1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 4 */ 5 #include <linux/mm.h> 6 #include <linux/swap.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/uio.h> 10 #include <linux/iocontext.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/mempool.h> 16 #include <linux/workqueue.h> 17 #include <linux/cgroup.h> 18 #include <linux/blk-cgroup.h> 19 #include <linux/highmem.h> 20 21 #include <trace/events/block.h> 22 #include "blk.h" 23 #include "blk-rq-qos.h" 24 25 /* 26 * Test patch to inline a certain number of bi_io_vec's inside the bio 27 * itself, to shrink a bio data allocation from two mempool calls to one 28 */ 29 #define BIO_INLINE_VECS 4 30 31 /* 32 * if you change this list, also change bvec_alloc or things will 33 * break badly! cannot be bigger than what you can fit into an 34 * unsigned short 35 */ 36 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n } 37 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { 38 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max), 39 }; 40 #undef BV 41 42 /* 43 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 44 * IO code that does not need private memory pools. 45 */ 46 struct bio_set fs_bio_set; 47 EXPORT_SYMBOL(fs_bio_set); 48 49 /* 50 * Our slab pool management 51 */ 52 struct bio_slab { 53 struct kmem_cache *slab; 54 unsigned int slab_ref; 55 unsigned int slab_size; 56 char name[8]; 57 }; 58 static DEFINE_MUTEX(bio_slab_lock); 59 static struct bio_slab *bio_slabs; 60 static unsigned int bio_slab_nr, bio_slab_max; 61 62 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 63 { 64 unsigned int sz = sizeof(struct bio) + extra_size; 65 struct kmem_cache *slab = NULL; 66 struct bio_slab *bslab, *new_bio_slabs; 67 unsigned int new_bio_slab_max; 68 unsigned int i, entry = -1; 69 70 mutex_lock(&bio_slab_lock); 71 72 i = 0; 73 while (i < bio_slab_nr) { 74 bslab = &bio_slabs[i]; 75 76 if (!bslab->slab && entry == -1) 77 entry = i; 78 else if (bslab->slab_size == sz) { 79 slab = bslab->slab; 80 bslab->slab_ref++; 81 break; 82 } 83 i++; 84 } 85 86 if (slab) 87 goto out_unlock; 88 89 if (bio_slab_nr == bio_slab_max && entry == -1) { 90 new_bio_slab_max = bio_slab_max << 1; 91 new_bio_slabs = krealloc(bio_slabs, 92 new_bio_slab_max * sizeof(struct bio_slab), 93 GFP_KERNEL); 94 if (!new_bio_slabs) 95 goto out_unlock; 96 bio_slab_max = new_bio_slab_max; 97 bio_slabs = new_bio_slabs; 98 } 99 if (entry == -1) 100 entry = bio_slab_nr++; 101 102 bslab = &bio_slabs[entry]; 103 104 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 105 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, 106 SLAB_HWCACHE_ALIGN, NULL); 107 if (!slab) 108 goto out_unlock; 109 110 bslab->slab = slab; 111 bslab->slab_ref = 1; 112 bslab->slab_size = sz; 113 out_unlock: 114 mutex_unlock(&bio_slab_lock); 115 return slab; 116 } 117 118 static void bio_put_slab(struct bio_set *bs) 119 { 120 struct bio_slab *bslab = NULL; 121 unsigned int i; 122 123 mutex_lock(&bio_slab_lock); 124 125 for (i = 0; i < bio_slab_nr; i++) { 126 if (bs->bio_slab == bio_slabs[i].slab) { 127 bslab = &bio_slabs[i]; 128 break; 129 } 130 } 131 132 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 133 goto out; 134 135 WARN_ON(!bslab->slab_ref); 136 137 if (--bslab->slab_ref) 138 goto out; 139 140 kmem_cache_destroy(bslab->slab); 141 bslab->slab = NULL; 142 143 out: 144 mutex_unlock(&bio_slab_lock); 145 } 146 147 unsigned int bvec_nr_vecs(unsigned short idx) 148 { 149 return bvec_slabs[--idx].nr_vecs; 150 } 151 152 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 153 { 154 if (!idx) 155 return; 156 idx--; 157 158 BIO_BUG_ON(idx >= BVEC_POOL_NR); 159 160 if (idx == BVEC_POOL_MAX) { 161 mempool_free(bv, pool); 162 } else { 163 struct biovec_slab *bvs = bvec_slabs + idx; 164 165 kmem_cache_free(bvs->slab, bv); 166 } 167 } 168 169 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 170 mempool_t *pool) 171 { 172 struct bio_vec *bvl; 173 174 /* 175 * see comment near bvec_array define! 176 */ 177 switch (nr) { 178 case 1: 179 *idx = 0; 180 break; 181 case 2 ... 4: 182 *idx = 1; 183 break; 184 case 5 ... 16: 185 *idx = 2; 186 break; 187 case 17 ... 64: 188 *idx = 3; 189 break; 190 case 65 ... 128: 191 *idx = 4; 192 break; 193 case 129 ... BIO_MAX_PAGES: 194 *idx = 5; 195 break; 196 default: 197 return NULL; 198 } 199 200 /* 201 * idx now points to the pool we want to allocate from. only the 202 * 1-vec entry pool is mempool backed. 203 */ 204 if (*idx == BVEC_POOL_MAX) { 205 fallback: 206 bvl = mempool_alloc(pool, gfp_mask); 207 } else { 208 struct biovec_slab *bvs = bvec_slabs + *idx; 209 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); 210 211 /* 212 * Make this allocation restricted and don't dump info on 213 * allocation failures, since we'll fallback to the mempool 214 * in case of failure. 215 */ 216 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 217 218 /* 219 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM 220 * is set, retry with the 1-entry mempool 221 */ 222 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 223 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { 224 *idx = BVEC_POOL_MAX; 225 goto fallback; 226 } 227 } 228 229 (*idx)++; 230 return bvl; 231 } 232 233 void bio_uninit(struct bio *bio) 234 { 235 bio_disassociate_blkg(bio); 236 237 if (bio_integrity(bio)) 238 bio_integrity_free(bio); 239 } 240 EXPORT_SYMBOL(bio_uninit); 241 242 static void bio_free(struct bio *bio) 243 { 244 struct bio_set *bs = bio->bi_pool; 245 void *p; 246 247 bio_uninit(bio); 248 249 if (bs) { 250 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); 251 252 /* 253 * If we have front padding, adjust the bio pointer before freeing 254 */ 255 p = bio; 256 p -= bs->front_pad; 257 258 mempool_free(p, &bs->bio_pool); 259 } else { 260 /* Bio was allocated by bio_kmalloc() */ 261 kfree(bio); 262 } 263 } 264 265 /* 266 * Users of this function have their own bio allocation. Subsequently, 267 * they must remember to pair any call to bio_init() with bio_uninit() 268 * when IO has completed, or when the bio is released. 269 */ 270 void bio_init(struct bio *bio, struct bio_vec *table, 271 unsigned short max_vecs) 272 { 273 memset(bio, 0, sizeof(*bio)); 274 atomic_set(&bio->__bi_remaining, 1); 275 atomic_set(&bio->__bi_cnt, 1); 276 277 bio->bi_io_vec = table; 278 bio->bi_max_vecs = max_vecs; 279 } 280 EXPORT_SYMBOL(bio_init); 281 282 /** 283 * bio_reset - reinitialize a bio 284 * @bio: bio to reset 285 * 286 * Description: 287 * After calling bio_reset(), @bio will be in the same state as a freshly 288 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 289 * preserved are the ones that are initialized by bio_alloc_bioset(). See 290 * comment in struct bio. 291 */ 292 void bio_reset(struct bio *bio) 293 { 294 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 295 296 bio_uninit(bio); 297 298 memset(bio, 0, BIO_RESET_BYTES); 299 bio->bi_flags = flags; 300 atomic_set(&bio->__bi_remaining, 1); 301 } 302 EXPORT_SYMBOL(bio_reset); 303 304 static struct bio *__bio_chain_endio(struct bio *bio) 305 { 306 struct bio *parent = bio->bi_private; 307 308 if (!parent->bi_status) 309 parent->bi_status = bio->bi_status; 310 bio_put(bio); 311 return parent; 312 } 313 314 static void bio_chain_endio(struct bio *bio) 315 { 316 bio_endio(__bio_chain_endio(bio)); 317 } 318 319 /** 320 * bio_chain - chain bio completions 321 * @bio: the target bio 322 * @parent: the @bio's parent bio 323 * 324 * The caller won't have a bi_end_io called when @bio completes - instead, 325 * @parent's bi_end_io won't be called until both @parent and @bio have 326 * completed; the chained bio will also be freed when it completes. 327 * 328 * The caller must not set bi_private or bi_end_io in @bio. 329 */ 330 void bio_chain(struct bio *bio, struct bio *parent) 331 { 332 BUG_ON(bio->bi_private || bio->bi_end_io); 333 334 bio->bi_private = parent; 335 bio->bi_end_io = bio_chain_endio; 336 bio_inc_remaining(parent); 337 } 338 EXPORT_SYMBOL(bio_chain); 339 340 static void bio_alloc_rescue(struct work_struct *work) 341 { 342 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 343 struct bio *bio; 344 345 while (1) { 346 spin_lock(&bs->rescue_lock); 347 bio = bio_list_pop(&bs->rescue_list); 348 spin_unlock(&bs->rescue_lock); 349 350 if (!bio) 351 break; 352 353 generic_make_request(bio); 354 } 355 } 356 357 static void punt_bios_to_rescuer(struct bio_set *bs) 358 { 359 struct bio_list punt, nopunt; 360 struct bio *bio; 361 362 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 363 return; 364 /* 365 * In order to guarantee forward progress we must punt only bios that 366 * were allocated from this bio_set; otherwise, if there was a bio on 367 * there for a stacking driver higher up in the stack, processing it 368 * could require allocating bios from this bio_set, and doing that from 369 * our own rescuer would be bad. 370 * 371 * Since bio lists are singly linked, pop them all instead of trying to 372 * remove from the middle of the list: 373 */ 374 375 bio_list_init(&punt); 376 bio_list_init(&nopunt); 377 378 while ((bio = bio_list_pop(¤t->bio_list[0]))) 379 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 380 current->bio_list[0] = nopunt; 381 382 bio_list_init(&nopunt); 383 while ((bio = bio_list_pop(¤t->bio_list[1]))) 384 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 385 current->bio_list[1] = nopunt; 386 387 spin_lock(&bs->rescue_lock); 388 bio_list_merge(&bs->rescue_list, &punt); 389 spin_unlock(&bs->rescue_lock); 390 391 queue_work(bs->rescue_workqueue, &bs->rescue_work); 392 } 393 394 /** 395 * bio_alloc_bioset - allocate a bio for I/O 396 * @gfp_mask: the GFP_* mask given to the slab allocator 397 * @nr_iovecs: number of iovecs to pre-allocate 398 * @bs: the bio_set to allocate from. 399 * 400 * Description: 401 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 402 * backed by the @bs's mempool. 403 * 404 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will 405 * always be able to allocate a bio. This is due to the mempool guarantees. 406 * To make this work, callers must never allocate more than 1 bio at a time 407 * from this pool. Callers that need to allocate more than 1 bio must always 408 * submit the previously allocated bio for IO before attempting to allocate 409 * a new one. Failure to do so can cause deadlocks under memory pressure. 410 * 411 * Note that when running under generic_make_request() (i.e. any block 412 * driver), bios are not submitted until after you return - see the code in 413 * generic_make_request() that converts recursion into iteration, to prevent 414 * stack overflows. 415 * 416 * This would normally mean allocating multiple bios under 417 * generic_make_request() would be susceptible to deadlocks, but we have 418 * deadlock avoidance code that resubmits any blocked bios from a rescuer 419 * thread. 420 * 421 * However, we do not guarantee forward progress for allocations from other 422 * mempools. Doing multiple allocations from the same mempool under 423 * generic_make_request() should be avoided - instead, use bio_set's front_pad 424 * for per bio allocations. 425 * 426 * RETURNS: 427 * Pointer to new bio on success, NULL on failure. 428 */ 429 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs, 430 struct bio_set *bs) 431 { 432 gfp_t saved_gfp = gfp_mask; 433 unsigned front_pad; 434 unsigned inline_vecs; 435 struct bio_vec *bvl = NULL; 436 struct bio *bio; 437 void *p; 438 439 if (!bs) { 440 if (nr_iovecs > UIO_MAXIOV) 441 return NULL; 442 443 p = kmalloc(sizeof(struct bio) + 444 nr_iovecs * sizeof(struct bio_vec), 445 gfp_mask); 446 front_pad = 0; 447 inline_vecs = nr_iovecs; 448 } else { 449 /* should not use nobvec bioset for nr_iovecs > 0 */ 450 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && 451 nr_iovecs > 0)) 452 return NULL; 453 /* 454 * generic_make_request() converts recursion to iteration; this 455 * means if we're running beneath it, any bios we allocate and 456 * submit will not be submitted (and thus freed) until after we 457 * return. 458 * 459 * This exposes us to a potential deadlock if we allocate 460 * multiple bios from the same bio_set() while running 461 * underneath generic_make_request(). If we were to allocate 462 * multiple bios (say a stacking block driver that was splitting 463 * bios), we would deadlock if we exhausted the mempool's 464 * reserve. 465 * 466 * We solve this, and guarantee forward progress, with a rescuer 467 * workqueue per bio_set. If we go to allocate and there are 468 * bios on current->bio_list, we first try the allocation 469 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those 470 * bios we would be blocking to the rescuer workqueue before 471 * we retry with the original gfp_flags. 472 */ 473 474 if (current->bio_list && 475 (!bio_list_empty(¤t->bio_list[0]) || 476 !bio_list_empty(¤t->bio_list[1])) && 477 bs->rescue_workqueue) 478 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 479 480 p = mempool_alloc(&bs->bio_pool, gfp_mask); 481 if (!p && gfp_mask != saved_gfp) { 482 punt_bios_to_rescuer(bs); 483 gfp_mask = saved_gfp; 484 p = mempool_alloc(&bs->bio_pool, gfp_mask); 485 } 486 487 front_pad = bs->front_pad; 488 inline_vecs = BIO_INLINE_VECS; 489 } 490 491 if (unlikely(!p)) 492 return NULL; 493 494 bio = p + front_pad; 495 bio_init(bio, NULL, 0); 496 497 if (nr_iovecs > inline_vecs) { 498 unsigned long idx = 0; 499 500 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); 501 if (!bvl && gfp_mask != saved_gfp) { 502 punt_bios_to_rescuer(bs); 503 gfp_mask = saved_gfp; 504 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); 505 } 506 507 if (unlikely(!bvl)) 508 goto err_free; 509 510 bio->bi_flags |= idx << BVEC_POOL_OFFSET; 511 } else if (nr_iovecs) { 512 bvl = bio->bi_inline_vecs; 513 } 514 515 bio->bi_pool = bs; 516 bio->bi_max_vecs = nr_iovecs; 517 bio->bi_io_vec = bvl; 518 return bio; 519 520 err_free: 521 mempool_free(p, &bs->bio_pool); 522 return NULL; 523 } 524 EXPORT_SYMBOL(bio_alloc_bioset); 525 526 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start) 527 { 528 unsigned long flags; 529 struct bio_vec bv; 530 struct bvec_iter iter; 531 532 __bio_for_each_segment(bv, bio, iter, start) { 533 char *data = bvec_kmap_irq(&bv, &flags); 534 memset(data, 0, bv.bv_len); 535 flush_dcache_page(bv.bv_page); 536 bvec_kunmap_irq(data, &flags); 537 } 538 } 539 EXPORT_SYMBOL(zero_fill_bio_iter); 540 541 /** 542 * bio_put - release a reference to a bio 543 * @bio: bio to release reference to 544 * 545 * Description: 546 * Put a reference to a &struct bio, either one you have gotten with 547 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 548 **/ 549 void bio_put(struct bio *bio) 550 { 551 if (!bio_flagged(bio, BIO_REFFED)) 552 bio_free(bio); 553 else { 554 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 555 556 /* 557 * last put frees it 558 */ 559 if (atomic_dec_and_test(&bio->__bi_cnt)) 560 bio_free(bio); 561 } 562 } 563 EXPORT_SYMBOL(bio_put); 564 565 /** 566 * __bio_clone_fast - clone a bio that shares the original bio's biovec 567 * @bio: destination bio 568 * @bio_src: bio to clone 569 * 570 * Clone a &bio. Caller will own the returned bio, but not 571 * the actual data it points to. Reference count of returned 572 * bio will be one. 573 * 574 * Caller must ensure that @bio_src is not freed before @bio. 575 */ 576 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 577 { 578 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); 579 580 /* 581 * most users will be overriding ->bi_disk with a new target, 582 * so we don't set nor calculate new physical/hw segment counts here 583 */ 584 bio->bi_disk = bio_src->bi_disk; 585 bio->bi_partno = bio_src->bi_partno; 586 bio_set_flag(bio, BIO_CLONED); 587 if (bio_flagged(bio_src, BIO_THROTTLED)) 588 bio_set_flag(bio, BIO_THROTTLED); 589 bio->bi_opf = bio_src->bi_opf; 590 bio->bi_ioprio = bio_src->bi_ioprio; 591 bio->bi_write_hint = bio_src->bi_write_hint; 592 bio->bi_iter = bio_src->bi_iter; 593 bio->bi_io_vec = bio_src->bi_io_vec; 594 595 bio_clone_blkg_association(bio, bio_src); 596 blkcg_bio_issue_init(bio); 597 } 598 EXPORT_SYMBOL(__bio_clone_fast); 599 600 /** 601 * bio_clone_fast - clone a bio that shares the original bio's biovec 602 * @bio: bio to clone 603 * @gfp_mask: allocation priority 604 * @bs: bio_set to allocate from 605 * 606 * Like __bio_clone_fast, only also allocates the returned bio 607 */ 608 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 609 { 610 struct bio *b; 611 612 b = bio_alloc_bioset(gfp_mask, 0, bs); 613 if (!b) 614 return NULL; 615 616 __bio_clone_fast(b, bio); 617 618 if (bio_integrity(bio)) { 619 int ret; 620 621 ret = bio_integrity_clone(b, bio, gfp_mask); 622 623 if (ret < 0) { 624 bio_put(b); 625 return NULL; 626 } 627 } 628 629 return b; 630 } 631 EXPORT_SYMBOL(bio_clone_fast); 632 633 static inline bool page_is_mergeable(const struct bio_vec *bv, 634 struct page *page, unsigned int len, unsigned int off, 635 bool *same_page) 636 { 637 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + 638 bv->bv_offset + bv->bv_len - 1; 639 phys_addr_t page_addr = page_to_phys(page); 640 641 if (vec_end_addr + 1 != page_addr + off) 642 return false; 643 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 644 return false; 645 646 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); 647 if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page) 648 return false; 649 return true; 650 } 651 652 static bool bio_try_merge_pc_page(struct request_queue *q, struct bio *bio, 653 struct page *page, unsigned len, unsigned offset, 654 bool *same_page) 655 { 656 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 657 unsigned long mask = queue_segment_boundary(q); 658 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; 659 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 660 661 if ((addr1 | mask) != (addr2 | mask)) 662 return false; 663 if (bv->bv_len + len > queue_max_segment_size(q)) 664 return false; 665 return __bio_try_merge_page(bio, page, len, offset, same_page); 666 } 667 668 /** 669 * __bio_add_pc_page - attempt to add page to passthrough bio 670 * @q: the target queue 671 * @bio: destination bio 672 * @page: page to add 673 * @len: vec entry length 674 * @offset: vec entry offset 675 * @same_page: return if the merge happen inside the same page 676 * 677 * Attempt to add a page to the bio_vec maplist. This can fail for a 678 * number of reasons, such as the bio being full or target block device 679 * limitations. The target block device must allow bio's up to PAGE_SIZE, 680 * so it is always possible to add a single page to an empty bio. 681 * 682 * This should only be used by passthrough bios. 683 */ 684 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio, 685 struct page *page, unsigned int len, unsigned int offset, 686 bool *same_page) 687 { 688 struct bio_vec *bvec; 689 690 /* 691 * cloned bio must not modify vec list 692 */ 693 if (unlikely(bio_flagged(bio, BIO_CLONED))) 694 return 0; 695 696 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q)) 697 return 0; 698 699 if (bio->bi_vcnt > 0) { 700 if (bio_try_merge_pc_page(q, bio, page, len, offset, same_page)) 701 return len; 702 703 /* 704 * If the queue doesn't support SG gaps and adding this segment 705 * would create a gap, disallow it. 706 */ 707 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 708 if (bvec_gap_to_prev(q, bvec, offset)) 709 return 0; 710 } 711 712 if (bio_full(bio, len)) 713 return 0; 714 715 if (bio->bi_vcnt >= queue_max_segments(q)) 716 return 0; 717 718 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 719 bvec->bv_page = page; 720 bvec->bv_len = len; 721 bvec->bv_offset = offset; 722 bio->bi_vcnt++; 723 bio->bi_iter.bi_size += len; 724 return len; 725 } 726 727 int bio_add_pc_page(struct request_queue *q, struct bio *bio, 728 struct page *page, unsigned int len, unsigned int offset) 729 { 730 bool same_page = false; 731 return __bio_add_pc_page(q, bio, page, len, offset, &same_page); 732 } 733 EXPORT_SYMBOL(bio_add_pc_page); 734 735 /** 736 * __bio_try_merge_page - try appending data to an existing bvec. 737 * @bio: destination bio 738 * @page: start page to add 739 * @len: length of the data to add 740 * @off: offset of the data relative to @page 741 * @same_page: return if the segment has been merged inside the same page 742 * 743 * Try to add the data at @page + @off to the last bvec of @bio. This is a 744 * a useful optimisation for file systems with a block size smaller than the 745 * page size. 746 * 747 * Warn if (@len, @off) crosses pages in case that @same_page is true. 748 * 749 * Return %true on success or %false on failure. 750 */ 751 bool __bio_try_merge_page(struct bio *bio, struct page *page, 752 unsigned int len, unsigned int off, bool *same_page) 753 { 754 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 755 return false; 756 757 if (bio->bi_vcnt > 0 && !bio_full(bio, len)) { 758 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 759 760 if (page_is_mergeable(bv, page, len, off, same_page)) { 761 bv->bv_len += len; 762 bio->bi_iter.bi_size += len; 763 return true; 764 } 765 } 766 return false; 767 } 768 EXPORT_SYMBOL_GPL(__bio_try_merge_page); 769 770 /** 771 * __bio_add_page - add page(s) to a bio in a new segment 772 * @bio: destination bio 773 * @page: start page to add 774 * @len: length of the data to add, may cross pages 775 * @off: offset of the data relative to @page, may cross pages 776 * 777 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 778 * that @bio has space for another bvec. 779 */ 780 void __bio_add_page(struct bio *bio, struct page *page, 781 unsigned int len, unsigned int off) 782 { 783 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt]; 784 785 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 786 WARN_ON_ONCE(bio_full(bio, len)); 787 788 bv->bv_page = page; 789 bv->bv_offset = off; 790 bv->bv_len = len; 791 792 bio->bi_iter.bi_size += len; 793 bio->bi_vcnt++; 794 795 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page))) 796 bio_set_flag(bio, BIO_WORKINGSET); 797 } 798 EXPORT_SYMBOL_GPL(__bio_add_page); 799 800 /** 801 * bio_add_page - attempt to add page(s) to bio 802 * @bio: destination bio 803 * @page: start page to add 804 * @len: vec entry length, may cross pages 805 * @offset: vec entry offset relative to @page, may cross pages 806 * 807 * Attempt to add page(s) to the bio_vec maplist. This will only fail 808 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 809 */ 810 int bio_add_page(struct bio *bio, struct page *page, 811 unsigned int len, unsigned int offset) 812 { 813 bool same_page = false; 814 815 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { 816 if (bio_full(bio, len)) 817 return 0; 818 __bio_add_page(bio, page, len, offset); 819 } 820 return len; 821 } 822 EXPORT_SYMBOL(bio_add_page); 823 824 void bio_release_pages(struct bio *bio, bool mark_dirty) 825 { 826 struct bvec_iter_all iter_all; 827 struct bio_vec *bvec; 828 829 if (bio_flagged(bio, BIO_NO_PAGE_REF)) 830 return; 831 832 bio_for_each_segment_all(bvec, bio, iter_all) { 833 if (mark_dirty && !PageCompound(bvec->bv_page)) 834 set_page_dirty_lock(bvec->bv_page); 835 put_page(bvec->bv_page); 836 } 837 } 838 839 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter) 840 { 841 const struct bio_vec *bv = iter->bvec; 842 unsigned int len; 843 size_t size; 844 845 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len)) 846 return -EINVAL; 847 848 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count); 849 size = bio_add_page(bio, bv->bv_page, len, 850 bv->bv_offset + iter->iov_offset); 851 if (unlikely(size != len)) 852 return -EINVAL; 853 iov_iter_advance(iter, size); 854 return 0; 855 } 856 857 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 858 859 /** 860 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 861 * @bio: bio to add pages to 862 * @iter: iov iterator describing the region to be mapped 863 * 864 * Pins pages from *iter and appends them to @bio's bvec array. The 865 * pages will have to be released using put_page() when done. 866 * For multi-segment *iter, this function only adds pages from the 867 * the next non-empty segment of the iov iterator. 868 */ 869 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 870 { 871 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 872 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 873 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 874 struct page **pages = (struct page **)bv; 875 bool same_page = false; 876 ssize_t size, left; 877 unsigned len, i; 878 size_t offset; 879 880 /* 881 * Move page array up in the allocated memory for the bio vecs as far as 882 * possible so that we can start filling biovecs from the beginning 883 * without overwriting the temporary page array. 884 */ 885 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 886 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 887 888 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 889 if (unlikely(size <= 0)) 890 return size ? size : -EFAULT; 891 892 for (left = size, i = 0; left > 0; left -= len, i++) { 893 struct page *page = pages[i]; 894 895 len = min_t(size_t, PAGE_SIZE - offset, left); 896 897 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) { 898 if (same_page) 899 put_page(page); 900 } else { 901 if (WARN_ON_ONCE(bio_full(bio, len))) 902 return -EINVAL; 903 __bio_add_page(bio, page, len, offset); 904 } 905 offset = 0; 906 } 907 908 iov_iter_advance(iter, size); 909 return 0; 910 } 911 912 /** 913 * bio_iov_iter_get_pages - add user or kernel pages to a bio 914 * @bio: bio to add pages to 915 * @iter: iov iterator describing the region to be added 916 * 917 * This takes either an iterator pointing to user memory, or one pointing to 918 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 919 * map them into the kernel. On IO completion, the caller should put those 920 * pages. If we're adding kernel pages, and the caller told us it's safe to 921 * do so, we just have to add the pages to the bio directly. We don't grab an 922 * extra reference to those pages (the user should already have that), and we 923 * don't put the page on IO completion. The caller needs to check if the bio is 924 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be 925 * released. 926 * 927 * The function tries, but does not guarantee, to pin as many pages as 928 * fit into the bio, or are requested in *iter, whatever is smaller. If 929 * MM encounters an error pinning the requested pages, it stops. Error 930 * is returned only if 0 pages could be pinned. 931 */ 932 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 933 { 934 const bool is_bvec = iov_iter_is_bvec(iter); 935 int ret; 936 937 if (WARN_ON_ONCE(bio->bi_vcnt)) 938 return -EINVAL; 939 940 do { 941 if (is_bvec) 942 ret = __bio_iov_bvec_add_pages(bio, iter); 943 else 944 ret = __bio_iov_iter_get_pages(bio, iter); 945 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); 946 947 if (is_bvec) 948 bio_set_flag(bio, BIO_NO_PAGE_REF); 949 return bio->bi_vcnt ? 0 : ret; 950 } 951 952 static void submit_bio_wait_endio(struct bio *bio) 953 { 954 complete(bio->bi_private); 955 } 956 957 /** 958 * submit_bio_wait - submit a bio, and wait until it completes 959 * @bio: The &struct bio which describes the I/O 960 * 961 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 962 * bio_endio() on failure. 963 * 964 * WARNING: Unlike to how submit_bio() is usually used, this function does not 965 * result in bio reference to be consumed. The caller must drop the reference 966 * on his own. 967 */ 968 int submit_bio_wait(struct bio *bio) 969 { 970 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map); 971 972 bio->bi_private = &done; 973 bio->bi_end_io = submit_bio_wait_endio; 974 bio->bi_opf |= REQ_SYNC; 975 submit_bio(bio); 976 wait_for_completion_io(&done); 977 978 return blk_status_to_errno(bio->bi_status); 979 } 980 EXPORT_SYMBOL(submit_bio_wait); 981 982 /** 983 * bio_advance - increment/complete a bio by some number of bytes 984 * @bio: bio to advance 985 * @bytes: number of bytes to complete 986 * 987 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 988 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 989 * be updated on the last bvec as well. 990 * 991 * @bio will then represent the remaining, uncompleted portion of the io. 992 */ 993 void bio_advance(struct bio *bio, unsigned bytes) 994 { 995 if (bio_integrity(bio)) 996 bio_integrity_advance(bio, bytes); 997 998 bio_advance_iter(bio, &bio->bi_iter, bytes); 999 } 1000 EXPORT_SYMBOL(bio_advance); 1001 1002 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 1003 struct bio *src, struct bvec_iter *src_iter) 1004 { 1005 struct bio_vec src_bv, dst_bv; 1006 void *src_p, *dst_p; 1007 unsigned bytes; 1008 1009 while (src_iter->bi_size && dst_iter->bi_size) { 1010 src_bv = bio_iter_iovec(src, *src_iter); 1011 dst_bv = bio_iter_iovec(dst, *dst_iter); 1012 1013 bytes = min(src_bv.bv_len, dst_bv.bv_len); 1014 1015 src_p = kmap_atomic(src_bv.bv_page); 1016 dst_p = kmap_atomic(dst_bv.bv_page); 1017 1018 memcpy(dst_p + dst_bv.bv_offset, 1019 src_p + src_bv.bv_offset, 1020 bytes); 1021 1022 kunmap_atomic(dst_p); 1023 kunmap_atomic(src_p); 1024 1025 flush_dcache_page(dst_bv.bv_page); 1026 1027 bio_advance_iter(src, src_iter, bytes); 1028 bio_advance_iter(dst, dst_iter, bytes); 1029 } 1030 } 1031 EXPORT_SYMBOL(bio_copy_data_iter); 1032 1033 /** 1034 * bio_copy_data - copy contents of data buffers from one bio to another 1035 * @src: source bio 1036 * @dst: destination bio 1037 * 1038 * Stops when it reaches the end of either @src or @dst - that is, copies 1039 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1040 */ 1041 void bio_copy_data(struct bio *dst, struct bio *src) 1042 { 1043 struct bvec_iter src_iter = src->bi_iter; 1044 struct bvec_iter dst_iter = dst->bi_iter; 1045 1046 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1047 } 1048 EXPORT_SYMBOL(bio_copy_data); 1049 1050 /** 1051 * bio_list_copy_data - copy contents of data buffers from one chain of bios to 1052 * another 1053 * @src: source bio list 1054 * @dst: destination bio list 1055 * 1056 * Stops when it reaches the end of either the @src list or @dst list - that is, 1057 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of 1058 * bios). 1059 */ 1060 void bio_list_copy_data(struct bio *dst, struct bio *src) 1061 { 1062 struct bvec_iter src_iter = src->bi_iter; 1063 struct bvec_iter dst_iter = dst->bi_iter; 1064 1065 while (1) { 1066 if (!src_iter.bi_size) { 1067 src = src->bi_next; 1068 if (!src) 1069 break; 1070 1071 src_iter = src->bi_iter; 1072 } 1073 1074 if (!dst_iter.bi_size) { 1075 dst = dst->bi_next; 1076 if (!dst) 1077 break; 1078 1079 dst_iter = dst->bi_iter; 1080 } 1081 1082 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1083 } 1084 } 1085 EXPORT_SYMBOL(bio_list_copy_data); 1086 1087 struct bio_map_data { 1088 int is_our_pages; 1089 struct iov_iter iter; 1090 struct iovec iov[]; 1091 }; 1092 1093 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data, 1094 gfp_t gfp_mask) 1095 { 1096 struct bio_map_data *bmd; 1097 if (data->nr_segs > UIO_MAXIOV) 1098 return NULL; 1099 1100 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask); 1101 if (!bmd) 1102 return NULL; 1103 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs); 1104 bmd->iter = *data; 1105 bmd->iter.iov = bmd->iov; 1106 return bmd; 1107 } 1108 1109 /** 1110 * bio_copy_from_iter - copy all pages from iov_iter to bio 1111 * @bio: The &struct bio which describes the I/O as destination 1112 * @iter: iov_iter as source 1113 * 1114 * Copy all pages from iov_iter to bio. 1115 * Returns 0 on success, or error on failure. 1116 */ 1117 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter) 1118 { 1119 struct bio_vec *bvec; 1120 struct bvec_iter_all iter_all; 1121 1122 bio_for_each_segment_all(bvec, bio, iter_all) { 1123 ssize_t ret; 1124 1125 ret = copy_page_from_iter(bvec->bv_page, 1126 bvec->bv_offset, 1127 bvec->bv_len, 1128 iter); 1129 1130 if (!iov_iter_count(iter)) 1131 break; 1132 1133 if (ret < bvec->bv_len) 1134 return -EFAULT; 1135 } 1136 1137 return 0; 1138 } 1139 1140 /** 1141 * bio_copy_to_iter - copy all pages from bio to iov_iter 1142 * @bio: The &struct bio which describes the I/O as source 1143 * @iter: iov_iter as destination 1144 * 1145 * Copy all pages from bio to iov_iter. 1146 * Returns 0 on success, or error on failure. 1147 */ 1148 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 1149 { 1150 struct bio_vec *bvec; 1151 struct bvec_iter_all iter_all; 1152 1153 bio_for_each_segment_all(bvec, bio, iter_all) { 1154 ssize_t ret; 1155 1156 ret = copy_page_to_iter(bvec->bv_page, 1157 bvec->bv_offset, 1158 bvec->bv_len, 1159 &iter); 1160 1161 if (!iov_iter_count(&iter)) 1162 break; 1163 1164 if (ret < bvec->bv_len) 1165 return -EFAULT; 1166 } 1167 1168 return 0; 1169 } 1170 1171 void bio_free_pages(struct bio *bio) 1172 { 1173 struct bio_vec *bvec; 1174 struct bvec_iter_all iter_all; 1175 1176 bio_for_each_segment_all(bvec, bio, iter_all) 1177 __free_page(bvec->bv_page); 1178 } 1179 EXPORT_SYMBOL(bio_free_pages); 1180 1181 /** 1182 * bio_uncopy_user - finish previously mapped bio 1183 * @bio: bio being terminated 1184 * 1185 * Free pages allocated from bio_copy_user_iov() and write back data 1186 * to user space in case of a read. 1187 */ 1188 int bio_uncopy_user(struct bio *bio) 1189 { 1190 struct bio_map_data *bmd = bio->bi_private; 1191 int ret = 0; 1192 1193 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1194 /* 1195 * if we're in a workqueue, the request is orphaned, so 1196 * don't copy into a random user address space, just free 1197 * and return -EINTR so user space doesn't expect any data. 1198 */ 1199 if (!current->mm) 1200 ret = -EINTR; 1201 else if (bio_data_dir(bio) == READ) 1202 ret = bio_copy_to_iter(bio, bmd->iter); 1203 if (bmd->is_our_pages) 1204 bio_free_pages(bio); 1205 } 1206 kfree(bmd); 1207 bio_put(bio); 1208 return ret; 1209 } 1210 1211 /** 1212 * bio_copy_user_iov - copy user data to bio 1213 * @q: destination block queue 1214 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1215 * @iter: iovec iterator 1216 * @gfp_mask: memory allocation flags 1217 * 1218 * Prepares and returns a bio for indirect user io, bouncing data 1219 * to/from kernel pages as necessary. Must be paired with 1220 * call bio_uncopy_user() on io completion. 1221 */ 1222 struct bio *bio_copy_user_iov(struct request_queue *q, 1223 struct rq_map_data *map_data, 1224 struct iov_iter *iter, 1225 gfp_t gfp_mask) 1226 { 1227 struct bio_map_data *bmd; 1228 struct page *page; 1229 struct bio *bio; 1230 int i = 0, ret; 1231 int nr_pages; 1232 unsigned int len = iter->count; 1233 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 1234 1235 bmd = bio_alloc_map_data(iter, gfp_mask); 1236 if (!bmd) 1237 return ERR_PTR(-ENOMEM); 1238 1239 /* 1240 * We need to do a deep copy of the iov_iter including the iovecs. 1241 * The caller provided iov might point to an on-stack or otherwise 1242 * shortlived one. 1243 */ 1244 bmd->is_our_pages = map_data ? 0 : 1; 1245 1246 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE); 1247 if (nr_pages > BIO_MAX_PAGES) 1248 nr_pages = BIO_MAX_PAGES; 1249 1250 ret = -ENOMEM; 1251 bio = bio_kmalloc(gfp_mask, nr_pages); 1252 if (!bio) 1253 goto out_bmd; 1254 1255 ret = 0; 1256 1257 if (map_data) { 1258 nr_pages = 1 << map_data->page_order; 1259 i = map_data->offset / PAGE_SIZE; 1260 } 1261 while (len) { 1262 unsigned int bytes = PAGE_SIZE; 1263 1264 bytes -= offset; 1265 1266 if (bytes > len) 1267 bytes = len; 1268 1269 if (map_data) { 1270 if (i == map_data->nr_entries * nr_pages) { 1271 ret = -ENOMEM; 1272 break; 1273 } 1274 1275 page = map_data->pages[i / nr_pages]; 1276 page += (i % nr_pages); 1277 1278 i++; 1279 } else { 1280 page = alloc_page(q->bounce_gfp | gfp_mask); 1281 if (!page) { 1282 ret = -ENOMEM; 1283 break; 1284 } 1285 } 1286 1287 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) { 1288 if (!map_data) 1289 __free_page(page); 1290 break; 1291 } 1292 1293 len -= bytes; 1294 offset = 0; 1295 } 1296 1297 if (ret) 1298 goto cleanup; 1299 1300 if (map_data) 1301 map_data->offset += bio->bi_iter.bi_size; 1302 1303 /* 1304 * success 1305 */ 1306 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) || 1307 (map_data && map_data->from_user)) { 1308 ret = bio_copy_from_iter(bio, iter); 1309 if (ret) 1310 goto cleanup; 1311 } else { 1312 if (bmd->is_our_pages) 1313 zero_fill_bio(bio); 1314 iov_iter_advance(iter, bio->bi_iter.bi_size); 1315 } 1316 1317 bio->bi_private = bmd; 1318 if (map_data && map_data->null_mapped) 1319 bio_set_flag(bio, BIO_NULL_MAPPED); 1320 return bio; 1321 cleanup: 1322 if (!map_data) 1323 bio_free_pages(bio); 1324 bio_put(bio); 1325 out_bmd: 1326 kfree(bmd); 1327 return ERR_PTR(ret); 1328 } 1329 1330 /** 1331 * bio_map_user_iov - map user iovec into bio 1332 * @q: the struct request_queue for the bio 1333 * @iter: iovec iterator 1334 * @gfp_mask: memory allocation flags 1335 * 1336 * Map the user space address into a bio suitable for io to a block 1337 * device. Returns an error pointer in case of error. 1338 */ 1339 struct bio *bio_map_user_iov(struct request_queue *q, 1340 struct iov_iter *iter, 1341 gfp_t gfp_mask) 1342 { 1343 int j; 1344 struct bio *bio; 1345 int ret; 1346 1347 if (!iov_iter_count(iter)) 1348 return ERR_PTR(-EINVAL); 1349 1350 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES)); 1351 if (!bio) 1352 return ERR_PTR(-ENOMEM); 1353 1354 while (iov_iter_count(iter)) { 1355 struct page **pages; 1356 ssize_t bytes; 1357 size_t offs, added = 0; 1358 int npages; 1359 1360 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs); 1361 if (unlikely(bytes <= 0)) { 1362 ret = bytes ? bytes : -EFAULT; 1363 goto out_unmap; 1364 } 1365 1366 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE); 1367 1368 if (unlikely(offs & queue_dma_alignment(q))) { 1369 ret = -EINVAL; 1370 j = 0; 1371 } else { 1372 for (j = 0; j < npages; j++) { 1373 struct page *page = pages[j]; 1374 unsigned int n = PAGE_SIZE - offs; 1375 bool same_page = false; 1376 1377 if (n > bytes) 1378 n = bytes; 1379 1380 if (!__bio_add_pc_page(q, bio, page, n, offs, 1381 &same_page)) { 1382 if (same_page) 1383 put_page(page); 1384 break; 1385 } 1386 1387 added += n; 1388 bytes -= n; 1389 offs = 0; 1390 } 1391 iov_iter_advance(iter, added); 1392 } 1393 /* 1394 * release the pages we didn't map into the bio, if any 1395 */ 1396 while (j < npages) 1397 put_page(pages[j++]); 1398 kvfree(pages); 1399 /* couldn't stuff something into bio? */ 1400 if (bytes) 1401 break; 1402 } 1403 1404 bio_set_flag(bio, BIO_USER_MAPPED); 1405 1406 /* 1407 * subtle -- if bio_map_user_iov() ended up bouncing a bio, 1408 * it would normally disappear when its bi_end_io is run. 1409 * however, we need it for the unmap, so grab an extra 1410 * reference to it 1411 */ 1412 bio_get(bio); 1413 return bio; 1414 1415 out_unmap: 1416 bio_release_pages(bio, false); 1417 bio_put(bio); 1418 return ERR_PTR(ret); 1419 } 1420 1421 /** 1422 * bio_unmap_user - unmap a bio 1423 * @bio: the bio being unmapped 1424 * 1425 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from 1426 * process context. 1427 * 1428 * bio_unmap_user() may sleep. 1429 */ 1430 void bio_unmap_user(struct bio *bio) 1431 { 1432 bio_release_pages(bio, bio_data_dir(bio) == READ); 1433 bio_put(bio); 1434 bio_put(bio); 1435 } 1436 1437 static void bio_invalidate_vmalloc_pages(struct bio *bio) 1438 { 1439 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE 1440 if (bio->bi_private && !op_is_write(bio_op(bio))) { 1441 unsigned long i, len = 0; 1442 1443 for (i = 0; i < bio->bi_vcnt; i++) 1444 len += bio->bi_io_vec[i].bv_len; 1445 invalidate_kernel_vmap_range(bio->bi_private, len); 1446 } 1447 #endif 1448 } 1449 1450 static void bio_map_kern_endio(struct bio *bio) 1451 { 1452 bio_invalidate_vmalloc_pages(bio); 1453 bio_put(bio); 1454 } 1455 1456 /** 1457 * bio_map_kern - map kernel address into bio 1458 * @q: the struct request_queue for the bio 1459 * @data: pointer to buffer to map 1460 * @len: length in bytes 1461 * @gfp_mask: allocation flags for bio allocation 1462 * 1463 * Map the kernel address into a bio suitable for io to a block 1464 * device. Returns an error pointer in case of error. 1465 */ 1466 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1467 gfp_t gfp_mask) 1468 { 1469 unsigned long kaddr = (unsigned long)data; 1470 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1471 unsigned long start = kaddr >> PAGE_SHIFT; 1472 const int nr_pages = end - start; 1473 bool is_vmalloc = is_vmalloc_addr(data); 1474 struct page *page; 1475 int offset, i; 1476 struct bio *bio; 1477 1478 bio = bio_kmalloc(gfp_mask, nr_pages); 1479 if (!bio) 1480 return ERR_PTR(-ENOMEM); 1481 1482 if (is_vmalloc) { 1483 flush_kernel_vmap_range(data, len); 1484 bio->bi_private = data; 1485 } 1486 1487 offset = offset_in_page(kaddr); 1488 for (i = 0; i < nr_pages; i++) { 1489 unsigned int bytes = PAGE_SIZE - offset; 1490 1491 if (len <= 0) 1492 break; 1493 1494 if (bytes > len) 1495 bytes = len; 1496 1497 if (!is_vmalloc) 1498 page = virt_to_page(data); 1499 else 1500 page = vmalloc_to_page(data); 1501 if (bio_add_pc_page(q, bio, page, bytes, 1502 offset) < bytes) { 1503 /* we don't support partial mappings */ 1504 bio_put(bio); 1505 return ERR_PTR(-EINVAL); 1506 } 1507 1508 data += bytes; 1509 len -= bytes; 1510 offset = 0; 1511 } 1512 1513 bio->bi_end_io = bio_map_kern_endio; 1514 return bio; 1515 } 1516 1517 static void bio_copy_kern_endio(struct bio *bio) 1518 { 1519 bio_free_pages(bio); 1520 bio_put(bio); 1521 } 1522 1523 static void bio_copy_kern_endio_read(struct bio *bio) 1524 { 1525 char *p = bio->bi_private; 1526 struct bio_vec *bvec; 1527 struct bvec_iter_all iter_all; 1528 1529 bio_for_each_segment_all(bvec, bio, iter_all) { 1530 memcpy(p, page_address(bvec->bv_page), bvec->bv_len); 1531 p += bvec->bv_len; 1532 } 1533 1534 bio_copy_kern_endio(bio); 1535 } 1536 1537 /** 1538 * bio_copy_kern - copy kernel address into bio 1539 * @q: the struct request_queue for the bio 1540 * @data: pointer to buffer to copy 1541 * @len: length in bytes 1542 * @gfp_mask: allocation flags for bio and page allocation 1543 * @reading: data direction is READ 1544 * 1545 * copy the kernel address into a bio suitable for io to a block 1546 * device. Returns an error pointer in case of error. 1547 */ 1548 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1549 gfp_t gfp_mask, int reading) 1550 { 1551 unsigned long kaddr = (unsigned long)data; 1552 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1553 unsigned long start = kaddr >> PAGE_SHIFT; 1554 struct bio *bio; 1555 void *p = data; 1556 int nr_pages = 0; 1557 1558 /* 1559 * Overflow, abort 1560 */ 1561 if (end < start) 1562 return ERR_PTR(-EINVAL); 1563 1564 nr_pages = end - start; 1565 bio = bio_kmalloc(gfp_mask, nr_pages); 1566 if (!bio) 1567 return ERR_PTR(-ENOMEM); 1568 1569 while (len) { 1570 struct page *page; 1571 unsigned int bytes = PAGE_SIZE; 1572 1573 if (bytes > len) 1574 bytes = len; 1575 1576 page = alloc_page(q->bounce_gfp | gfp_mask); 1577 if (!page) 1578 goto cleanup; 1579 1580 if (!reading) 1581 memcpy(page_address(page), p, bytes); 1582 1583 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 1584 break; 1585 1586 len -= bytes; 1587 p += bytes; 1588 } 1589 1590 if (reading) { 1591 bio->bi_end_io = bio_copy_kern_endio_read; 1592 bio->bi_private = data; 1593 } else { 1594 bio->bi_end_io = bio_copy_kern_endio; 1595 } 1596 1597 return bio; 1598 1599 cleanup: 1600 bio_free_pages(bio); 1601 bio_put(bio); 1602 return ERR_PTR(-ENOMEM); 1603 } 1604 1605 /* 1606 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1607 * for performing direct-IO in BIOs. 1608 * 1609 * The problem is that we cannot run set_page_dirty() from interrupt context 1610 * because the required locks are not interrupt-safe. So what we can do is to 1611 * mark the pages dirty _before_ performing IO. And in interrupt context, 1612 * check that the pages are still dirty. If so, fine. If not, redirty them 1613 * in process context. 1614 * 1615 * We special-case compound pages here: normally this means reads into hugetlb 1616 * pages. The logic in here doesn't really work right for compound pages 1617 * because the VM does not uniformly chase down the head page in all cases. 1618 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1619 * handle them at all. So we skip compound pages here at an early stage. 1620 * 1621 * Note that this code is very hard to test under normal circumstances because 1622 * direct-io pins the pages with get_user_pages(). This makes 1623 * is_page_cache_freeable return false, and the VM will not clean the pages. 1624 * But other code (eg, flusher threads) could clean the pages if they are mapped 1625 * pagecache. 1626 * 1627 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1628 * deferred bio dirtying paths. 1629 */ 1630 1631 /* 1632 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1633 */ 1634 void bio_set_pages_dirty(struct bio *bio) 1635 { 1636 struct bio_vec *bvec; 1637 struct bvec_iter_all iter_all; 1638 1639 bio_for_each_segment_all(bvec, bio, iter_all) { 1640 if (!PageCompound(bvec->bv_page)) 1641 set_page_dirty_lock(bvec->bv_page); 1642 } 1643 } 1644 1645 /* 1646 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1647 * If they are, then fine. If, however, some pages are clean then they must 1648 * have been written out during the direct-IO read. So we take another ref on 1649 * the BIO and re-dirty the pages in process context. 1650 * 1651 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1652 * here on. It will run one put_page() against each page and will run one 1653 * bio_put() against the BIO. 1654 */ 1655 1656 static void bio_dirty_fn(struct work_struct *work); 1657 1658 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1659 static DEFINE_SPINLOCK(bio_dirty_lock); 1660 static struct bio *bio_dirty_list; 1661 1662 /* 1663 * This runs in process context 1664 */ 1665 static void bio_dirty_fn(struct work_struct *work) 1666 { 1667 struct bio *bio, *next; 1668 1669 spin_lock_irq(&bio_dirty_lock); 1670 next = bio_dirty_list; 1671 bio_dirty_list = NULL; 1672 spin_unlock_irq(&bio_dirty_lock); 1673 1674 while ((bio = next) != NULL) { 1675 next = bio->bi_private; 1676 1677 bio_release_pages(bio, true); 1678 bio_put(bio); 1679 } 1680 } 1681 1682 void bio_check_pages_dirty(struct bio *bio) 1683 { 1684 struct bio_vec *bvec; 1685 unsigned long flags; 1686 struct bvec_iter_all iter_all; 1687 1688 bio_for_each_segment_all(bvec, bio, iter_all) { 1689 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page)) 1690 goto defer; 1691 } 1692 1693 bio_release_pages(bio, false); 1694 bio_put(bio); 1695 return; 1696 defer: 1697 spin_lock_irqsave(&bio_dirty_lock, flags); 1698 bio->bi_private = bio_dirty_list; 1699 bio_dirty_list = bio; 1700 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1701 schedule_work(&bio_dirty_work); 1702 } 1703 1704 void update_io_ticks(struct hd_struct *part, unsigned long now) 1705 { 1706 unsigned long stamp; 1707 again: 1708 stamp = READ_ONCE(part->stamp); 1709 if (unlikely(stamp != now)) { 1710 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) { 1711 __part_stat_add(part, io_ticks, 1); 1712 } 1713 } 1714 if (part->partno) { 1715 part = &part_to_disk(part)->part0; 1716 goto again; 1717 } 1718 } 1719 1720 void generic_start_io_acct(struct request_queue *q, int op, 1721 unsigned long sectors, struct hd_struct *part) 1722 { 1723 const int sgrp = op_stat_group(op); 1724 1725 part_stat_lock(); 1726 1727 update_io_ticks(part, jiffies); 1728 part_stat_inc(part, ios[sgrp]); 1729 part_stat_add(part, sectors[sgrp], sectors); 1730 part_inc_in_flight(q, part, op_is_write(op)); 1731 1732 part_stat_unlock(); 1733 } 1734 EXPORT_SYMBOL(generic_start_io_acct); 1735 1736 void generic_end_io_acct(struct request_queue *q, int req_op, 1737 struct hd_struct *part, unsigned long start_time) 1738 { 1739 unsigned long now = jiffies; 1740 unsigned long duration = now - start_time; 1741 const int sgrp = op_stat_group(req_op); 1742 1743 part_stat_lock(); 1744 1745 update_io_ticks(part, now); 1746 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration)); 1747 part_stat_add(part, time_in_queue, duration); 1748 part_dec_in_flight(q, part, op_is_write(req_op)); 1749 1750 part_stat_unlock(); 1751 } 1752 EXPORT_SYMBOL(generic_end_io_acct); 1753 1754 static inline bool bio_remaining_done(struct bio *bio) 1755 { 1756 /* 1757 * If we're not chaining, then ->__bi_remaining is always 1 and 1758 * we always end io on the first invocation. 1759 */ 1760 if (!bio_flagged(bio, BIO_CHAIN)) 1761 return true; 1762 1763 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1764 1765 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1766 bio_clear_flag(bio, BIO_CHAIN); 1767 return true; 1768 } 1769 1770 return false; 1771 } 1772 1773 /** 1774 * bio_endio - end I/O on a bio 1775 * @bio: bio 1776 * 1777 * Description: 1778 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1779 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1780 * bio unless they own it and thus know that it has an end_io function. 1781 * 1782 * bio_endio() can be called several times on a bio that has been chained 1783 * using bio_chain(). The ->bi_end_io() function will only be called the 1784 * last time. At this point the BLK_TA_COMPLETE tracing event will be 1785 * generated if BIO_TRACE_COMPLETION is set. 1786 **/ 1787 void bio_endio(struct bio *bio) 1788 { 1789 again: 1790 if (!bio_remaining_done(bio)) 1791 return; 1792 if (!bio_integrity_endio(bio)) 1793 return; 1794 1795 if (bio->bi_disk) 1796 rq_qos_done_bio(bio->bi_disk->queue, bio); 1797 1798 /* 1799 * Need to have a real endio function for chained bios, otherwise 1800 * various corner cases will break (like stacking block devices that 1801 * save/restore bi_end_io) - however, we want to avoid unbounded 1802 * recursion and blowing the stack. Tail call optimization would 1803 * handle this, but compiling with frame pointers also disables 1804 * gcc's sibling call optimization. 1805 */ 1806 if (bio->bi_end_io == bio_chain_endio) { 1807 bio = __bio_chain_endio(bio); 1808 goto again; 1809 } 1810 1811 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1812 trace_block_bio_complete(bio->bi_disk->queue, bio, 1813 blk_status_to_errno(bio->bi_status)); 1814 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1815 } 1816 1817 blk_throtl_bio_endio(bio); 1818 /* release cgroup info */ 1819 bio_uninit(bio); 1820 if (bio->bi_end_io) 1821 bio->bi_end_io(bio); 1822 } 1823 EXPORT_SYMBOL(bio_endio); 1824 1825 /** 1826 * bio_split - split a bio 1827 * @bio: bio to split 1828 * @sectors: number of sectors to split from the front of @bio 1829 * @gfp: gfp mask 1830 * @bs: bio set to allocate from 1831 * 1832 * Allocates and returns a new bio which represents @sectors from the start of 1833 * @bio, and updates @bio to represent the remaining sectors. 1834 * 1835 * Unless this is a discard request the newly allocated bio will point 1836 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that 1837 * neither @bio nor @bs are freed before the split bio. 1838 */ 1839 struct bio *bio_split(struct bio *bio, int sectors, 1840 gfp_t gfp, struct bio_set *bs) 1841 { 1842 struct bio *split; 1843 1844 BUG_ON(sectors <= 0); 1845 BUG_ON(sectors >= bio_sectors(bio)); 1846 1847 split = bio_clone_fast(bio, gfp, bs); 1848 if (!split) 1849 return NULL; 1850 1851 split->bi_iter.bi_size = sectors << 9; 1852 1853 if (bio_integrity(split)) 1854 bio_integrity_trim(split); 1855 1856 bio_advance(bio, split->bi_iter.bi_size); 1857 1858 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1859 bio_set_flag(split, BIO_TRACE_COMPLETION); 1860 1861 return split; 1862 } 1863 EXPORT_SYMBOL(bio_split); 1864 1865 /** 1866 * bio_trim - trim a bio 1867 * @bio: bio to trim 1868 * @offset: number of sectors to trim from the front of @bio 1869 * @size: size we want to trim @bio to, in sectors 1870 */ 1871 void bio_trim(struct bio *bio, int offset, int size) 1872 { 1873 /* 'bio' is a cloned bio which we need to trim to match 1874 * the given offset and size. 1875 */ 1876 1877 size <<= 9; 1878 if (offset == 0 && size == bio->bi_iter.bi_size) 1879 return; 1880 1881 bio_advance(bio, offset << 9); 1882 bio->bi_iter.bi_size = size; 1883 1884 if (bio_integrity(bio)) 1885 bio_integrity_trim(bio); 1886 1887 } 1888 EXPORT_SYMBOL_GPL(bio_trim); 1889 1890 /* 1891 * create memory pools for biovec's in a bio_set. 1892 * use the global biovec slabs created for general use. 1893 */ 1894 int biovec_init_pool(mempool_t *pool, int pool_entries) 1895 { 1896 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; 1897 1898 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1899 } 1900 1901 /* 1902 * bioset_exit - exit a bioset initialized with bioset_init() 1903 * 1904 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1905 * kzalloc()). 1906 */ 1907 void bioset_exit(struct bio_set *bs) 1908 { 1909 if (bs->rescue_workqueue) 1910 destroy_workqueue(bs->rescue_workqueue); 1911 bs->rescue_workqueue = NULL; 1912 1913 mempool_exit(&bs->bio_pool); 1914 mempool_exit(&bs->bvec_pool); 1915 1916 bioset_integrity_free(bs); 1917 if (bs->bio_slab) 1918 bio_put_slab(bs); 1919 bs->bio_slab = NULL; 1920 } 1921 EXPORT_SYMBOL(bioset_exit); 1922 1923 /** 1924 * bioset_init - Initialize a bio_set 1925 * @bs: pool to initialize 1926 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1927 * @front_pad: Number of bytes to allocate in front of the returned bio 1928 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1929 * and %BIOSET_NEED_RESCUER 1930 * 1931 * Description: 1932 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1933 * to ask for a number of bytes to be allocated in front of the bio. 1934 * Front pad allocation is useful for embedding the bio inside 1935 * another structure, to avoid allocating extra data to go with the bio. 1936 * Note that the bio must be embedded at the END of that structure always, 1937 * or things will break badly. 1938 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1939 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast(). 1940 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to 1941 * dispatch queued requests when the mempool runs out of space. 1942 * 1943 */ 1944 int bioset_init(struct bio_set *bs, 1945 unsigned int pool_size, 1946 unsigned int front_pad, 1947 int flags) 1948 { 1949 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1950 1951 bs->front_pad = front_pad; 1952 1953 spin_lock_init(&bs->rescue_lock); 1954 bio_list_init(&bs->rescue_list); 1955 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1956 1957 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1958 if (!bs->bio_slab) 1959 return -ENOMEM; 1960 1961 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 1962 goto bad; 1963 1964 if ((flags & BIOSET_NEED_BVECS) && 1965 biovec_init_pool(&bs->bvec_pool, pool_size)) 1966 goto bad; 1967 1968 if (!(flags & BIOSET_NEED_RESCUER)) 1969 return 0; 1970 1971 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1972 if (!bs->rescue_workqueue) 1973 goto bad; 1974 1975 return 0; 1976 bad: 1977 bioset_exit(bs); 1978 return -ENOMEM; 1979 } 1980 EXPORT_SYMBOL(bioset_init); 1981 1982 /* 1983 * Initialize and setup a new bio_set, based on the settings from 1984 * another bio_set. 1985 */ 1986 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src) 1987 { 1988 int flags; 1989 1990 flags = 0; 1991 if (src->bvec_pool.min_nr) 1992 flags |= BIOSET_NEED_BVECS; 1993 if (src->rescue_workqueue) 1994 flags |= BIOSET_NEED_RESCUER; 1995 1996 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags); 1997 } 1998 EXPORT_SYMBOL(bioset_init_from_src); 1999 2000 #ifdef CONFIG_BLK_CGROUP 2001 2002 /** 2003 * bio_disassociate_blkg - puts back the blkg reference if associated 2004 * @bio: target bio 2005 * 2006 * Helper to disassociate the blkg from @bio if a blkg is associated. 2007 */ 2008 void bio_disassociate_blkg(struct bio *bio) 2009 { 2010 if (bio->bi_blkg) { 2011 blkg_put(bio->bi_blkg); 2012 bio->bi_blkg = NULL; 2013 } 2014 } 2015 EXPORT_SYMBOL_GPL(bio_disassociate_blkg); 2016 2017 /** 2018 * __bio_associate_blkg - associate a bio with the a blkg 2019 * @bio: target bio 2020 * @blkg: the blkg to associate 2021 * 2022 * This tries to associate @bio with the specified @blkg. Association failure 2023 * is handled by walking up the blkg tree. Therefore, the blkg associated can 2024 * be anything between @blkg and the root_blkg. This situation only happens 2025 * when a cgroup is dying and then the remaining bios will spill to the closest 2026 * alive blkg. 2027 * 2028 * A reference will be taken on the @blkg and will be released when @bio is 2029 * freed. 2030 */ 2031 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg) 2032 { 2033 bio_disassociate_blkg(bio); 2034 2035 bio->bi_blkg = blkg_tryget_closest(blkg); 2036 } 2037 2038 /** 2039 * bio_associate_blkg_from_css - associate a bio with a specified css 2040 * @bio: target bio 2041 * @css: target css 2042 * 2043 * Associate @bio with the blkg found by combining the css's blkg and the 2044 * request_queue of the @bio. This falls back to the queue's root_blkg if 2045 * the association fails with the css. 2046 */ 2047 void bio_associate_blkg_from_css(struct bio *bio, 2048 struct cgroup_subsys_state *css) 2049 { 2050 struct request_queue *q = bio->bi_disk->queue; 2051 struct blkcg_gq *blkg; 2052 2053 rcu_read_lock(); 2054 2055 if (!css || !css->parent) 2056 blkg = q->root_blkg; 2057 else 2058 blkg = blkg_lookup_create(css_to_blkcg(css), q); 2059 2060 __bio_associate_blkg(bio, blkg); 2061 2062 rcu_read_unlock(); 2063 } 2064 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 2065 2066 #ifdef CONFIG_MEMCG 2067 /** 2068 * bio_associate_blkg_from_page - associate a bio with the page's blkg 2069 * @bio: target bio 2070 * @page: the page to lookup the blkcg from 2071 * 2072 * Associate @bio with the blkg from @page's owning memcg and the respective 2073 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's 2074 * root_blkg. 2075 */ 2076 void bio_associate_blkg_from_page(struct bio *bio, struct page *page) 2077 { 2078 struct cgroup_subsys_state *css; 2079 2080 if (!page->mem_cgroup) 2081 return; 2082 2083 rcu_read_lock(); 2084 2085 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys); 2086 bio_associate_blkg_from_css(bio, css); 2087 2088 rcu_read_unlock(); 2089 } 2090 #endif /* CONFIG_MEMCG */ 2091 2092 /** 2093 * bio_associate_blkg - associate a bio with a blkg 2094 * @bio: target bio 2095 * 2096 * Associate @bio with the blkg found from the bio's css and request_queue. 2097 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 2098 * already associated, the css is reused and association redone as the 2099 * request_queue may have changed. 2100 */ 2101 void bio_associate_blkg(struct bio *bio) 2102 { 2103 struct cgroup_subsys_state *css; 2104 2105 rcu_read_lock(); 2106 2107 if (bio->bi_blkg) 2108 css = &bio_blkcg(bio)->css; 2109 else 2110 css = blkcg_css(); 2111 2112 bio_associate_blkg_from_css(bio, css); 2113 2114 rcu_read_unlock(); 2115 } 2116 EXPORT_SYMBOL_GPL(bio_associate_blkg); 2117 2118 /** 2119 * bio_clone_blkg_association - clone blkg association from src to dst bio 2120 * @dst: destination bio 2121 * @src: source bio 2122 */ 2123 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 2124 { 2125 rcu_read_lock(); 2126 2127 if (src->bi_blkg) 2128 __bio_associate_blkg(dst, src->bi_blkg); 2129 2130 rcu_read_unlock(); 2131 } 2132 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 2133 #endif /* CONFIG_BLK_CGROUP */ 2134 2135 static void __init biovec_init_slabs(void) 2136 { 2137 int i; 2138 2139 for (i = 0; i < BVEC_POOL_NR; i++) { 2140 int size; 2141 struct biovec_slab *bvs = bvec_slabs + i; 2142 2143 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2144 bvs->slab = NULL; 2145 continue; 2146 } 2147 2148 size = bvs->nr_vecs * sizeof(struct bio_vec); 2149 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2150 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2151 } 2152 } 2153 2154 static int __init init_bio(void) 2155 { 2156 bio_slab_max = 2; 2157 bio_slab_nr = 0; 2158 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab), 2159 GFP_KERNEL); 2160 2161 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET); 2162 2163 if (!bio_slabs) 2164 panic("bio: can't allocate bios\n"); 2165 2166 bio_integrity_init(); 2167 biovec_init_slabs(); 2168 2169 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS)) 2170 panic("bio: can't allocate bios\n"); 2171 2172 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) 2173 panic("bio: can't create integrity pool\n"); 2174 2175 return 0; 2176 } 2177 subsys_initcall(init_bio); 2178