queue_max_segments(q). 722 */ 723 724 while (bio->bi_phys_segments > queue_max_segments(q)) { 725 726 if (retried_segments) 727 goto failed; 728 729 retried_segments = 1; 730 blk_recount_segments(q, bio); 731 } 732 733 /* If we may be able to merge these biovecs, force a recount */ 734 if (bio->bi_vcnt > 1 && biovec_phys_mergeable(q, bvec - 1, bvec)) 735 bio_clear_flag(bio, BIO_SEG_VALID); 736 737 done: 738 return len; 739 740 failed: 741 bvec->bv_page = NULL; 742 bvec->bv_len = 0; 743 bvec->bv_offset = 0; 744 bio->bi_vcnt--; 745 bio->bi_iter.bi_size -= len; 746 blk_recount_segments(q, bio); 747 return 0; 748 } 749 EXPORT_SYMBOL(bio_add_pc_page); 750 751 /** 752 * __bio_try_merge_page - try appending data to an existing bvec. 753 * @bio: destination bio 754 * @page: page to add 755 * @len: length of the data to add 756 * @off: offset of the data in @page 757 * 758 * Try to add the data at @page + @off to the last bvec of @bio. This is a 759 * a useful optimisation for file systems with a block size smaller than the 760 * page size. 761 * 762 * Return %true on success or %false on failure. 763 */ 764 bool __bio_try_merge_page(struct bio *bio, struct page *page, 765 unsigned int len, unsigned int off) 766 { 767 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 768 return false; 769 770 if (bio->bi_vcnt > 0) { 771 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 772 773 if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) { 774 bv->bv_len += len; 775 bio->bi_iter.bi_size += len; 776 return true; 777 } 778 } 779 return false; 780 } 781 EXPORT_SYMBOL_GPL(__bio_try_merge_page); 782 783 /** 784 * __bio_add_page - add page to a bio in a new segment 785 * @bio: destination bio 786 * @page: page to add 787 * @len: length of the data to add 788 * @off: offset of the data in @page 789 * 790 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 791 * that @bio has space for another bvec. 792 */ 793 void __bio_add_page(struct bio *bio, struct page *page, 794 unsigned int len, unsigned int off) 795 { 796 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt]; 797 798 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 799 WARN_ON_ONCE(bio_full(bio)); 800 801 bv->bv_page = page; 802 bv->bv_offset = off; 803 bv->bv_len = len; 804 805 bio->bi_iter.bi_size += len; 806 bio->bi_vcnt++; 807 } 808 EXPORT_SYMBOL_GPL(__bio_add_page); 809 810 /** 811 * bio_add_page - attempt to add page to bio 812 * @bio: destination bio 813 * @page: page to add 814 * @len: vec entry length 815 * @offset: vec entry offset 816 * 817 * Attempt to add a page to the bio_vec maplist. This will only fail 818 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 819 */ 820 int bio_add_page(struct bio *bio, struct page *page, 821 unsigned int len, unsigned int offset) 822 { 823 if (!__bio_try_merge_page(bio, page, len, offset)) { 824 if (bio_full(bio)) 825 return 0; 826 __bio_add_page(bio, page, len, offset); 827 } 828 return len; 829 } 830 EXPORT_SYMBOL(bio_add_page); 831 832 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 833 834 /** 835 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 836 * @bio: bio to add pages to 837 * @iter: iov iterator describing the region to be mapped 838 * 839 * Pins pages from *iter and appends them to @bio's bvec array. The 840 * pages will have to be released using put_page() when done. 841 * For multi-segment *iter, this function only adds pages from the 842 * the next non-empty segment of the iov iterator. 843 */ 844 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 845 { 846 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 847 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 848 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 849 struct page **pages = (struct page **)bv; 850 ssize_t size, left; 851 unsigned len, i; 852 size_t offset; 853 854 /* 855 * Move page array up in the allocated memory for the bio vecs as far as 856 * possible so that we can start filling biovecs from the beginning 857 * without overwriting the temporary page array. 858 */ 859 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 860 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 861 862 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 863 if (unlikely(size <= 0)) 864 return size ? size : -EFAULT; 865 866 for (left = size, i = 0; left > 0; left -= len, i++) { 867 struct page *page = pages[i]; 868 869 len = min_t(size_t, PAGE_SIZE - offset, left); 870 if (WARN_ON_ONCE(bio_add_page(bio, page, len, offset) != len)) 871 return -EINVAL; 872 offset = 0; 873 } 874 875 iov_iter_advance(iter, size); 876 return 0; 877 } 878 879 /** 880 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 881 * @bio: bio to add pages to 882 * @iter: iov iterator describing the region to be mapped 883 * 884 * Pins pages from *iter and appends them to @bio's bvec array. The 885 * pages will have to be released using put_page() when done. 886 * The function tries, but does not guarantee, to pin as many pages as 887 * fit into the bio, or are requested in *iter, whatever is smaller. 888 * If MM encounters an error pinning the requested pages, it stops. 889 * Error is returned only if 0 pages could be pinned. 890 */ 891 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 892 { 893 unsigned short orig_vcnt = bio->bi_vcnt; 894 895 do { 896 int ret = __bio_iov_iter_get_pages(bio, iter); 897 898 if (unlikely(ret)) 899 return bio->bi_vcnt > orig_vcnt ? 0 : ret; 900 901 } while (iov_iter_count(iter) && !bio_full(bio)); 902 903 return 0; 904 } 905 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 906 907 static void submit_bio_wait_endio(struct bio *bio) 908 { 909 complete(bio->bi_private); 910 } 911 912 /** 913 * submit_bio_wait - submit a bio, and wait until it completes 914 * @bio: The &struct bio which describes the I/O 915 * 916 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 917 * bio_endio() on failure. 918 * 919 * WARNING: Unlike to how submit_bio() is usually used, this function does not 920 * result in bio reference to be consumed. The caller must drop the reference 921 * on his own. 922 */ 923 int submit_bio_wait(struct bio *bio) 924 { 925 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map); 926 927 bio->bi_private = &done; 928 bio->bi_end_io = submit_bio_wait_endio; 929 bio->bi_opf |= REQ_SYNC; 930 submit_bio(bio); 931 wait_for_completion_io(&done); 932 933 return blk_status_to_errno(bio->bi_status); 934 } 935 EXPORT_SYMBOL(submit_bio_wait); 936 937 /** 938 * bio_advance - increment/complete a bio by some number of bytes 939 * @bio: bio to advance 940 * @bytes: number of bytes to complete 941 * 942 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 943 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 944 * be updated on the last bvec as well. 945 * 946 * @bio will then represent the remaining, uncompleted portion of the io. 947 */ 948 void bio_advance(struct bio *bio, unsigned bytes) 949 { 950 if (bio_integrity(bio)) 951 bio_integrity_advance(bio, bytes); 952 953 bio_advance_iter(bio, &bio->bi_iter, bytes); 954 } 955 EXPORT_SYMBOL(bio_advance); 956 957 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 958 struct bio *src, struct bvec_iter *src_iter) 959 { 960 struct bio_vec src_bv, dst_bv; 961 void *src_p, *dst_p; 962 unsigned bytes; 963 964 while (src_iter->bi_size && dst_iter->bi_size) { 965 src_bv = bio_iter_iovec(src, *src_iter); 966 dst_bv = bio_iter_iovec(dst, *dst_iter); 967 968 bytes = min(src_bv.bv_len, dst_bv.bv_len); 969 970 src_p = kmap_atomic(src_bv.bv_page); 971 dst_p = kmap_atomic(dst_bv.bv_page); 972 973 memcpy(dst_p + dst_bv.bv_offset, 974 src_p + src_bv.bv_offset, 975 bytes); 976 977 kunmap_atomic(dst_p); 978 kunmap_atomic(src_p); 979 980 flush_dcache_page(dst_bv.bv_page); 981 982 bio_advance_iter(src, src_iter, bytes); 983 bio_advance_iter(dst, dst_iter, bytes); 984 } 985 } 986 EXPORT_SYMBOL(bio_copy_data_iter); 987 988 /** 989 * bio_copy_data - copy contents of data buffers from one bio to another 990 * @src: source bio 991 * @dst: destination bio 992 * 993 * Stops when it reaches the end of either @src or @dst - that is, copies 994 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 995 */ 996 void bio_copy_data(struct bio *dst, struct bio *src) 997 { 998 struct bvec_iter src_iter = src->bi_iter; 999 struct bvec_iter dst_iter = dst->bi_iter; 1000 1001 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1002 } 1003 EXPORT_SYMBOL(bio_copy_data); 1004 1005 /** 1006 * bio_list_copy_data - copy contents of data buffers from one chain of bios to 1007 * another 1008 * @src: source bio list 1009 * @dst: destination bio list 1010 * 1011 * Stops when it reaches the end of either the @src list or @dst list - that is, 1012 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of 1013 * bios). 1014 */ 1015 void bio_list_copy_data(struct bio *dst, struct bio *src) 1016 { 1017 struct bvec_iter src_iter = src->bi_iter; 1018 struct bvec_iter dst_iter = dst->bi_iter; 1019 1020 while (1) { 1021 if (!src_iter.bi_size) { 1022 src = src->bi_next; 1023 if (!src) 1024 break; 1025 1026 src_iter = src->bi_iter; 1027 } 1028 1029 if (!dst_iter.bi_size) { 1030 dst = dst->bi_next; 1031 if (!dst) 1032 break; 1033 1034 dst_iter = dst->bi_iter; 1035 } 1036 1037 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1038 } 1039 } 1040 EXPORT_SYMBOL(bio_list_copy_data); 1041 1042 struct bio_map_data { 1043 int is_our_pages; 1044 struct iov_iter iter; 1045 struct iovec iov[]; 1046 }; 1047 1048 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data, 1049 gfp_t gfp_mask) 1050 { 1051 struct bio_map_data *bmd; 1052 if (data->nr_segs > UIO_MAXIOV) 1053 return NULL; 1054 1055 bmd = kmalloc(sizeof(struct bio_map_data) + 1056 sizeof(struct iovec) * data->nr_segs, gfp_mask); 1057 if (!bmd) 1058 return NULL; 1059 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs); 1060 bmd->iter = *data; 1061 bmd->iter.iov = bmd->iov; 1062 return bmd; 1063 } 1064 1065 /** 1066 * bio_copy_from_iter - copy all pages from iov_iter to bio 1067 * @bio: The &struct bio which describes the I/O as destination 1068 * @iter: iov_iter as source 1069 * 1070 * Copy all pages from iov_iter to bio. 1071 * Returns 0 on success, or error on failure. 1072 */ 1073 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter) 1074 { 1075 int i; 1076 struct bio_vec *bvec; 1077 1078 bio_for_each_segment_all(bvec, bio, i) { 1079 ssize_t ret; 1080 1081 ret = copy_page_from_iter(bvec->bv_page, 1082 bvec->bv_offset, 1083 bvec->bv_len, 1084 iter); 1085 1086 if (!iov_iter_count(iter)) 1087 break; 1088 1089 if (ret < bvec->bv_len) 1090 return -EFAULT; 1091 } 1092 1093 return 0; 1094 } 1095 1096 /** 1097 * bio_copy_to_iter - copy all pages from bio to iov_iter 1098 * @bio: The &struct bio which describes the I/O as source 1099 * @iter: iov_iter as destination 1100 * 1101 * Copy all pages from bio to iov_iter. 1102 * Returns 0 on success, or error on failure. 1103 */ 1104 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 1105 { 1106 int i; 1107 struct bio_vec *bvec; 1108 1109 bio_for_each_segment_all(bvec, bio, i) { 1110 ssize_t ret; 1111 1112 ret = copy_page_to_iter(bvec->bv_page, 1113 bvec->bv_offset, 1114 bvec->bv_len, 1115 &iter); 1116 1117 if (!iov_iter_count(&iter)) 1118 break; 1119 1120 if (ret < bvec->bv_len) 1121 return -EFAULT; 1122 } 1123 1124 return 0; 1125 } 1126 1127 void bio_free_pages(struct bio *bio) 1128 { 1129 struct bio_vec *bvec; 1130 int i; 1131 1132 bio_for_each_segment_all(bvec, bio, i) 1133 __free_page(bvec->bv_page); 1134 } 1135 EXPORT_SYMBOL(bio_free_pages); 1136 1137 /** 1138 * bio_uncopy_user - finish previously mapped bio 1139 * @bio: bio being terminated 1140 * 1141 * Free pages allocated from bio_copy_user_iov() and write back data 1142 * to user space in case of a read. 1143 */ 1144 int bio_uncopy_user(struct bio *bio) 1145 { 1146 struct bio_map_data *bmd = bio->bi_private; 1147 int ret = 0; 1148 1149 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1150 /* 1151 * if we're in a workqueue, the request is orphaned, so 1152 * don't copy into a random user address space, just free 1153 * and return -EINTR so user space doesn't expect any data. 1154 */ 1155 if (!current->mm) 1156 ret = -EINTR; 1157 else if (bio_data_dir(bio) == READ) 1158 ret = bio_copy_to_iter(bio, bmd->iter); 1159 if (bmd->is_our_pages) 1160 bio_free_pages(bio); 1161 } 1162 kfree(bmd); 1163 bio_put(bio); 1164 return ret; 1165 } 1166 1167 /** 1168 * bio_copy_user_iov - copy user data to bio 1169 * @q: destination block queue 1170 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1171 * @iter: iovec iterator 1172 * @gfp_mask: memory allocation flags 1173 * 1174 * Prepares and returns a bio for indirect user io, bouncing data 1175 * to/from kernel pages as necessary. Must be paired with 1176 * call bio_uncopy_user() on io completion. 1177 */ 1178 struct bio *bio_copy_user_iov(struct request_queue *q, 1179 struct rq_map_data *map_data, 1180 struct iov_iter *iter, 1181 gfp_t gfp_mask) 1182 { 1183 struct bio_map_data *bmd; 1184 struct page *page; 1185 struct bio *bio; 1186 int i = 0, ret; 1187 int nr_pages; 1188 unsigned int len = iter->count; 1189 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 1190 1191 bmd = bio_alloc_map_data(iter, gfp_mask); 1192 if (!bmd) 1193 return ERR_PTR(-ENOMEM); 1194 1195 /* 1196 * We need to do a deep copy of the iov_iter including the iovecs. 1197 * The caller provided iov might point to an on-stack or otherwise 1198 * shortlived one. 1199 */ 1200 bmd->is_our_pages = map_data ? 0 : 1; 1201 1202 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE); 1203 if (nr_pages > BIO_MAX_PAGES) 1204 nr_pages = BIO_MAX_PAGES; 1205 1206 ret = -ENOMEM; 1207 bio = bio_kmalloc(gfp_mask, nr_pages); 1208 if (!bio) 1209 goto out_bmd; 1210 1211 ret = 0; 1212 1213 if (map_data) { 1214 nr_pages = 1 << map_data->page_order; 1215 i = map_data->offset / PAGE_SIZE; 1216 } 1217 while (len) { 1218 unsigned int bytes = PAGE_SIZE; 1219 1220 bytes -= offset; 1221 1222 if (bytes > len) 1223 bytes = len; 1224 1225 if (map_data) { 1226 if (i == map_data->nr_entries * nr_pages) { 1227 ret = -ENOMEM; 1228 break; 1229 } 1230 1231 page = map_data->pages[i / nr_pages]; 1232 page += (i % nr_pages); 1233 1234 i++; 1235 } else { 1236 page = alloc_page(q->bounce_gfp | gfp_mask); 1237 if (!page) { 1238 ret = -ENOMEM; 1239 break; 1240 } 1241 } 1242 1243 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) 1244 break; 1245 1246 len -= bytes; 1247 offset = 0; 1248 } 1249 1250 if (ret) 1251 goto cleanup; 1252 1253 if (map_data) 1254 map_data->offset += bio->bi_iter.bi_size; 1255 1256 /* 1257 * success 1258 */ 1259 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) || 1260 (map_data && map_data->from_user)) { 1261 ret = bio_copy_from_iter(bio, iter); 1262 if (ret) 1263 goto cleanup; 1264 } else { 1265 iov_iter_advance(iter, bio->bi_iter.bi_size); 1266 } 1267 1268 bio->bi_private = bmd; 1269 if (map_data && map_data->null_mapped) 1270 bio_set_flag(bio, BIO_NULL_MAPPED); 1271 return bio; 1272 cleanup: 1273 if (!map_data) 1274 bio_free_pages(bio); 1275 bio_put(bio); 1276 out_bmd: 1277 kfree(bmd); 1278 return ERR_PTR(ret); 1279 } 1280 1281 /** 1282 * bio_map_user_iov - map user iovec into bio 1283 * @q: the struct request_queue for the bio 1284 * @iter: iovec iterator 1285 * @gfp_mask: memory allocation flags 1286 * 1287 * Map the user space address into a bio suitable for io to a block 1288 * device. Returns an error pointer in case of error. 1289 */ 1290 struct bio *bio_map_user_iov(struct request_queue *q, 1291 struct iov_iter *iter, 1292 gfp_t gfp_mask) 1293 { 1294 int j; 1295 struct bio *bio; 1296 int ret; 1297 struct bio_vec *bvec; 1298 1299 if (!iov_iter_count(iter)) 1300 return ERR_PTR(-EINVAL); 1301 1302 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES)); 1303 if (!bio) 1304 return ERR_PTR(-ENOMEM); 1305 1306 while (iov_iter_count(iter)) { 1307 struct page **pages; 1308 ssize_t bytes; 1309 size_t offs, added = 0; 1310 int npages; 1311 1312 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs); 1313 if (unlikely(bytes <= 0)) { 1314 ret = bytes ? bytes : -EFAULT; 1315 goto out_unmap; 1316 } 1317 1318 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE); 1319 1320 if (unlikely(offs & queue_dma_alignment(q))) { 1321 ret = -EINVAL; 1322 j = 0; 1323 } else { 1324 for (j = 0; j < npages; j++) { 1325 struct page *page = pages[j]; 1326 unsigned int n = PAGE_SIZE - offs; 1327 unsigned short prev_bi_vcnt = bio->bi_vcnt; 1328 1329 if (n > bytes) 1330 n = bytes; 1331 1332 if (!bio_add_pc_page(q, bio, page, n, offs)) 1333 break; 1334 1335 /* 1336 * check if vector was merged with previous 1337 * drop page reference if needed 1338 */ 1339 if (bio->bi_vcnt == prev_bi_vcnt) 1340 put_page(page); 1341 1342 added += n; 1343 bytes -= n; 1344 offs = 0; 1345 } 1346 iov_iter_advance(iter, added); 1347 } 1348 /* 1349 * release the pages we didn't map into the bio, if any 1350 */ 1351 while (j < npages) 1352 put_page(pages[j++]); 1353 kvfree(pages); 1354 /* couldn't stuff something into bio? */ 1355 if (bytes) 1356 break; 1357 } 1358 1359 bio_set_flag(bio, BIO_USER_MAPPED); 1360 1361 /* 1362 * subtle -- if bio_map_user_iov() ended up bouncing a bio, 1363 * it would normally disappear when its bi_end_io is run. 1364 * however, we need it for the unmap, so grab an extra 1365 * reference to it 1366 */ 1367 bio_get(bio); 1368 return bio; 1369 1370 out_unmap: 1371 bio_for_each_segment_all(bvec, bio, j) { 1372 put_page(bvec->bv_page); 1373 } 1374 bio_put(bio); 1375 return ERR_PTR(ret); 1376 } 1377 1378 static void __bio_unmap_user(struct bio *bio) 1379 { 1380 struct bio_vec *bvec; 1381 int i; 1382 1383 /* 1384 * make sure we dirty pages we wrote to 1385 */ 1386 bio_for_each_segment_all(bvec, bio, i) { 1387 if (bio_data_dir(bio) == READ) 1388 set_page_dirty_lock(bvec->bv_page); 1389 1390 put_page(bvec->bv_page); 1391 } 1392 1393 bio_put(bio); 1394 } 1395 1396 /** 1397 * bio_unmap_user - unmap a bio 1398 * @bio: the bio being unmapped 1399 * 1400 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from 1401 * process context. 1402 * 1403 * bio_unmap_user() may sleep. 1404 */ 1405 void bio_unmap_user(struct bio *bio) 1406 { 1407 __bio_unmap_user(bio); 1408 bio_put(bio); 1409 } 1410 1411 static void bio_map_kern_endio(struct bio *bio) 1412 { 1413 bio_put(bio); 1414 } 1415 1416 /** 1417 * bio_map_kern - map kernel address into bio 1418 * @q: the struct request_queue for the bio 1419 * @data: pointer to buffer to map 1420 * @len: length in bytes 1421 * @gfp_mask: allocation flags for bio allocation 1422 * 1423 * Map the kernel address into a bio suitable for io to a block 1424 * device. Returns an error pointer in case of error. 1425 */ 1426 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1427 gfp_t gfp_mask) 1428 { 1429 unsigned long kaddr = (unsigned long)data; 1430 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1431 unsigned long start = kaddr >> PAGE_SHIFT; 1432 const int nr_pages = end - start; 1433 int offset, i; 1434 struct bio *bio; 1435 1436 bio = bio_kmalloc(gfp_mask, nr_pages); 1437 if (!bio) 1438 return ERR_PTR(-ENOMEM); 1439 1440 offset = offset_in_page(kaddr); 1441 for (i = 0; i < nr_pages; i++) { 1442 unsigned int bytes = PAGE_SIZE - offset; 1443 1444 if (len <= 0) 1445 break; 1446 1447 if (bytes > len) 1448 bytes = len; 1449 1450 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, 1451 offset) < bytes) { 1452 /* we don't support partial mappings */ 1453 bio_put(bio); 1454 return ERR_PTR(-EINVAL); 1455 } 1456 1457 data += bytes; 1458 len -= bytes; 1459 offset = 0; 1460 } 1461 1462 bio->bi_end_io = bio_map_kern_endio; 1463 return bio; 1464 } 1465 EXPORT_SYMBOL(bio_map_kern); 1466 1467 static void bio_copy_kern_endio(struct bio *bio) 1468 { 1469 bio_free_pages(bio); 1470 bio_put(bio); 1471 } 1472 1473 static void bio_copy_kern_endio_read(struct bio *bio) 1474 { 1475 char *p = bio->bi_private; 1476 struct bio_vec *bvec; 1477 int i; 1478 1479 bio_for_each_segment_all(bvec, bio, i) { 1480 memcpy(p, page_address(bvec->bv_page), bvec->bv_len); 1481 p += bvec->bv_len; 1482 } 1483 1484 bio_copy_kern_endio(bio); 1485 } 1486 1487 /** 1488 * bio_copy_kern - copy kernel address into bio 1489 * @q: the struct request_queue for the bio 1490 * @data: pointer to buffer to copy 1491 * @len: length in bytes 1492 * @gfp_mask: allocation flags for bio and page allocation 1493 * @reading: data direction is READ 1494 * 1495 * copy the kernel address into a bio suitable for io to a block 1496 * device. Returns an error pointer in case of error. 1497 */ 1498 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1499 gfp_t gfp_mask, int reading) 1500 { 1501 unsigned long kaddr = (unsigned long)data; 1502 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1503 unsigned long start = kaddr >> PAGE_SHIFT; 1504 struct bio *bio; 1505 void *p = data; 1506 int nr_pages = 0; 1507 1508 /* 1509 * Overflow, abort 1510 */ 1511 if (end < start) 1512 return ERR_PTR(-EINVAL); 1513 1514 nr_pages = end - start; 1515 bio = bio_kmalloc(gfp_mask, nr_pages); 1516 if (!bio) 1517 return ERR_PTR(-ENOMEM); 1518 1519 while (len) { 1520 struct page *page; 1521 unsigned int bytes = PAGE_SIZE; 1522 1523 if (bytes > len) 1524 bytes = len; 1525 1526 page = alloc_page(q->bounce_gfp | gfp_mask); 1527 if (!page) 1528 goto cleanup; 1529 1530 if (!reading) 1531 memcpy(page_address(page), p, bytes); 1532 1533 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 1534 break; 1535 1536 len -= bytes; 1537 p += bytes; 1538 } 1539 1540 if (reading) { 1541 bio->bi_end_io = bio_copy_kern_endio_read; 1542 bio->bi_private = data; 1543 } else { 1544 bio->bi_end_io = bio_copy_kern_endio; 1545 } 1546 1547 return bio; 1548 1549 cleanup: 1550 bio_free_pages(bio); 1551 bio_put(bio); 1552 return ERR_PTR(-ENOMEM); 1553 } 1554 1555 /* 1556 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1557 * for performing direct-IO in BIOs. 1558 * 1559 * The problem is that we cannot run set_page_dirty() from interrupt context 1560 * because the required locks are not interrupt-safe. So what we can do is to 1561 * mark the pages dirty _before_ performing IO. And in interrupt context, 1562 * check that the pages are still dirty. If so, fine. If not, redirty them 1563 * in process context. 1564 * 1565 * We special-case compound pages here: normally this means reads into hugetlb 1566 * pages. The logic in here doesn't really work right for compound pages 1567 * because the VM does not uniformly chase down the head page in all cases. 1568 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1569 * handle them at all. So we skip compound pages here at an early stage. 1570 * 1571 * Note that this code is very hard to test under normal circumstances because 1572 * direct-io pins the pages with get_user_pages(). This makes 1573 * is_page_cache_freeable return false, and the VM will not clean the pages. 1574 * But other code (eg, flusher threads) could clean the pages if they are mapped 1575 * pagecache. 1576 * 1577 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1578 * deferred bio dirtying paths. 1579 */ 1580 1581 /* 1582 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1583 */ 1584 void bio_set_pages_dirty(struct bio *bio) 1585 { 1586 struct bio_vec *bvec; 1587 int i; 1588 1589 bio_for_each_segment_all(bvec, bio, i) { 1590 if (!PageCompound(bvec->bv_page)) 1591 set_page_dirty_lock(bvec->bv_page); 1592 } 1593 } 1594 EXPORT_SYMBOL_GPL(bio_set_pages_dirty); 1595 1596 static void bio_release_pages(struct bio *bio) 1597 { 1598 struct bio_vec *bvec; 1599 int i; 1600 1601 bio_for_each_segment_all(bvec, bio, i) 1602 put_page(bvec->bv_page); 1603 } 1604 1605 /* 1606 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1607 * If they are, then fine. If, however, some pages are clean then they must 1608 * have been written out during the direct-IO read. So we take another ref on 1609 * the BIO and re-dirty the pages in process context. 1610 * 1611 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1612 * here on. It will run one put_page() against each page and will run one 1613 * bio_put() against the BIO. 1614 */ 1615 1616 static void bio_dirty_fn(struct work_struct *work); 1617 1618 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1619 static DEFINE_SPINLOCK(bio_dirty_lock); 1620 static struct bio *bio_dirty_list; 1621 1622 /* 1623 * This runs in process context 1624 */ 1625 static void bio_dirty_fn(struct work_struct *work) 1626 { 1627 struct bio *bio, *next; 1628 1629 spin_lock_irq(&bio_dirty_lock); 1630 next = bio_dirty_list; 1631 bio_dirty_list = NULL; 1632 spin_unlock_irq(&bio_dirty_lock); 1633 1634 while ((bio = next) != NULL) { 1635 next = bio->bi_private; 1636 1637 bio_set_pages_dirty(bio); 1638 bio_release_pages(bio); 1639 bio_put(bio); 1640 } 1641 } 1642 1643 void bio_check_pages_dirty(struct bio *bio) 1644 { 1645 struct bio_vec *bvec; 1646 unsigned long flags; 1647 int i; 1648 1649 bio_for_each_segment_all(bvec, bio, i) { 1650 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page)) 1651 goto defer; 1652 } 1653 1654 bio_release_pages(bio); 1655 bio_put(bio); 1656 return; 1657 defer: 1658 spin_lock_irqsave(&bio_dirty_lock, flags); 1659 bio->bi_private = bio_dirty_list; 1660 bio_dirty_list = bio; 1661 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1662 schedule_work(&bio_dirty_work); 1663 } 1664 EXPORT_SYMBOL_GPL(bio_check_pages_dirty); 1665 1666 void generic_start_io_acct(struct request_queue *q, int op, 1667 unsigned long sectors, struct hd_struct *part) 1668 { 1669 const int sgrp = op_stat_group(op); 1670 int cpu = part_stat_lock(); 1671 1672 part_round_stats(q, cpu, part); 1673 part_stat_inc(cpu, part, ios[sgrp]); 1674 part_stat_add(cpu, part, sectors[sgrp], sectors); 1675 part_inc_in_flight(q, part, op_is_write(op)); 1676 1677 part_stat_unlock(); 1678 } 1679 EXPORT_SYMBOL(generic_start_io_acct); 1680 1681 void generic_end_io_acct(struct request_queue *q, int req_op, 1682 struct hd_struct *part, unsigned long start_time) 1683 { 1684 unsigned long duration = jiffies - start_time; 1685 const int sgrp = op_stat_group(req_op); 1686 int cpu = part_stat_lock(); 1687 1688 part_stat_add(cpu, part, nsecs[sgrp], jiffies_to_nsecs(duration)); 1689 part_round_stats(q, cpu, part); 1690 part_dec_in_flight(q, part, op_is_write(req_op)); 1691 1692 part_stat_unlock(); 1693 } 1694 EXPORT_SYMBOL(generic_end_io_acct); 1695 1696 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1697 void bio_flush_dcache_pages(struct bio *bi) 1698 { 1699 struct bio_vec bvec; 1700 struct bvec_iter iter; 1701 1702 bio_for_each_segment(bvec, bi, iter) 1703 flush_dcache_page(bvec.bv_page); 1704 } 1705 EXPORT_SYMBOL(bio_flush_dcache_pages); 1706 #endif 1707 1708 static inline bool bio_remaining_done(struct bio *bio) 1709 { 1710 /* 1711 * If we're not chaining, then ->__bi_remaining is always 1 and 1712 * we always end io on the first invocation. 1713 */ 1714 if (!bio_flagged(bio, BIO_CHAIN)) 1715 return true; 1716 1717 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1718 1719 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1720 bio_clear_flag(bio, BIO_CHAIN); 1721 return true; 1722 } 1723 1724 return false; 1725 } 1726 1727 /** 1728 * bio_endio - end I/O on a bio 1729 * @bio: bio 1730 * 1731 * Description: 1732 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1733 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1734 * bio unless they own it and thus know that it has an end_io function. 1735 * 1736 * bio_endio() can be called several times on a bio that has been chained 1737 * using bio_chain(). The ->bi_end_io() function will only be called the 1738 * last time. At this point the BLK_TA_COMPLETE tracing event will be 1739 * generated if BIO_TRACE_COMPLETION is set. 1740 **/ 1741 void bio_endio(struct bio *bio) 1742 { 1743 again: 1744 if (!bio_remaining_done(bio)) 1745 return; 1746 if (!bio_integrity_endio(bio)) 1747 return; 1748 1749 if (bio->bi_disk) 1750 rq_qos_done_bio(bio->bi_disk->queue, bio); 1751 1752 /* 1753 * Need to have a real endio function for chained bios, otherwise 1754 * various corner cases will break (like stacking block devices that 1755 * save/restore bi_end_io) - however, we want to avoid unbounded 1756 * recursion and blowing the stack. Tail call optimization would 1757 * handle this, but compiling with frame pointers also disables 1758 * gcc's sibling call optimization. 1759 */ 1760 if (bio->bi_end_io == bio_chain_endio) { 1761 bio = __bio_chain_endio(bio); 1762 goto again; 1763 } 1764 1765 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1766 trace_block_bio_complete(bio->bi_disk->queue, bio, 1767 blk_status_to_errno(bio->bi_status)); 1768 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1769 } 1770 1771 blk_throtl_bio_endio(bio); 1772 /* release cgroup info */ 1773 bio_uninit(bio); 1774 if (bio->bi_end_io) 1775 bio->bi_end_io(bio); 1776 } 1777 EXPORT_SYMBOL(bio_endio); 1778 1779 /** 1780 * bio_split - split a bio 1781 * @bio: bio to split 1782 * @sectors: number of sectors to split from the front of @bio 1783 * @gfp: gfp mask 1784 * @bs: bio set to allocate from 1785 * 1786 * Allocates and returns a new bio which represents @sectors from the start of 1787 * @bio, and updates @bio to represent the remaining sectors. 1788 * 1789 * Unless this is a discard request the newly allocated bio will point 1790 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that 1791 * @bio is not freed before the split. 1792 */ 1793 struct bio *bio_split(struct bio *bio, int sectors, 1794 gfp_t gfp, struct bio_set *bs) 1795 { 1796 struct bio *split; 1797 1798 BUG_ON(sectors <= 0); 1799 BUG_ON(sectors >= bio_sectors(bio)); 1800 1801 split = bio_clone_fast(bio, gfp, bs); 1802 if (!split) 1803 return NULL; 1804 1805 split->bi_iter.bi_size = sectors << 9; 1806 1807 if (bio_integrity(split)) 1808 bio_integrity_trim(split); 1809 1810 bio_advance(bio, split->bi_iter.bi_size); 1811 1812 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1813 bio_set_flag(split, BIO_TRACE_COMPLETION); 1814 1815 return split; 1816 } 1817 EXPORT_SYMBOL(bio_split); 1818 1819 /** 1820 * bio_trim - trim a bio 1821 * @bio: bio to trim 1822 * @offset: number of sectors to trim from the front of @bio 1823 * @size: size we want to trim @bio to, in sectors 1824 */ 1825 void bio_trim(struct bio *bio, int offset, int size) 1826 { 1827 /* 'bio' is a cloned bio which we need to trim to match 1828 * the given offset and size. 1829 */ 1830 1831 size <<= 9; 1832 if (offset == 0 && size == bio->bi_iter.bi_size) 1833 return; 1834 1835 bio_clear_flag(bio, BIO_SEG_VALID); 1836 1837 bio_advance(bio, offset << 9); 1838 1839 bio->bi_iter.bi_size = size; 1840 1841 if (bio_integrity(bio)) 1842 bio_integrity_trim(bio); 1843 1844 } 1845 EXPORT_SYMBOL_GPL(bio_trim); 1846 1847 /* 1848 * create memory pools for biovec's in a bio_set. 1849 * use the global biovec slabs created for general use. 1850 */ 1851 int biovec_init_pool(mempool_t *pool, int pool_entries) 1852 { 1853 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; 1854 1855 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1856 } 1857 1858 /* 1859 * bioset_exit - exit a bioset initialized with bioset_init() 1860 * 1861 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1862 * kzalloc()). 1863 */ 1864 void bioset_exit(struct bio_set *bs) 1865 { 1866 if (bs->rescue_workqueue) 1867 destroy_workqueue(bs->rescue_workqueue); 1868 bs->rescue_workqueue = NULL; 1869 1870 mempool_exit(&bs->bio_pool); 1871 mempool_exit(&bs->bvec_pool); 1872 1873 bioset_integrity_free(bs); 1874 if (bs->bio_slab) 1875 bio_put_slab(bs); 1876 bs->bio_slab = NULL; 1877 } 1878 EXPORT_SYMBOL(bioset_exit); 1879 1880 /** 1881 * bioset_init - Initialize a bio_set 1882 * @bs: pool to initialize 1883 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1884 * @front_pad: Number of bytes to allocate in front of the returned bio 1885 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1886 * and %BIOSET_NEED_RESCUER 1887 * 1888 * Description: 1889 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1890 * to ask for a number of bytes to be allocated in front of the bio. 1891 * Front pad allocation is useful for embedding the bio inside 1892 * another structure, to avoid allocating extra data to go with the bio. 1893 * Note that the bio must be embedded at the END of that structure always, 1894 * or things will break badly. 1895 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1896 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast(). 1897 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to 1898 * dispatch queued requests when the mempool runs out of space. 1899 * 1900 */ 1901 int bioset_init(struct bio_set *bs, 1902 unsigned int pool_size, 1903 unsigned int front_pad, 1904 int flags) 1905 { 1906 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1907 1908 bs->front_pad = front_pad; 1909 1910 spin_lock_init(&bs->rescue_lock); 1911 bio_list_init(&bs->rescue_list); 1912 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1913 1914 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1915 if (!bs->bio_slab) 1916 return -ENOMEM; 1917 1918 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 1919 goto bad; 1920 1921 if ((flags & BIOSET_NEED_BVECS) && 1922 biovec_init_pool(&bs->bvec_pool, pool_size)) 1923 goto bad; 1924 1925 if (!(flags & BIOSET_NEED_RESCUER)) 1926 return 0; 1927 1928 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1929 if (!bs->rescue_workqueue) 1930 goto bad; 1931 1932 return 0; 1933 bad: 1934 bioset_exit(bs); 1935 return -ENOMEM; 1936 } 1937 EXPORT_SYMBOL(bioset_init); 1938 1939 /* 1940 * Initialize and setup a new bio_set, based on the settings from 1941 * another bio_set. 1942 */ 1943 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src) 1944 { 1945 int flags; 1946 1947 flags = 0; 1948 if (src->bvec_pool.min_nr) 1949 flags |= BIOSET_NEED_BVECS; 1950 if (src->rescue_workqueue) 1951 flags |= BIOSET_NEED_RESCUER; 1952 1953 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags); 1954 } 1955 EXPORT_SYMBOL(bioset_init_from_src); 1956 1957 #ifdef CONFIG_BLK_CGROUP 1958 1959 /** 1960 * bio_associate_blkg - associate a bio with the a blkg 1961 * @bio: target bio 1962 * @blkg: the blkg to associate 1963 * 1964 * This tries to associate @bio with the specified blkg. Association failure 1965 * is handled by walking up the blkg tree. Therefore, the blkg associated can 1966 * be anything between @blkg and the root_blkg. This situation only happens 1967 * when a cgroup is dying and then the remaining bios will spill to the closest 1968 * alive blkg. 1969 * 1970 * A reference will be taken on the @blkg and will be released when @bio is 1971 * freed. 1972 */ 1973 int bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg) 1974 { 1975 if (unlikely(bio->bi_blkg)) 1976 return -EBUSY; 1977 bio->bi_blkg = blkg_tryget_closest(blkg); 1978 return 0; 1979 } 1980 1981 /** 1982 * __bio_associate_blkg_from_css - internal blkg association function 1983 * 1984 * This in the core association function that all association paths rely on. 1985 * A blkg reference is taken which is released upon freeing of the bio. 1986 */ 1987 static int __bio_associate_blkg_from_css(struct bio *bio, 1988 struct cgroup_subsys_state *css) 1989 { 1990 struct request_queue *q = bio->bi_disk->queue; 1991 struct blkcg_gq *blkg; 1992 int ret; 1993 1994 rcu_read_lock(); 1995 1996 if (!css || !css->parent) 1997 blkg = q->root_blkg; 1998 else 1999 blkg = blkg_lookup_create(css_to_blkcg(css), q); 2000 2001 ret = bio_associate_blkg(bio, blkg); 2002 2003 rcu_read_unlock(); 2004 return ret; 2005 } 2006 2007 /** 2008 * bio_associate_blkg_from_css - associate a bio with a specified css 2009 * @bio: target bio 2010 * @css: target css 2011 * 2012 * Associate @bio with the blkg found by combining the css's blkg and the 2013 * request_queue of the @bio. This falls back to the queue's root_blkg if 2014 * the association fails with the css. 2015 */ 2016 int bio_associate_blkg_from_css(struct bio *bio, 2017 struct cgroup_subsys_state *css) 2018 { 2019 if (unlikely(bio->bi_blkg)) 2020 return -EBUSY; 2021 return __bio_associate_blkg_from_css(bio, css); 2022 } 2023 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 2024 2025 #ifdef CONFIG_MEMCG 2026 /** 2027 * bio_associate_blkg_from_page - associate a bio with the page's blkg 2028 * @bio: target bio 2029 * @page: the page to lookup the blkcg from 2030 * 2031 * Associate @bio with the blkg from @page's owning memcg and the respective 2032 * request_queue. If cgroup_e_css returns NULL, fall back to the queue's 2033 * root_blkg. 2034 * 2035 * Note: this must be called after bio has an associated device. 2036 */ 2037 int bio_associate_blkg_from_page(struct bio *bio, struct page *page) 2038 { 2039 struct cgroup_subsys_state *css; 2040 int ret; 2041 2042 if (unlikely(bio->bi_blkg)) 2043 return -EBUSY; 2044 if (!page->mem_cgroup) 2045 return 0; 2046 2047 rcu_read_lock(); 2048 2049 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys); 2050 2051 ret = __bio_associate_blkg_from_css(bio, css); 2052 2053 rcu_read_unlock(); 2054 return ret; 2055 } 2056 #endif /* CONFIG_MEMCG */ 2057 2058 /** 2059 * bio_associate_create_blkg - associate a bio with a blkg from q 2060 * @q: request_queue where bio is going 2061 * @bio: target bio 2062 * 2063 * Associate @bio with the blkg found from the bio's css and the request_queue. 2064 * If one is not found, bio_lookup_blkg creates the blkg. This falls back to 2065 * the queue's root_blkg if association fails. 2066 */ 2067 int bio_associate_create_blkg(struct request_queue *q, struct bio *bio) 2068 { 2069 struct cgroup_subsys_state *css; 2070 int ret = 0; 2071 2072 /* someone has already associated this bio with a blkg */ 2073 if (bio->bi_blkg) 2074 return ret; 2075 2076 rcu_read_lock(); 2077 2078 css = blkcg_css(); 2079 2080 ret = __bio_associate_blkg_from_css(bio, css); 2081 2082 rcu_read_unlock(); 2083 return ret; 2084 } 2085 2086 /** 2087 * bio_reassociate_blkg - reassociate a bio with a blkg from q 2088 * @q: request_queue where bio is going 2089 * @bio: target bio 2090 * 2091 * When submitting a bio, multiple recursive calls to make_request() may occur. 2092 * This causes the initial associate done in blkcg_bio_issue_check() to be 2093 * incorrect and reference the prior request_queue. This performs reassociation 2094 * when this situation happens. 2095 */ 2096 int bio_reassociate_blkg(struct request_queue *q, struct bio *bio) 2097 { 2098 if (bio->bi_blkg) { 2099 blkg_put(bio->bi_blkg); 2100 bio->bi_blkg = NULL; 2101 } 2102 2103 return bio_associate_create_blkg(q, bio); 2104 } 2105 2106 /** 2107 * bio_disassociate_task - undo bio_associate_current() 2108 * @bio: target bio 2109 */ 2110 void bio_disassociate_task(struct bio *bio) 2111 { 2112 if (bio->bi_ioc) { 2113 put_io_context(bio->bi_ioc); 2114 bio->bi_ioc = NULL; 2115 } 2116 if (bio->bi_blkg) { 2117 blkg_put(bio->bi_blkg); 2118 bio->bi_blkg = NULL; 2119 } 2120 } 2121 2122 /** 2123 * bio_clone_blkg_association - clone blkg association from src to dst bio 2124 * @dst: destination bio 2125 * @src: source bio 2126 */ 2127 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 2128 { 2129 if (src->bi_blkg) 2130 bio_associate_blkg(dst, src->bi_blkg); 2131 } 2132 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 2133 #endif /* CONFIG_BLK_CGROUP */ 2134 2135 static void __init biovec_init_slabs(void) 2136 { 2137 int i; 2138 2139 for (i = 0; i < BVEC_POOL_NR; i++) { 2140 int size; 2141 struct biovec_slab *bvs = bvec_slabs + i; 2142 2143 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2144 bvs->slab = NULL; 2145 continue; 2146 } 2147 2148 size = bvs->nr_vecs * sizeof(struct bio_vec); 2149 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2150 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2151 } 2152 } 2153 2154 static int __init init_bio(void) 2155 { 2156 bio_slab_max = 2; 2157 bio_slab_nr = 0; 2158 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab), 2159 GFP_KERNEL); 2160 if (!bio_slabs) 2161 panic("bio: can't allocate bios\n"); 2162 2163 bio_integrity_init(); 2164 biovec_init_slabs(); 2165 2166 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS)) 2167 panic("bio: can't allocate bios\n"); 2168 2169 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) 2170 panic("bio: can't create integrity pool\n"); 2171 2172 return 0; 2173 } 2174 subsys_initcall(init_bio); 2175